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A note on o-minimal flows and the
Ax—Lindemann—Weierstrass theorem
for semi-abelian varieties over C

Ya’acov PeTeErzIL and Sergei STARCHENKO

Abstract. In this short note we present an elementary proof of Theorem 1.2 from [UY2],
and also the Ax-Lindemann—Weierstrass theorem for abelian and semi-abelian varieties.
The proof uses ideas of Pila, Ullmo, Yafaev, Zannier (see, e.g., |[PZ]) and is based on
basic properties of sets definable in o-minimal structures. It does not use the Pila—Wilkie
counting theorem.

Mathematics Subject Classification (2010). Primary: 03C64, 03C98, 11J81.
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1. Introduction

In their article [PZ], Pila and Zannier proposed a new method to tackle
problems in Arithmetic geometry, a method which makes use of model theory,
and in particular the theory of o-minimal structures. They produce a new proof for
the Manin-Mumford conjecture, so let us first recall the setting: An abelian variety
is a projective algebraic variety, equipped with an algebraic group structure. Over
the complex field it admits the structure of a compact complex Lie group. The
Manin-Mumford Conjecture (proven by Raynaud, [Ray]) states that for a complex
abelian variety A, if X € A is an irreducible algebraic subvariety and the torsion
points of the group of A are Zariski dense in X then X is a coset of an abelian
subvariety of A.

The strategy of Pila and Zannier went roughly as follows: Given an n-
dimensional complex abelian variety A, consider the (transcendental) uniformizing
map 7 : C" — A.If V C A is an algebraic subvariety, with “many” torsion points,
consider its pre-image V = z~'(V). This is an analytic subvariety V < C*,
invariant under translation by the lattice A = ker(w). When restricted to a
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fundamental domain F C C", the set V N F is definable in the o-minimal
structure R,,. At the heart of the proposed method was a theorem by Pila and
Wilkie, [PW], used to conclude that V contains an algebraic variety X of positive
dimension. At the last step of the proof one shows that X is contained in a coset
of a C-linear subspace L of C”, with L C V. Finally, the Zariski closure of
(L) is a coset of an abelian subvariety of V (with a little more work one shows
that V' itself is such a coset).

Because of various analogous theorems the last ingredient of the argument be-
came known as the “Ax—Lindemann—Weierstrass” statement for abelian varieties,
which we abbreviate here ALW. Recall that the classical Lindemann-Weierstrass
theorem says that if a;,...,a, € C are algebraic numbers that are linearly in-
dependent over Q then e?!',...,e% are algebraically independent over Q. In
[Ax], Ax proved analogous statements for formal power series. In [PZ] ALW
was proved, for abelian varieties, by a mixture of topological and o-minimal
arguments.

Following the seminal paper of Pila, [Pil], on the Andre-Oort Conjecture for C”
it became clear that the Pila-Zannier method was very effective in attacking other
problems in arithmetic geometry. Each such problem was broken-up into various
parts and the ALW was isolated as a separate statement. Somewhat surprisingly,
despite the fact that ALW does not seem to have a clear arithmetic content, Pila
found an ingenious way to apply the Pila-Wilkie theorem again in order to prove
it in the setting of the Andre-Oort conjecture for C" (this is sometimes called
“the hyperbolic ALW”). The method of Pila was applied extensively since then
to settle several variants of ALW ([Orr], [PT], [UY1], [KUY]).

Our goal in this note is to give a simple proof of ALW for both abelian and
semi-abelian varieties (recall that a semi-abelian variety is an extension of an
abelian variety by GJ ). We believe that this simpler approach can clarify the
picture substantially and eventually yield new results as well.

1.1. Geometric restatements of ALW for semi-abelian varieties. The next
theorem follows from a more general thecorem of Ax (see [Ax, Theorem 3])
and often is called the full Ax—Lindemann—Weierstrass Theorem (see also [Kir]
for discussion). The original proof of Ax used algebraic differential methods.

Theorem 1.1 (Full ALW). Let G be a connected semi-abelian variety of dimension
d defined over C, Tg = C? be the Lie algebra of G and expg: Tg — G the
exponential map.

Let W C Tg be an irreducible algebraic variety and & = (&1,...,E4): W —
Tg be a rational map with & € W(C).
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Assume the image of W under the composition expg o is not contained in
a translate of a proper algebraic subgroup of G. Then the transcendence degree

of C(expg(§1,...,82)) over C(&y1,...,&q) is d.

Remark 1.2. The transcendence degree of C(expg(£1,...,&4)) in the above
theorem is defined to be the transcendence degree of coordinate functions of
expg (&1, ...,&4) under some projective embedding of G . The degree is computed
in the field of meromorphic functions on W.

If in the above theorem we change the conclusion to “transcendence degree
of C(expg(é1,....84)) over C is d” then we get a weaker statement that often
is called Ax-Lindemann—Weierstrass theorem (ALW theorem for short).

