Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 63 (2017)

Heft: 3-4

Artikel: Holding convex polyhedra by circular rings
Autor: Maehara, Hiroshi / Martini, Horst

DOl: https://doi.org/10.5169/seals-787387

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-787387
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 63 (2017), 273-304 DOI 10.4171/LEM/63-3/4-3

Holding convex polyhedra by circular rings

Hiroshi MAEHARA and Horst MARTINI

Abstract. In 1995, T. Zamfirescu proved that most convex bodies can be held by circles, that
is, for most convex bodies B it is possible to attach a hinged circular ring of appropriate
size to B so that it cannot slip out of B. Since then, many results have been obtained
concerning the existence of such circles for various convex polyhedra, and the sizes of such
circles when they exist. It seems, however, that these results were obtained individually
by ad hoc methods. In this paper we develop a unified concept and methods enabling a
systematic presentation of these results, and we also obtain a few new results. A complete
survey on the topic is also presented.

Mathematics Subject Classification (2010). Primary: 51M05, 51M20, 52A15, 52BI0,
52C99, 70B10.

Keywords. Baire category, holding circle, holding frame, circle-free, immobilizing shapes,
trunk of a convex polyhedron.

1. Introduction and a survey of related results

A convex body is a compact convex set with interior points in R3. How is
it possible to hold a convex body by a hinged circular ring (see Figure 1.1) of
suitable size? This paper is an attempt at a rather systematic treatise concerning
this problem and variants thereof, especially for convex polyhedra.

In applied disciplines like robotics (and subfields thereof, such as motion
planning) one is confronted with many geometric problems, and also their
solutions need a lot of geometric intuition. This implies that typical questions
from computational, discrete, and convex geometry can also yield basic knowledge
for very applied situations. The general type of question investigated here can
be described as follows: given some geometric object A4 (e.g., a compact point
set, called “body”) and some system B of barriers (described as a geometric
configuration, like a finite point set, a family of compact sets, or the complement
of it), A should pass B with respect to the group of motions (or its subgroup
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Ficure 1.1
A hinged circular ring

of translations) remaining completely in the complement of B, with or without
friction. Contrarily, one can ask for a system B sufficient to block A in some
optimal sense (e.g., for B a finite set having, for instance, smallest cardinality to
do so). Choosing A as convex body, B as family of translates of A or as finite
set, and using the translation group, we enter combinatorial geometry, i.e., we
refer then to notions like blocking numbers, fixing systems and hindering systems
(see [Zon], [BMS, § 4], and [BM]). Extending this to the group of motions, we
are in the small field of immobilizing (convex) shapes which is investigated mainly
in computational geometry (cf., e.g., [BFMM] and [CSU]) and more related to
our investigations here. The piano mover’s problem is even more general: one has
to find a continuous motion that will take a given body or a family of bodies,
presented by A, from a given initial position to a desired final position, but with
strong geometric constraints which forbid the bodies to come in contact with the
fixed barrier system B and with each other (see, e.g., [SS] and, for an even more
general concept, [Daw]). This problem is also nicely presented in the problem
book [CFG], see G5 there.

The problem that we will discuss here is closely related to these concepts:
given a convex body A, find a non-extensible string forming a net B around
A (which can, in particular, consist only of a circle) such that A cannot slip
out. And describe, somehow contrarily, a related situation where A unexpectedly
can slip out. Looking at the existing references, this small field might be called
“circles (and cages) holding convex bodies against continuous motions”’, and is
mainly developed in 3-space. It is our aim to survey first the recent state of
knowledge, to develop then a unified concept which allows a convenient approach
to and a new presentation of existing results, and to derive also various new
results. In a few cases, results described in the following sections in a detailed
way are, for the sake of completeness, already shortly mentioned in the survey
starting now.

In 1920, Zindler [Zin] studied problems on circular cylinders C of smallest
possible radius r; which cover a convex body A. He observed that if A is for
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example an affine cube, then one can move a circle, whose radius ry is smaller
than ry, “over A”. Conversely, one can interpret that circle as fixed object B,
and then A as the body that can be moved “through B”. Zindler posed the
interesting question for the smallest possibie ratio :—‘1’ still guaranteeing that this
process is possible. Zindler’s contribution can be seen as the starting point for
the small field that we discuss here. More precisely, we ask for the optimal total
length of circles that can hold (certain types of) convex bodies against motions.

Zamfirescu [Zaml] defined that a convex body A in R? is said to be held by
a circle B if the intersection of B and the interior of A is empty and it is not
possible to continuously and rigidly move B away from A without intersecting
the interior of A (we say then that B holds A). He proved that the family
of convex bodies which cannot be held by some circle form a nowhere dense
subset of the space of all three-dimensional convex bodies with respect to the
Hausdorff metric (see [Schn, §1.8]). A single, but suggestive result was derived
in [Tanl] (see also [Tan2]): the regular triangular prism with all edges of length
1 can be held by a circle. In [Fru] it was shown that if a circle of diameter d
holds a convex body of minimum width w, then % 5. % which is sharp. The
author also claims that this can be generalized to R”,n > 2, for holding spheres
of dimension n — 2, and he derives respective inequalities in terms of d and
w. In [Zam3] it is proved that, in the sense of Baire category (cf. [Gru] and
[Schn, §2.6]), for most convex bodies in R3 Zindler’s observation is true: they
can be pushed through a circle whose radius is smaller than that of the smallest
circumscribed circular cylinder. (From now on we use the word “most" in this
sense.) If we imagine this circle as a circular hole in a wall, the natural question
occurs which influence then the thickness of this wall has. This is studied in
[Zam2], and it turns out that in most cases it has influence. This type of results
is clearly related to embeddings of convex bodies A into infinitely long cylinders
perpendicular to the holes in walls. See [Mael] for regular tetrahedra in circular
cylinders, and [MT2] for regular tetrahedra in regular triangular cylinders. In the
first case all tetrahedra have equivalent positions (i.e., they can be superposed
by a rigid motion within the respective prism), in the second case not, and
the non-equivalent positions are described in [MT2]. The analogous question for
square prisms seems not to be settled. Coming back to holding circles, Maehara
[Mae4] proved that, for A being the regular icosahedron, the range of the space
of all circles (defined via diameter) holding A has two components. This was
generalized by Bardny and Zamfirescu. They showed in [BZ2] and [BZIl] that
for most convex bodies the space of their holding circles has infinitely many
components, and that various “counterintuitive” relations between extremal radii
of holding circles exist. Another result from [BZI] refers to the replacement of
holding circles by planar closed convex curves, called holding frames. It says
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that if the holding frame is neither a triangle (no triangle holds any convex
body) nor a circle (any circle fixes some convex bodies, e.g., tetrahedra), then
some tetrahedron in R3 is fixed by this frame without motion. The latter means
that even the rotation is excluded which is trivially possible for holding circles.
Continuing the study of holding frames, it is proved in [BMT] that a convex body
can pass through a triangular hole iff it can do so by a translation along a line
perpendicular to the hole. As an application, the minimum size of an equilateral
triangular hole through which a regular tetrahedron with unit edge-length can pass
is determined. Again the fact that no triangular frame can hold a convex body is
used, and it is shown that every non-triangular frame can fix some tetrahedron.
The authors of [ITZ] determine the smallest circular and the smallest square
hole in a plane of R? through which a regular tetrahedron of fixed size can
pass. Extensions of these problems to higher dimensions are given in [IZ] and
[MTI]. In the first paper diameters and minimal widths of convex hyperplanar
holes in dimensions 3, 4, and 5 are determined, through which respective regular
simplices can pass. And [MT]] refers to n-dimensional simplices which can be
pushed through hyperplanar holes whose shapes are given by (n—1)-dimensional
regular simplices, cubes, and balls.

