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Good cyclic codes and the uncertainty principle

Shai Evra, Emmanuel KowaLskr and Alexander LuBoTzky

Abstract. A long standing problem in the area of error correcting codes asks whether there
exist good cyclic codes. Most of the known results point in the direction of a negative
answer.

The uncertainty principle is a classical result of harmonic analysis asserting that given
a non-zero function f on some abelian group, either f or its Fourier transform f has
large support.

In this note, we observe a connection between these two subjects. We point out that
even a weak version of the uncertainty principle for fields of positive characteristic would
imply that good cyclic codes do exist. We also provide some heuristic arguments supporting
that this is indeed the case.
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conjecture.

1. Introduction

Let F be a field. Given integers n, k and d with 1 <k <n, an [n,k,d]F-
code, or code over F, is a subspace C of F" of dimension dimg(C) = k, such
that for every 0 # o € C, we have wt(e) > d, where the weight wt(a) of a
vector @ = (ag,...,dn—1) € F™ is the number of non-zero components a;. The
integer d is called the distance of the code C.

Furthermore, a code C is called cyclic if it is invariant under cyclic
permutations of the coordinates, i.e. if

(ag,...,an—1) € C © (ap-1,4o,...,an2) €C

(see [Rot, Ch. 8]).

The code C, or more properly a family (C,) of codes in F" where n — oo,
possibly along some subsequence of positive integers, is called good if there
exists a constant ¢ > 0 such that
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for all n.

We are interested in the case of cyclic codes over a finite field F with ¢
elements. The practical interest of such codes goes back at least to Brown and
Peterson [BP] (e.g., they can be used to efficiently detect so-called “burst errors”).
A long standing open problem in the area of error correcting codes is whether,
for a fixed value of £, there exists an infinite sequence of good cyclic codes.

Most evidence, and maybe the prevailing opinion, goes towards the non-
existence of good cyclic codes. Indeed, it was proved by Berman [Ber| in 1967
that if n ranges over integers whose prime factors are bounded, and these factors
are coprime to the characteristic of the underlying field F,, then no sequence
of cyclic codes of lengths n, is good. Babai, Shpilka and Stefankovic [BSS]
proved that this is also the case if n ranges over integers such that the primes p
dividing n all satisfy p < n2=¢ for some fixed constant ¢ > 0. Furthermore, they
also showed that there are no good cyclic codes that are either locally testable
or LDPC (“low density parity check”) codes. We refer to the book [MWS] of
MacWilliams and Sloane and to the textbook of Roth [Rot] for basic terminology
and concepts in coding theory.

On the other hand, the uncertainty principle is a classical result of harmonic
analysis, which in one form asserts that given a function f, either f or its
Fourier transform f has large support. Many variants exist, and we refer to
Folland and Sitaram [FS] for a survey of the continuous setting. We will consider
the version of the uncertainly principle where f : A — C is a complex valued
function on a finite group A, and even more particularly, when A is the cyclic
group Z/pZ of prime order p. In this case, the uncertainty principle states that
for f # 0, we have

) |supp(f)| + | supp(f)| = p + 1,

where supp(g) is the support of a function (this was observed by Meshulam,
although he did not publish a proof; proofs can be found in papers of Goldstein,
Guralnick, Isaacs [GGI], Tao [Tao] or in §3 below).

One can formulate the uncertainty principle for functions from A = Z/pZ
to any algebraically closed field F (see Section 3). The case of interest to us is
when F has positive characteristic £, in particular when ¢ = 2. The inequality
(2) does not hold in general in this case (see §4 below), but we will give some
heuristic argument suggesting that some weaker version may still hold.

We will then show that even a much weaker version of the inequality (2) for
F =T, would suffice to imply the existence of good cyclic codes. This should
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come as quite a surprise, as it goes against the common wisdom in the theory
of error correcting codes.

1.1. Organization of the paper. This note is arranged as follows:

In § 2, we describe cyclic codes of length n over the prime field F; of order
¢, as ideals in the group algebra Fy[Z/nZ] =~ F¢[x]/(x™ — 1). We then describe
the structure and the ideals of [F¢[Z/pZ] when n = p is a prime, and express
the dimension and the distance of such an ideal in terms of this data (using in
particular the multiplicative order of £ modulo p).

In § 3, we formulate the uncertainty principle for functions f :Z/pZ — C.
To illustrate the connection with cyclic codes, we show how this uncertainty
principle implies the existence of good cyclic codes over C — the examples we
recover are the well-known Reed-Solomon codes over C. This is of course not
the end of the story, as one wants such codes over finite fields.

In § 4, we formulate a few variants of the uncertainty principle over various
fields. We present a proof of the uncertainty principle for any field of characteristic
zero, following [GGI]. Afterwards, we present some counter-examples to a naive
generalization of the uncertainty principle to finite fields.

In § 5, we propose a weaker version of uncertainty principle, and show how
this weaker version implies the existence of good cyclic codes. In § 6, we present
some heuristics, both for this weak uncertainty principle and for the existence of
good cyclic codes.

We conclude with an Appendix that explains that the uncertainty principle for
Z/ pZ is equivalent to an old result of Chebotareyv.

2. Cyclic codes

2.1. Introduction. The following is a long standing open problem.
Problem 2.1. Are there good cyclic codes over a fixed finite field F?

This was asked by MacWilliams and Sloane [MWS, Problem 9.2, p. 270].
See also [MPW] who attribute the problem to [AMT]. It seems that the common
belief is that there are no such codes and there are a number of results in support
of such a conjecture.

For instance, the most commonly used cyclic codes are the long BCH codes
(see [Rot, §5.6] for definition and background of BCH codes), and Lin and
Weldon [LW] proved that at least certain of these codes are not good (although
the general case seems to still be open).
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Partial results toward the conjecture were obtained by Berman [Ber] in 1967
and by Babai, Shpilka and Stefankovic [BSS] in 2005. We state their results
formally:

Theorem 2.2 (Berman). Let F be a finite field of order £, and (C,;); a family
of [n¢, ke, de]F -cyclic codes such that there exists some real number ¢ > 0 with
% > ¢ for all t. Assume furthermore that there exists > 1 such that all primes
dividing n; are coprime to € and at most B. Then there exists an integer m,
depending on ¢ and B, such that d;, < m. In particular, this family is not a

good family of codes.

Theorem 2.3 (Babai-Shpilka-Stefankovic). Let F be a finite field, and let (C;);
be a family of [n;,k;,d:]F -cyclic codes over F. Assume that there exists § > 0,
independent of t such that for every t and for every prime p dividing n;, we
have p < n, 2=% Then the family (C;), is not a good family of codes over F .