It is not hard to see that both full ALW and ALW theorems can be interpreted
geometrically (see, e.g., [Tsi] for more details).

Theorem 1.3 (ALW, Geometric Version). Let G be a connected semi-abelian
variety over C, Tg the Lie algebra of G and expg: T¢ — G the exponential
map.

Let X C Tg be an irreducible algebraic variety and Z C G the Zariski
closure of expg(X). Then Z is a translate of an algebraic subgroup of G.

We can also restate full ALW.

Theorem 1.4 (Full ALW, Geometric Version). Let G be a connected semi-abelian
variety over C, T the Lie algebra of G, expg: Tg — G the exponential map,
and w:Tg — Tg x G be the map n(z) = (z,expg(z)).

Let X C Tg be an irreducible algebraic variety and let Z C Tg x G be
the Zariski closure of w(X). Then Z = X x B, where B is a translate of an
algebraic subgroup of G.

2. Preliminaries

We work in an o-minimal expansion R of the real field R, and by definable
we always mean R -definable (with parameters). For a general reference on o-
minimal structures we refer the reader to [Dri]. The only property of o-minimal
structures that we need is that every definable discrete subset of R” is finite. We
will be using the fact that the structure R exp iS 0-minimal, see [Wie] and [DM].

If V is a finite dimensional vector space over R and X a subset of V then,
as usual, we say that X is definable if it becomes definable after fixing a basis
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for V and identifying V' with R”. Clearly this notion does not depend on a
choice of basis.

Let 7: V — G be a group homomorphisms, where V is a finite dimensional
vector space over R and G a connected commutative algebraic group over C.
We denote the group operation of G by -.

Let A = n~!(e). We say that a subset F C V is a large domain for n
if F is a connected open subset of V with V = F + A. If in addition the
restriction of 7 to F is definable then we say that F is a definable large domain
for m.

Remark 2.1. In the above setting if x is real analytic and A is a lattice in
V' then V/A is compact and there is a relatively compact large domain for =
definable in R,,.

3. Key observations

In this section we fix a finite dimensional C-vector space V', a connected
commutative algebraic group G over C and n: V — G a complex analytic
group homomorphism. We assume that A = x~1(e) is a discrete subgroup of V
and that 7 has a definable large domain F.

Let X be a definable connected real analytic submanifold of V' and let Z
be the Zariski closure of 7(X) in G.

Let Z = n~Y(Z) and Zp=ZNF.Theset Z is a complex analytic
A -invariant subset of V and Z g is a definable subset of F.

Let

(3.1 Sr(X)={veV:iv+XNF#@andv+XNFC Zp)

Clearly X r(X) is a definable subset of V.
The following is an elementary observation.

Observation 3.1. (1) If A e A and A+ FNX # @ then —A € £r(X). In
particular X C F — (Zrp(X) N A).

(2) If v is in Tp(X) then v+ X € Z (by analytic continuation. and the
connectedness of X).

As a consequence we have the following claim.

Claim 3.2. 7(Zr (X)) C Stabg(Z2) ={g € G: g-Z = Z}.
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Proof. If v is in £p(X) then by Observation 3.1(2) we have X C Z —v, and
hence w(X) € n(v) *n(Z) = =(v)"'-Z. Since Z is the Zariski closure of
7(X) and 7(v)~1'-Z is a subvariety of G we have Z C n(v)~!-Z, hence m(v)
is in the stabilizer of Z. L]

Remark 3.3. Both Observation 3.1 and Claim 3.2 hold for a complex irreducible
algebraic subvariety X of V. It can be done either by a direct argument or
replacing X with the set Xz of smooth points on X and using the fact that
Xreg is a connected complex submanifold of V' that is dense in X .

We deduce a slight generalization of Theorem 1.2 from [UY2].

Proposition 3.4. Let n: V — G be a complex analytic group homomorphism
Jrom a finite dimensional C -vector space V to a connected commutative algebraic
group G over C. Let A = " 1(e). Assume 7 has a large definable domain F.

Let X C V be a definable connected real analytic submanifold (or an
irreducible complex algebraic subvariety) and Z C G the Zariski closure of
7(X) in G.

If X is not covered by finitely many A -translate of F then Stabg(Z) is
infinite.

Proof. If X is not covered by finitely many A -translate of F, then by Observation
3.1(1) the set £ p(X) is infinite. Since it is also definable, (X (X)) must be
also infinite (otherwise X p(X) would be an infinite definable discrete subset
contradicting o-minimality). L]

The following proposition is a key in our proof of ALW.

Proposition 3.5. Let G be a connected commutative algebraic group over C,
TG the Lie algebra of G, and expg: Tg — G the exponential map. Assume
expg has a definable large domain F .

