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The hyperbolic geometry of Markov’s theorem on
Diophantine approximation and quadratic forms

Boris SPRINGBORN

Abstract. Markov’s theorem classifies the worst irrational numbers with respect to rational
approximation and the indefinite binary quadratic forms whose values for integer arguments
stay farthest away from zero. The main purpose of this paper is to present a new proof
of Markov’s theorem using hyperbolic geometry. The main ingredients are a dictionary to
translate between hyperbolic geometry and algebra/number theory, and some very basic
tools borrowed from modern geometric Teichmiiller theory. Simple closed geodesics and
ideal triangulations of the modular torus play an important role, and so do the problems:
How far can a straight line crossing a triangle stay away from the vertices? How far can
it stay away from all vertices of the tessellation generated by this triangle? Definite binary
quadratic forms are briefly discussed in the last section.

Mathematics Subject Classification (2010). Primary: 11J06, 32GI5.

Keywords. Modular torus, simple closed geodesic, Markov equation, Ford circles, Farey
tessellation.

1. Introduction

The main purpose of this article is to present a new proof of Markov’s
theorem [48, 49] (Secs. 2, 3) using hyperbolic geometry. Roughly, the dictionary
shown on the following page is used to translate between hyperbolic geometry
and algebra/number theory.

The proof is based on Penner’s geometric interpretation of Markov’s equa-
tion [55, p. 335f] (Sec. 12), and the main tools are borrowed from his theory of
decorated Teichmiiller space (Sec. 11). Ultimately, the proof of Markov’s theorem
boils down to the question:

How far can a straight line crossing a triangle stay away from all
vertices?
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Dictionary: Hyperbolic Geometry — Algebra/Number Theory

Hyperbolic Geometry Algebra/Number Theory

horocycle nonzero vector (p,q) € R? Sec. 5
geodesic indefinite binary quadratic form f  Sec. 10
point definite binary quadratic form f Sec. 16
signed distance between horocycles 2log ‘ det ( g o2 )‘ (24)
signed distance between horocycle and lo M (29) (46)
geodesic/point | det f1

ideal triangulation of the modular torus ~ Markov triple Sec. 12

It is fun and a recommended exercise to consider this question in elementary
euclidean geometry. Here, we need to deal with ideal hyperbolic triangles,
decorated with horocycles at the vertices, and “distance from the vertices” is
to be understood as “signed distance from the horocycles” (Sec. 13).

The subjects of this article, Diophantine approximation, quadratic forms,
and the hyperbolic geometry of numbers, are connected with diverse areas
of mathematics and its applications, ranging from from the phyllotaxis of
plants [16] to the stability of the solar system [37], and from Gauss’ Disquisitiones
Arithmeticae to Mirzakhani’s Fields Medal [53]. An adequate survey of this area,
even if limited to the most important and most recent contributions, would be
beyond the scope of this introduction. The books by Aigner [2] and Cassels [11] are
excellent references for Markov’s theorem, Bombieri [6] provides a concise proof,
and more about the Markov and Lagrange spectra can be found in Malyshev’s
survey [47] and the book by Cusick and Flahive [20]. The following discussion
focuses on a few historic sources and the most immediate context and is far from
comprehensive.

One can distinguish two approaches to a geometric treatment of continued
fractions, Diophantine approximation, and quadratic forms. In both cases, number
theory is connected to geometry by a common symmetry group, GL,(Z). The first
approach, known as the geometry of numbers and connected with the name of
Minkowski, deals with the geometry of the Z2-lattice. Klein interpreted continued
fraction approximation, intuitively speaking, as “pulling a thread tight” around
lattice points [41, 42]. This approach extends naturally to higher dimensions,
leading to a multidimensional generalization of continued fractions that was
championed by Arnold [3, 4]. Delone’s comments on Markov’s work [22] also
belong in this category (see also [29]).
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In this article, we pursue the other approach involving Ford circles and the
Farey tessellation of the hyperbolic plane (Fig. 6). This approach could be called
the hyperbolic geometry of numbers. Before Ford’s geometric proof [27] of
Hurwitz’s theorem [38] (Sec. 2), Speiser had apparently used the Ford circles to
prove a weaker approximation theorem. However, only the following note survives
of his talk [70, my translation]:

A geometric figure related to number theory. If one constructs in the
upper half plane for every rational point of the x-axis with abscissa g
the circle of radius 2%2 that touches this point, then these circles do
not overlap anywhere, only tangencies occur. The domains that are not
covered consist of circular triangles. Following the line x = @ (irrational
number) downward towards the x-axis, one intersects infinitely many
circles, i.e., the inequality
o= 2] < 52
q 29

has infinitely many solutions. They constitute the approximations by
Minkowski’s continued fractions.

If one increases the radii to 731?, then the gaps close and one obtains

the theorem on the maximum of positive binary quadratic forms.

See Rem. 9.2 and Sec. 16 for brief comments on these theorems. Based
on Speiser’s talk, Ziillig [75] developed a comprehensive geometric theory of
continued fractions, including a geometric proof of Hurwitz’s theorem.

Both Ziillig and Ford treat the arrangement of Ford circles using elementary
euclidean geometry and do not mention any connection with hyperbolic geometry.
In Sec. 9, we transfer their proof of Hurwitz’s theorem to hyperbolic geometry.
The conceptual advantage is obvious: One has to consider only three circles
instead of infinitely many, because all triples of pairwise touching horocycles are
congruent.

Today, the role of hyperbolic geometry is well understood. Continued fraction
expansions encode directions for navigating the Farey tessellation of the hyperbolic
plane [7, 33, 67]. In fact, much was already known to Hurwitz [39] and
Klein [40, 42]. According to Klein [42, p. 248], they built on Hermite’s [35]
purely algebraic discovery of an invariant “incidence” relation between definite
and indefinite forms, which they translated into the language of geometry. While
Hurwitz and Klein never mention horocycles, they knew the other entries of
the dictionary, and even use the Farey triangulation. In the Cayley—Klein model
of hyperbolic space, the geometric interpretation of binary quadratic forms is
easily established: The projectivized vector space of real binary quadratic forms
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is a real projective plane and the degenerate forms are a conic section. Definite
forms correspond to points inside this conic, hence to points of the hyperbolic
plane, while indefinite forms correspond to points outside, hence, by polarity, to
hyperbolic lines. From this geometric point of view, Klein and Hurwitz discuss
classical topics of number theory like the reduction of binary quadratic forms,
their automorphisms, and the role of Pell’s equation. Strangely, it seems they
never treated Diophantine approximation or Markov’s work this way.

Cohn [12] noticed that Markov’s Diophantine equation (4) can easily be
obtained from an elementary identity of Fricke involving the traces of 2 x
2-matrices. Based on this algebraic coincidence, he developed a geometric
interpretation of Markov forms as simple closed geodesics in the modular
torus [13, 14], which is also adopted in this article.

A much more geometric interpretation of Markov’s equation was discovered
by Penner (as mentioned above), as a byproduct of his decorated Teichmiiller
theory [55, 56]. This interpretation focuses on ideal triangulations of the modular
torus, decorated with a horocycle at the cusp, and the weights of their edges
(Sec. 12). Penner’s interpretation also explains the role of simple closed geodesics
(Sec. 14).

Markov’s original proof (see [6] for a concise modern exposition) is based on
an analysis of continued fraction expansions. Using the interpretation of continued
fractions as directions in the Farey tessellation mentioned above, one can translate
Markov’s proof into the language of hyperbolic geometry. The analysis of allowed
and disallowed subsequences in an expansion translates to symbolic dynamics of
geodesics [66].