There are other results which give some support to a negative answer to
Problem 2.1, for example:

Theorem 2.4 (Babai-Shpilka-Stefankovic). Let F be a finite field. Then:
e There are no good cyclic LDPC (low density parity check) codes over F;

e There are no good cyclic locally testable codes over F .

We refer to [McK, Ch. 47] for the definition of LDPC codes, and to [GS] for
locally testable codes; these are important concepts in coding theory in recent
years.

Let F be any field. The key to the investigation of cyclic codes over F is
their description in algebraic terms using the polynomial ring F[X].

Proposition 2.5. Let n > 1 be an integer. Under the isomorphism
(@o,...,an-1) = ap+a1 X +-++ + an—1 X"

between F™ and the ring R = F[X]/(X" — 1), a subspace C C R is a cyclzc
code over F if and only if C is an ideal of R.

Proof. Indeed, an F -vector subspace of R is a cyclic code if and only if XP € C
for any P € C, which is equivalent to asking that C be an ideal of R. ]

It will also often be convenient to identify the ring R with the subspace of
polynomials P € F[X] of degree less than n.
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Describing the ideals of R = F[X]/(X"—1). If we specialize to the case

where n = p is a prime number, we can describe R and its ideals in quite
concrete and well-known terms:

Proposition 2.6. Let p be a prime number different from the characteristic
char(F) of F. Then:

)

()

3)

The ring R = F[X]/(X? — 1) is a direct sum of finite extensions of F;
these finite extensions are in one to one correspondence with the irreducible
factors of the polynomial X? —1 € F[X].

If XP—1 splits in linear factors in F[X] (e.g., if F is algebraically closed),
then R is isomorphic to F? as a ring;

Assume that F =Ty is a finite field of order . Let r = ord,({), i.e., the

order of L as an element of the multiplicative group (Z./pZ)* = F, . Denote
s=(p—1)/r. Then

R =TFg[X]/(XP — 1) = Fy & (Fyr)®

i.e., it is isomorphic as a ring to a direct sum of F¢ and s copies of the
extension Fyr of IFy.

Proof. (1) As p # char(F), the polynomial X? — 1 is separable in F[X] and

2)

3)

hence factors as a product of distinct irreducible polynomials [];_, gi, where
we put go = X — 1. It then follows from the Chinese Remainder Theorem
that

R = P FIX]/(g)-
=0

Since g; is irreducible, each quotient ring F[X]/(g;) is a field extension of
F of degree deg(g;).

By assumption, X? — 1 = ﬂf;ol (X — ui), where p; runs over the p-th
roots of unity in F. Since F[X]/(X —a) = F, we get an isomorphism
p—1
R~ P FIX]/(X — i) = F”.
i=0

Since F, is a cyclic group of order p —1, the order r of £ modulo p
divides p —1, and hence s = (p — 1)/r is an integer.

We have £" = 1(mod p) and IFj, is a cyclic group of order £ — 1, hence
the field extension I, of [y contains an element of order p, and is the
smallest extension with this property. In fact, the field F,» contains all the
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p-th roots of unity, i.e. Fyr is the splitting field of the polynomial X7 —1.
For every p-th root of unity pu, the extension Fy[u] is equal to Fyr (in a
fixed algebraic closure of ). This shows that all the irreducible factors g;
of X7 — 1, with the exception of X — 1, are of degree r. Hence

R =Ty @ (Fpr)'. ]

We can now describe the ideals of R. Since R is a direct sum of fields,
every ideal in R is the direct sum of a certain subset of these fields. If F
is algebraically closed, for instance, we see that R has (‘f’) distinct ideals of
dimension i, for every 0 <i < p, and a total of 27 ideals.

If F =TI, where £ is the power of a prime number, let r be the order of ¢
modulo p and s = pT_l as in the proposition. In the special case r = 1, namely
when p | £—1, the polynomial X” —1 splits completely in [Fy[X] and the ideals
are exactly the same as those in the algebraically closed case.

Now assume that r > 1, which is the case we are most interested in since
we will consider a fixed value of ¢ as p tends to co. Then R has (}) ideals
of dimension ir and ({) ideals of dimension ir 4+ 1 for all integers i with
0 <i < s. Hence the total number of ideals in R is 251,

We note that r > log,(p + 1), and hence s < ng(;—l-f-u'

There are two extreme cases which are worth singling out, although whether

they actually occur is somewhat conjectural:

(a) Assume that £ is a primitive root mod p, i.e. £ generates the cyclic group
(Z/pZ)*. Then r = p—1 and so s =1, i.e. R=TF; ®F;p-1 and R has
only two non-trivial ideals.

(b) Assume that £ = 2 and that p is a Mersenne prime, namely p = 2" — 1

for some m > 2. Then we have r = m =log,(p+1) and s = #;l_,_ﬁ; in

p—1
; — ; ; N ) TR |
this case, R has the “maximal” possible number of ideals 2 on2p D+

We stated that it is not known if these cases occur infinitely often. Indeed, it is
a very famous conjecture of Artin (see Moree’s survey [Mor]) that, for a given
prime number £, there exist infinitely many primes p such that £ is a primitive
root modulo p. The validity of this conjecture is extremely likely, since it was
shown by Hooley [H] to follow from a suitable form of the Generalized Riemann
Hypothesis. Moreover, although it not known to hold for any concrete single
prime ¢, Heath-Brown [HB] has shown that it holds for all but at most two
(unspecified) prime numbers.

On the other hand, although it is expected that there are infinitely many
Mersenne primes, very little is known about this question, or about small values
of ord,(2) in general, even assuming such conjectures as the Generalized Riemann
Hypothesis (see however Lemma 6.2).
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The most convenient analytic criterion to find primes with ord,(£) under
control is the following elementary fact:

Lemma 2.7. Let £, q and p be different primes. If p is totally split in the
extension K,y = Q(e?'™/9, Y1), then p is congruent to 1 modulo q and the
order of £ modulo p divides (p —1)/q, in particular ord,({) < p/q.

Proof. Let O be the ring of integers of K, .. If p is totally split in K, ¢, then
the quotient ring O/pO is a product of copies of the field F,. So F, contains
the g-th roots of unity (in particular, ¢ | p — 1) and the ¢-th roots of £. So £
is a g-th power in F,, which means that ord,(£) divides (p —1)/q. L]

Note that as an application of Chebotarev’s density Theorem [Neu, Th. 13.4],
for any primes ¢, £, there exists infinitely many primes which totally splits in K ¢ .

To summarize the discussion: the ideals of R and their dimensions can be
easily described, although the existence of certain configurations might be subject
to the truth of certain arithmetic conjectures.

It is more complicated to evaluate the distance of ideals of R when interpreted
as cyclic codes. For this we will use the Fourier transform and the uncertainty
principle in the next section. We begin first with a general lemma.