It is clearly impossible to hold a ball in R3 by a circular ring. So we continue
by recalling some classical results on holding a unit ball by other constraints. We
now do this in greater detail, since this part of the field is no longer discussed
in the following sections.

Theorem 1.1 (Besicovitch [Besl]). The length of an inextensible string to construct
a net around a unit ball so that the ball cannot slip out of it is greater than 3w,
and it is possible to bring it as near to 3w as we like.

Figure 1.2 shows that for any & > 0 there is a net of total length smaller than

37 + & that holds a unit ball. Indeed, since the length of the string used in any
“3-cycle" of the net in Figure 1.2 is less than 2z, the ball cannot slip out of the

Be

FiGure 1.2
A net that holds a unit ball



Holding convex polyhedra by circular rings 277

net. Croft [Cro] proved the same result with a different method, see also [Ste].
By allowing that some of the six great circular arcs (see again Figure 1.2) can
break, in [Cro] also a more general question is studied.

The smallest cube that contains a unit ball must have dimensions 2 x 2 x 2.
Hence the sum of its edge-lengths is 24. L. Fejes Téth [8, p. 143] conjectured
that the total length of the edges of a convex polyhedron that contains a unit ball
is greater than or equal to 24, with equality only when the polyhedron is a cube.
This conjecture was proved by Besicovitch and Eggleston.

Theorem 1.2 (Besicovitch and Eggleston [BE]). The total length of the edges of
a convex polyhedron that contains a unit ball is at least 24, and 24 is attained
only by a cube.

By a cage we mean the one-skeleton of a convex polyhedron; this notion
creates several interesting problems in combinatorial geometry (see, e.g., [Schr]).
Coxeter asked for the minimum of the total edge-length of a cage that can hold
a unit ball. For a right triangular prism, all whose edges are of length /3, the
distance from the center of the prism to the midpoint of each edge is equal to 1.
Hence the 1-skeleton of this triangular prism is a cage that can hold a unit ball,
and the total length of edges of this cage is 94/3 &~ 15.5884. Coxeter conjectured
in his review of the paper [BE] (see MR0095448 and also [Cox]) that this is the
smallest value of the total length of edges of a cage that can hold a unit ball.
His conjecture was refuted by Besicovitch.

Theorem 1.3 (Besicovitch [Bes2], Aberth [Abe]). The total length of the edges
of a cage that can hold a unit ball is greater than y = %J‘[ +2+4/3 ~ 11.84, and
y is the greatest lower bound.

Besicovitch constructed a cage of total length y + ¢ that holds a unit ball,
and Aberth proved that y is the greatest lower bound of the total length of edges
of such a cage. Figure 1.3 shows Besicovitch’s cage. In the review of [Bes2]
(see MR0155236) Coxeter repeats his conjecture restricted to polyhedra with the
property that all their edges have to touch the enclosed sphere.

In [Zam4] Zamfirescu extends the representations of usual segments with two
endpoints to “segments” between two convex bodies in their space with respect to
the Hausdorff metric. A path in this space consisting of k consecutive segments
is then called a k-move. He shows that if a convex body A is held by a cage
B, it can migrate through a 2-move to a translate A’ of A outside B, keeping
its diameter constant on the way. Also further results of this type are verified in
[Zam4], and two interesting research problems on cages are formulated in [MZ].
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Figure 1.3
Construction of Besicovitch’s cage

Let us return here to convex bodies and circles. To make our arguments clear,
we define some notions as follows. For a given closed domain D C R3, two
circles in R3 \ int(D) are said to be isotopic to each other over D if one of
these circles can be continuously and congruently moved in R3 \ int(D) so that
it coincides with the other one, where int(x) denotes the interior of . Thus,
circles isotopic in that sense are congruent. A circle I' is said to be attached to
D cCR3if 'Nint(D) = @ and conv(I") N D # &, where conv(x) denotes the
convex hull of . If a circle I" attached to a convex body B in R? is isotopic
over B to a circle I’ satisfying conv(I"") N B = &, then we say that I" can slip
out of B. If I' cannot slip out of B, then we say that I holds B. A convex
body B is called circle-free if no circle can hold B.

Balls and ellipsoids in R? are clearly circle-free. It is also not difficult to see
that every right circular cylinder is circle-free. Every right circular cone is also
circle-free. For two nonempty subsets U,V C R3, the Minkowski sum U +V is
defined as

U+V={u+v:uelU,veV}

It is known (Maehara [Mae3]) that for every compact convex set X contained
in a plane in R3, the Minkowski sum X + B is circle free, where B is a ball
of arbitrary radius centered at the origin. Thus, a sausage (i.e., the Minkowski
sum of a line-segment and a ball) is also circle-free.

Is there a convex body that can be held by a circle? Surprisingly, most convex
bodies (in the sense of Baire categories, see again [Gru] and [Schn, §1.8]) can
be held by circles, as was proved by Zamfirescu.

Theorem 1.4 (Zamfirescu [Zaml]). The set of circle-free convex bodies forms a
subset in the space of all convex bodies in R® which is nowhere dense with
respect to Hausdor|f metric.
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In the sequel, we mainly concentrate on holding circles of convex polyhedra.
In §2, we introduce “trunks of convex polyhedra" and “transversal disks of trunks"
as basic notions, give several examples, and present a so-called “Symmetrization
Lemma" and an “Isotopy Lemma" as key lemmas. In §3, various results on circles
holding convex polyhedra are shown by using these notions and lemmas, and in
§4 the key lemmas are proved.

2. Holding a convex polyhedron by a circle

2.1. Trunks of a convex polyhedron. In the sequel, a set of points A4, B,C,...
in R*® and its convex hull are both denoted by the juxtaposition ABC ....

A trunk &£ of a convex polyhedron IT in R3 is a nonempty set of those edges
of IT that are cut by a single plane passing through no vertex of I7. Since such
a plane divides the endpoints of the edges into two nonempty sets, a trunk can be
represented as £ = (U, V), where U is the set of endpoints on one side of the
plane, and V is the set of endpoints on the other side of the plane. The convex
hull of £ (i.e., the convex hull of U U V') is denoted by (£). (Note that (£) is
a convex polyhedron, and £ can be regarded as a trunk of (£).) For example,
in a tetrahedron ABCD in R?, the pair (AB,CD) represents a trunk of the
tetrahedron. A circle is said to be attached to a trunk of a convex polyhedron if
the disk bounded by the circle intersects all edges of the trunk.

Let us recall here two types of quadratic surfaces that we use in the following.
Let g,/ be a pair of lines in R, and suppose that g } [ (non-parallel) and
that g does not lie in a plane perpendicular to /. By rotating ¢ around /, we
obtain a surface. If g and / intersect, then we have a (double) circular cone with
axis |; otherwise, we have one-sheet hyperboloids of revolution with axis [, see
Figure 2.1. These surfaces are ruled surfaces, represented by the equation

a2  a? b2

Ficure 2.1
A one-sheet hyperboloid of revolution
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(If ¢ = 0, then this equation represents the surface of a (double) circular cone,
and otherwise a one-sheet hyperboloid of revolution is represented.) Note that the
latter surface is also “constricted" at z = 0. A one-sheet hyperboloid of revolution
divides R? into two parts, and the one that contains the axis of the surface is
called the inside of the surface.

The next lemma is obvious, but useful.

Lemma 2.1. Let H be a circular cone or a one-sheet hyperboloid of revolution.

(1) A section of H by a plane is a circle if and only if the plane is perpendicular
to the axis of H.

