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A note on o-minimal flows and the
Ax-Lindemann-Weierstrass theorem

for semi-abelian varieties over C

Ya'acov Peterzil and Sergei Starchen ko

Abstract. In this short note we present an elementary proof of Theorem 1.2 from |UY2],
and also the Ax-Lindemann-Weierstrass theorem for abelian and semi-abelian varieties.

The proof uses ideas of Pila, Ullmo, Yafaev, Zannier (see, e.g., |PZ|) and is based on

basic properties of sets definable in o-minimal structures. It does not use the Pila-Wilkie

counting theorem.

Mathematics Subject Classification (2010). Primary: 03C64, 03C98, 11J81.

Keywords. O-minimal flow, Ax-Lindemann-Weierstrass theorem.

1. Introduction

In their article [PZ], Pila and Zannier proposed a new method to tackle

problems in Arithmetic geometry, a method which makes use of model theory,
and in particular the theory of o-minimal structures. They produce a new proof for
the Manin-Mumford conjecture, so let us first recall the setting: An abelian variety
is a projective algebraic variety, equipped with an algebraic group structure. Over
the complex field it admits the structure of a compact complex Lie group. The

Manin-Mumford Conjecture (proven by Raynaud, I Ray]) states that for a complex
abelian variety A, if X ç A is an irreducible algebraic subvariety and the torsion

points of the group of A are Zariski dense in X then A is a coset of an abelian

subvariety of A.
The strategy of Pila and Zannier went roughly as follows: Given an n-

dimensional complex abelian variety A, consider the (transcendental) uniformizing
map 7T : C" A. If V ç A is an algebraic subvariety, with "many" torsion points,
consider its pre-image V tt—1 (K). This is an analytic subvariety V ç C",
invariant under translation by the lattice A ker(jr). When restricted to a



252 Y. Peterzil and S. Starchenko

fundamental domain F ç C", the set V fl F is definable in the o-minimal
structure Man- At the heart of the proposed method was a theorem by Pila and

Wilkie, [PW], used to conclude that V contains an algebraic variety X of positive
dimension. At the last step of the proof one shows that X is contained in a coset

of a C-linear subspace L of C", with L ç V. Finally, the Zariski closure of
n(L) is a coset of an abelian subvariety of V (with a little more work one shows

that V itself is such a coset).

Because of various analogous theorems the last ingredient of the argument
became known as the "Ax-Lindemann-Weierstrass" statement for abelian varieties,
which we abbreviate here ALW. Recall that the classical Lindemann-Weierstrass
theorem says that if a\, an C are algebraic numbers that are linearly
independent over Q then eU] e"n are algebraically independent over Q. In

[Ax], Ax proved analogous statements for formal power series. In [PZ] ALW
was proved, for abelian varieties, by a mixture of topological and o-minimal

arguments.

Following the seminal paper of Pila, [Pil], on the Andre-Oort Conjecture for C"
it became clear that the Pila-Zannier method was very effective in attacking other

problems in arithmetic geometry. Each such problem was broken-up into various

parts and the ALW was isolated as a separate statement. Somewhat surprisingly,
despite the fact that ALW does not seem to have a clear arithmetic content, Pila
found an ingenious way to apply the Pila-Wilkie theorem again in order to prove
it in the setting of the Andre-Oort conjecture for C" (this is sometimes called
"the hyperbolic ALW"). The method of Pila was applied extensively since then

to settle several variants of ALW ([Orr], [PT], [UY1], [KUY]).
Our goal in this note is to give a simple proof of ALW for both abelian and

semi-abelian varieties (recall that a semi-abelian variety is an extension of an

abelian variety by GJJ,). We believe that this simpler approach can clarify the

picture substantially and eventually yield new results as well.

1.1. Geometric restatements of ALW for semi-abelian varieties. Ihe next
theorem follows from a more general theorem of Ax (see [Ax, Theorem 3])
and often is called the full Ax-Lindemann-Weierstrass Theorem (see also [Kir]
for discussion). The original proof of Ax used algebraic differential methods.