Lemma 2.8. Let p be a prime. For any polynomial f € F[X], let Iy be the ideal

generated by the image of f in R = F[X]/(X?P—1) and let g = ged(f, X?—1).

(1) We have Iy = Ig, ie. the ideal generated by [ is the same as the ideal
generated by the greatest common divisor of f and XP? — 1.

(2) We have
dim [y = dim Iy = p —deg(g)

Proof. (a) We obviously have gcd(f, X? —1) | f in F[X], and since F[X] is
a principal ideal domain, there exist polynomials %; and A, in F[X] such that
ged(f, XP —1) = hy f + ho(XP —1). Hence we get f | gcd(f, X? —1) in R,
which proves claim (a).

(b) The first equality follows from (a). For the second equality, it suffices
to note that, by euclidean division by the polynomial (X? — 1)/g of degree
d = p—deg(g), the elements {X'-f|i =0,1,...,d—1} form a basis of I,. O

For later reference, we will denote Z(f) = deg(ged(f, X? — 1)) for any
polynomial f € F[X] and any prime p. If F has characteristic different from
p, then X” —1 is a separable polynomial, and in that case, the integer Z(f)
is therefore the number of p-th roots of unity &, in an algebraic closure of F,
such that f(§) = 0. This interpretation will be very useful as we now turn to the
uncertainty principle.
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3. The uncertainty principle over C

3.1. The Fourier transform on finite abelian groups. Let A be a finite abelian
group. The dual group A of A is the group of all homomorphisms A4 — S!,
where S! is the group of complex numbers of modulus 1. The product on A s
the pointwise multiplication of functions. The dual group is also a finite abelian
group, in fact it is isomorphic to A (non-canonically).

The Fourier transform on A is a linear map from the space L?(A) = C4 of
complex-valued functions on A to the analogue space L2( 2) of complex-valued
functions on the dual group. For a function f: A — C, its Fourier transform
? : A — C is defined by

7 (0= ﬁ > f@x@
acA

o~

forany ye A.
The Fourier transform is also an algebra isomorphism, where L2(A) is viewed
as an algebra with the convolution product

(fi % f)(x) = |—jq 3 fix—a) fala),

acAd

and L2(Z) has the pointwise product of functions. In other words, we have
fixh=F17Fa

The connection that we will make with cyclic codes emphasizes the group
algebra of a cyclic group. It is therefore convenient to interpret the Fourier
transform in terms of the group algebra C[A] of the group A instead of L2(A).

We identify L2?(A) and C[A] by the map

[+ flaa.

acA

Then the Fourier transform gives an isomorphism
C[A4] — C4

of algebras over C, where the image of the standard basis {a € A} is the basis
of characters of the algebra of functions C4.

3.2. The general uncertainty principle for finite abelian groups. For [ €
L?(A), or equivalently f € C[A], we denote by supp(f) the support of f,
namely the set of a € A such that f(a) # 0.
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Intuitively, by “uncertainty principle”, we mean a statement that asserts that
there are no non-zero functions f such that both f and 7 have “small” support
(for instance, in the continuous case, there is no non-zero smooth function with
compact support whose Fourier transform is also compactly supported). There
are many variants of this principle. One well-known elementary “uncertainty
principle” version, valid for all finite abelian groups, is the following result of
Donoho and Stark [DS, §2]:

Proposition 3.1 (Uncertainty principle). Let A be a finite abelian group and let
f #0 be a function from A to C. Then we have

3) |supp(f)| - | supp(f)| > | 4|

We present the proof of this fact from [Mesl, Th. 1] and [GGI], which fits
well with our point of view of working with group algebras. For other proofs
and generalizations, we refer to the papers [Mes2] and [Tao], as well as to the
references contained in those articles.

Proof. We view f as an element of the group algebra C[A], which is
commutative. Let / = (f) be the principal ideal generated by f. Using the
isomorphism C[A] ~ C4 given by the Fourier transform, as we recalled above,
the ideal I corresponds to the principal ideal in C4 generated by the Fourier
transform of f . This ideal is simply

[[ ccch
7 (%0

In particular, the dimension r of I, as a C -vector space, is the cardinality of the
support of f . Since the elements a- f for ¢« € A span I as C-vector space,
there exist r elements a;, ..., a, such that / is the span of a;- f, ..., a,- f.

For any a € A C C[A], the support of a- f is a-supp(f). Since f # 0,
its support is not empty, hence for any x € A, we can find some element
a € A C C[A] such that x € supp(a- f).

We then have

A= suppa- /) c | supp(ai - /)
i=1

acA
which implies that

r

|Al <" |supp(a; - £)] = rlsupp(f)]| = | supp( £ )| - | supp(f)l.

=1

as claimed. ]
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3.3. The uncertainty principle for simple cyclic groups. In the late 1980’s,
R. Meshulam observed that an old result of Chebotarev implies a version of
the uncertainty principle for cyclic groups of prime order p that is much
stronger than Proposition 3.1. This strong version has been rediscovered several
times since then, and admits a number of proofs and generalizations (see for
instance, Chebotarev [Che], Meshulam [Mesl, Mes2], Goldstein, Guralnick and
Isaacs [GGI], Tao [Tao], Stevenhagen and Lenstra [SL], and the references therein).

Theorem 3.2 (Uncertainty principle for cyclic groups of prime order). Let A be
a cyclic group of prime order p, and f # 0 an element of C[A]. Then

(4) | supp(/)| + |supp( £ )| = p + 1.

We will postpone the proof to Section 3.2, and in the appendix, we will also
explain Meshulam’s original observation that this statement is equivalent to a
classical result of Chebotarev about Vandermonde matrices.

To bring the connection with codes, we will now reformulate this statement.
The group algebra C[Z/ pZ] of the cyclic group of order p is isomorphic to the
quotient algebra R = C[X]/(X? — 1) by mapping the generator 1 of Z/pZ to
the image of X. The dual group m is isomorphic to the group u,(C) of
p-th roots of unity in C, by mapping a character y to the p-th root of unity
x(1). The Fourier transform of an element f € R, represented as the image of
a polynomial

(5) f=ao+ar X +-+ap X!

is then identified with the function defined on p-th roots of unity by
i { 22 .
fE == at™"
P o

In other words, ? is essentially the evaluation of the representing polynomial (5)
at roots of unity.