In his 1953 thesis, which was published much later, Gorshkov [30] provided a
genuinely new proof of Markov’s theorem using hyperbolic geometry. It is based
on two important ideas that are also the foundation for the proof presented here.
First, Gorshkov realized that one should consider all ideal triangulations of the
modular torus, not only the projected Farey tessellation. This reduces the symbolic
dynamics argument to almost nothing (in this article, see Proposition 15.1, the
proof of implication “(c) = (a)”’). Second, he understood that Markov’s theorem
is about the distance of a geodesic to the vertices of a triangulation. However,
lacking modern geometric tools of Teichmiiller theory (like horocycles), Gorshkov
was not able to treat the geometry of ideal triangulations directly. Instead, he
considers compact tori composed of two equilateral hyperbolic triangles and lets
the side length tend to infinity. The compact tori have a cone-like singularity at
the vertex, and the developing map from the punctured torus to the hyperbolic
plane has infinitely many sheets. This limiting process complicates the argument
considerably. Also, the trigonometry becomes simpler when one needs to consider
only decorated ideal triangles. Gorshkov’s decision “not to restrict the exposition to



The hyperbolic geometry of Markov’s theorem 337

the minimum necessary for proving Markov’s theorem but rather to execute it with
considerable completeness, retaining everything that is of independent interest”
makes it harder to recognize the main lines of argument. This, together with an
unduly dismissive MathSciNet review, may account for the lack of recognition
his work received.

In this article, we adopt the opposite strategy and stick to proving Markov’s
theorem. Many natural generalizations and related topics are beyond the scope of
this paper, for example the approximation of complex numbers [21, 25, 26, 61],
generalizations to other Riemann surfaces or discrete groups [1, 5, 9, 31, 46, 62, 63],
higher dimensional manifolds [36, 73], other Diophantine approximation theorems,
for example Khinchin’s [71], and the asymptotic growth of Markov numbers and
lengths of closed geodesics [8, 50, 52, 68, 69, 74]. Is the treatment of Markov’s
equation using 3 x 3-matrices [57, 59] related? Do the methods presented here
help to cover a larger part of the Markov and Lagrange spectra by considering
more complicated geodesics [18, 17, 19]? Can one treat, say, ternary quadratic
forms or binary cubic forms in a similar fashion?

The notorious Uniqueness Conjecture for Markov numbers (Rem. 2.1 (iv)),
which goes back to a neutral statement by Frobenius [28, p. 461], says in geometric
terms: If two simple closed geodesics in the modular torus have the same length,
then they are related by an isometry of the modular torus [65]. Equivalently, if two
ideal arcs have the same weight, they are related this way. Hyperbolic geometry
was instrumental in proving the uniqueness conjecture for Markov numbers that
are prime powers [10, 44, 64]. Will geometry also help to settle the full Uniqueness
Conjecture, or is it “a conjecture in pure number theory and not tractable by
hyperbolic geometry arguments” [51]? Will combinatorial methods succeed? Who
knows. These may not even be very meaningful questions, like asking: “Will a
proof be easier in English, French, Russian, or German?” On the other hand,
sometimes it helps to speak more than one language.

2. The worst irrational numbers

There are two versions of Markov’s theorem. One deals with Diophantine
approximation, the other with quadratic forms. In this section, we recall some
related theorems and state the Diophantine approximation version in the form in
which we will prove it (Sec. 15). The following section is about the quadratic
forms version.

Let x be an irrational number. For every positive integer g there is obviously

a fraction g that approximates x with error less than ﬁ. If one chooses
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denominators more carefully, one can find a sequence of fractions converging to
x with error bounded by qu;

Theorem. For every irrational number x, there are infinitely many fractions g

satisfying

This theorem is sometimes attributed to Dirichlet although the statement had
“long been known from the theory of continued fractions™ [23]. In fact, Dirichlet
provided a particularly simple proof of a multidimensional generalization, using
what later became known as the pigeonhole principle.

Klaus Roth was awarded a Fields Medal in 1958 for showing that the exponent 2
in Dirichlet’s approximation theorem is optimal [60]:

Theorem (Roth). Suppose x and o are real numbers, a > 2. If there are infinitely
p

many reduced fractions satisfying

1
-2l
q q*

then x is transcendental.

In other words, if the exponent in the error bound is greater than 2 then
algebraic irrational numbers cannot be approximated. This is an example of a
general observation: “From the point of view of rational approximation, the
simplest numbers are the worst” (Hardy & Wright [32], p. 209, their emphasis).
Roth’s theorem shows that the worst irrational numbers are algebraic. Markov’s
theorem, which we will state shortly, shows that the worst algebraic irrationals
are quadratic.

While the exponent is optimal, the constant factor in Dirichlet’s approximation
theorem can be improved. Hurwitz [38] showed that the optimal constant is 1

ﬁ »
and that the golden ratio belongs to the class of very worst irrational numbers:

Theorem (Hurwitz). (i) For every irrational number x, there are infinitely many

fractions g satisfying

(1) ‘x—§‘<~/_;q2.

(i) If A > /5, and if x is equivalent to the golden ratio ¢ = %(1 + /5), then

there are only finitely many fractions g satisfying

(2)

x__

p 1
< —.
’ gl Ag?



The hyperbolic geometry of Markov’s theorem 339

Two real numbers x, x’ are called equivalent if

ax +b

Foes

for some integers a, b, ¢, d satisfying
lad — be| = 1.

If infinitely many fractions satisfy (2) for some x, then the same is true for any

equivalent number x’. This follows simply from the identity
Pl _ | e (8) +4|
e

N2 I
(@) | |cx+d|

e -

where x and x’ are related by (3) and p’ =ap + bg, q¢' = cp + dg. (Note that
the last factor on the right hand side tends to 1 as g tends to x.)
Hurwitz also states the following results, “whose proofs can easily be obtained

from Markov’s investigation” of indefinite quadratic forms:

e If x is an irrational number not equivalent to the golden ratio ¢, then
infinitely many fractions satisfy (2) with A = 2+/2.

e For any A < 3, there are only finitely many equivalence classes of numbers
that cannot be approximated, i.e., for which there are only finitely many
fractions satisfying (2). But for A = 3, there are infinitely many classes that
cannot be approximated.

Hurwitz stops here, but the story continues. Table 1 lists representatives x of
the five worst classes of irrational numbers, and the largest values L(x) for A
for which there exist infinitely many fractions satisfying (2). For example, /2
belongs to the class of second worst irrational numbers. The last two columns
will be explained in the statement of Markov’s theorem.

Markov’s theorem establishes an explicit bijection between the equivalence
classes of the worst irrational numbers, and sorted Markov triples. Here, worst
irrational numbers means precisely those that cannot be approximated for some
A < 3. A Markov triple is a triple (a, b, c¢) of positive integers satisfying Markov’s
equation

(4) a®? + b* + ¢* = 3abc.

A Markov number is a number that appears in some Markov triple. Any
permutation of a Markov triple is also a Markov triple. A sorted Markov triple
is a Markov triple (a,b,c) with a <b <c.

We review some basic facts about Markov triples and refer to the literature for
details, for example [2, 11]. First and foremost, note that Markov’s equation (4) is



340 B. SPRINGBORN

TaBLE 1
The five worst classes of irrational numbers

Rank x L(x) a b ¢ D1 P2
1 (1 + /%) V3= 22... 11 1 0 1
2 V2 2:/2= 28... 1 1 2 —1 1
3 5(9 + +/221) iV221= 297... 1 2 5 —1 2
4 @3+ /1517)  HV/1517T= 2.9%... 15 13 -3 2
5 25(5+ V/7565) 547565 = 2.9992... 2 5 29 = 3

quadratic in each variable. This allows one to generate new solutions from known
ones: If (a,b,c) is a Markov triple, then so are its neighbors

(5) (@,b,c), (a,b,c), (a,b,c),
where

2, .2
(6) d =3bc—a=" :C,

and similarly for 5’ and ¢’. Hence, there are three involutions ox on the set of
Markov triples that map any triple (a,b,c) to its neighbors:

(7 oi(a,b,c)=(d',b,c), o3(a,b,c)=(a,b',c), o3(a,b,c)=(a,b,c).

