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A note on the automorphism group of
a compact complex manifold

Laurent MEERSSEMAN

Abstract. In this note, we give explicit examples of compact complex 3-folds which admit
automorphisms that are isotopic to the identity through C°°-diffeomorphisms but not
through biholomorphisms. These automorphisms play an important role in the construction
of the Teichmiiller stack of higher dimensional manifolds.
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1. Introduction

Let X be a compact complex manifold and M the underlying oriented C°
manifold. The automorphism group Aut(X) of X is a complex Lie group whose
Lie algebra is the Lie algebra of holomorphic vector fields [BM]. We denote
by Aut’(X) the connected component of the identity. Its elements are thus

automorphisms f such that there exists a C°-isotopy
(1.1) t €[0,1] — f; € Aut(X) with fo = Id and f1 = f.

Note that Aut(X) has at most a countable number of connected components so
the quotient Aut(X)/Aut’(X) is discrete.

Let Diff(M) be the Fréchet Lie group of C° -diffeomorphisms of M. It is
tangent at the identity to the Lie algebra of C* vector fields. Let Diff’(M) be
the connected component of the identity. Its elements are C°°-diffeomorphisms
J such that there exists a C°-isotopy

(1.2) t €[0,1] — f; € Diff(M) with fo = Id and f; = f.

Note that the discrete group Diff(M)/Diff(M) is the well known mapping class
group. Define now
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(1.3) Aut' (X) := Aut(X) N Diff’(M).
There are obvious inclusions of groups

(1.4) Aut’(X) € Aut!(X) € Aut(X)

In many examples, the first two groups are the same but differ from the third one
(think of a complex torus). The purpose of this note is to describe an explicit
family! of compact 3-folds &, such that

(1.5) Aut®(X, ) S Aut' (X, p) = Aut(X, 5)
and
(1.6) Aut! (Xy,p)/ Aut® (X p) = Za

Hence Autl(Xa,b) has a connected components, and this number can be chosen
arbitrarily large.

Our main motivation, which is detailed in Section 2, comes from understanding
the Teichmiiller stack of M, that is the stack which encodes the set of complex
operators on M modulo the action of Diff’(M).

The construction of the manifolds as well as the computation of their
automorphism groups are elementary. As often when looking at explicit examples,
the crux of the matter was to find the idea that makes everything work. We asked
several specialists but they did not know any such example. We tried several
classical examples but it always failed. Finally, we came accross the good family
when looking for deformations of Hopf surfaces over the projective line P! in
connection with a different problem. The manifolds A&, ; are such deformations
with the following additional property. All the fibers are biholomorphic except
for those that lie above 0 and above an a-th root of unity. Every automorphism
must preserve these special fibers so must project onto P! as a rotation of
angle 2mk/a for some k. This explains the a connected components of the
automorphism group. Finally, diffeomorphically there is no special fiber since
X,p is just a bundle. It is then not difficult to check that all rotations are allowed
for diffeomorphisms so every automorphism is in Diff’(M).

2. Motivations

Thanks to Newlander-Nirenberg Theorem [NN], a structure of a complex
manifold X on M is equivalent to an integrable complex operator J on M,
that is a C° bundle operator J on the tangent bundle 7M such that

It is indexed by two integers satisfying b > 3a and a > 3.
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(2.1) J2=—-1d and [T, 7% ¢ 701

where 7%! is the subbundle of the complexified tangent bundle TM ® C formed
by the eigenvectors of J with eigenvalue —i.

It is easy to check that the complex manifolds X; := (M,J) and X are
biholomorphic if and only if there exists a diffeomorphism f of M whose
differential df commutes with J and J’. This defines an action of Diff(M).

The Teichmiiller space 7 (M) of M is then defined as the quotient of the
space Z(M) of integrable complex operators on M (inducing the orientation of
M) by Diff’(M).

As such, this is a topological space whose quotient by the mapping class
group is the moduli space of complex structures on M. If M is a surface, then
this is the classical Teichmiiller space and a complex manifold in a natural way.
In higher dimensions, this is usually not even locally an analytic space, cf. [Mee2,
Examples 11.3, 11.6].