(2) If a section of H is an ellipse, then its minor axis lies on a plane
perpendicular to the axis of H. Ol

The length of a line segment XY in R3 is denoted by |XY|. For a point
X and a line g in R?, the distance d(X,g) from X to g is defined by
d(X,g) = min{|XY| : Y € g}. The distance d(/,g) between two lines /,g
is defined by d(/,g) = min{|{XY| : X € LY € g}. For a family of lines
£1,82,-..,&n(n>2), a line [ that satisfies

Xel=dX,g)=--=d(X,gn)
is called an equidistant line of the family {gi,...,g,}. For example, for a family
of lines gi,...,g, lying on a one-sheet hyperboloid of revolution #, it can be

proved by using Lemma 2.1 (1) that the axis / of #H is an equidistant line of
{81, &n}-

Theorem 2.1. If a family of lines {g1,...,8n} has an equidistant line | such
that | does not lie on a plane perpendicular to g, and | } g1, d(l,g1) > 0,
then gi1,...,gn lie on a one-sheet hyperboloid of revolution with axis [.

Proof. We use the following fact, without proof.

* For two disjoint lines /,g, let P,X €[, Q,Y € g be points that
satisfy |PQ| = d(g,l) and XY L [. Then, (i) / L PQ L g and (ii)
|XY| is uniquely determined by |PQ|, |PX| and d(X,¢2).

Let # be the hyperboloid obtained by rotating g; around /. Since [ is the

equidistant line of g;,...,gn, there exist P € [ and Q; € g; such that
|PQy| = -+ = |PQn| = d(l,g1). Then PQ; L I, and hence each Q; lies
on H. For a point X €/, let ¥; € g; satisfy that XY; L /. By (ii) of the above
fact =, we have |XY;| =-.- = |XY,|. Hence each Y; lies on H. Therefore each

g; lies on H. L]
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A trunk & = (U, V) is called hyperboloidal (resp. conic) if all edges of the
trunk lie on a one-sheet hyperboloid of revolution (resp. on a circular cone). In
a right pyramid with apex P whose base is a regular polygon, the set of edges
emanating from P is clearly a conic trunk.

Example 2.1. In the regular icosahedron Z shown in Figure 2.2 left, the trunk
& = (ABCDE,A*B*C*D*E™*) is hyperboloidal. (Indeed, the line FF* is an
equidistant line of the lines determined by the edges in £.) Thus, by rotating 7
around the line FF*, we have a non-convex figure as shown in Figure 2.2 right.
Note that £ contains pairs mutually symmetric to the center of the icosahedron,
say (AD*, A*D), (BE*, B*E), etc. Let I' be the minimal circle attached to £
at its most “constricted" part, and let I'' (% I') be any other circle attached to
E. If the plane determined by I'’ is perpendicular to FF*, then clearly I'’ has
larger diameter than I". If the plane of I’ is not perpendicular to FF*, then
the plane cuts a pair of edges of £ that are symmetric to each other with respect
to the center of the icosahedron, at a pair of points with distance greater than the
diameter of I'. Hence the diameter of I'” is larger than that of I". Therefore Z
can be held by a circle.

74"

FiGure 2.2
A hyperboloidal trunk of a regular icosahedron

Example 2.2. Similarly, a regular tetrahedron 7, a cube C, and a regular
octahedron @ have hyperboloidal trunks, and they can be held by circles as shown
in Figure 2.3. A regular dodecahedron has two different types of hyperboloidal
trunks as indicated by attached circles in Figure 2.4, and it is also not circle-free.

Remark 2.1. Even if a convex polyhedron has a hyperboloidal trunk, the smallest
circle attached to the hyperboloidal trunk does not necessarily hold the convex
polyhedron. For example, in a right triangular pyramid P-ABC with equilateral
triangular base ABC, its trunk (PA, BC) is hyperboloidal by Lemma 3.2 in §3,
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5 5

Figure 2.3
Holding circles

Ficure 2.4
Circles attached to hyperboloidal trunks of a dodecahedron

but if the height of the pyramid is very small, then the pyramid is circle-free, as
proved in Theorem 3.3 in §3.

Lemma 2.2. If a hyperboloidal trunk £ has at least five edges, then it determines
a unique one-sheet hyperboloid of revolution.

Proof. Let H;, i = 1,2, be one-sheet hyperboloids of revolution, each containing
the trunk &, and let /;,i = 1,2, be their axes. Let £ denote the set of lines
determined by the edges of £. Since a quadratic surface and a line that does not
lie on the surface intersect in at most two points, each 7; must contain £. Let H
be a plane that is perpendicular to /;. Then H N, is a circle by (1) of Lemma
2.1. Since £ contains at least five lines, it is possible to choose H so that HNE
contains at least five points. Then H N#, is a quadratic curve on H that has five
points in common with the circle H N7H;, and hence H NH, = H NH;. In this
case, H is also perpendicular to I, by (1) of Lemma 2.1, and /; passes through
the center of the circle H N #;. Therefore /; = [,, and hence H; = H,. OJ

Remark 2.2. If a hyperboloidal trunk £ of a convex polyhedron has at most
four edges, then a one-sheet hyperboloid of revolution that contains £ is not
necessarily unique. For example, consider the rectangular pyramid B-AB*C*D
inscribed in the cube ABCD-A*B*C*D*, see Figure 2.5. It has a hyperboloidal
trunk £ = (AB*, BC*D) consisting of four edges DA, AB, BB*, B*C*, which
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is a subset of a hyperboloidal trunk (AB*D*, BC*D) of the cube ABCD -
A*B*C*D*. Hence the line A*C is an equidistant line of the family & of
lines determined by the edges of £. Since the lines in € are also determined
by D1A,AB, BB*, B*C/", the line C;A* is also an equidistant line of £, where
C1, Dy, C{ are the mirror images of C, D, C* with respect to the plane AA*B*B.
Hence there is another one-sheet hyperboloid of revolution that contains £ by
Theorem 2.1.

FiGure 2.5
A rectangular pyramid inscribed in a cube

2.2. Transversal disks of a trunk. Let £ be a trunk of a convex polyhedron
in R3. A disk £ is called a transversal disk of £ if 2 intersects all edges in
the trunk &£. (Note that £2 may intersect an edge in £ at its endpoint.) More
generally, for a set of lines £, a plane (or a disk) is called a transversal plane
(or a transversal disk) of L if the plane (or the disk) intersects all lines in L.
The boundary circle of a transversal disk of a trunk £ is a circle attached to the
trunk £. If a transversal disk of £ contains a prescribed vertex P of £, then the
disk is called a transversal disk of the trunk € on P . Note that a transversal disk
of £ on P is also a transversal disk of £. Among the transversal disks of £ (on
P), one that has the minimum diameter is called a minimal transversal disk of £
(on P). Since disks are compact and convex, it follows, by employing Blaschke’s
selection theorem (cf. [Schn, §1.8]), that for any trunk (and a prescribed vertex
P), there always exists a minimal transversal disk of the trunk (on P ). Note that
the boundary circle of a minimal transversal disk of a trunk & intersects (£) in
at least two points unless the disk degenerated into a point. The diameter of a
disk £2 is denoted by d(£2).
Let us prove here the following theorem obtained by Tanoue [Tan3].

Theorem 2.2. Every triangular right prism with equal edges is not circle-free.