These involutions act without fixed points and every Markov triple can be obtained
from a single Markov triple, for example from (1, 1, 1), by applying a composition
of these involutions. The sequence of involutions is uniquely determined if one
demands that no triple is visited twice. Thus, the solutions of Markov’s equation (4)
form a trivalent tree, called the Markov tree, with Markov triples as vertices and
edges connecting neighbors (see Fig. 1).

Theorem (Markov, Diophantine approximation version). (i) Let (a,b,c) be any
Markov triple, let py, pa be integers satisfying

(8) p2b — pra = c,
and let

b 3 [0 1
) x=2 42y o=

a ac 2 4 2
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433 194
169 29
169 : 13 4
433 5 13 /194
194\ 5 , | 5 433
13 Z b 29
34 B b 169
1 ay— 2
34 169
13 e 29
b 1 5
1947 5 433
2 13
4337, £ 194
5 34
13
169" <5729
| 433 194
FiGureE 1

Markov tree

Then there are infinitely many fractions g satisfying (2) with

/ 4
(10) A= 9—0—2,

but only finitely many for any larger value of A.

(ii) Conversely, suppose x' is an irrational number such that only finitely many
Jfractions g satisfy (2) for some A < 3. Then there exists a unique sorted Markov

triple (a,b,c) such that x' is equivalent to x defined by equation (9).

Remark 2.1. A few remarks, first some terminology.
(i) The Lagrange number L(x) of an irrational number x is defined by

L(x) = sup {A € R |infinitely many fractions 2 satisfy (2)},

and the set of Lagrange numbers {L(x)|x € R\ Q} is called the Lagrange
spectrum. Equation (10) describes the part of the Lagrange spectrum below 3,
and equation (9) provides representatives of the corresponding equivalence classes
of irrational numbers.

(ii) It may seem strangely unsymmetric that p, appears in equation (9) and
p1 does not. The appearance is deceptive: Markov’s equation (4) and equation (8)
imply that equation (9) is equivalent to

b b 2 ViTa
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(iii) The three integers of a Markov triple are pairwise coprime. (This is true
for (1,1,1), and if it is true for some Markov triple, then also for its neighbors.)
Therefore, integers p;, p» satisfying (8) always exist. Different solutions (p;, p2)
for the same Markov triple lead to equivalent values of x, differing by integers.

(iv) The following question is more subtle: Under what conditions do different
Markov triples (a,b,c) and (a’,b’, ") lead to equivalent numbers x, x’? Clearly,
if ¢ #¢’, then x and x’ are not equivalent because A # A’. But Markov triples
(a,b,c) and (b,a,c) lead to equivalent numbers. In general, the numbers x
obtained by (9) from Markov triples (a,b,c) and (a’,b’,c’) are equivalent if
and only if one can get from (a,b,c) to (a’,b’,c’) or (b',a’,c’) by a finite
composition of the involutions o; and o, fixing c. In this case, let us consider
the Markov triples equivalent. Every equivalence class of Markov triples contains
exactly one sorted Markov triple. It is not known whether there exists only one
sorted Markov triple (a,b,c) for every Markov number c¢. This was remarked
by Frobenius [28] some one hundred years ago, and the question is still open.
The affirmative statement is known as the Unigqueness Conjecture for Markov
Numbers. Consequently, it is not known whether there is only one equivalence
class of numbers x for every Lagrange number L(x) < 3.

(v) The attribution of Hurwitz’s theorem may seem strange. It covers only
the simplest part of Markov’s theorem, and Markov’s work precedes Hurwitz’s.
However, Markov’s original theorem dealt with indefinite quadratic forms (see the
following section). Despite its fundamental importance, Markov’s groundbreaking
work gained recognition only very slowly. Hurwitz began translating Markov’s
ideas to the setting of Diophantine approximation. As this circle of results became
better understood by more mathematicians, the translation seemed more and
more straightforward. Today, both versions of Markov’s theorem, the Diophantine
approximation version and the quadratic forms version, are unanimously attributed
to Markov.

3. Markov’s theorem on indefinite quadratic forms

In this section, we recall the quadratic forms version of Markov’s theorem.
We consider binary quadratic forms

(11) f(p.q) = Ap* +2Bpq + Cq?,

with real coefficients A, B, C. The determinant of such a form is the determinant
of the corresponding symmetric 2 x 2-matrix,

(12) det f = AC — B2.
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Markov’s theorem deals with indefinite forms, i.e., forms with
det f < 0.
In this case, the quadratic polynomial
(13) flx, 1) = Ax® + 2Bx 4+ €

has two distinct real roots,

(14) —B £ ,A/—detf,

provided A # 0. If A =0, it makes sense to consider % and oo as two roots
in the real projective line RP! =~ R U {oo}. Then the following statements are
equivalent:

(i) The polynomial (13) has at least one root in Q U {o0}.
(ii) There exist integers p and ¢, not both zero, such that f(p,q) = 0.

Conversely, one may ask: For which indefinite forms f does the set of values

{f(p.a) | (p.q) € Z*,(p.q) # (0,0)} € R

stay farthest away from 0. This makes sense if we require the forms f to be

normalized to det f = —1. Equivalently, we may ask: For which forms is the
infimum
J(p.q)
15) M) = B
(p.9)€Z? /| det f|
(P,9)7#0

maximal? These forms are “most unlike” forms with at least one rational root,
for which M(f) = 0. Korkin and Zolotarev [43] gave the following answer:

Theorem (Korkin and Zolotarev). Let [ be an indefinite binary quadratic form
with real coefficients. If f is equivalent to the form

P> —pqg—q°,
then
M(f) = ==
- ,Jg .
Otherwise,
1
(16) M(f) < —.

2
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Binary quadratic forms f, f are called equivalent if there are integers a,
b, ¢, d satisfying
lad — be| =1,

such that

(17) f(p.q) = flap + bq,cp + dq).

Equivalent quadratic forms attain the same values on Z?2.

Hurwitz’s theorem is roughly the Diophantine approximation version of Korkin
& Zolotarev’s theorem. They did not publish a proof, but Markov obtained one
from them personally. This was the starting point of his work on quadratic
forms [48, 49], which establishes a bijection between the classes of forms for
which M(f) > % and sorted Markov triples:

Theorem (Markov, quadratic forms version). (i) Let (a, b,c) be any Markov triple,
let p1, p» be integers satisfying equation (8), let

b 3
(18) xg=2242_2
a ac 2
let
9 |
| A Nl
K=) d 4 2

and let [ be the indefinite quadratic form

(20) f(p.q) = p* —2x0 pq + (x5 —r?) g*.
Then

1
(21) M(f) =,

and the infimum in (15) is attained.

(ii) Conversely, suppose f is an indefinite binary quadratic form with
~ 2
M(f) > 3

Then there is a unique sorted Markov triple (a,b,c) such that f is equivalent
to a multiple of the form [ defined by equation (20).