Kodaira-Spencer and Kuranishi classical deformation theory (see [Kod] for a
good introduction) provides each compact complex manifold X with an analytic
space, its Kuranishi space, which encodes all the small deformations of its complex
structure. This is not however a local moduli space, but must be thought of as the
best approximation in the analytic category of a local moduli space. In particular,
the same complex structure may be encoded in an infinite number of points.

In other words, there is a surjective map from the Kuranishi space K; of
X7 onto a neighborhood of J in T(M) but which is in general far from
being bijective (cf. [Catl] and [Cat2] where several results where equality holds
are discussed). Especially, each element of Aut’(X;) acts on K identifying
equivalent complex structures [Meel], [Mee2, §3.2]. The point here is that the
dimension of Aut®(X;) is only an upper semi-continuous function of J so may
jump. When this occurs, the previous action of some automorphisms is non-trivial
and the Teichmiiller space is not a local analytic space around J.

We are not finished yet. The quotient of K; by Aut®(X ;)2 is still not a priori a
neighborhood of J in 7 (M). The natural projection map may still have non-trivial
discrete fibers. This phenomenon is thoroughly studied in [Mee2]. It is shown that
a holonomy groupoid can be defined for describing the action of Diff’(M) onto
Z(M). The holonomy morphisms describe exactly the non-trivial fibers of the
previous projection map. Hence, holonomy measures the gap between the stacks
T(M) (locally at J) and the stack encoding the quotient of Ky by Aut’(X ;).
In many cases however, there is no holonomy. This leads to the following problem

2'This is not exactly a quotient space but a stack whose construction is detailed in [Mee2, §3.2].
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Holonomy Problem. Give examples of Teichmiiller spaces with non-trivial ho-
lonomy.

This is the main motivation of this paper. Note that the isotropy group of
a point J in Z(M) is exactly Aut'(X,;) and not Aut’(Xy). So letting (M, J)
encoding one of the manifolds A, ;, our result says that this isotropy group is
not connected. As a consequence, the Teichmiiller space of M has non-trivial
finite holonomy at J.

3. The manifolds X, ;

Let a and b be two nonnegative integers. Let A be a non-zero complex number
of modulus strictly less than one. For further use, we define the following two
surfaces. Let Xo be the Hopf surface defined as C?\ {(0,0)} divided by the
group generated by the contraction (z,w) +— (Az,Aw). Let X; be the Hopf
surface defined as €2\ {(0,0)} divided by the group generated by the contraction
(z,w) > (Az+w, Aw). These two Hopf surfaces are not biholomorphic, cf. [Kod].

We consider the vector bundle O(bh) @ O(a) — P'. Throughout the article,
we make use of the charts

(3.1) (t,zg, wp) € C? and (s,21,w;) € C3
subject to the relations
(3.2) st =1, z1 = 5Pz, w1 = s%wp.

Let ¢ > 0 and let o be a non-zero holomorphic section of @(c¢). In accordance
with (3.1) and (3.2), we represent it in local charts by two holomorphic maps
oo and o satisfying o1(s) = s0¢(¢). Let W be O(b) & O(a) minus the zero
section.

Lemma 3.1. Assume that b —a — ¢ > 0. Then, the holomorphic maps

(3.3) (20, wo) > golt, Zo, wo) = (£, Azo + 0o (t)wo, Awp)
and
(3.4) (5,21, wy) > g1(s, 21, w1) = (S,)LZ] + sb_“—cal(s)wl,kwl)

defines a biholomorphism g of W.
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Proof. Just compute in the other chart

g1(s,z1, w1) Z(S,/\Zl W+ Sb—a_cffl(s)wl,lwl)
:(I/Z,Sb(A.ZO + O'()(t)wg),sa(A.UJ()))

so go and g; glue in accordance with (3.2). ]

Consider now the group G = (g). It acts freely and properly on W and fixes
each fiber of W — P!. The quotient space W/G is thus a complex manifold.
More precisely

Proposition 3.2. The manifold W/G is a deformation of Hopf surfaces over P1.
Moreover the fiber over t € P! is biholomorphic to Xy if t is a zero of o,
otherwise it is biholomorphic to X,.

In particular, W/G is compact.