Let X C Tg be a definable real analytic submanifold (or an irreducible
algebraic subvariety), and Tp < Tg the Lie algebra of the stabilizer B of the
Zariski closure of expg(X) in G.

Then there is a finite set S C Tg such that

XCcTg+ S+ F.

Proof. Let A =expg'(e). It is a discrete subgroup of Tg.

Let Z € G be the Zariski closure of expg(X) and B be the stabilizer of Z
in G.

We define Zp(X) as in (3.1).
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Let B° be the connected component of B. It is an algebraic subgroup of G
of finite index in B and satisfies: expg(Tg) = B°, where Tp < Tg is the Lie
algebra of B.

We choose by,...,b, € B with B = Ui:lbi'BO’ and also choose hy,...,h, €
T with expg(h;) = b;. We have

expe (ki +Tw) = B,

i=1
hence by Claim 3.2,

n

expg (Br (X)) € expg (| i +Tp))

i=1
and

£r(0) € Ta + (s + 1),
i=1

Since A is a discrete subgroup of Tg, the set | J;_,(h; + A) is a discrete subset
of Tg. By o-minimality, since X (X) is definable we obtain that there is a finite
set S C U/ (h; + A) with Zp(X) € Tg + S. The proposition now follows
from Observation 3.1(1). L]

Remark 3.6. The above proposition immediately implies ALW Theorem for
abelian varieties. Indeed let G be an abelian variety, expg: T¢ — G the
exponential map, X C Tg an irreducible algebraic subvariety, B < G the
stabilizer of the Zariski closure of exps(X) and Tp < Tg the Lie algebra of B.

Since G is compact, there is a relatively compact fundamental domain F for
expg definable in the o-minimal structure Rgp.

Using Proposition 3.5, we have that X € Tp+ S+ F, for some finite S C Tg .
Since F is relatively compact we obtain that X € Tp + K for some compact
KCTg.

Let L be a C-linear subspace of Tg complementary to Tp. The projection
of X to L along Tp is bounded. Since X is an irreducible variety, it has
to be a point. It follows then that X € Tp + h for some h € Tg and
expg(X) € expg(h)-B.

4. Full ALW for semi-abelian varieties

In this section we prove a general statement that implies full ALW Theorem
and hence also ALW Theorem for semi-abelian varieties.
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Proposition 4.1. Let G be a connected semi-abelian variety over C, Tg the Lie
algebra of G, expg: Tc — G the exponential map, V a vector group over C
and m: V@ Tg -V xG the map m = idy X expg.

Let Y CV & Tg be an irreducible algebraic variety and Z C Tg x G the
Zariski closure of w(Y). Then Z = Zy x Zg, where Zy is a subvariety of V
and Zg a translate of an algebraic subgroup of G.

Remark 4.2. Since Z is the Zariski closure of 7 (Y), it is easy to see that if
Z = Zy x Zg then Zy must be the Zariski closure of pry(Y) and Zg must be
the Zariski closure of expg(pry,(Y)), where pry and prp, are the projections
from V @& Tg to V and Tg respectively.

Before proving the proposition let’s remark how it implies both versions of
ALW. To get ALW we take V to be the trivial vector group 0. To get full ALW
we take V =Tg and Y C Tg & Tg the image of X under the diagonal map,
ie., Y ={(u,u) e Te®dTg: u € X}.

We now proceed with the proof of Proposition 4.1.

Proof. Let H =V x G. It is a commutative algebraic group with Lie algebra
Ty =V & Tg and with exponential map expy = m. Hence Z is the Zariski
closure of expg(Y).

We denote the group operation of H by -, and view V and G as subgroups
of H. Very often for subsets §; C V and S, C G we write S; x S, instead of
S1 -S> to indicate that in this case S -S> can be also viewed as the Cartesian
product of S; and S-.

Notice that since expy restricted to V is the identity map we have
expy (¢) = expg'(e).

Let Stabgy(Z) be the stabilizer of Z in H. It is an algebraic subgroup of
V x G. Since V is a vector group and G is a semi-abelian variety, Staby(Z)
splits as Staby (Z) = Vo x B, where Vy < V and B < G are algebraic subgroups
(see [Ros, Corollary 6]).

We first show that Z C V x (p- B) for some p € G.

Lemma 4.3. We have Y —h C V 4+ Tp for some h € Ty, where Tp < Tg is
the Lie algebra of B.

Proof of Lemma. Since G is a connected semi-abelian variety it admits a short
exact sequence
e—>Gyp—>G—> A—e,

where A is an abelian variety and Gy is an algebraic torus, i.e., an algebraic
group isomorphic to (C*,)k.
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We do a standard decomposition of Tg.

Let d be the dimension of G and k& the dimension of Gg. Let A = expa1 (e).
It is a discrete subgroup of Tg whose C-span is Tg. Also A is a free abelian
group of rank 2d —k.