Note that the number x defined by (9) is a root of the form f defined by (20),

and M(f) = f(2x_) Table 2 lists representatives f(p,q) of the five classes of

forms with the largest values of M(f).
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TABLE 2
The five classes of indefinite quadratic forms whose values stay farthest away from zero

Rank Sp.q) M(f) a b ¢ P P2
1 p? —pg ~g* %:0.89..‘ 1 1 1 0 1
2 p? — 24 Jﬁzo.m... 1 1 2 ~1 1
3 5p2 + pg — 1142 %:0.67... 1 2 5 -1 2
4 13p2 + 23pg — 1942 % = 0.667... 1 5 13 -3 2
5 29p2 — 5pq — 65¢> %6_5 =0.6668... 2 5 29 - 3

Remark 3.1. Here, too, the apparent asymmetry between p; and p, is deceptive
(cf. Remark 2.1 (ii)). Equation (18) is equivalent to

ppoa 3
Xg = — — —

TR

4. The hyperbolic plane

We use the half-space model of the hyperbolic plane for all calculations. In
this section, we summarize some basic facts.
The hyperbolic plane is represented by the upper half-plane of the complex

plane,
H? ={zeC|Imz > 0},

where the length of a curve y : [ty,t1] — H? is defined as

N )
[ my@ 4

The model is conformal, i.e., hyperbolic angles are equal to euclidean angles. The
group of isometries is the projective general linear group,

PGL,(R) = GL,(R)/R*
~ {A € GLy(R) | |det A| = 1}/{x1d},
where the action M : PGLy(R) — Isom(H?) is defined as follows:

For
A== (‘c’ 3) € GL,(R),
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“Zis if detA >0,
CcZ
M(a) = az+b
— if detA <O.
cz+d

The isometry M, preserves orientation if detA > 0 and reverses orientation

if detA < 0. The subgroup of orientation preserving isometries is therefore
PSL;(R) == SL,(R)/{+1d}.

Geodesics in the hyperbolic plane are euclidean half circles orthogonal to the
real axis or euclidean vertical lines (see Fig. 2). The hyperbolic distance between
points x +iyp and x + iy; on a vertical geodesic is

|]0g&’.
Yo

Apart from geodesics, horocycles will play an important role. They are the
limiting case of circles as the radius tends to infinity. Equivalently, horocycles
are complete curves of curvature 1. In the half-space model, horocycles are
represented as euclidean circles that are tangent to the real line, or as horizontal
lines. The center of a horocycle is the point of tangency with the real line, or co
for horizontal horocycles.

The points on the real axis and oo € CP! are called ideal points. They do
not belong to the hyperbolic plane, but they correspond to the ends of geodesics.
All horocycles centered at an ideal point x € R U {co} intersect all geodesics
ending in x orthogonally. In the proof of Proposition 8.1, we will use the fact
that two horocycles centered at the same ideal point are equidistant curves.

x+i
Yo Yo
log —
J1 ;
X +1iyi h(p’,0) &
P
geodesics
horocycles b
42
h(p.q)
4
FIGURE 2 1

Geodesics and horocycles
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5. Dictionary: Horocycle — 2D vector

We assign a horocycle h(p,q) to every (p,q) € R?\ {(0,0)} as follows (see
Fig. 2):

e For g # 0, let h(p,q) be the horocycle at g with euclidean diameter q%.

e Let A(p,0) be the horocycle at co at height p?.

The map (p,q) — h(p,q) from R?\{0} to the space of horocycles is surjective
and two-to-one, mapping +(p,q) to the same horocycle. The map is equivariant
with respect to the PGL,(R)-action [24, p. 665]. More precisely:

Proposition 5.1 (Equivariance). For A € GL,(R) satisfying |det A| = 1 and for
v € R%\ {0}, the hyperbolic isometry My maps the horocycle h(v) to h(Av).

Proof. This can of course be shown by direct calculation. To simplify the
calculations, note that every isometry of H? can be represented as a composition
of isometries of the following types:

(22) Z>z4+b, zH Az, zZ+>—-Z, Zb>

by | —

(where b € R, A € R.). The corresponding normalized matrices are

1 b Az 0 1 0 0 1
NN

(The first two maps preserve orientation, the other two reverse it.) It is therefore
enough to do the simpler calculations for these maps. (For the inversion, Fig. 3

indicates an alternative geometric argument, just for fun.) [
-
1 24*
2p
P q
Ficure 3

1

Horocycle h(p,q) and image under inversion z — =
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6. Signed distance of two horocycles

The signed distance d(hy,h,) of horocycles hy, h, is defined as follows (see
Fig. 4):

e If h; and h, are centered at different points and do not intersect,
then d(h1, hy) is the length of the geodesic segment connecting the horocycles
and orthogonal to both. (This is just the hyperbolic distance between the
horocycles.)

e If hy and h, do intersect, then d(hy,h;) is the length of that geodesic
segment, taken negative. (If #; and h, are tangent, then d(h;,h2) =0.)

e If h; and h, have the same center, then d(hy,hy) = —00.

FIGURE 4
The signed distance of horocycles

Remark 6.1. If horocycles Ay, h, have the same center, they are equidistant
curves with a well defined finite distance. But their signed distance is defined to
be —oo. Otherwise, the map (hy,hz) — d(hy,hz) would not be continuous on
the diagonal.

Proposition 6.2 (Signed distance of horocycles). The signed distance of two
horocycles hy = h(p1,q1) and hy = h(pa,q2) is

(24) d(hi,h2) = 2log|p192 — p2q1l.

Proof. 1t is easy to derive equation (24) if one horocycle is centered at oo (see
Fig. 2). To prove the general case, apply the hyperbolic isometry

1 0 1
d1 q1

that maps one horocycle center to oo and use Proposition 5.1. Ll
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7. Ford circles and Farey tessellation

Figure 5 shows the horocycles h(p,q) with integer parameters (p,q) € Z2.
There is an infinite family of such integer horocycles centered at each rational
number and at co. (Only the lowest horocycle centered at oo is shown to save
space.) Integer horocycles h(p1,q1) and h(p2,q») with different centers % - g—j
do not intersect. This follows from Proposition 6.2, because pig2 — p2q1 is a
non-zero integer. They touch if and only if p1g> — p2g1 = £1. This can happen
only if both (p1,q1) and (p2,q2) are coprime, that is, if % and % are reduced
fractions representing the respective horocycle centers.

Figure 6 shows the horocycles h(p,q) with integer and coprime parame-
ters (p,q). They are called Ford circles. There is exactly one Ford circle centered
at each rational number and at oo. If one connects the ideal centers of tangent
Ford circles with geodesics, one obtains the Farey tessellation, which is also
shown in the figure. The Farey tessellation is an ideal triangulation of the hy-
perbolic plane with vertex set. Q U {co}. (A thorough treatment can be found
in [7].)

FiGure 5

FiGURE 6
Ford circles and Farey tessellation
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We will see that Markov triples correspond to ideal triangulations of the hy-
perbolic plane (as universal cover of the modular torus), and (1,1, 1) corresponds
to the Farey tessellation (Sec. 11). The Farey tessellation also comes up when one
considers the minima of definite quadratic forms (Sec. 16).

8. Signed distance of a horocycle and a geodesic

For a horocycle # and a geodesic g, the signed distance d(h,g) is defined
as follows (see Fig. 7):

e If # and g do not intersect, then d(h,g) is the length of the geodesic
segment connecting # and g and orthogonal to both. (This is just the
hyperbolic distance between 2 and g.)

e If 4 and g do intersect, then d(k, g) is the length of that geodesic segment,
taken negative.

e If 4 and g are tangent then d(h,g) = 0.

e If g ends in the center of A then d(h,g) = —c0.

X1 I X2  X] I X2
FiGgure 7
The signed distance d = d(h, g) of a horocycle & and a geodesic g

An equation for the signed distance to a vertical geodesic is particularly easy
to derive:

Proposition 8.1 (Signed distance to a vertical geodesic). Consider a horocycle
h = h(p,q) with q # 0 and a vertical geodesic g from x € R to oo. Their
signed distance is

(25) d(h, g) = log (2q2|x _ g))

Proof. See Fig. 8. Ll
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Figure 8
Signed distance of horocycle & = h(p,q) and vertical geodesic g

Equation (25) suggests a geometric interpretation of Hurwitz’s theorem and the
Diophantine approximation version of Markov’s theorem: A fraction g satisfies
inequality (2) if and only if

A
(26) d(h(p.q).8) < —logi.

The following section contains a proof of Hurwitz’s theorem based on this
observation. An equation for the signed distance to a general geodesic will be
presented in Proposition 10.1.