Theorem 1.1 (Full ALW). Let G be a connected semi-abelian variety ofdimension
d defined over C, Tg be the Lie algebra of G and expG : Tg —G the

exponential map.

Let W ç Tg be an irreducible algebraic variety and f (ffi,... ,£,/): W —>

Tg be a rational map with £,• e W(C).
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Assume the image of W under the composition expG o ç is not contained in

a translate of a proper algebraic subgroup of G. Then the transcendence degree

of C(expG (&,..., &)) over C(£i,...,&) is d.

Remark 1.2. The transcendence degree of C(expG(fi,in the above

theorem is defined to be the transcendence degree of coordinate functions of
exPG(£i,..., %d) under some projective embedding of G The degree is computed
in the field of meromorphic functions on W.

If in the above theorem we change the conclusion to "transcendence degree

of C(expG(fi,... ,%d)) over C is d" then we get a weaker statement that often
is called Ax-Lindemann-Weierstrass theorem (ALW theorem for short).

It is not hard to see that both full ALW and ALW theorems can be interpreted
geometrically (see, e.g., [Tsi] for more details).

Theorem 1.3 (ALW, Geometric Version). Let G be a connected semi-abelian

variety over C, TG the Lie algebra of G and expG : TG —» G the exponential

map.
Let X ç Tg be an irreducible algebraic variety and Z ç G the Zariski

closure of expG(A). Then Z is a translate of an algebraic subgroup of G.

We can also restate full ALW.

Theorem 1.4 (Full ALW, Geometric Version). Let G be a connected semi-abelian

variety over C, TG the Lie algebra of G, expG: TG —> G the exponential map,
and n: TG —> TG x G be the map jt(z) (z.expG(z)).

Let X C TV; be an irreducible algebraic variety and let Z ç TG x G he

the Zariski closure of tz(X). Then Z X x B, where B is a translate of an

algebraic subgroup of G.

2. Preliminaries

We work in an o-minimal expansion 1Z of the real field E, and by definable

we always mean ^-definable (with parameters). For a general reference on o-
minimal structures we refer the reader to [Dri], The only property of o-minimal
structures that we need is that every definable discrete subset of R" is finite. We

will be using the fact that the structure Ran,eXp is o-minimal, see [Wie] and [DM].
If F is a finite dimensional vector space over M and X a subset of V then,

as usual, we say that X is definable if it becomes definable after fixing a basis
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for V and identifying V with M". Clearly this notion does not depend on a

choice of basis.

Let jt : V —> G be a group homomorphisms, where V is a finite dimensional

vector space over M and G a connected commutative algebraic group over C.
We denote the group operation of G by •

Let A n~l(e). We say that a subset F ç V is a large domain for jt
if F is a connected open subset of V with V F + A. If in addition the

restriction of jt to F is definable then we say that A is a definable large domain

for jt

Remark 2.1. In the above setting if jt is real analytic and A is a lattice in

V then V/A is compact and there is a relatively compact large domain for jt
definable in Man.

3. Key observations

In this section we fix a finite dimensional C -vector space V, a connected

commutative algebraic group G over C and jt : V -> G a complex analytic

group homomorphism. We assume that A jr~1(e) is a discrete subgroup of V

and that jt has a definable large domain F.
Let I be a definable connected real analytic submanifold of V and let Z

be the Zariski closure of n(X) in G.
Let Z 7T—1 (Z) and Z p — Z OF. The set Z is a complex analytic

A-invariant subset of V and Zj? is a definable subset of F.
Let

(3.1) Ef(X) {veV:v + XnFy^0 and n + f nfç Z F).

Clearly Tip(X) is a definable subset of V.
The following is an elementary observation.