Proof. We already observed that the bundle map W — P! descends as a
holomorphic map x : W/G — P!'. It is obviously a proper holomorphic
submersion, hence it defines W/G as a deformation of complex manifolds
parametrized by the projective line. The fiber over ¢ is C?\ {(0,0)} divided
by the contracting map (z,w) — (Az + o(t)w,Aw). If ¢ is a zero of o, then
this is exactly the Hopf surface X,. Otherwise, it is biholomorphic to X,
see [Kod]. O

Definition 3.3. Assume that ¢ = 2a and that » > 3a. We denote by A, ; the
manifold W/G corresponding to the choice

a—1

(3.5) oo(t) = t* [ | (t — expink /a)).

k=0
for t € C.
For the rest of the paper, we assume that a is strictly greater than 3. Observe

that the condition b > 3a is nothing but b —a —c¢ > 0.

4. Computation of the automorphism groups

We are in position to state and prove our main result.
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Theorem 4.1. The manifold X, satisfies

(4.1) Aut®(X, ) ~ {(g z) la eC* Pe Cb_a[X]} /G
and
Aut(X, ) = Aut' (X, )
4.2) :Gax{(‘; 5) | e C, Per_a[X]}/G

where G, is the group of a-th roots of unity, Cp_,[X] is the space of complex
polynomials with degree at most b —a and where the product in (4.2) is given
by

o P\Y (., (8 @\\_ (., (eb aQor+pPor
4.3) r,(o oe) . r,(o ﬂ) = rr,(0 op )

We note the immediate corollary

Corollary 4.2. The group Autl(z\.’a,b) has a > 3 connected components and the
quotient Autl(Xa’b)/ AutO(Xa,b) is isomorphic to the cyclic group Z,.

Theorem 4.1 will be proved through a succession of Lemmas.

Lemma 4.3. Let f be an automorphism of X, . Then it respects w and descends
as an automorphism h of P!,

Proof. Choose a fiber of X,; — P! isomorphic to X;. Restrict f to it and
compose with the projection onto the projective line. This gives a holomorphic
map from X; to P!, hence a meromorphic function on X,. But the algebraic
dimension of X; is zero, see [Dab], so this map is constant. In other words,
[ sends the m-fibers isomorphic to X; onto the z-fibers. By density of these
fibers, f sends every m-fiber onto a = -fiber so descends as an automorphism
h of P!. O

Lemma 4.4. The automorphism h is a power of the rotation at 0 of angle 2n/a.

Proof. Note that f must send a =z -fiber biholomorphic to X, onto a = -fiber
biholomorphic to Xo. Now the set of such fibers is the set of a-th roots of
unity plus zero by Proposition 3.2 and (3.5). It follows from Lemma 4.3 that the
automorphism /£ is an automorphism of the projective line which preserves this
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set. Since a > 3, it must preserve at least three different points of the unit circle,
hence must preserve the unit circle. But this implies that zero is fixed. Schwarz
Lemma shows now that it is a power of the rotation® at 0 of angle 2x/a. [

Lift f as an automorphism F of the universal covering W of X,;. We
denote by (Fy, F) its expression in the charts (3.1).

Lemma 4.5. In the charts (3.1), the lifting F has the following form

4.4) Fo(t, 29, wg) = (rkt,azo + to(t)wo,awo)
and
(4.5) Fi(s,z,w1) = (s, r P (ez1 + ni(s)wr), aw)

where r = exp(2in/a), k is an integer, ¢ a complex number and v = (79, 71)
is a section of O(b—a).

Proof. The first coordinate in (4.4) comes from Lemma 4.4. For the two other
coordinates, recall from [Weh] that the automorphism group of Xy is GL,(C)
(modulo quotient by the group generated by the contraction) and that of X; is
the group of upper triangular matrices with both entries on the diagonal equal
(modulo quotient by the group generated by the contraction).

Hence the general form of Fy is

(4.6) Fo(t, 20, wo) = (r*t,a0(t)zo + To(t)wo, a0 (t)wo)

for ap and t two holomorphic functions. But in the other chart, using the same
more general form of (4.5), we must have

K rT* (@1 ()21 + T ()wr), aa (s)w)

= (1/(r*2), r % )2 (zoar (1/2) + 71 (1/8)s* P wo), s%a1 (1/)wy)

which extends at s = 0 and glues with (4.6) if and only if ¢ = (ag,a;) is a
constant and 7 = (19, 77) is a section of O(bh —a).