9. Proof of Hurwitz’s theorem

Let x be an irrational number and let g be the vertical geodesic from x
to oo. By Proposition 8.1, part (i) of Hurwitz’s theorem is equivalent to the
statement:

Infinitely many Ford circles & satisfy

(27) dh,g) < —log ? :

This follows from the following lemma. Let us say that the midpoint of an
edge of the Farey tessellation is the point where the horocycles centered at its
ends meet (see Fig. 6). Accordingly, we say that a geodesic bisects an edge of
the Farey tessellation if it passes through the midpoint of the edge (see Fig. 9).

Lemma 9.1. Suppose a geodesic g crosses an ideal triangle T of the Farey
tessellation. If g is one of the three geodesics bisecting two sides of T, then

NG
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Ficure 9
Geodesic g bisecting the two vertical sides of the
triangle 0, 1,00, and geodesic g from @ to oo

for all three Ford circles h at the vertices of T . Otherwise, inequality (27) holds
Jor at least one of these three Ford circles.

Proof of Lemma 9.1. 'This is the simplest case of Propositions 13.2 and 13.4, and
easy to prove independently. Note that it is enough to consider the ideal triangle
0, 1, oo, and geodesics intersecting its two vertical sides (see Fig. 9). O

To deduce part (i) of Hurwitz’s theorem, note that since x is irrational,
the geodesic g from x to oo passes through infinitely many triangles of the
Farey tessellation. For each of these triangles, at least one of its Ford circles
h satisfies (27), by Lemma 9.1. (The geodesic g¢ does not bisect two sides of
any Farey triangle. Otherwise, g would bisect two sides of all Farey triangles
it enters; see Fig. 9, where the next triangle is shown with dashed lines. This
contradicts g ending in the vertex oo of the Farey tessellation.)

For consecutive triangles that g crosses, the same horocycle may satisfy (27).
But this can happen only finitely many times (otherwise x would be rational),
and then the geodesic will never again intersect a triangle incident with this
horocycle. Hence, infinitely many Ford circles satisfy (27), and this completes
the proof of part (i).

To prove part (ii) of Hurwitz’s theorem, we have to show that for

x=® and € >0,

only finitely many Ford circles & satisfy

(28) d(h,g) < —log ? — €,

where g is the geodesic from @ to oo.
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To this end, let g; be the geodesic from ® = (1 ++/5) to 1(1—+/5), see
Fig. 9. For every Ford circle #,

V5
d(h,g1) = —log —-.

Indeed, the distance is equal to —log %
and positive for all others.

Because the geodesics g and g; converge at the common end &, there is
a point P € g such that all Ford circles % intersecting the ray from P to &

satisfy

for all Ford circles that g; intersects,

|d(g’ CI)) - d(gl, CI))l <€,
and hence
5
d(g,®) = —log % —

On the other hand, the complementary ray of g, from P to oo, intersects only
finitely many Ford circles. Hence, only finitely many Ford circles satisfy (28),
and this completes the proof of part (ii).

Remark 9.2. The gist of the above proof is deducing Hurwitz’s theorem from
the fact that the geodesic g from an irrational number x to oo crosses infinitely
many Farey triangles. A weaker statement follows from the observation that g
crosses infinitely many edges. Since each edge has two touching Ford circles at
the ends, a crossing geodesic intersects at least one of them. Hence there are
infinitely many fractions satisfying (2) with A = 2. In fact, at least one of any
two consecutive continued fraction approximants satisfies this bound. This result
is due to Vahlen [58, p. 41] [72]. The converse is due to Legendre [45] and 65
years older: If a fraction satisfies (2) with A = 2, then it is a continued fraction
approximant. A geometric proof using Ford circles is mentioned by Speiser [70]
(see Sec. 1).

10. Dictionary: Geodesic — indefinite form

We assign a geodesic g(f) to every indefinite binary quadratic form f
with real coefficients as follows: To the form f with real coefficients A, B,
C as in (11), we assign the geodesic g(f) that connects the zeros of the
polynomial (13). (If A = 0, one of the zeros is oo, and g(f) is a vertical
geodesic.) The map f +> g(f) from the space of indefinite forms to the space
of geodesics is

e surjective and many-to-one: g(f) = g(f) < f = uf for some p € R*.
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e equivariant with respect to the left GL,(IR)-actions:

[ 4 s foA™l

Ig | AeGLy(R) Ig

g(f) —A s Mag(f) =g(f oA™Y

Proposition 10.1. The signed distance of the horocycle h(p,q) and the geo-
desic g(f) is

|f (P, )l
J—det [

Proof. First, consider the case of horizontal horocycles (¢ = 0). If g(f) is
a vertical geodesic ( f(p,0) = 0), equation (29) is immediate. Otherwise, note
that p%./—det f/| f(p,0)| is half the distance between the zeros (14), hence the
height of the geodesic.

The general case reduces to this one: For any A € GL,(R) with |detA| =1

nd 4(5) = (3),
d(h(p.q),g())) = d(Mah(p.q), Mag(f)) = d (h(p,0),g(f o A™))
l(foA N (p,0)| ~ log | f(p,q)|
\/—det(foA ) J—det f

Equation (29) suggests a geometric interpretation of the quadratic forms version
of Markov’s theorem, and it is easy to prove most of Korkin & Zolotarev’s
theorem (just replace inequality (16) with M(f) < —\%) by adapting the proof
of Hurwitz’s theorem in Sec. 9. To obtain the complete Markov theorem, more
hyperbolic geometry is needed. This this is the subject of the following sections.

(29) d(h(p.q),g(f)) = log

O

11. Decorated ideal triangles

In this and the following section, we review some basic facts from Penner’s
theory of decorated Teichmiiller spaces [55, 56]. The material of this section, up
to and including equation (30) is enough to treat crossing geodesics in Sec. 13.
Ptolemy’s relation is needed for the geometric interpretation of Markov’s equation
in Sec. 12.

An ideal triangle is a closed region in the hyperbolic plane that is bounded
by three geodesics (the sides) connecting three ideal points (the vertices). Ideal
triangles have dihedral symmetry, and any two ideal triangles are isometric. That
is, for any pair of ideal triangles and any bijection between their vertices, there is
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Figure 10
Decorated ideal triangle in the Poincaré disk
model (left) and in the half-plane model (right)

a unique hyperbolic isometry that maps one to the other and respects the vertex
matching. A decorated ideal triangle is an ideal triangle together with a horocycle
at each vertex (Fig. 10).

Consider a geodesic decorated with two horocycles h;, h, at its ends (for
example, a side of an ideal triangle). Let the truncated length of the decorated
geodesic be defined as the signed distance of the horocycles (Sec. 6),

= d(hl,hz),
and let its weight be defined as

a = e*'2,

(We will often use Greek letters for truncated lengths and Latin letters for weights.
The weights are usually called A-lengths.)

Any triple (a1,a2,a3) € R? of truncated lengths, or, equivalently, any triple
(ay,az,a3) € Rio of weights, determines a unique decorated ideal triangle up to
isometry.

Consider a decorated ideal triangle with truncated lengths a; and weights ay .
Its horocycles intersect the triangle in three finite arcs. Denote their hyperbolic
lengths by ¢, (see Fig. 10). The truncated side lengths determine the horocyclic
arc lengths, and vice versa, via the relation

dk

— %(—af—‘(xj +ag)
9

(30) Ck =
a;da;

where (i, j,k) is a permutation of (1,2,3). (For a proof, contemplate Fig. 10.)
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Now consider a decorated ideal quadrilateral as shown in Fig. 11. It can be
decomposed into two decorated ideal triangles in two ways. The six weights a,
b, ¢, d, e, [ are related by the Ptolemy relation

(31) ef =ac+ bd.

It is straightforward to derive this equation using the relations (30).