Proof. Let ABCA*B*C™* be a triangular prism as shown in Figure 2.6 left, and
let £ = (ABB*, A*C*C). Let £2 be a minimal transversal disk of &£, and £24
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be a minimal transversal disk of £ on A. It is enough to show that the boundary

circle of 2 cannot slip out of the triangular prism. To show this, we use the

inequality
(*) d(2) <av7/2=d(2a),

where a is the edge-length of the prism. This is proved later. Tentatively, we

assume this. Suppose that the boundary circle 352 of £2 can slip out of the

triangular prism. During the slipping out process, the circle 02 and the disk £2
move, and §2 must meet vertices of the triangular prism. Let Z denote the first
vertex that £2 meets during a slipping out process, and denote by 2z the disk

when £ comes to Z. The point Z must be one of A, A*,C,B*. If Z = A*

then, £24~ is a transversal disk of £ on A*. However, the diameter of a minimal

transversal disk of € on A* (which is equal to d(§24)) is larger than d(£2) by

(%), a contradiction. Suppose Z = B*. Let X be the intersection of AC and

Qp+. Since |B*X| > |A*M| = a+/7/2, we have d(£2p+) > d(22) by (%), a

contradiction. Similarly, in the cases Z = A, C, there arise contradictions. Hence

the circle 352 cannot slip out of the prism.
Now, to prove (x), we show that (1) d(24) = a~/7/2 and (2) d(2) < a~/7/2,
where a is the edge-length of the prism.

(1) Every transversal disk of & on A intersects the edge B*C* at a point
Y. Then the diameter of the transversal disk is greater than or equal
to |AY|. While Y moves on the line segment B*C*, the minimum
value of |AY| is attained when Y is at the midpoint N of B*C™, and
|AN| = /a2 + a2(v/3/2)? = av/7/2. Thus d($24) > a~/7/2. On the other
hand, denoting the midpoint of BC by M, the smallest disk that contains
the rectangle AA*NM is a transversal disk of £ on A and has diameter

a~/7/2. Hence d(£24) = a+/7/2.

N5

c* \‘*‘/“" B* o

FiGURE 2.6
A triangular prism

(2) Let P and P* be the points on the segments MC and NB*, respectively,
such that |[MP| = |NP*| = ¢/2, where ¢ is a small positive number. Let
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L be the midpoint of AA*, and let @, Q* be the points where the plane
PLP* cuts the segments AC and A* B*, respectively, see Figure 2.6 right.
Then PQ | P*Q* | MA, and PP*Q*(Q is a rectangle. Since |AQ| = ¢
(because |PM| = &/2), we have |QP| = (a —&)~/3/2. Hence

|OP*> = 3(a—¢e)? +a* + & = Ja* — 3ea + 26>,

If & is very small, then —3¢a + 2¢2 <0, and |QP*| < a~/7/2. Hence the
diameter of the circumscribed circle of the rectangle PQQ*P* is smaller
than a~/7/2. Moreover, if ¢ is very small, then the midpoint L of AA*
is contained in the smallest disk that contains PP*Q*Q, and hence the
smallest disk containing PP*Q*(Q is a transversal disk of £. Therefore

d(2) <a~1/2.
This completes the proof of the theorem. ]

2.3. The Symmetrization Lemma and the Isotopy Lemma. A plane H is
called a symmetry plane of a trunk € = (U, V) if both U,V are plane-symmetric
to themselves and have a common symmetry plane H . For example, in the regular
icosahedron in Figure 2.2 left, the plane determined by F, A, F* is a symmetry
plane of the trunk (ABCDE, A*B*C*D*E¥).

The following lemma is sketchily proved by Maechara [Mae3]. We present a
complete proof in §4.

Lemma 2.3 (Symmetrization Lemma). Suppose that a trunk £ of a convex
polyhedron has a symmetry plane H, and let 2 be a transversal disk of £.

(1) The boundary circle of 2 is isotopic over (£) to the boundary circle of a
transversal disk of £ that is symmetric to itself with respect to the plane H .

(2) If §2 is not symmetric to itself with respect to H, and 2N H ¢ (£), then
2 is not a minimal transversal disk of £.

This lemma is also true if we replace “transversal disk of £" by “transversal
disk of £ on P", for a vertex P of £ lying on H.
The following conjecture was stated by Maehara [Mae4].

Conjecture 2.1. If the diameters of two circles attached to the same trunk of a
convex polyhedron are equal, then the two circles are isotopic over the convex
polyhedron.

Though we could not prove this conjecture, the following special case is useful.
The proof of this special case is also given in §4. By a directed line, we mean
a line, like the z-axis in R3, in which the (+)-direction is specified. Then, for
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any plane that cuts the directed line, its upper side ((+)-side) and its lower side
are defined naturally. For a trunk &, the set of lines determined by the edges in
£ is denoted by £.

Lemma 2.4 (Isotopy Lemma). Let € = (U, V) be a hyperboloidal trunk of a
convex polyhedron II that lies on a one-sheet hyperboloid of revolution H with
“directed”" axis |. Suppose that (i) there is a transversal plane of £ that is
perpendicular to | and U lies in its upper side, and that (ii) £ has a symmetric
plane.

(1) If a circle I' = 082y attached to & satisfies that
(1) the plane of the circle cuts the axis | and U lies in its upper side,
then the disk $2¢g can be continuously and congruently moved, through
transversal disks of £, to a transversal disk 2, of € that lies on a plane
perpendicular to the axis | of H. Hence I' is isotopic over Il to 052,.

(2) Two congruent circles attached to £, both satisfying (1), are isotopic over II.

Remark 2.3. For every hyperboloidal trunk of regular polyhedra shown in
Figures 2.2, 2.3, 2.4, the Isotopy Lemma can be applied and any two congruent
circles attached to the trunk are isotopic over the regular polyhedron.

Example 2.3. Let £ = (ABCDE,A*B*C*D*E*) be a trunk of a regular
icosahedron Z as shown in Figure 2.7 left, and £ = (AA*,CD) be a trunk of
the tetrahedron ACDA™. Then the minimal transversal disk of £ on A coincides
with the minimal transversal disk of £ on A.

F
A & D Y
Y A
D* ‘V - 4
F*
FiGure 2.7
. Example 2.3

This can be seen as follows. Let £2 be a minimal transversal disk of £ on
A. First, note that the plane H containing AFF* is a common symmetry plane
of the trunk £ and the trunk £’. Note also that since H N2 ¢ (£), £2 must be
symmetric to itself with respect to H by (2) from the Symmetrization Lemma.
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Since the trunk £ is hyperboloidal, the intersection points of §2 and the edges
in this trunk lie on an ellipse passing through A, and A is an endpoint of the
major axis of this ellipse. Hence 452 N (£) consists of A and two points X, Y
on the edges A*C, A*D, see Figure 2.7 right. On the other hand, if X,Y are
points on the edges A*C, A*D such that |A*X| = |A*Y|, then the smallest disk
containing the triangle AX'Y becomes a transversal disk of £ through A. Hence
£2 coincides with the minimal transversal disk of £ on A.

Example 2.4. Let P-A1A,...As, be a regular pyramid with apex P whose
base is a regular (2m)-gon A1Az...Aym. Let € = (P,A1A, ... Azy), and $§24
be the minimal transversal disk of £ on A;. Then 9£2, intersects £ in only two
edges PA(, PApu41, and d(£2;) = min{|A; X|: X € PAm+1}.

To see this, we may suppose that £2; is symmetric to itself with respect to
the plane PA;A;+1 by (1) from the Symmetrization Lemma. Then the plane
containing §2; cuts the circular cone determined by £ in an ellipse whose major
axis lies in the plane PA; A,,+1. Hence 052 intersects only two edges PA;, PApy+1
of £. Moreover, for every X on the edge PAp41, a disk with diameter A4; X
which perpendicularly intersects the plane PAyA, 4+, is a transversal disk of £
on A;. Hence d(£21) = min{|41X|: X € PAp+1}.