Let To < Tg be the Lie algebra of Gy. It is a C-linear subspace of Tg of
dimension k. Let Ag = A NTy. It is easy to see that Ay is a pure subgroup
of A (ie, for A € A and n € N, nA € Ay implies A € Ay), hence it has a
complementary subgroup A, in A, i.e., a subgroup A, of A with A = A¢gDA,.
Let L, < Tg be the R-span of A,.

We have that Tg =Ty & L., and A, is a lattice in L,.

The restriction of expg to Ty is a complex Lie group homomorphism from
Ty onto Gy whose kernel is Ag. Choosing an appropriate basis for Ty and after
identifying Go with (C*,-)*, we may assume that Ty = C* and the restriction of
expg to Ty has form (zy,...,zg) > (€271, ..., e?™ %) In particular Ay = Z¥
and the restriction of expg to i R* is definable in Rexp -

From now on we identify Ty with C* and use decompositions

Te=C*oL,=R@iR-@® L, and Ty =V dR @ iR @ L,.

Since both L,/A, and R¥/Z* are compact we can choose relatively compact
large domains F, € L, and Fy € R* for expg 'L, and expg |R* respectively,
definable in Ry,

It is easy to see that Fy + iR* 4+ F, is a large domain for exp; and
F=V+Fy+iRF+F, isa large domain for expy , both definable in Raqexp-

Let Tp < Ty be the Lie algebra of B. Since expg'(e) = expg'(e) = A,
we apply Proposition 3.5 to Y and expy and get a finite S C Ty with
Y CTp + S + F. Thus we have

YCTg+S+F=V+Tg+S+Fy+iRF+ F,.

Since the closures of Fy and F, are compact, we can find a compact subset
K CTg with S + Fy + F, € K, and hence

4.1) Y CV+Tg+iRF+K.

Let M =V +Tp +iR¥. It is an R-linear subspace of Tg. We first claim
that ¥ € M + h for some h € Ty. Indeed, using elementary linear algebra
it is sufficient to show that for any R-linear map &: Ty — R vanishing on
M the image of Y under £ is a point. Let £&: Ty — R be an R-linear
map vanishing on M. From (4.1) we obtain that £(Y) is bounded. Therefore,
since Y is an irreducible algebraic variety and the map &: Ty — C given by
E:z> £(z) —i&(iz) is a C-linear map, the set £(Y) must be a point. Thus we
have Y € M + h for some he Ty.
We will use the following fact that it is not difficult to prove.
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Fact 4.4. Let Y’ € Ty be an irreducible complex analytic subset containing the
origin. If W C Ty is the R-span of Y’ (i.e. the smallest R-linear subspace
containing Y') then W is a C-linear subspace of Ty .

In particular if ¥’/ C U for some R-linear subspace U of Ty then Y' CiU.

Applying the above fact to Y’ =Y —h we obtain
(4.2) Y—hCMNiM =V +Tg+iRF)N(V +Tp + R5).
Thus to finish the proof of Lemma, it remains to show that
(4.3) (V+Tp+iRN WV +Tp+RF) =V +Tp.

Since B is a semi-abelian subvariety of G, the intersection B; = B N Gy is an
algebraic torus with the Lie algebra Tg, = T N C*. Since B, is an algebraic
subtorus of Gp, Tp, has a C-basis in A N Ck = 7ZF c R¥.

It follows then that Tp, has the form E ®iE for some R-linear subspace
E C R¥, and hence

Tz N (R* +iR*) = E @ iE.
We are now ready to show (4.3). Let « € (V +Tg + iR¥) N (V + Tp + R¥).
Then
o =vy +u+wy =v2+u; +iw

for some vy,vy € V,uj,up € Tp,wy,wy € R¥. Since Ty = V & Tg, we get
V] = V3, and (u1 ~—u2) = —w + ile.

Thus —wq + iw, € Tg N (RF 4+ iR¥) = E @ iE, so wy, w, € E, and hence
wy, wy € Tp. It implies that « € V 4 Tp, that shows (4.3). It finishes the proof
of Lemma. ]

We choose p € G with V -expgy(h) =V - p and obtain
expy(Y) €V x(p- B) for some peG
hence
(4.4) Z CVx(p-B).

Let Zy ={veV:vxpeZ}. Itis an algebraic subvariety of V' and we claim
that Z = Zy x (p- B).

If veZy then v.-p € Z, and since B lies in the stabilizer of Z we have
vx(p-B)C Z.Hence Zy x(p-B)C Z.

Let ve V,g € G with v-g € Z. Since B lies in the stabilizer of Z we
have vx(g-B)C Z. By (44), vx(g-B)CV x(p-B), hence g-B=p-B,
vepeZ,veZy and v-ge Z, x(p-B). It shows that Z C Zy x(p-B). [
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