Ficure 11 FIGURE 12
Ptolemy relation Triangulations 7 and 7’ of a punctured torus

12. Triangulations of the modular torus and Markov’s equation

In this section, we review Penner’s [55, 56] geometric interpretation of
Markov’s equation (4), which is summarized in Prop. 12.1. The involutions oy
were defined in Sec. 2, see equation (7). The modular torus is the orbit space

M = H?/G,
where G is the group of orientation preserving hyperbolic isometries generated
by

z—1 z+1

, Blz) = ;
—z+2 z4+2

(32) A(z) =

Figure 13 shows a fundamental domain. The group G is the commutator subgroup
of the modular group PSL,(Z), and the only subgroup of PSL,(Z) that has a once
punctured torus as orbit space. It is a normal subgroup of PSL,(Z) with index
six, and the quotient group PSL,(Z)/G is the group of orientation preserving
isometries of the modular torus M. It is also symmetric with respect to six
reflections, so the isometry group has in total twelve elements.
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FiGureE 13
The modular torus

Proposition 12.1 (Markov triples and ideal triangulations). (i) A triple v = (a, b, c)
of positive integers is a Markov triple if and only if there is an ideal triangulation
of the decorated modular torus whose three edges have the weights a, b, and
c. This triangulation is unique up to the 12-fold symmetry of the modular torus.

(ii) If T is an ideal triangulation of the decorated modular torus with edge
weights © = (a,b,c), and if T' is an ideal triangulation obtained from T by
performing a single edge flip, then the edge weights of T' are v’ = oxt, with
k € {1,2,3} depending on which edge was flipped.

To understand the logical connections, it makes sense to consider not only the
modular torus but arbitrary once punctured hyperbolic tori.

A once punctured hyperbolic torus is a torus with one point removed, equipped
with a complete metric of constant curvature —1 and finite volume. For example,
one obtains a once punctured hyperbolic torus by gluing two congruent decorated
ideal triangles along their edges in such a way that the horocycles fit together.
Conversely, every ideal triangulation of a hyperbolic torus with one puncture
decomposes it into two ideal triangles.

A decorated once punctured hyperbolic torus is a once punctured hyperbolic
torus together with a choice of horocycle at the cusp. Thus, a triple of weights
(a,b,c) € R2, determines a decorated once punctured hyperbolic torus up to
isometry, together with an ideal triangulation. Conversely, a decorated once
punctured hyperbolic torus together with an ideal triangulation determines such
a triple of edge weights.

Consider a decorated once punctured hyperbolic torus with an ideal triangu-
lation 7 with edge weights (a,b,c) € R2,. By equation (30), the total length of
the horocycle is
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a b c
6_2(E+a+a—b).

This equation is equivalent to
2 2, 2_"t
a”+b*+c* = 5abc.

Thus, the weights satisfy Markov’s equation (4) (not considered as a Diophantine
equation) if and only if the horocycle has length £ = 6. From now on, we assume
that this is the case: We decorate all once punctured hyperbolic tori with the
horocycle of length 6.

Let T’ be the ideal triangulation obtained from 7 by flipping the edge
with weight a, i.e., by replacing this edge with the other diagonal in the ideal
quadrilateral formed by the other edges (see Fig. 12). By equation (6) and Ptolemy’s
relation (31), the edge weights of 7’ are (a’,b,c) = o1(a,b,c). Of course, one
obtains analogous equations if a different edge is flipped.

The modular torus M , decorated with a horocycle of length 6, is obtained by
gluing two decorated ideal triangles with weights (1, 1, 1). Lifting this triangulation
and decoration to the hyperbolic plane, one obtains the Farey tessellation with
Ford circles (Fig. 6). This implies that for every Markov triple (a,b,c) there is
an ideal triangulation of the decorated modular torus with edge weights a, b, c.
To see this, follow the path in the Markov tree leading from (1,1,1) to (a,b,c)
and perform the corresponding edge flips on the projected Farey tessellation.

On the other hand, the flip graph of a complete hyperbolic surface with
punctures is also connected [34] [54, p. 36ff]. The flip graph has the ideal
triangulations as vertices, and edges connect triangulations related by a single
edge flip. (Since we are only interested in a once punctured torus, invoking this
general theorem is somewhat of an overkill.) This implies the converse statement:
If a, b, ¢ are the weights of an ideal triangulation of the modular torus, then
(a,b,c) is a Markov triple.

Note that there is only one ideal triangulation of the modular torus with
weights (1,1,1), i.e., the triangulation that lifts to the Farey tessellation. The
symmetries of the modular torus permute its edges. Since the Markov tree and
the flip graph are isomorphic, this implies that two triangulations with the same
weights are related by an isometry of the modular torus. Altogether, one obtains
Proposition 12.1.

13. Geodesics crossing a decorated ideal triangle

For the proof of Markov’s theorem in Sec. 15, we need to know how far a
geodesic crossing a decorated ideal triangle can stay away from the horocycles at
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the vertices. To prove Hurwitz’s theorem (see Sec. 9), it was enough to consider
a triangle decorated with pairwise tangent horocycles. In this section, we consider
the general case, more precisely, the following geometric optimization problem:

Problem 13.1. Given a decorated ideal triangle with two sides, say a; and a,
designated as “legs”, and the third side, say a3, designated as “base”. Find, among
all geodesics intersecting both legs, a geodesic that maximizes the minimum of
signed distances to the three horocycles at the vertices.

It makes sense to consider the corresponding optimization problem for
euclidean triangles: Which straight line crossing two given legs has the largest
distance to the vertices? The answer depends on whether or not an angle at the
base is obtuse. For decorated ideal triangles, the situation is completely analogous.
We say that a geodesic bisects a side of a decorated ideal triangle if it intersects
the side in the point at equal distance to the two horocycles at the ends of the
side.

Proposition 13.2. Consider a decorated ideal triangle with horocycles hy, ha,
hs, and let ay, a», as denote both the sides and their weights (see Fig. 14 for
notation).

(i Ir
(33) ai <a3+a? and a} <a}+a3,

then the geodesic g bisecting the sides a; and a, is the unique solution of
Problem 13.1.

(i) 1f, for (j.k) € {(1,2),(2, D)},

(34) af = a,% + a%,

then the perpendicular bisector g’ of side ay is the unique solution of
Problem 13.1. In this case, the minimal distance is attained for h; and hs,

o
(35) d(hy,g') = d(hs,g') = = < d(hi.g).

In the proof of Markov’s theorem (Sec. 15), the base as will always be a
largest side, so only part (i) of Proposition 13.2 is needed. We will also need some
equations for the geodesic bisecting two sides, which we collect in Proposition 13.4.

Proof of Proposition 13.2. 1. The geodesic g has equal distance from all three
horocycles. Indeed, because of the 180° rotational symmetry around the inter-
section point, any geodesic bisecting a side has equal distance from the two
horocycles at the ends.
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ai
1
P> at
X2
FiGcure 14

Decorated ideal triangle (shaded) and geodesic g through the midpoints of sides a;
and a». Left: Inequalities (33) are strictly satisfied and Pz lies strictly between
P; and P>. (The height marks on the right margin belong to the proof of

Proposition 13.4.) Right: a? > a5 + a3 and P lies strictly between P3 and Ps.
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2. For k € {1,2,3} let P be the foot of the perpendicular from vertex vy to
the geodesic g bisecting a; and a» (see Fig. 14). If P3 lies strictly between P
and P, (as in Fig. 14, left), then g is the unique solution of Problem 13.1. Any
other geodesic crossing a; and a, also crosses at least one of the rays from Py
to v, and is therefore closer to at least one of the horocycles.

3. If P; lies strictly between P3; and P, (as in Fig. 14, right) then the unique
solution of Problem 13.1 is the perpendicular bisector of a,. Its signed distance
to the horocycles h; and hs is half the truncated length of side a,. Any other
geodesic crossing a, is closer to at least one of its horocycles. The signed distance
of g and the horocycle h, is larger. The case when P; lies strictly between P;
and P, is treated in the same way.