With this notation, recalling the definition Z(f) = deg(gcd(f, X? — 1)) and
the fact that this is the number of zeros of f among p-th roots of umty, the
uncertainty principle of Theorem 3.2 gets the following form:

Theorem 3.3. Let p be a prime. For any polynomial

p—1
f= ZaiXi € C[X]

i=0
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of degree < p, let wt(f) = [ila; # 0} and let Z(f) = [{p € pp(C)[f (1) = 0},
i.e. the number of p-th roots of unity of f which are also roots of f. Then we
have

(6) 2(f) =wi(f) -1

Indeed, by definition, if we view f as an element of R = C[Z/pZ], then
we have |supp(f)| = wt(f) and |supp( f )| = p —Z(f), and therefore (4) and
(6) are equivalent.

Remark 3.4. (1) The restriction deg(f) < p is necessary: the polynomial
f=XP—1 has wt(f)=2 and Z(f) = p.

(2) The inequality (6) is best possible. For instance, the cyclotomic polynomial

f=2%=L=1+X+...+ XP! vanishes on all the non-trivial p-roots

6f unity, so Z(f) = p—1 = wt(f)— 1. Another example is f = X —1, in
which case we also obtain Z(f) =1 = wt(f) — 1.

We can now use Lemma 2.8 to obtain another reformulation of Theorems 3.2
and 3.3. The point is that if f is a polynomial in C[X] of degree < p, viewed
also as an element of R, then by Lemma 2.8 (2), the dimension of the ideal I
generated by the image of f in R satisfies

dim(ly) = p —Z(f).

From Theorem 3.3, we get therefore:

Theorem 3.5 (Uncertainty principle reformulated). For every non-zero polynomial
| € C[X] of degree < p, considered as an element of R = C[X]/(X? —1), we
have:

(7) wt(f) +dim(/y) > p + 1

when Iy = (f) is the ideal of R generated by the image of f.

We conclude this section by showing how this interpretation of the uncertainty
principle gives a good family of cyclic codes over C:

Corollary 3.6. There exists a family of good cyclic codes over C.

Proof. Let & = e e C, and define
p—1

T .
f=]]&x-¢)ecxl.

i=1
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Since f|(X? —1), we have dim(/r) = p —deg(f) = 1’—;’—1 by Lemma 2.8 (2).
Let then & # 0 be an element of /y. We then have dim(/,) < dim(/y), so
that

1

wt(h) > p +1—dim(ly) > p + 1 —dim(l;) = ”_'2L
by Theorem 3.5. The ideal C, = Iy is therefore a [p, pT'H, pT'H]C -cyclic code,
and the family {Cp}p prime is @ good family of cyclic codes. [

The codes we have “found” in this proof are special cases of the famous
Reed-Solomon codes (see, e.g., [Rot, §5.2]). In fact, these codes are in some
sense best possible: their parameters [n,k,d] = [p,(p + 1)/2,(p + 1)/2] satisfy
the condition

k+d=p+1=n+1

where in general the so-called singleton bound implies that k +d <n+ 1. (Such
codes are called “maximum distance separable” codes, or MDS codes).

4. Uncertainty principle for general fields

4.1. General statements. The formulation of the uncertainty principle in Theo-
rem 3.3, in the form of the inequality (6) and in Theorem 3.5, through (7), make
sense for all fields. As we will see later, these statements are not true in such
generality, but they might be true, and useful, in some weaker form. For this
reason, we make the following definition.

Definition 4.1. Let F be a field, p a prime number and R = F[X]/(X? —1).
For f € R, represented by a polynomial of degree < p, we denote by Iy the
ideal generated by f in R, and we denote

pr,p(f) = wt(f) + dim(/y).

We then define the invariant

pr,p =min{ur ,(f)|0# f € R}.

We will sometimes write w(f) instead of wrg ,(f), when the field and prime
involved are clear in context.

Here are some simple observations:

o If E/F is a field extension and f € F[X]/(X? — 1), then pur,(f) =
wE,p(f) for any prime number p. In particular, it follows that g , < ur,
for each p.
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e For f =1+ X+...+ X771, we have wt(f) = p and dim(/s) = 1. It
follows that pur , < p+ 1 for any field F and any prime p.

e According to the uncertainty principle for F = C (Theorems 3.2, 3.3 and
3.5), we have puc,p, = p+ 1 for every prime p.

So for any field we can state the uncertainty principle as follows:

Definition 4.2 (Uncertainty principle). A field F is said to satisfy the uncertainty
principle if, for any prime number p, we have pr,, > p, or equivalently if
wrp=p+1, forall p.

As we shall see in §4.2, the uncertainty principle does not hold in general,
but let us start with some positive results:

Proposition 4.3. Let F =y be the finite field of prime order { and assume that
¢ is a primitive root modulo p, i.e., that ord,({) = p—1. Then pur, = p + 1.

Proof. Let £ # 1 be a primitive p-th root of unity in F,. As recalled in
Section 2.2, the extension [F(£)/IF, is then of degree ord,({) = p — 1. This
implies that the polynomial )g(p_“ll =14+ X+4...4+ X?7! is irreducible over [F,.
In particular, for every polynomial f € [F;[X] of degree less then p, the gcd
of f and X? — 1 can only be one of 1, X —1 or (X? —1)/(X —1). Then
the dimension dim(/f) = p —deg(ged(f, X? — 1)) is equal to p, p—1 or 1,
respectively (Lemma 2.8 (2)).

We consider each case in turn and show that u(f) > p + 1 in any case. If
dim(/y) = p, then since wt(f) > 1 (because f #0), we get u(f)>p+1.1f
dim(/f) = p — 1, then we have gcd(f, X? —1) =X —1,s0 X —1]| f. Since
the only non-zero polynomials of weight 1 are monomials cX? with ¢ # 0,
and X —1 } c¢X' for 0 <i < p, we must have wt(f) > 2, and therefore
1(f) > p—1+42= p+1. Finally, if dim(/;) = 1, then we have f = ¢y 77} X'
for some ¢ # 0, and then wt(f) = p and u(f)=p+1. ]

Another case is the following claim (which appears also in [Fre, Lemma 2]
and [GGI, Lemma 6.5]), that we will use later:

Proposition 4.4. Let p be a prime and let F be a field of characteristic p.
Then we have ppp, = p+1.

Proof. By Lemma 2.8 (2), we need to show that for any 0 # f € F[X]/(X?-1),
we have

wt(f) > p —dim(/f) = deg(ged(f, X? —1)).
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Since F has characteristic p, we have X?—1 = (X —1)#, which means that there
exists some integer m with 0 <m < p such that ged(f, X? —1) = (X —1)". So
we need to prove that for a polynomial f with (X —1)"|f, we have wt(f) > m.

We proceed by induction on deg(f) < p. In the base case deg(f) =0, we
have f =¢ # 0. Then X —1 4 f, so that m = 0 and wt(f) =1 > m, as
claimed.