Similarly to Example 2.4, we have the following
Example 2.5. Let P-A1A45... Ay;y4q be a regular pyramid with apex P whose
base is a regular (2m + 1)-gon A1As...Azmyq. Let € = (P, A1Ay ... Aomt1),
and £2; be the minimal transversal disk of £ on A;. Then £2; coincides with the

minimal transversal disk of (PA;, Am+1A4m+2) on Ay, where (PAy, Am+1Am+2)
is a trunk of the tetrahedron PA;Ap+1Am+2.

3. Various results

3.1. The range of holding circles. The holding range h(B) of a convex body
B is a subset of the reals R defined by

h(B) = {d € R : there is a circle of diameter d that holds B}.
Theorem 3.1. For a regular tetrahedron T, a cube C, and a regular octahedron
O, all having unit edges, we have

() A(T) =[1/4/2,0.89...),
(i) h(C) =[+2,1.535..),
(i) h(O) = [1,1.1066...)
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where the upper bounds of (i), (ii), (iii) are the minimum values of the functions

2x2—x+1) V2(x%2+2) 2(x% + 1)
M3IXZ—dx+ 4 x2F+2x+3 3x2+2x+3

respectively.

The result (i) was obtained by Itoh et al. [ITZ], and (ii) as well as (iii) were
obtained by Maehara [Mae2] and Tanoue [Tan3].

Proof. We show only the octahedron case (iii). The other cases follow similarly.
Put labels A, B,C, A*, B*,C* on the six vertices of O as in Figure 3.1. First,
note that a circle attached to a trunk of O that is not hyperboloidal can always
slip out of @ by a translation. Let £ = (ABC, A*B*C?¥), a hyperboloidal trunk
of O. It will be clear that the minimum diameter of a holding circle of O is
the diameter of a minimal transversal disk of &, that is, the diameter of the
circumscribed circle of the regular hexagon whose vertices are the midpoints of
the edges in £. Hence its diameter is 1.

Ficure 3.1
The attached circle I

Now let I' be a circle attached to &£. If this circle can slip out of the
octahedron, then during the process of slipping out, the disk conv(/") must meet
vertices of O. We may suppose that A is the first vertex that it meets. At the
moment when it meets A, the disk conv(/') becomes a transversal disk of £
on A. Hence the diameter of I must be at least the diameter dy of a minimal
transversal disk of £ on A. On the other hand, if the diameter of I" is greater
than or equal to dy, then I' is isotopic over O to the boundary circle of a
transversal disk of £ on A by the Isotopy Lemma. Then by a translation in the

direction ﬁ}} I can slip out of O. Hence we have h(O) = [1,dy).

Let us find the value dy of the diameter of a minimal transversal disk of &
on A. Since the plane H determined by A, A* and the midpoint of BC is a
symmetry plane of £, we may consider the diameter of a minimal transversal
disk £ of £ on A that is symmetric to itself with respect to H by (1) from



Holding convex polyhedra by circular rings 289

the Symmetrization Lemma. Let K be the plane that contains the disk 2. Let
P,Q be the points where K cuts A*B and A*C, respectively. Since & is
hyperboloidal, the intersections of K and the edges in £ lie on an ellipse and A
is an endpoint of the major axis of this ellipse. Hence the circle d£2 must pass
through P, Q and A.

Let x = |BP| =|CQ]|. Then |PQ| = |PA*| = 1—x, and since ZABA* = 90°,
we have |AP| = +/1 + x? = |AQ|. Now, the diameter (2)f the circumscribed circle
of the isosceles triangle APQ is computed as —3&%, and the minimum
value dy of this function is dy = 1.106... . |

Fruchard [Fru] proved that for every convex body B, its holding range h(B) is
a subset of the interval (2w/3,00), where w denotes the width of B, that is, the
minimum distance between a pair of parallel planes bounding a strip containing
B. The lower bound 2w/3 cannot be improved generally.

If P is a regular tetrahedron, or a cube, or a regular octahedron, then (P)
is an interval as seen in Theorem 3.1. However, the holding range of a convex
polyhedron is not always an interval. Indeed, it is known (Maehara [Mae4]) that
the holding range of a regular icosahedron is disconnected. Moreover, it was
shown by Bdrdny and Zamfirescu [BZI] that there are convex bodies B such that
h(B) has arbitrarily many connected components.

3.2. Regular pyramids.

Lemma 3.1. Let P-A A, ... A, denote a regular pyramid with apex P whose
base is a regular n-gon AyAy...A,, n>3. Let & = (PAy, Ay A5... Ay), and
denote by 2p,$21, and S2 the minimal transversal disk of €, on P, the minimal
transversal disk of £, on Ay, and the minimal transversal disk of &, respectively.
Then the following statements hold:

(1) d(R) < d(21).

(2) The inequality d(82) < d(§2p) implies that the boundary circle 3952 of 2
holds the pyramid.

Proof. (1) Denote by O the center of the base. We may suppose that §2; is
symmetric to itself with respect to the symmetry plane A, PO of &;. Let Q be
the center of £2,. To make our argument clear, let us consider the case n = 5,
see Figure 3.2. (Other cases follow almost similarly.) In this case, the boundary
circle 02, intersects the edges PAs, PA4 at X,Y (possibly X = P =7Y),
respectively, by Example 2.5 (that is, 9£2; is the circumscribed circle of the
triangle A1 XY, and Q is the circumcenter of the triangle A;XY ). And the
edges PA,, PAs pass through the interior of the disk £2;. Let B be the ball
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FiGure 3.2
0821 is circumscribed to AA; XY

of diameter d(£2;) centered at Q. Since ZQA1A4, = ZQA1A5 < 90°, both
A1A2NB and A; A5 NB are intervals. Hence we can rotate the plane containing
§21 around the line XY slightly so that the intersection of B and the rotated
plane is a transversal disk of £;. The diameter of this disk is clearly smaller than
d(£21), and hence d(£2) < d(§2,).

(2) Suppose that d(£2) < d(£2p) and 952 still can slip out of the pyramid.
During the slipping out process, §2 meets vertices of the pyramid. Let Z be the
first vertex that £2 meets, and denote by $2(Z) the disk at the moment when 2
meets Z . Then, since d(£2) < d(§2;), Z mustbe P or A, or As.1f Z = P, then
£2(P) is a transversal disk of & on P, which means d(£2) = d(£2(P)) > d(82p),
a contradiction.

Suppose that Z = A,. The disk $2(A,) is a transversal disk of the trunk
(PA,, A3A4As). By Examples 2.4 and 2.5, d(§2(A4,)) is at least the diameter
of the minimal transversal disk of (PA,, A3A4A5A41) on A,, which is equal to
d(£21), a contradiction. The case Z = As is similar to the case Z = A,. ]

Let us define the slope p of a regular pyramid by

B height
circumradius of the base’

Though every circular cone is circle-free, every regular pyramid of slope greater
than 1 is not circle-free.

Theorem 3.2. Every regular pyramid with slope p > 1 can be held by a circle.

Remark 3.1. It is known (Maechara [Mae3]) that for every 0 < ¢ < 1 and
m > 2m/e?, a regular (4m)-gonal pyramid with slope p =1 —¢ is circle-free.

Proof. To make our argument clear, let us consider again the case of a
regular pyramid with pentagonal base. Let P-A;A,A3A4As denote a regular
pyramid with apex P whose base is a regular pentagon A;A;A3A4A5. Define
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P

T

Ficure 3.3
082p is circumscribed to APST

£1,82p,821,8 as in Lemma 3.1 and let £ = (P,A;A2A3A4A5). Note that a
transversal disk of £ on A; is a transversal disk of £ on A;, and vice versa.