5.1f P, = P3 (or Py = P3) then the geodesic g with equal distance to all
horocycles is simultaneously the perpendicular bisector of side a, (or a;).

6. It remains to show that the order of the points Py on g depends on whether
the weights satisfy the inequalities (33) or one of the inequalities (34). To this
end, let 5; be the distance from the side a; to the ray P;vs, measured along the
horocycle h3 in the direction from a; to a,. Similarly, let s, be the distance
from the side a, to the ray Psvs, measured along the horocycle h3 in the
direction from a, to a;. So s, and s, are both positive if and only if Pz lies
strictly between P; and P,. But if, for example, P; lies between P3; and P, as
in Fig. 14, right, then s, < 0. By symmetry, s; is also the distance from a; to
Pyv,, measured along h, in the direction away from as. Similarly, s, is also
the distance between a2 and Pjv; along h;. Finally, let s3 > 0 be the equal
distances between a3 and Pjv; along h;, and between a3 and Ppv, along h;.
Now

implies
2 2 2
(30) di as as a; —as5 +a
(36) 251 =c1—¢€c2+c3 = — + = 1 2 3
azas  dsdi aias aijaras

and similarly
—a} + a3 + a3

aidads

2S21=

Hence, P; lies in the closed interval between P; and P, if and only if
inequalities (33) are satisfied. The other cases are treated similarly. O

Remark 13.3. The above proof of Proposition 13.2 is nicely intuitive. A more
analytic proof may be obtained as follows. First, show that for all geodesics
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intersecting a; and a,, the signed distances u;, u,, u3 to the horocycles satisfy
the equation

(37) (clul + CoUsp +C3u3)2—4c162u1u2—4 =0

It makes sense to consider the special case a; = a, = a3z = 1 first, because
the general equation (37) can easily be derived from the simpler one. Then
consider the necessary conditions for a local maximum of min(uy, uz,u3) under
the constraint (37): If a maximum is attained with u; = u; = us, then the three
partial derivatives of the left hand side of (37) are all > 0 or all < 0. If a
maximum is attained with u; = u, < u3, then this sign condition holds for the
first two derivatives, and similarly for the other cases.

Proposition 13.4. Let g be the geodesic bisecting sides a1 and a, of a decorated
ideal triangle as shown in Fig. 14. (Inequalities (33) may hold or not.) Then the
common signed distance of g and the horocycles is

d(hy,g) = d(ha, g) = d(hs,g) = —logr,
where

52 1
38 D L.
(28) d 4 a%

and &8 is the sum of the lengths of the horocyclic arcs,

(39) §=c1+crtes= 42 |9

b —
asdas asa, a,az

Moreover, suppose the vertices are
(40) v1 <V, V3 =00,

and the horocycle hs has height 1. Then the ends x15 of g are

(4]) X1,2 = Xo :I:r,
where
a )
(42) By =Mp 4 —ore=
asdgy 2

Proof. Assuming (40) and h3 = h(1,0), let xo = v2 — 5. Then the proposition
follows from (36), some easy hyperbolic geometry, Pythagoras’ theorem, and
simple algebra (see Fig. 14). L]
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14. Simple closed geodesics and ideal arcs

In this section, we collect some topological facts about simple closed geodesics
and ideal arcs that we will use in the proof of Markov’s theorem (Sec. 15). They
are probably well known, but we indicate proofs for the reader’s convenience.

An ideal arc in a complete hyperbolic surface with cusps is a simple geodesic
connecting two punctures or a puncture with itself. The edges of an ideal
triangulation are ideal arcs, and every ideal arc occurs in an ideal triangulation.
(In fact, ideal triangulations are exactly the maximal sets of non-intersecting ideal
arcs.) Here, we are only interested in a once punctured hyperbolic torus. In this
case, every ideal triangulation containing a fixed ideal arc can be obtained from
any other such triangulation by repeatedly flipping the remaining two edges. Ideal
arcs play an important role in the following section because they are in one-
to-one correspondence with the simple closed geodesics (Proposition 14.1), and
the simple closed geodesics are the geodesics that stay farthest away from the
puncture (Proposition 15.1).

Proposition 14.1. Consider a fixed once punctured hyperbolic torus.

(i) For every ideal arc c, there is a unique simple closed geodesic g that does
not intersect c.

(ii) Every other geodesic not intersecting ¢ has either two ends in the puncture,
or one end in the puncture and the other end approaching the closed geodesic
g.

(iii) If a, b, c are the edges of an ideal triangulation T, then the simple closed
geodesic g that does not intersect c intersects each of the two triangles of
T in a geodesic segment bisecting the edges a and b.

(iv) For every simple closed geodesic g, there is a unique ideal arc c that does
not intersect g.

Remark 14.2. Speaking of edge midpoints implies an (arbitrary) choice of a
horocycle at the cusp. In fact, the edge midpoints of a triangulated once punctured
torus are distinguished without any choice of triangulation. They are the three
fixed points of an orientation preserving isometric involution. Every ideal arc
passes through one of these points.

Proof. (i) Cut the torus along the ideal arc c¢. The result is a hyperbolic cylinder
as shown in Fig. 15 (left). Both boundary curves are complete geodesics with
both ends in the cusp, which is now split in two. There is up to orientation
a unique non-trivial free homotopy class that contains simple curves, and
this class contains a unique simple closed geodesic.
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Figure 15
Cutting a punctured torus along an ideal arc
(left) and along a simple closed geodesic (right).

(ii) Consider the universal cover of the cylinder in the hyperbolic plane.

(iii) An ideal triangulation of a once punctured torus is symmetric with respect to
a 180° rotation around the edge midpoints. (This is the involution mentioned
in Remark 14.2.) It swaps the geodesic segments bisecting edges a and b in
the two ideal triangles, so they connect smoothly. Hence they form a simple
closed geodesic, which does not intersect c.

(iv) Cut the torus along the simple closed geodesic g. The result is a cylinder
with a cusp and two geodesic boundary circles, as shown in Fig. 15 (right).
Fill the puncture and take it as base point for the homotopy group. There
is up to orientation a unique non-trivial homotopy class containing simple
closed curves and this class contains a unique ideal arc. L]

15. Proof of Markov’s theorem

In this section, we put the pieces together to prove both versions of
Markov’s theorem. The quadratic forms version follows from Proposition 15.1.
The Diophantine approximation version follows from Proposition 15.1 together
with Proposition 15.2.

Two geodesics in the hyperbolic plane are GL,(Z)-related if, for some
A € GL,(Z), the hyperbolic isometry M4 maps one to the other.

Proposition 15.1. Let g be a complete geodesic in the hyperbolic plane, and let
7 (g) be its projection to the modular torus. Then the following three statements
are equivalent:
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(a) m(g) is a simple closed geodesic.

(b) There is a Markov triple (a,b,c) so that for one (hence any) choice of
integers pi1, p» satisfying (8), the geodesic g is GLy(Z)-related to the
geodesic ending in xo + r with xo and r defined by (18) and (19).

(¢) The greatest lower bound for the signed distances of g and a Ford circle is
greater than —log 3.

If g satisfies one (hence all) of the statements (a), (b), (c), then
(d) the minimal signed distance of g and a Ford circle is —logr,

(e) among all Markov triples (a,b,c) that verify (b), there is a unique sorted
Markov triple.

Proof. “(a) = (b)”: If m(g) is a simple closed geodesic, then there is a unique
ideal arc ¢ not intersecting 7 (g) (Proposition 14.1 (iv)). Pick an ideal triangulation
T of the modular torus that contains ¢, and let ¢ and b be the other edges.
By Proposition 12.1, (a,b,c) is a Markov triple. (We use the same letters to
denote both ideal arcs and their weights.) The geodesic m(g) intersects each
of the two triangles of 7 in a geodesic segment bisecting the edges a and b
(Proposition 14.1 (iii)).