Observation 3.1. (1) If A e A and A + fflA 7^ 0 then —A e Sf (Y). In

particular X ç F — (Zp(X) n A).

(2) If v is in Zp(X) then v + X ç Z (by analytic continuation and the

connectedness of X

As a consequence we have the following claim.

Claim 3.2. tt(Sf(Y)) ç StabG(Z) {g e G : g-Z Z}.
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Proof. If v is in Ej?(X) then by Observation 3.1(2) we have X ç Z — v, and

hence n(X) ç jr(v)~1-jc(Z) n{v)~1-Z. Since Z is the Zariski closure of
n(X) and ji{v)~1-Z is a subvariety of G we have Z ç n(v)~l-Z, hence jr(v)
is in the stabilizer of Z.

Remark 3.3. Both Observation 3.1 and Claim 3.2 hold for a complex irreducible
algebraic subvariety X of V. It can be done either by a direct argument or
replacing X with the set Zreg of smooth points on X and using the fact that

Zreg is a connected complex submanifold of V that is dense in X.

We deduce a slight generalization of Theorem 1.2 from [UY2].

Proposition 3.4. Let it : V —> G be a complex analytic group homomorphism
from a finite dimensional C-vector space V to a connected commutative algebraic

group G over C. Let A jr~1{e). Assume n has a large definable domain F.
Let X ç V be a definable connected real analytic submanifold {or an

irreducible complex algebraic subvariety) and Z ç G the Zariski closure of
7t{X) in G.

If X is not covered by finitely many A-translate of F then Stabe; (Z) is

infinite.

Proof. If X is not covered by finitely many A -translate of F, then by Observation

3.1(1) the set S/r(X) is infinite. Since it is also definable, n{Ef{X)) must be

also infinite (otherwise S^(Z) would be an infinite definable discrete subset

contradicting o-minimality).

The following proposition is a key in our proof of ALW.

Proposition 3.5. Let G be a connected commutative algebraic group over C,
TG the Lie algebra of G, and expG: Tq -> G the exponential map. Assume

expG has a definable large domain F.
Let X ç Tg be a definable real analytic submanifold {or an irreducible

algebraic subvariety), and Tg < Te; the Lie algebra of the stabilizer B of the

Zariski closure of expG(X) in G.
Then there is a finite set S C Tg such that

X C.Tß + S + F.

Proof. Let A — expG'{e). It is a discrete subgroup of Tg-
Let Z ç G be the Zariski closure of expG(A) and B be the stabilizer of Z

in G.
We define Ej?(X) as in (3.1).
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Let 5° be the connected component of B. It is an algebraic subgroup of G

of finite index in B and satisfies: expG(Tg) B°, where Tg < TG is the Lie
algebra of B.

We choose b\,... ,bn e B with B (J(=1 bfB°, and also choose hi,... ,hn e

Tg with expG (/;, ht. We have

n

expG(l> +Ts))
i 1

hence by Claim 3.2,

n

expg(Sf(Y)) ç expG((J(^ + Tg))
1 1

and
n

Sf(X)CTb + (IJ(^+A)).
i 1

Since A is a discrete subgroup of TG, the set [J;'=i (hj + A) is a discrete subset

of Tg. By o-minimality, since ~Ep(X) is definable we obtain that there is a finite
set S ç (J"=ï(hi + A) with T,p(X) ç Tb + S. The proposition now follows
from Observation 3.1(1).

Remark 3.6. The above proposition immediately implies ALW Theorem for
abelian varieties. Indeed let G be an abelian variety, expG : TG —> G the

exponential map, X ç TG an irreducible algebraic subvariety, B < G the

stabilizer of the Zariski closure of expG A) and Tg < TG the Lie algebra of B.
Since G is compact, there is a relatively compact fundamental domain F for

expG definable in the o-minimal structure Ran.