By Lemma 3.1 (2), it is enough to show that p > 1 implies d(£2) < d(§2p).
The minimal transversal disk £2p of £ on P intersects the edges A;Az, A14s
at S,T7 such that |A,8| = |A1T| > 0, see Figure 3.3. Now, let Q be the
center of £2p, and B be the ball with center Q and diameter d(£2p). For every
i (2 <i <5), the triangle A, PA; is an isosceles triangle with base A;A4; and
height greater than or equal to |OP|, where O is the center of the base. Thus,
p > 1 implies that ZA4; PA; < 90°, and hence ZQPA; < 90° for i =2,3,4,5.
This implies that the edges PA;,i = 2,3,4,5, pass through the interior of B.
Therefore, by rotating slightly the plane PST around the line S7, we have a
plane whose intersection with B is a transversal disk of & with diameter smaller
than d(£2p). Hence, d(£2) < d(£2p). ]

Lemma 3.2. Let P-ABC be a regular pyramid with apex P whose base is an
equilateral triangle ABC, and let p be the slope of P-ABC. Let AA™ be the
diameter of the circumscribed circle of ABC. Let D be a point on the edge AP
such that |AD|:|DP| = |AB|:|BP|. Let E be a point on the line through A*
perpendicular to the plane ABC, lying in the opposite side of P with respect
to the plane ABC, with |A*E| = |AO|/(2p), see Figure 3.4. Then

(1) the trunk €& = (PA, BC) is hyperboloidal, and

(2) the line DE is the axis of a hyperboloid of revolution containing &.

Proof. By Theorem 2.1, it is enough to show that the line DE is the equidistant
line of the four lines AB, AC, PB, PC. We may suppose that the circumscribed
circle of AABC has unit radius with center O. Then the height of the pyramid
is p, ie., |PO| = p. Note that |AB| = |BC| = +/3, |BO| = |BA*| = 1 and
|PA| = |PB| = |PA*| = /1 + p?. Since |AD|: |DP| = |AB| : |PB|, we have
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Ficure 3.4
The line DE is an equidistant line of {AB, AC, PB, PC}

ZABD = /ZPBD. Since ZABA* = 90°, AB is perpendicular to the plane
BA*E, and hence AB 1 BE. Since

|PE|* = (|PO| + |A*E|)* + | 0A*|?
=+ +1=p"+1+1/20)> +1
= |PB|? + |A*E|?* + |BA*|?
= |PB* + |BE|,
we have PB | BE. Now, ZABD = ZPBD, AB | BE, and PB 1 BE imply
together that every point on the plane DBE is equidistant to the lines AB and

PB. Since £ is symmetric to itself with respect to the plane DPE, we can
deduce that the line DE is equidistant from the lines AB, AC, PB, PC. ]

Theorem 3.3. A right pyramid P-ABC with apex P and equilateral triangular
base ABC is circle-free if and only if

p=<po:= \/(3\/17—5)/32 = 0.47988...

where p is the slope of the pyramid.

Tanoue [Tanl] proved that if p > py, then P-ABC can be held by a circle,
and Maehara [Mae3] proved the converse.

Corollary 3.1. The property “circle-freeness” is not affine invariant.

Proof of Theorem 3.3. We use the same notations as in Lemma 3.2 and Fig-
ure 3.4. By Theorem 3.2, we may consider the case p < 1. Let £ = (AP, BC),
and H be the one-sheet hyperboloid of revolution with directed axis | = DE.
Note that the conditions (i) and (ii) of the Isotopy Lemma hold. First, we show
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that any circle I" attached to £ is isotopic over (£} to a circle attached to
£ that satisfies the condition (f) of the Isotopy Lemma (1). We may suppose
that I" is symmetric to itself with respect to the plane H = APO by the
Symmetrization Lemma. The intersection conv(I") N{€) is an isosceles trapezoid
XYZW, where X,Y,Z, W are the intersection points of conv(/") with the edges
PB, PC, AC, AB, respectively. Let L., N be the midpoints of XY, ZW, respec-
tively. If ZLNA > =/2, then the plane of I" clearly cuts DE, and the condition
(1) of the Isotopy Lemma (1) holds. Suppose ZLNA < /2. Let XYZ'W' be
the isosceles trapezoid obtained by cutting the pyramid by the plane containing
XY and being perpendicular to the line AM . Then the height of the trapezoid
XYZ'W' is smaller than that of XYZW, and |Z'W’| < |ZW|. Hence, by a
continuous rotation of I' around the line XY, we have an isotopy over the
pyramid to a circle attached to £ that satisfies the condition (}) of the Isotopy
Lemma (1). Hence, any circles attached to £ are isotopic over the pyramid to a
circle that lies on the plane containing the minimal circle attached to £ by the
Isotopy Lemma. Therefore, to show that the pyramid is circle-free if and only if
p < po, it is enough to show that the boundary circle of the minimal transversal
disk of &, denoted by £2, holds the pyramid if and only if p > py. Note here
that £ is symmetric to itself with respect to the plane APM , and its boundary
circle 082 intersects the four edges AB, AC, PB, PC (for otherwise, by sliding
£2 slightly in the direction MA or M_P) and squeezing its radius, we could get
a transversal disk of smaller radius).

Let Py be the point on the line DE such that PPy L DE. Since p < 1,
we have |AB| > |PB|. Since AB L BE and PB 1 BE (see the proof of
Lemma 3.2), we have |PE|?> = |PB|?> 4+ |BE|? and |AE|?> = |AB|?> + |BE|?. Put
a = |AO0|. Then |AP|? = a?(1 +p?) and |AB|?> = 3a®. Hence |AB|?>—2|AP|? =
3a2 — 2a%2(1 + p?) = a?(1 — p?) > 0. Thus, |AB|? > 2|AP|? = |AP|? + |PB|?,
and hence

|AP|?> + |PE|?> = |AP|*> 4+ |PB|* + |BE|* < |AB|> + |BE|*> = |AE|?.

This implies that ZEPA is an obtuse angle, which implies that P, lies on the
line segment DE. Therefore, the disk with center Py and radius |P Py| whose
plane perpendicularly cuts DE at Py, is a transversal disk of £.

Let Q,X be the points on the lines DE, PB, respectively, such that |QX|
is the minimum distance between the lines DE and PB. Then the section of H
by the plane perpendicular to [/ at Q is the smallest circle lying on H (cf. the
statement = in the proof of Theorem 2.1). See Figure 3.5.

Case (a): The ray W does not intersect the line DE.
In this case, we have ZPyPM > n/2, and hence ZPyPB(= £LPyPC) > 7/2,
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Ficure 3.5
The minimal circle on H

which implies that Q lies on the ray FO_D>, possibly with Q = Py. By the
Isotopy Lemma the boundary circle d§2 of the minimal transversal disk £2 of &
is isotopic over the pyramid to a boundary circle I'’ of a transversal disk of &£
that is perpendicular to /. If the plane of I'’ intersects the ray ﬁ, then the
radius of I'’ is larger than |PyP| (since the most constricted part of H is the
section of H by the plane perpendicular to / at Q). Hence d£2 can slip out of
the pyramid, and hence the pyramid is circle-free.

Case (b): The ray PM intersects the line DE.

In this case Q lies on the ray -I%E) and Q # Py. Let P; be the foot of
perpendicular dropped from M to DE. Since P; lies between Py and E, we
have ZP;BP < m/2. Hence Q lies between Py and P;. Therefore the disk
with center Q and radius |QX| lying on the plane perpendicular to DE is the
minimal transversal disk §2 of £. The boundary circle 052 intersects the edges
AB, AC, PB, PC.

Let $2p be the minimal transversal disk of £ on P. The boundary circle
d82p also intersects the edges AB, AC . Since Q # Py, we have d(82) < 2|PyP|.
If d(2p) > 2|PyP|, then we have d(2p) > d(£2), and the circle 92 holds the
pyramid by (2) of Lemma 3.1.