It remains to check whether these automorphisms really descend as automor-
phisms of X, ;, i.e. whether they commute with the contraction g of Lemma 3.1.
We compute

Fi(s,z1,wy) = (r

2o o Fo(t,zo, wo) = (rkt, Az + Ato(H)wo + oo (r¥ 1w, Aocwy)
= Fop o go(t, 2o, wo)

since o is G, -invariant, cf. (3.5). A similar computation holds in the (s, z;, wy)-
coordinates, so finally all these automorphisms descend. [

3 As pointed out to us by F. Bosio, this is no more true for a = 3. Letting j = exp(2ix/3), the
map z +— —(z — j)/(2jz + j?) preserves the set but is not a rotation.
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Lemma 4.6. An automorphism of X,p is in the connected component of the
identity if and only if it descends as the identity of P!.

Proof. If an automorphism f of A, is in the connected component of the
identity, then by Lemma 4.4 its projection A is isotopic to the identity through
rotations of angle 2iwk/a. This is only possible if % is the identity. Conversely,
if h is the identity, it is easy to see that in Lemma 4.5 we can move « to 1
and 7 to the zero section and obtain a path of automorphisms from f to the
identity. L1

Lemma 4.7. Every automorphism of X, is isotopic to the identity through
C° -diffeomorphisms.

Proof. Let B,, be the bundle over P! with fiber X, obtained by taking the
quotient of W by the group generated by the A-homothety in the fibers. Observe
that A, can be deformed to B,; putting a parameter € € C and considering
the family

4.7) WxC/(g) —C
where the action is given by (we just write it down in the first chart):
(4.8) (t,20,wo, €) > Zo(t, zo, wo, €) = (¢, Azg + €0o(t)wo, Awy, €)

Hence &, ; is C*°-diffeomorphic to B, ;. More precisely, let X;’b be the fiber of
the family (4.7) over €. Then X{?’b = Bap,and X al’b = &, and by Ehresmann’s
Lemma there is an isotopy of C°-diffeomorphisms ¢, from X7, onto Xal,b
with ¢; equal to the identity.

Let f be an automorphism of A, . It is easy to check, using Lemma 4.5,
that f is still an automorphism of B, ; and of all the X;,b. We are saying that
the map

(49) F(t,Z(),U)(),E) = (FE(I’Z()a U)()),E) = (_f(t,Z(),'LU()),E)

is an automorphism of the whole family which induces f on each fiber. The
isotopy ¢eoFeo(¢e)™! joins the automorphism f = Fy of X, and ¢go Fyo(¢pg) ™!
through C°°-diffeomorphisms.

But now, at € = 0, since B,y is a holomorphic bundle, we may take any
rotation at 0 as map s and thus construct a path of automorphisms g; of B,
between Fy and the identity. Combining the isotopy ¢ o g o (¢p)~! with the
previous one, we obtain that the automorphism f of A, ;, is isotopic to the
identity through C°°-diffeomorphisms. |

The proofs of Theorem 4.1 and Corollary 4.2 follow easily from the previous
lemmas.
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5. Final Comments

The construction behaves well with respect to pull-backs of the base manifold
P!. In particular, if g is a ramified covering from P! to P!, the pull-back
manifold Y = g*X,, will have a more complicated finite group I" as quotient
Aut' (V)/Aut’(Y). In this way, we may construct examples with I' being any
cyclic or dihedral group, or with I" being the tetrahedral, octahedral or icosahedral
group?.

There are several open questions left on this topic. First the manifolds A
are not even Kihler and it would be interesting to have a similar example with
projective manifolds. Also, it would be interesting to have examples with Aut’(X)
reduced to zero, but Aut'(X) not, especially examples of surfaces of general type,
cf. [Catl], [Cat2] and the subsequent literature. Finally, the most exciting would
be to find an example with Aut!(X)/Aut’(X) infinite since it would give a
Teichmiiller space with infinite holonomy at some point. As pointed out to us by
S. Cantat, this cannot happen for Kihler manifolds, since the kernel of the action
of Aut(X) on the cohomology contains Aut’(X) as a subgroup of finite index
[Lie]. But in the non-Kihler world everything is possible>.

For all these additional questions (except perhaps for the first one®), it seems
that a really different type of examples is needed.
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