Using Proposition 3.5, we have that X çTg + S + A,for some finite S c TG.
Since F is relatively compact we obtain that X ç Tg + K for some compact
K ç Tg

Let L be a C-linear subspace of TG complementary to Tg. The projection
of X to L along Tg is bounded. Since X is an irreducible variety, it has

to be a point. It follows then that X c Tg + h for some h e Tg and

expG(Y) ç expG{h)-B.

4. Full ALW for semi-abelian varieties

In this section we prove a general statement that implies full ALW Theorem

and hence also ALW Theorem for semi-abelian varieties.
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Proposition 4.1. Let G be a connected semi-abelian variety over C, Tg the Lie

algebra of G, expG : Tg -> G the exponential map, V a vector group over C

and it : V © Tg -> V x G the map n — idv x expG.
Let Y CP® Tg be an irreducible algebraic variety and Z ç TgxG the

Zariski closure of Jt(Y). Then Z Zy x Zg, where Zy is a subvariety of V

and Zg a translate of an algebraic subgroup of G.

Remark 4.2. Since Z is the Zariski closure of tt(Y), it is easy to see that if
Z Zy xZg then Zy must be the Zariski closure of prV(Y) and Zq must be

the Zariski closure of expG(prTc(L)), where prK and prTc are the projections
from V 0 Tg to V and Tg respectively.

Before proving the proposition let's remark how it implies both versions of
ALW. To get ALW we take V to be the trivial vector group 0. To get full ALW
we take V Tg and Y c Tg © Tg the image of X under the diagonal map,
i.e., Y {(m,m) eTG ®Tg: u e X}.

We now proceed with the proof of Proposition 4.1.

Proof Let H V x G. It is a commutative algebraic group with Lie algebra
Th V © Tg and with exponential map exp;/ jr. Hence Z is the Zariski
closure of expH(L).

We denote the group operation of H by -, and view V and G as subgroups

of H. Very often for subsets Si ç F and S2 ç G we write Si x S2 instead of
Si • S2 to indicate that in this case Si • S2 can be also viewed as the Cartesian

product of Si and S2.

Notice that since expH restricted to V is the identity map we have

exp^1 (e) expg1 (e).
Let Stab// (Z) be the stabilizer of Z in H. It is an algebraic subgroup of

V x G. Since V is a vector group and G is a semi-abelian variety, Stabh{Z)
splits as Stab//(Z) V() x B, where V() < V and B < G are algebraic subgroups

(see [Ros, Corollary 6]).
We first show that Z ç V x (p B) for some p e G.

Lemma 4.3. We have Y — h ç V + T« for some h e T//, where Tß < Tg is

the Lie algebra of B.

Proof of Lemma. Since G is a connected semi-abelian variety it admits a short

exact sequence
e —> G0 —> G —> A —> e,

where A is an abelian variety and G0 is an algebraic torus, i.e., an algebraic

group isomorphic to (C*,-)fc-
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We do a standard decomposition of Tg
Let d be the dimension of G and k the dimension of G0. Let A expg^e).

It is a discrete subgroup of Tg whose C-span is To. Also A is a free abelian

group of rank 2d — k.
Let T0 < Tg be the Lie algebra of Go - It is a C-linear subspace of To of

dimension k. Let A0 A flT0. It is easy to see that A0 is a pure subgroup
of A (i.e., for A G A and ne N, nX e A0 implies A G A0), hence it has a

complementary subgroup Aa in A, i.e., a subgroup Aa of A with A A0®Aa.
Let La < Tg be the M-span of Aa.

We have that Tg T0 © La, and Aa is a lattice in La.
The restriction of expG to T0 is a complex Lie group homomorphism from

T0 onto G0 whose kernel is A0. Choosing an appropriate basis for T0 and after

identifying G0 with (C*,-)k, we may assume that T0 — Ck and the restriction of
expG to T0 has form (zi,..., z&) i-> (e2niZx,..., e2lclZk). In particular A0
and the restriction of expG to iRk is definable in Rexp-

From now on we identify T0 with Ck and use decompositions

Tg Ck © La Rk © iRk © La and TÄ K®lt® iRk © La.