Suppose that d(£2p) < 2|PoP|. Let Z be the intersection point of / and
2p, and S,T be the intersection points of $2p with the edges AB, AC,
respectively. The three points Z,S,T lie on the same side of the plane that
perpendicularly intersects the line | = DE at Po. If Z lies on PyD and
Z # Py, then |ZS| = |ZT| > d(S,I) > |PoP|, and |ZP| > |PoP|. Hence
the radius of the circumscribed circle of the isosceles triangle PST is larger
than |PyP|, which implies that d(£2p) > 2| Py P|, contradicting the assumption
d(2p) < 2| Py P|. Therefore, Z lies on PyE. Then, LZPM < /2, and hence,
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FiGure 3.6
Projection on the plane APO

by rotating £2p slightly around the line S7, and squeezing its radius, we can
get a transversal disk of £. Hence d(£2) < d(£2p), and 02 holds the pyramid
by (2) of Lemma 3.1.

Thus, the pyramid is not circle-free if and only if the ray PM inter-
sects the line DE. Now we show that the ray PM intersects the line
DE if and only if p > po. To do this, let us regard the plane PAO as
the xy-plane, and A4 = (-1,0),0 = (0,0), see Figure 3.6. Then P =
0.p), M = (1/2,0),4* = (1,0), E = (1,32), and since |AB| : |[BP| = /3 :

V1+p2,

D = — 1402 P\/§ .
V314027 /344142

The ray Fﬁ intersects the line DFE if and only if the slope of the line DFE is
greater than the slope of the line PM . The slope of PM is —2p, and the slope
of DE is

=1 _ _ pd3 14+ Y—e V1+p2
20 /3441402 V3+a/1402 )
Thus, the ray PM intersects the line DE if and only if

=1 _ pv3 >_2p 1L A/ 1+p?
20 f340/14p2 V31402 ]’

and (by simplifying) if and only if
V3 —2/3p2 < (8p% — D1 + p2.

The left side is monotone decreasing on p, whereas the right side is monotone
increasing on p. So let us find the value of p where both sides become equal.
Putting £ = p?, we have /3 —2+/3¢ = (85 —1)/1 + £, and after squaring both
sides as well as simple calculations, we have

6483 + 3682 -3 -2 =0.
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This equation has three real solutions, namely

- =5+ 3417 -1

B 32 47
Since £ > 0, we have & = %—é‘/ﬁ, and hence the pyramid is not circle-free if
and only if p > po. ]

Remark 3.2. It was proved by Maehara [Mae3] that a regular pyramid with
square base can be held by a circle if and only if p > {/(+/33 —3)/4 ~ 0.828.

3.3. Holding circles with much play. Let I" be a circle attached to a convex
polyhedron I7, and PQ be an edge of IT such that PO Nconv(l") = @&.
Suppose that there is an isotopy [I;,0 <t < 1, over Il with Iy = I' such
that (i) Q ¢ conv(/}) for all ¢, and (ii) conv(/}) cuts the edge PQ into two
segments. Then we say that I” (and any circle isotopic to it over IT) can cross
over P.

Theorem 3.4. For every vertex P of a regular icosahedron, there is a holding
circle of the regular icosahedron that can cross over P.

Proof. We use Figure 2.7 left and the same notations as in Example 2.3. It is
enough to show the case P = A. Let 2 be the minimal transversal disk of &
on A. Then £ is also a minimal transversal disk of £ on A by Example 2.3.

Since the trunk £ is hyperboloidal, it is possible to rotate the circumscribed
circle of the pentagon ABCDE slightly around the line passing through A and
being perpendicular to the plane H determined by AFF* (see Figure 3.7), and to
squeeze its radius a bit so that it is still attached to the trunk £. Hence the diameter
of §2 is smaller than the diameter of the circumscribed circle of the pentagon
ABCDE . Let X,Y be the points where §2 cuts the edges A*C, A* D, respectively,
and let M be the midpoint of XY . Since the boundary circle 052 of £2 intersects

~_

F*
FiGcure 3.7
Move the circumscribed circle of ABCDE
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the icosahedron only at the points A, X,Y, and ZMAF < ZF*AF = 90°, it is
possible to rotate slightly the circle dQ2 around the line XY in either direction,
without intersecting the interior of the icosahedron. Hence there is an isotopy
Iy, 0 <t <1, over the icosahedron such that conv(Io)NAF = @, F ¢ conv(l})
for all ¢, and conv(l}) cuts the edge AF dividing it into two segments. Hence
Iy (and I) can cross over the vertex A.

Let us show that Iy holds the icosahedron. The diameter of I is equal
to d(£2). We may assume that the disk conv(/7) contains no vertex, and cuts
all edges of the trunk (BCDEF,AA*B*C*D*E™*). Suppose [} can slip out
of the icosahedron. During the slipping out process, conv(/7}) meets vertices
of the icosahedron. Let Z be the first vertex that conv(/) meets during the
slipping out process. We may suppose that Z # A. Clearly, Z # F,F* and
Z # C,D,C*,D*. Is it possible that Z = B? If B is the first vertex that
conv(l;) meets during the slipping out process of I, then at the moment that
conv(l}) meets B, conv(/}) becomes a transversal disk of the trunk (BB™*, DE)
on B, and it is not symmetric to itself with respect to the plane FBF™*, which
is a symmetry plane of (BB*, DE). Hence, the diameter of conv(/}) must be
greater than the diameter of the minimal transversal disk of (BDE, B*) on B,
by the Symmetrization Lemma. However, the latter is equal to the diameter of
the minimal transversal disk of £ on A, which is equal to the diameter of £2,
a contradiction. Similarly Z # E.

If Z = A*, then at the moment that conv(/}) meets A*, it becomes a
transversal disk of the trunk (A*A, BF) on A*, and analogously we have a
contradiction. We can deduce Z # B*, E*, similarly. Hence I} cannot slip out
of the icosahedron. ]

Remark 3.3. The boundary circle I" = d§2 of the minimal transversal disk of
the trunk &€ = (ABCDE, A*B*C*D*E*) on A cannot cross over F and F*.
However, since &£ is hyperboloidal with symmetry plane, I is isotopic over the
icosahedron to the boundary circle of the minimal transversal disk of £ on B,
by the Isotopy Lemma. Hence I" can cross over B and, similarly, can cross over
C,D,E.

Now, there arises a problem. Does there exist a convex polyhedron, together
with its holding circle, such that the circle can cross over every vertex of
the polyhedron? The answer is yes. From the regular icosahedron shown in
Figure 2.7 we get, by cutting off two pentagonal pyramids F-ABCDE and
F*-A*B*C*D*E™*, a regular pentagonal anti-prism as shown in Figure 3.8.
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Ficure 3.8
A regular pentagonal anti-prism

Theorem 3.5. In case of the regular pentagonal anti-prism (see Figure 3.4) the
boundary circle of the minimal transversal disk 2 of (ABCDE,A*B*C*D"¥)
on A can cross over every vertex of the anti-prism, but still it cannot slip out of
the anti-prism.

Proof. Let dy be the diameter of 2. As seen in Remark 3.3, 92 can cross over
every vertex of the anti-prism.