Now assume that the property is valid for all polynomials of degree < deg(f)
and that (X — 1)™|f. If f(0) = 0, we deduce that (X — 1)™|f(X)/X, hence
by induction we obtain m < wt(f/X) = wt(f). If f(0) # 0, on the other
hand, then we consider the derivative f’ of f. From (X — 1) | f, it follows
that (X — 1)™1 | f’: indeed, writing f = fi(X —1)™ and differentiating, we
get 1/ = f{(X — D)™ +mfi(X —1)"!, which is divisible by (X —1)""!. By
induction, we therefore get wt(f’) > m—1. But then, since f(0) # 0 and m < p,
we have wt(f) = wt(f’) + 1 > m, as needed. O

4.2. Fields of characteristic zero. We will now present a proof (following
[GGI]) of the uncertainty principle for any field F of characteristic zero. Note
that Theorems 3.2, 3.3 and 3.5 are special cases of this result, where the field is
C. Since it is elementary that we need only prove the uncertainty principle for
finitely generated fields F, and since such a field F of characteristic 0 can be
embedded into C, we could simply deduce the result from the case of C. We
give a complete proof anyway.
The next lemma is the key step in the proof.

Lemma 4.5 (Specialization). Let p be a prime, F a field of characteristic 0,
and

p—1
f=) aiXx’
i=0

a non-zero element of R = F[X]/(X? — 1). Then for every prime number gq,
there exists a field E of characteristic q and a polynomial [ € E[X]/(X? —1)
such that wt(f) < wt(f) and dimg (1 7) < dimp (/).

Sketch of the proof. (1) Since char(F) = 0, the field Q is a subfield of F.
Let A = Qlao,...,ap—1], which is a Q-subalgebra of F. By Hilbert’s
Nullstellensatz, the homomorphisms ¢: A — Q, where Q is the algebraic
closure of QQ, separate the points of A, and therefore there exists a morphism
¢ : A — Q, such that ¢(a;) # 0 for every i, with 0 <i < p—1, such that
a; # 0. Let K; be the number field (a finite extension of Q) generated by
the image of ¢ and f; the polynomial
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p—1
fi =) ¢la)X' € Ki[X].
i=0
Then by the definition of K;, we have wt(f1) = wt(f). Moreover, ¢ induces
an isomorphism between the p-th roots of unity in K and those in @, so
that Z( f) = Z(f1) also. This means that we may replace K and f by K;
and fi, and reduce to the case where K is a number field.

(2) Let Ok be the ring of integers of K, and m a maximal ideal in Ok that
contains ¢ € Z C Ok. Then E = Ok /m is a finite field of characteristic ¢q.

(3) Let t € Ox be a non-zero integer such that ra; € Ok for all i, and such
that there exists some i such that ra; ¢ m (this exists because not all a;
are zero). Then, if f is the image of ¢f under the reduction map from Og
to E, we have f # 0 in E[X], and f is a polynomial of degree < p.

(4) By construction, we have wt(f~ ) < wt(f). On the other hand, we get

dimp If > dimp [tf = p—deg(gcd(tf,Xp— 1))
> p—deg(gcd(f,Xp —1)) = dimg I

|

Theorem 4.6. For every field F of characteristic 0 and every prime p, we have
Wr,p = p+1, i.e, the uncertainty principle is true over any field of characteristic
0.

Proof. Let F be a field of characteristic zero, and let p be a prime. Let
f € F[X]/(X?” — 1) be non-zero. By the Specialization Lemma 4.5 with
q = p, there exists a field E of characteristic p and a non-zero element
f € E[X]/(X?—1) such that ,u,E,p(f) < ur,p(f). Because E has characteristic
P, Proposition 4.4 implies that wr ,(f) > ,uE,p(f ) > p. Since this holds for all
f, the result follows. ]

4.3. Counter examples to the uncertainty principle over finite fields. Specific
examples of finite fields F for which the uncertainty principle of Definition 4.2
does not hold over a finite field F are given in [GGI]. One such example is
F=F,.Ifwetake p=7 and f = X3+ X +1€F,[X]/(X"—1), then we have

X" 1=(X-DX>+X2+DX3*+Xx+1),

hence dim(/y) =4 while wt(f) = 3, so that up,7 <7.
The next counter-examples to the naive uncertainty principal for finite fields
were suggested to us by Madhu Sudan.
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Let g < p be two different primes, and r = ord,(g). Let F = [, and
E = F,r, so that E contains all the p-th roots of unity. Moreover, E is
generated as an F -vector space by the p-th roots of unity. We consider the trace
polynomial
r—1 .
T =) X7 e F[x].
i=0

A basic but crucial observation is that the function from E to E defined by
the trace polynomial 7" is a surjective F -linear map from E to the subfield F,
which we denote tr. In particular, tr is not identically zero on E, and since
the p-th roots of unity generate E as F -vector space, this means that 7" is not
identically zero on the p-th roots of unity.

By the pigeon-hole principle, there exists some « € F such that at least g of
the p-th roots of unity in E are roots of 7 +«. Let then f =T + « € F[X].
Then we have

pra(f) = W)+ dimp (1) < 414 (1= )

(using the interpretation of dimg(/r) as the number of roots of unity where f
does not vanish), and consequently

IMJ5MRPEP+1+r—§

In particular, if r = ord,(q) < g, we obtain a counter example to the uncertainty
principle for the field E =, .

There exist infinitely many pairs of primes with this property. For instance,
take ¢ = 2 and let p be a prime such that the Legendre symbol (%) is equal to
1. Then ¢ = 2 is a square modulo p, which implies that 2¢?~1/2 = [ mod p,
hence that the order of 2 modulo p is < (p—1)/2 < p/2 = p/q.

More generally, fix the prime ¢ and take any prime ¢ > g. By Lemma 2.7, if
p is any prime that is totally split in the Galois extension K, = Q(e?!™/¢, £q).,
we have ord,(2) < (p —1)/€ < p/q. It is a well-known consequence of the
Chebotarev density theorem that there are infinitely such primes.

In anticipation of the next section, we note however that, for any pair ¢ < p
with r < p/q, it still remains true that

MmAﬂ2P+l+r—§2§,

or in other words, the uncertainty principle for f does not fail drastically.
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S. The weak uncertainty principle

S.1. Statement. The uncertainty principle in its current version over C states
that for each prime p, we have uc,, > p. We have seen that this inequality
does not always hold if C is replaced by any field. Because of the link with
good cyclic codes, we introduce a weaker version:

Definition 5.1 (Weak uncertainty principle). Let § be a real number such that
0 <8 < 1. We say that a field F satisfies the §-uncertainty principle for a prime
p if

@®) wrp > 8- p.