Since both La/Aa and Rk/7Lk are compact we can choose relatively compact
large domains Fa ç La and F0 ç Rfc for expG \La and expG (Rfc respectively,
definable in Ran

It is easy to see that F0 + /Rfe + Fa is a large domain for expG and

F V + F0 + iRk + Fa is a large domain for expH, both definable in Ran,exp-

Let T# < Th be the Lie algebra of B. Since cxp^1 (e) expG'(e) A,
we apply Proposition 3.5 to Y and expH and get a finite S c Th with
Y QTb + S + F. Thus we have

Y Tb + S + F V + TB + S + F0 + iRk + Fa.

Since the closures of F0 and Fa are compact, we can find a compact subset

AçTh with S + F0 + Fa ç K, and hence

(4.1) Y ç V + Tb +iRk + K.

Let M V + Tb + iRk. It is an M-linear subspace of T#. We first claim
that Y ç M + h for some h e Th. Indeed, using elementary linear algebra
it is sufficient to show that for any R-linear map Th -* R vanishing on
M the image of Y under Ç is a point. Let £: T# -> R be an R-linear

map vanishing on M. From (4.1) we obtain that £(L) is bounded. Therefore,
since Y is an irreducible algebraic variety and the map f: T// -> C given by

f: z Ç(z) — itj(iz) is a C-linear map, the set f(L) must be a point. Thus we
have Y ç M + h for some h G T#.

We will use the following fact that it is not difficult to prove.
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Fact 4.4. Let Y' ç T# be an irreducible complex analytic subset containing the

origin. If IF ç T# is the M-span of Y' (i.e. the smallest M-linear subspace

containing Y') then W is a C-linear subspace of T#
In particular if Y' ç U for some E-linear subspace U of T# then Y' QiU.

Applying the above fact to Y' Y — h we obtain

(4.2) Y - h ç M n iM (V + Tg + iRk) n (V + Tg + Rk).

Thus to finish the proof of Lemma, it remains to show that

(4.3) (V + Tß + iRk) n (L + Tg + Rk) — V + Tg.

Since B is a semi-abelian subvariety of G, the intersection B\ B n G0 is an

algebraic torus with the Lie algebra Tg, Tg D Ck. Since B\ is an algebraic
subtorus of G0, Tg, has a C-basis in A Fl Cfe Zk c Efc.

It follows then that Tg, has the form E © iE for some E-linear subspace

fcl4, and hence

Tg (T (R* + iRk) E © iE.

We are now ready to show (4.3). Let a e (V + Tg + iRk) fl (V + Tg + Mfc).

Then

a v\ + u\ + wi — v2 + u2 + iw2

for some vi,v2 6 V,ui,u2 e Tg, wi, w2 6 Efe. Since Th V ©Tg, we get

v\ v2, and (wi — u2) —w\ + iw2.
Thus —wi + iw2 e Tg IT (Rk + iRk) E © iE, so w\, w2 E, and hence

wi, w2 e Tg. It implies that a e V + Tg, that shows (4.3). It finishes the proof
of Lemma.

We choose p G G with V -exp^/î) V p and obtain

expH{Y) ç V x (p B) for some p e G

hence

(4.4) Z ç v x (p B).

Let Zy {v e V: v x p e Z}. It is an algebraic subvariety of V and we claim
that Z — Zy x (p B).

If v e Zy then v p e Z, and since B lies in the stabilizer of Z we have

v x (p B) c Z. Hence Zy x (p B) ç. Z.
Let v e V, g e G with v g e Z. Since B lies in the stabilizer of Z we

have v x (g B) ç Z. By (4.4), v x (g • B) ç V x (p B), hence g B — p B,
v p e Z, v e Zy and v g e Zv x (p B). It shows that Z ç Zy x (p B).
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