To show that 02 cannot slip out of the anti-prism, we suppose the contrary,
namely that it can slip out of the anti-prism. During the slipping out process, the
disk 2 crosses over vertices of the anti-prism. We may suppose that A is the
first vertex that £2 crosses over, and £2 is at the position of a transversal disk of
the trunk (BCDE,AA*B*C*D*E™*). Let Z be the vertex that £2 meets next.
We may assume Z # A. It is also clear that Z cannot be any of C,D,C*, D*.
Suppose Z = B. At the moment when §2 meets B, it becomes a transversal disk
of (BB*, DE) on B. At that moment, since §2 becomes not symmetric to itself
with respect to the plane determined by B, B* and the midpoint of ED, this
disk is not a minimal transversal disk of (BB*, DE) on B (which has diameter
do). Hence the diameter of £2 is greater than dy, a contradiction. Thus, Z # B.
Similarly, we have Z # E, B*, E*.

Finally, consider the case that Z = A*. We use the following fact which will
be proved later.

(») The diameter of the minimal transversal disk of (AA*, BE) on

A* is greater than the diameter of the minimal transversal disk of
(AA*,C*D*) on A*.

At the moment when §2 meets A*, it becomes a transversal disk of (BCDE, AA*)
on A*, which is at least the diameter of the minimal transversal disk of (4A*, DE)
on A*. Hence the diameter of this minimal transversal disk is greater than the
diameter of the minimal transversal disk of (AA*,C*D*) on A* by (%), which
is equal to dop by Example 2.3, a contradiction. Therefore, the circle d£2 cannot
slip out of IT.
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Now we show (x). Suppose the minimal transversal disk of (AA*, BE) cuts
the edges AB, AE at X,Y, respectively. We may assume that |BX| = |EY| =t.
Let X', Y’ be points on AC*, AD* such that |C*X'| = |D*Y’| = t. Consulting
Figure 2.7 left, we can see that |A*B| = |A*E| = |A*C*| = |A*D*| and
LA*BA = LA*D*A = LZA*EA = ZA*C*A = 90°. Hence |A*X| = |A*X'| =
|A*Y | = |A*Y’|. Since |XY| > |X'Y’|, the diameter of the circumscribed circle
of the isosceles triangle A*XY is greater than the diameter of the circumscribed
circle of the isosceles triangle A*X’'Y’. Since the latter is greater than or equal
to the diameter of the minimal transversal disk of (AA*,C*D*), the proof is
complete. Ll

4. Supplement

4.1. Proof of the Symmetrization Lemma. Let K be the plane containing £2,
and let £/, K’ be the mirror images of £, K with respect to H, respectively.
The disk £2’ is also a transversal disk of_;‘,’ :

If K =K', then put 2, = 2 + %zz’, where z,z’ are the centers of the
disks £2 and $2’, respectively. Then d52;, ¢t € [0, 1], is an isotopy over (£) and
020 = 02, 082, is symmetric to itself with respect to H . Moreover, if £ # 2/,
then the smallest disk containing §2 N &2’ is a transversal disk of £ that is smaller
than £2.

Now suppose that K # K’, and put &€ = (U,V). Let K4+ denote the side
(half space) of K that contains U, and K_ be the other side containing V.
Similarly, let K, be the side of K’ that contains U, and K’ be the other side
of K’. The planes K and K’ together divide R? into four regions

KinKy,KyNK,K_NK{,K_NK_.

Figure 4.1 shows the projections on the plane perpendicular to the line H N K.

FiGure 4.1
Projections onto the plane perpendicular to H N K
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Note that U ¢ Ky NK', V ¢ K_NK’ . Since £’ is the mirror image of 2 with
respect to the plane H, the disks £2 and £’ together determine a ball B such
that BN K =2, BNK = 2'. Let K, t € [0,1], denote the uniform rotation of
the plane K around the line KN A, through (K+ N K”)U(K-NK’) such that
Ko = K and K; = K’. Since Kt separates U from V for each ¢t € [0,1], K;
intersects all edges in £. Since conv(£2 U 2') C B, K; N B intersects all edges
of £, that is, K; N B is a transversal disk of £.

Now put 2, =K,NBforte [0, 1]. Note that among the planes K,, ¢ € [0, 1],
the planes Ky = K and K; = K’ are those nearest to the center of B. Hence
d(£2;) < d(£2) for all ¢ € [0, 1]. Therefore, replacing each £2, by the concentric
disk £2; in K; whose diameter equals d($2), we have an isotopy d82;, t € [0, 1],
over (£). Then 982/, is symmetric to itself with respect to H .

Next, suppose that K # K’ and N H ¢ (£). Since 2N H = 2N L7, it
follows that 2N 2" ¢ (£). Thus, at least one endpoint of the line segment 2N 2’
is not contained in (€), that is, £2N32" ¢ (£). Note that conv(QU.Q’)ﬂale/z =
952 N a82’. Since

(8) N 8.(21/2 = (g) N K1/2 N 3.(21/2 = COHV(Q U QI) N 3.(21/2 =d42N 89,,

02 N AR’ ¢ () implies that (£) N 952, /2 consists of at most one point. Since
the boundary circle of a minimal transversal disk of & must intersect £ in at
least two points, 2, /2 is not a minimal transversal disk of &£. Therefore, 2 is
not a minimal transversal disk of &£, either. L]

4.2. Proof of the Isotopy Lemma. (1) We may suppose that £2¢ is symmetric
to itself with respect to the symmetry plane H of £ = (U, V). Then the center
Z of £2¢ lies on H. Let K be the plane that contains §2¢. Let HN I = {P, Q}.
The line segment PQ is a diameter of 2y and Z is the midpoint of PQ. We
may suppose that / intersects the ray ZP. Let O be the intersection of ! and
the plane that perpendicularly bisects PQ, and let B be the ball with center O
and radius |OP]|, see Figure 4.2. Among the points on PQ that are obtained
by the orthogonal projection of the points £29 N & on PQ, let X be the one
nearest to P. Let X be a point in §£29 N & that is projected to X . Then, clearly
|OX| <|OP|. Let K’ be the plane containing XX and perpendicular to /, and
let Z' be the intersection point of K’ and [. Since every line £ lies on #,
the circle K’ N has center Z’, radius |Z’X|. Since |OX| < |OP|, the circle
K' NH is contained in the disk B N K’. Hence, every line in £ also passes
through BN K’. Let Ky (resp. K_) be the upper side (resp. the lower side)
of K. Let K/ (resp. K') be the upper side (resp. the lower side) of K’. Then
UCcKy,VCK-and Q€K' ,P K’ .

Claim: No line in £ passes through int(K; N K’).
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FiGure 4.2
Projection on the plane H

To see this, suppose, on the contrary, a line g in &£ passes through
int(K4+ N K’). Then the projection g of g on the plane H never intersects
the segment X P . For otherwise, we have a contradiction to the definition of X.
Hence ¢ must intersect the line segment X Q.Let AB(AecU,B €V) be the
edge of £ that determines the line g. Then, since the line g never passes through
int(K-NK’) and B € K_N K/, it follows that there is no transversal plane of
£ that is perpendicular to /, contradicting the assumption (i) of the theorem.

Let £2; (0 <t < 1) denote the continuous rotation of §2¢ around the line
XX (f X = X, then around the line through X and perpendicular to H) as
shown by the curved arrow in Figure 4.2 such that £2; lies on the plane K.
Since each line in € passes through both £ and K’ N B, and since no line of
£ passes through int(Ky N K’), £2, (0 <t < 1) are all transversal disks of &.
Since IT is enclosed by the planes determined by the “lateral faces" of (£), we
have BN K, N K")Nint(IT) = @. Hence I' is isotopic over IT to d£2;.

(2) Let I7,I, be congruent circles attached to £, each lying on the plane
perpendicular to /. Consider the tube obtained as the trajectory of the translation
of Iy to I. Since each line in £ passes through conv(l}), i = 1,2, int(IT)
does not intersect this tube. Hence I} and I, are isotopic over I1. Now, (2)
follows from (1).
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