This variant of the uncertainty principle is weaker than the one in the previous
section in two respects: the lower bound for ur , is relaxed, and it is stated with
respect to an individual prime p, and not all of them.

Example 5.2. We first presént some finite fields that satisfy the weak uncertainty
principle for certain primes. Let £ be a prime number, and let P be an infinite
set of primes such that £ is a primitive root in F; for all p € P. As we have
already mentioned, Artin’s Conjecture asserts that such a set P exists for any
prime £, and Hooley [H] confirmed this under a suitable form of the Generalized
Riemann Hypothesis. By Proposition 4.3, we have ug,,, > p, for any p € P,
and hence the weak uncertainly principle is satisfied by the field I, for any prime
in P.

This example does not however lead to good cyclic codes. Indeed, if we
consider proper ideals [, C F¢[Z/pZ] = F¢[X]/(X? —1) for p € P, the fact that
£ is a primitive root modulo p means that I, is generated either by X —1 or
by (X? —1)/(X —1). In the first case, we have dim/, = p — 1, but the element
X —1 has weight 2, so that the distance of the code I, is 2. In the second case,
we have dim [, = 1. In either case, the codes corresponding to /, are not good
as p — +4oo in P since one of the inequalities in (1) fails.

This example motivates our last variant of the uncertainty principle.

Definition 5.3 (Weak uncertainty principle, 2). Let § and € be real numbers
such that 0 < § <1 and 0 < € < §. We say that a field F of size £ satisfies the
(€,8) -uncertainty principle if there exists an infinite set of primes P such that,
for all primes p € P, the two following conditions holds:

(1) We have ur , > ép,
(2) We have ord,(£) < ep.
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The existence of finite fields F which satisfy such an uncertainty principle
implies the existence of good cyclic codes over F':

Theorem 5.4. Let F = IFy be a finite field prime order €. Assume there exist
real numbers 0 < € < § < 1 such that F satisfies the (€, §)-uncertainty principle.
Then there exists an infinite family of good cyclic codes over the field F .

Proof. For each prime p € P, let I, C F[X]/(X? —1) be a non-zero ideal such
that
% <dim(/,) < ep.

Such an element exists because r = ord,(f) < ep by definition, and R =
F[X]/(X? —1) is a sum of ideals of dimension r each, plus a one dimensional
ideal, see Proposition 2.6 (3).

For every element h € I,, we have I, C I, and hence dim(/,) < dim(/}).
From the weak uncertainty inequality that we assume, we get

wt(h) = |supp(h)| > 8p —dim({y) > ép —dim(Ip) > (§ —€) p.

The cyclic code I, has length p; the last computation shows that its distance
is > (8 —e€)p, and its dimension is > ep/2. Hence by definition (see (1)), the
sequence (I,)p,ep is an infinite sequence of good cyclic codes over F. ]

Generally speaking, condition (1) in Definition 5.3 ensures that we can find
ideals with “large” distance, while condition (2) is used to show the existence of
such ideals with “large” dimension.

Remark 5.5. Our proof shows that any choice of ideal /,, such that 5p <
dim(/,) < ep will give a good code. There are many possibilities for such ideals.
This suggests that a randomized process might be used to prove existence of
cyclic good codes even under a weaker uncertainty principle.

5.2. A uniform weak uncertainty principle does not hold. It is only natural
to ask (and maybe hope) that a uniform weak uncertainty principle, uniform with
respect to &, should hold for all finite fields, or in other words, to ask whether
there exists 6 > 0 such that wuFr , > dp for any finite field F and any prime p.

We will show — following an argument of Eli Ben-Sasson — that, assuming
the existence of infinitely many Mersenne primes, this is not the case.

Proposition 5.6 (No uniform weak uncertainty principle). Assume that there exist
infinitely many Mersenne primes. Then, for any § > 0, there exists a finite field
F and a prime number p such that pr , <ép.
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For the proof, we will use the following result of Ore [Ore]:

Lemma 5.7 (Ore). Let q be a prime number and n > 1. Let F = Fyn, and
view F as an F,-vector space of dimension n. For every integer k < n and
every [, -affine subspace A C F of dimension k, the polynomial

fa=]]x-a

aceA

satisfies
k .
fa=a+ ZaiX 7
i=0
where a and o; are elements of F. In particular, we have wt(fq) <k + 2.

Proof. It is easy to see that it suffices to consider the case where A is a vector
subspace of dimension k. Then f4 is a separable polynomial whose roots form an
additive subgroup of F. This implies that f4 is an additive polynomial (see [Gos,
Th. 1.2.1]), which is necessarily of the desired form (with @ = 0 in that case)
by [Gos, Prop. 1.1.5]. ([l

Remark 5.8. In general, if K is any field, an additive polynomial [ € K[X]
is a polynomial such that f(x 4+ y) = f(x) + f(y) for any x and y in K. If
K has characteristic zero, it is easy to check that f is necessarily of the form
S =aX for some a € K, but this is not so in characteristic p > 0, since any
monomial X7 is then an additive polynomial. The result we used is that any
additive polynomial is a linear combination of these monomials.

Proof of Proposition 5.6. Let ¢ =2 and let p = 2" —1 be a Mersenne prime, so
that n = ord,(2). Let F = FF». Then the non-zero elements of F are precisely
the p-th roots of unity.

We view F as an n-dimensional vector space over [F,, and fix a basis ey, ...,
en. Let k be an integer parameter such that 1 <k <n.

There exist disjoint affine subspaces A4, ..., A in F, none of which contains
0, with dim(A4;) = n —i (for instance, we could take A; to be the subspace
defined by the equations

Aj={xeF |x=-=x4=0 x=1}

where (x;,...,Xx,) are the coordinates of an element x of F with respect to the
chosen basis (e1,...,e,)).
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The disjoint union of the subspaces A; has cardinality

k
‘ U 4 :Zz"*izz"(l—%).

1<i<k i=1

Thus if we denote by f; the polynomial associated to A; as in Lemma 5.7, and
put

k
f=117%eFxl,
i=1

then we have

des(1) = 3 deat) = U a|=2(1-5)<2"-1=7
i=1

1<i<k

since 1 <k <n and

k k
wi(f) < [[wt(h) < [ =i +2) =+ DX

i=1 i=1

Since ged(f, X? —1) = f, we have

dim(I) = p —deg (ged(f, X? —1)) = p—deg(f) =2"* —1 < zﬁk
Let § > 0 be any given real number. Take some integer k > 1 such that
2% o % By the assumption that there exist infinitely many Mersenne primes, we

can find a prime p = 2" —1 for which n > k and

N S

(n+ 1DF < Zp.