Now let p;, p» be integers satisfying (8) and consider the decorated ideal
triangle in H? with vertices

(43) =20 0= u =0,
and their respective Ford circles
(44) hy = h(p1.b), ha = h(pz,a), hs=h(L,0).

Such integers p;, po exist because the numbers a, b, ¢ of a Markov triple are
pairwise coprime. Moreover, this implies that the fractions in (43) are reduced, and
v; and v, are determined up to addition of a common integer. By Proposition 6.2,
this decorated ideal triangle has edge weights

(45) a, =4a, dy = b, az = ¢

(see Fig. 14 for notation).

Conversely, every ideal triangle U,0,03 with 3 = oo and rational v,, va,
that is decorated with the respective Ford circles, has weights (45), and satisfies
U1 < vy is obtained this way. (To get the triangles with v; > v, change ¢ to —c
in equation (8).) This implies that any lift of a triangle of 7 to the hyperbolic
plane is GL,(Z)-related to vivvz. Use Proposition 13.4 with 6§ = 3 to deduce
that g is GLy(Z)-related to the geodesic ending in xo £ 7.
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“b) = (d)”: Let T be the lift of the triangulation 7 to H?. The geodesic g
crosses an infinite strip of triangles of T. By Proposition 13.4, the signed distance
of g and any Ford circle centered at a vertex incident with this strip is —logr.
We claim that the signed distance to any other Ford circle is larger. To see this,
consider a vertex v € Q U {oo} that is not incident with the triangle strip, and
let p be a geodesic ray from v to a point p € g. Note that the projected ray
n(p) intersects m(g) at least once before it ends in 7 (p), and that the signed
distance to the first intersection is at least —logr.

“(b) A (d) = (¢)”: This follows directly from r = /5 — % < 3.

“(c) = (a)”: We will show the contrapositive: If the geodesic g does not project
to a simple closed geodesic, then there is a Ford circle with signed distance
smaller than —log% + €, for every € > 0.

There is nothing to show if at least one end of g is in Q U {oo} because
then the Ford circle at this end has signed distance —oco. So assume g does not
project to a simple closed geodesic and both ends of g are irrational.

We will recursively define a sequence (7,),>0 of ideal triangulations of the
modular torus, with edges labeled a,, b,, c,, such that the following holds:

(1) The geodesic n(g) has at least one pair of consecutive intersections with
the edges a,, b,.

(2) The edge weights, which we also denote by a,, b,, ¢,, satisfy
an < by < cp,

so that (an,bn,c,) is a sorted Markov triple.
(3) ¢nt1 > cCn

This proves the claim, because Propositions 13.2 and 13.4 imply that for each »,
there is a horocycle with signed distance to g less than —3log (3 — =), which
tends to —log% from above as n — oo. !

To define the sequence (7,), let Ty, be the triangulation with edge
weights (1,1,1), with edges labeled so that (1) holds.

Suppose the triangulation 7, with labeled edges is already defined for some
n > 0. Define the labeled triangulation 7,4; as follows. Since m(g) is not a
simple closed geodesic, it intersects all three edges. Because g has an irrational
end (in fact, both ends are assumed to be irrational), there are infinitely many
edge intersections. Hence, there is pair of intersections with a, and b, next to
an intersection with ¢, . If the sequence of intersections is a,b,cy,, let T, be
the triangulation with edges

(nsisBaitistnii) = ns Gnsll Js
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and if the sequence is bjay,c,, let T,41 be the triangulation with

((ln+1, bn"‘l? Cﬂ+1) = (bn, cnaa;l)a

where a; and b) are the ideal arcs obtained by flipping the edges a, or b, in
T, , respectively. By induction on n, one sees that (1), (2), (3) are satisfied for
all n > 0.

“(a) A (b) = (e)”: The Markov triples (a,b,c) verifying (b) are precisely the
triples of edge weights of ideal triangulations containing the ideal arc ¢ not
intersecting m(g). The triangulations containing the ideal arc ¢ form a doubly
infinite sequence in which neighbors are related by a single edge flip fixing c. In
this sequence, there is a unique triangulation for which the weight ¢ is largest. [l

Proposition 15.2. Let g be a complete geodesic in the hyperbolic plane, and let
X C R\ Q be the set of ends of lifts of simple closed geodesics in the modular
torus. Then the following two statements are equivalent:

(i) The ends of g are contained in Q U {oo} U X.

(ii) For some M > —log% there are only finitely many (possibly zero) Ford
circles h with signed distance d(g,h) < M.

Proof. “(i) = (ii)”: Consider the ends x; of g, k € {1,2}.

If xz € QU {oc}, then g contains a ray p; that is contained inside the Ford
circle at xj . In this case, let M; = 0.

If xx € X, then xi is also the end of a geodesic g that projects to a simple
closed geodesic in the modular torus. By Proposition 15.1, inf d(k, g) > —log %,
where the infimum is taken over all Ford circles /4. Since g and g converge
at xp, there is a constant My > — log% and a ray p; contained in g and ending
in x; such that d(h, px) > My for all Ford circles A.

The part of g not contained in p; or p, is empty or of finite length, so it
can intersect the interiors of at most finitely many Ford circles. This implies (ii)
with M = min(M;, M>).

“(ii)) = (i)”: To show the contrapositive, assume (i) is false: At least one end
of g is irrational but not the end of a lift of a simple closed geodesic in the
modular torus. This implies that the projection 7(g) intersects every ideal arc in
the modular torus infinitely many times. Adapt the argument for the implication
“(c) = (a)” in the proof of Proposition 15.1 to show that there is a sequence of
horocycles (h,) and an increasing sequence of Markov numbers (c,) such that
d(g,hy) < —1log (2 - é) This implies that (ii) is false. O
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16. Dictionary: Point — definite form.
Spectrum, classification of definite forms,
and the Farey tessellation revisited

This section is about the hyperbolic geometry of definite binary quadratic forms.
Its purpose is to complete the dictionary and provide a broader perspective. This
section is not needed for the proof of Markov’s theorem.

If the binary quadratic form (11) with real coefficients is positive or negative
definite, then the polynomial f(x,1) has two complex conjugate roots. Let z(f)
denote the root in the upper half-plane, i.e.,

—B +i/det f

A

This defines a map f + z(f) from the space of definite forms to the hyperbolic
plane H?. It is surjective and many-to-one (any non-zero multiple of a form is
mapped to the same point) and equivariant with respect to the left GL,(R)-actions.

The signed distance of a horocycle and a point in the hyperbolic plane is
defined in the obvious way (positive for points outside, negative for points inside
the horocycle). One obtains the following proposition in the same way as the
corresponding statement about geodesics (Proposition 10.1):

z(f) =

Proposition 16.1. The signed distance of the horocycle h(p,q) and the point
z(f)e H? is

|/ (p. )l
Jdet f '

This provides a geometric explanation for the different behavior of definite
binary quadratic forms with respect to their minima on Z2:

For all definite forms f, the infimum (15) is attained for some (p,q) € Z>
and satisfies M(f) < % All forms equivalent to p? — pg + g2, and only those,

(46) d(h(p.q).z(f)) = log

satisfy M(f) = % But for every positive number m < is’ there are infinitely
many equivalence classes of definite forms with M(f) = m.

Algorithms to determine the minimum M(f) of a definite quadratic form f
are based on the reduction theory for quadratic forms. (The theory of equivalence
and reduction of binary quadratic forms is usually developed for integer forms, but
much of it carries over to forms with real coefficients.) The reduction algorithm
described by Conway [15] has a particularly nice geometric interpretation based
on the following observation:

For a point in the hyperbolic plane, the three nearest Ford circles (in the
sense of signed distance) are the Ford circles at the vertices of the Farey triangle
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containing the point. (If the point lies on an edge of the Farey tessellation, the
third nearest Ford circle is not unique.)
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