Then using the polynomial f obtained as above for these parameters p = 2" — |
and k, we get
- Kk, P _9 §
wrp <wWit(f) +dim(Jy) < (n + 1)" + 5E < 5], + Ep — §p,

and therefore pr , <ép. L]

It is important to notice that this counter-example does not show that [F, does
not satisfy the §-uncertainty principle for the prime p, since the polynomials
fi and f do not usually belong to F,[X]. Furthermore, as the underlying field
depends on the primes p, this counter example is not really relevant to our search
of families of cyclic good codes, since in such a family we need to work with a
fixed underlying field while in the last example, the size of F grows to infinity.



Good cyclic codes and the uncertainty principle 325

6. Why good cyclic codes should exist

6.1. Preliminaries. In this section, we describe some heuristic arguments that
all point in the direction of the existence of families of good cyclic codes, and
of the weak uncertainty principle according to Definition 5.3.

In both arguments, the main unproved claim is that for a polynomial of
degree < p, the property of being “sparse” (i.e., of having small weight wt(f))
and of vanishing on many roots of unity should be roughly independent. The
following result is then relevant.

Lemma 6.1. Let § be a fixed real number with 0 < § < 1/2. Let S5 be the set
of polynomials f in F2[X]/(X? —1) with wt(f) < ép. Then we have

|S5| = 2 pH2(8)+o0(p)
where H>(8) = H(8)/log(2) and
H(8) = —61log(8) — (1 — &) log(1 — &)

is the entropy for Bernoulli random variables.

Sketch of proof. We have

Sp
P )4 P
(LSPJ) =[] 5,; (1) < ”(LapJ)

which the Stirling formula reveals to be of size

eH@)p+o(p) — o pH(6)/log(2)+0(p)
as claimed. 1

We also recall some fairly classical results on primes where 2 has relatively
small multiplicative order.

Lemma 6.2. (1) For any € with 0 < € < 1, there exist infinitely many primes
p such that ord,(2) <€ p.

(2) Assume the Generalized Riemann Hypothesis for Dedekind zeta functions of
number fields. For any € > 0, there exist infinitely many primes p such that
ord,(2) < p3/4te.
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Proof. In both cases, we use the criterion of Lemma 2.7: if £ is an odd prime
and if p is an odd prime distinct from £ such that p is totally split in the field
K¢ = Q(e?7/¢, /2), then p =1 (mod £) and the order of 2 modulo p divides
(p—1)/€, hence is < p/L.

Hence, taking £ to be any prime such that £ > 1/e, the first statement follows
from the existence of infinitely many primes totally split in K, (this is an easy
consequence of the Chebotarev Density Theorem, see for instance [Neu, Th. 13.4]).

For the second, we use the explicit form of the Chebotarev Density Theorem,
following Serre’s presentation of the results of Lagarias and Odlyzko: for any odd
prime £ and any X > 2, the number np(X) of primes < X which are totally
split in K, satisfies

1 X ds
m(X) = o :Q]fz e O(VX log(£X))

where the implied constant is absolute, under the assumption that Dedekind zeta
functions satisfy the Riemann Hypothesis. Precisely, this follows from [Ser, Th.
4], applied with £ = K;, K = Q and C the trivial conjugacy class of the
identity element; then ng = [K; : Q] and the discriminant dg is estimated using
the bound [Ser, (20)].

In particular, since the integral is of size X/(log X) and [K, : Q] < £?, this
result shows that if € > 0 is fixed and £ is any prime large enough, there exists
a prime p totally split in K; with p < £**€. Such a prime p satisfies

ord,(2) < % < plTV/G+e),
and the result follows. ]

The interest of these statements is that if the order r of 2 modulo p is
“small” compared with p, then by the discussion following Proposition 2.6, the
ring R = F,[X]/(X? —1) contains many ideals. In particular, if r = p3/4+€ and
n with 0 < n < 1 is fixed, and if we look for ideals of dimension ir =~ np,
then for such primes we have approximately (}) ideals of dimension np, where
(see Proposition 2.6), we have s = (p—1)/r and i = np/r ~ ns. By Stirling’s
formula, as in the Lemma 6.1, this numbers grows exponentially with s.

6.2. Picking ideals at random. Fix some real number with 0 < n < 1. Let
p be a prime such that there exists an ideal / in R = F,[X]/(X? — 1) with
dim(/) ~ np.

Let § > 0 be another parameter. Assuming that the probability for an element
of I, to be in the set S of Lemma 6.1 is approximately the same as the probability
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for a general element of R, the expected cardinality of the intersection Ss N [/
should be about

2 PH2(8)+dim(I)—p+o(1) _ p(H2(8)—(1-n))+o(1)

by Lemma 6.1. If n and § are chosen so that
1— n> Hz((g),

this expectation is < 1. So, as in the Borel-Cantelli lemma, if we select an ideal
I, of this approximate dimension for all primes where this is possible (an infinite
set, by Lemma 6.2 and Proposition 2.6), we may expect that only finitely many
p will have the property that /, intersects Ss. Since H,(8) — 0 as § — 0, a
suitable choice of § exists for any fixed 7.

Moreover, under the Generalized Riemann Hypothesis, picking the primes p
as given by Lemma 6.2 (2), the number of options for [, grows exponentially
as a function of s = p/ord,(2) ~ p/4~¢_ and we need to succeed only with a
single one of them to obtain a good cyclic code with rate 7.

6.3. The weak uncertainty principle should hold. Here we give a heuristic
argument, suggested by B. Poonen, as to why the weak uncertainty principle of
Definition 5.3 should hold for the field F, for an infinite sequence of primes.
This is a variant of the previous argument.

First, the Generalized Riemann Hypothesis implies that there are infinitely
many primes such that ord,(2) = pT_l (this is a simple variant of the argument
of Hooley [H] for primitive roots, where we count primes that are split in the
quadratic field Q(+/2), and not split in any field Q(e2%/¢, {/2) for ¢ > 3 prime,
see Lemma 2.7 and [Mor]).

We consider such primes and explain that all but finitely many should satisfy
Definition 5.3 with € = 1/2 and § = 3/5. Indeed, the condition ord,(2) < ep
holds by construction. Suppose pr,, < §p. Then there exists a non-zero f € [F,[X]
of degree < p such that

) wrp(f) =wt(f) +dim Iy = wt(f) + p —deg(ged(/, X? — 1)) < ép.

Since ord,(2) = (p —1)/2, the polynomial (X7 —1)/(X — 1) has exactly two
irreducible factors of degree (p—1)/2. So the gcd of f and X? —1 is of degree
1, (p—1)/2 or p—1. In the first case, the inequality (9) is clearly false. In
the third case, we have f = (X? —1)/(X — 1), with wt(f) = p, and again (9)
is false. So f must be divisible by exactly one of the two factors of degree
(p—1)/2, say fi, and then we must have wt(f) < p/10+ 1/2 for (9) to hold.

Now comes the heuristic argument, where we will assume that the property of
being divisible by f1 and of having support of size < p/10 are “independent”: the
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number of polynomials f of degree < p divisible by f; is about 27/2, and on
the other hand, the number of polynomials f of degree < p with wt(f) < p/10
is 27H2(1/10)+0(P) by Lemma 6.1. Since
H(1/10)
log(2)

we may hope that the expected number of polynomials in the intersection is

Hy(1/10) = ~0.47 < 1/2,

0(2(0.47—1/2)p) — 0(2—3p/100)

and since the sum of the series > 2737/100 ig finite, this suggests (by analogy
with the Borel-Cantelli lemma) that the set of primes where the intersection is
non-empty is finite.

F. Voloch has pointed out that one must be careful with this heuristic. Indeed,
let Cp,, for p odd, be the quadratic residue code of dimension (p—1)/2, namely
the cyclic code corresponding to the principal ideal generated by the polynomial

[] @-a)elx]

ac(Fy)?

If the last step is taken literally, the previous argument suggests that the family of
the cyclic codes C,, parameterized by primes p such that ord,(2) = (p —1)/2,
is good. However, assuming GRH, Voloch’s results [Vol] imply that this is not
the case.

More precisely, Voloch shows, under the Generalized Riemann Hypothesis, that
there exist an infinite sequence of primes p for which the distance of the code C,
is <« p(log p)~! (he obtains an unconditonal bound of size <« p(loglog p)~!).
Although the primes that he constructs in [Vol] do not necessarily satisfy the
condition ord,(2) = (p —1)/2 that we wish to impose, we will now show that
the two can be combined (as was suggested to us by Voloch).

Indeed, Voloch defines a sequence of Galois extensions L,/Q of degree about
(£—1)2¢, for £ a prime. He shows that if p is totally split in L, then the distance
of Cp is < (p—1)/(2¢) (for this purpose, he uses a formula of Helleseth). It
turns out that the splitting restrictions in L, are compatible with those involved
in constructing primes with ord,(2) = (p—1)/2. Under the Generalized Riemann
Hypothesis, one gets by following Hooley’s method (see, e.g., [Mor, §5]) that for
a given odd prime ¢ and for X > 2, there are roughly

1 X X(loglog X)
[Lg:@]logXJrO( (log X)? )

primes p < X satisfying all the desired combined splitting conditions. Since
the degree of L, over Q is about ¢2¢, we can find a prime p of size about
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exp(exp(£)) that satisfies the desired conditions. This provides an infinite family
of codes C, with distance <« p/(loglog p), under the Generalized Riemann
Hypothesis.

Although this discussion shows that the heuristic argument cannot be literally
correct, the optimist might still hope that the events which we consider are
sufficiently independent to still lead to infinitely many primes where the weak
uncertainty principle holds. It is maybe a positive sign that the primes given by
Voloch’s argument are rather sparse, and even then, only a very slow decay of
their distance is proved.

Appendix

Chebotarev’s Theorem. A well-known (but not the best-known!) result of
Chebotarev [Che] states the following:

Theorem 6.3 (Chebotarev). Let p be a prime and & = ez_;’ri € C. Let V be the
Vandermonde matrix V = (£§7)P71 € M,(C). Then each minor of the matrix

i,j=0
V' is invertible, i.e., we have det(V|axp) # 0 for any A, B C {0,...,p — 1},
|A| = |B|, where V|sxp denotes the minor of V with rows in A and columns
in B.

Let R = C[X]/(X? —1). Then R is a vector space over C with basis the
images of the monomials e¢; = X? for 0 <i < p —1.

A (multiple of) the Fourier transform on Z/pZ can be interpreted as the
linear map F: f ? from R to R such that

p—1

f =) fEHx er.
0

It is elementary that the matrix representing this linear map is V' = (V)7 ;io €

M,(C). Then each minor of the matrix V has a non-zero determinant if and
only if the same property holds for the matrix V’, so we may replace V by V’
in proving Chebotarev’s Theorem.

We now show that Theorem 6.3 is equivalent to the uncertainty principle over
C. For a direct simple proof of Chebotarev’s Theorem, see the note [Fre] of
Frenkel.

Proposition 6.4. Chebotarev’s Theorem 6.3 is equivalent to the uncertainty
principle for 7./ pZ over C, i.e., to Theorem 3.2.
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Proof. For each A C {0,..., p—1}, we denote by ¢2(A) the space of elements of
R which have zero coeflicients for the basis vectors ¢; for i ¢ A, i.e., polynomials
f with support contained in A. For an element

f=) aX' €R
i

we denote by f|4 the element

ZdiXi

of £%2(A).

For any two subsets A and B of {0,..., p—1} with the same cardinality, the
linear map Ty p: ¢?>(A) — £>(B) obtained by restricting the Fourier transform
Qe Tas(f)= ’f |p for f € £*>(A)) is represented by the matrix Vy, , with
respect to the bases (e;)icqa and (e;)icp .-

(Theorem 6.3 = 'Theorem 3.2) Assume for contradiction that there exists a
non-zero element

p—1
f=> aiX' eC[x]
i=0

such that |supp(f)| + |supp(f)| < p. Let A = supp(f). Since |supp(f)| <
p — |A|, the complement of supp( /) has cardinality > |A|. We can therefore

find a subset B of the complement of supp( f) such that |B| = |A|. Let
T = Ty,p : £>(A) — €2(B). We then have T(f) = ? |p = 0 since B is in the
complement of the support of ? , but f is non-zero in ¢2(A). Hence T is not
invertible. Hence, by the previous remark, the matrix V/;x g has determinant zero,
which contradicts Chebotarev’s Theorem.

(Theorem 6.3 < Theorem 3.2) Now assume that there exist subsets A, B C
{0,..., p—1} with |A| = |B| and det(V'|4xp) = 0. This means that the linear map
T = Ty,p : 1>(A) — I2(B) is not invertible. In particular, 7 is not injective. Let
f # 0 be an element of £2(A) such that 0 = T(f) = ? |g. Then supp(f) C A
and B is contained in the complement of the support of ? . Hence

|supp(f)| < |A| = |B| < p—|supp( £ )],

which contradicts the uncertainty principle. L]

In this argument, we may replace C with any other field F containing a
p-primitive root of unity &. So for any prime p and for any field F containing
a p-primitive root of unity &, Theorem 6.3 with respect to the prime p (i.e., the
claim that each minor of the p x p Vandermonde matrix (£); ; is invertible) is
equivalent to the uncertainty principle for the field F with respect to p, i.e., to
the claim that wr , > p.
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