Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 63 (2017)

Heft: 1-2

Artikel: The Cartan-Hadamard Theorem for metric spaces with local geodesic
bicombings

Autor: Miesch, Benjamin

DOl: https://doi.org/10.5169/seals-760290

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-760290
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

L’Enseignement Mathématique (2) 63 (2017), 233-247 DOI 10.4171/LEM/63-1/2-8

The Cartan—Hadamard Theorem for metric spaces
with local geodesic bicombings

Benjamin MiescH

Abstract. We prove the Cartan—-Hadamard Theorem for spaces which are not necessarily
uniquely geodesic but locally possess a suitable selection of geodesics, a so-called convex
geodesic bicombing.

Furthermore, we deduce a local-to-global theorem for injective (or hyperconvex) metric
spaces, saying that under certain conditions a complete, simply-connected, locally injective

metric space is injective. A related result for absolute 1-Lipschitz retracts follows.

Mathematics Subject Classification (2010). Primary: 53C22, 53C23; Secondary: 51F99,
S4E35.

Keywords. Local-to-global, geodesic bicombings, injective metric spaces, hyperconvex
metric spaces.

1. Introduction

Local-to-global principles are spread all-around in mathematics. The classical
Cartan-Hadamard Theorem from Riemannian geometry was generalized by W.
Ballmann [Bal] for metric spaces with non-positive curvature, and by S. Alexander
and R. Bishop [AB] for locally convex metric spaces, i.e., for spaces that locally
satisfy the Busemann property, meaning that d o(yy, y») is convex for all constant
speed geodesics y1, y2. As a normed vector space satisfies the Busemann property
if and only if its norm is strictly convex, this property is not preserved under
limit processes. This motivates to look at an even weaker notion of non-positive
curvature, where we only request convexity for a certain choice of geodesics,
compare [Kle, Section 10].

We use the convention of [ABr, Lan] to call such a collection of paths a
bicombing, a term originally coined by W. Thurston in the context of geometric
group theory. The following definition is for instance satisfied by the linear
segments (1 —7)x + ¢y in a normed vector space. In a metric space (X,d),
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a geodesic bicombing is a selection of a geodesic between each pair of points.
This is a map o: X x X x [0,1] — X such that, for all x,y € X, the path
Oxy = 0(x,y,) is a geodesic from x to y, ie. 0xy(0) = x, 0xy(1) = ¥
and d(oxy(5),0xy(2)) = |s —t|d(x,y) for all s,z € [0,1]. Moreover, we assume
that this choice is consistent in the sense that o0,,([0,1]) C 0x,([0,1]) for all
P.q € 0xy([0,1]) with d(x,p) < d(x.q). A geodesic bicombing o is called
convex if the function f +— d(oy,(7),0%5(t)) is convex for all x,y.x,y € X.
Furthermore, we say that o is reversible if o0,,([0.1]) = 0x,([0.1]) for all
x,y € X. A metric space admits a local geodesic bicombing, if such a selection
exists in a neighborhood U(x,r.) of each point x € X, see Section 2 for the
exact definition.

Metric spaces with a geodesic bicombing resemble hyperbolic spaces after
U. Kohlenbach [Koh, KL], which specify W-convex metric spaces considered by
W. Takahashi [Tak] and S. Itoh [lto]. Geodesic bicombings were recently studied
by D. Descombes and U. Lang in [Des, DLI, DL2] and also by G. Basso in
[Bas], where they show that several results for CAT(0) and Busemann spaces
carry over to spaces with convex geodesic bicombings. Here we will contribute
to these studies by proving the following Cartan—-Hadamard Theorem.

Theorem 1.1. Let X be a complete, simply-connected metric space with a convex
local geodesic bicombing o . Then the induced length metric on X admits a unique
convex geodesic bicombing & which is consistent with o. As a consequence, X
is contractible. Moreover, if the local geodesic bicombing o is reversible, then
o is reversible as well.

As we show in a subsequent paper joint with G. Basso [BM], Theorem 1.1
leads to a uniqueness result for convex geodesic bicombings on convex subsets
of certain Banach spaces.

Important examples of spaces with convex geodesic bicombings are given by
injective metric spaces, which include the real line, R-trees and [ (/) for any
index set /. Recall that every metric space X possesses an injective hull, i.e.,
a smallest injective metric space into which X embeds [Isb]. Injective metric
spaces play a crucial role in the theory of mapping extensions [AP] and fixed
point theory [Sin, Soa], see also [EK] and the references therein.

A metric space X is injective if for all metric spaces A, B with A C B and
every 1-Lipschitz map f: A — X, there is a I-Lipschitz extension f-B3X,
ie. fla = f.In fact, D. Descombes and U. Lang show in their work that every
proper, injective metric space of finite combinatorial dimension admits a (unique)
convex geodesic bicombing [DLI, Theorem 1.2]. Such spaces occur, for instance,
as injective hulls of hyperbolic groups [Lan, Theorem 1.4] and therefore, every
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hyperbolic group acts properly and cocompactly by isometries on a space with a
convex geodesic bicombing [DLI, Theorem 1.3].

Recall that injective metric spaces are complete, geodesic and contractible.
Now, knowing that under the above conditions injective metric spaces possess a
convex geodesic bicombing, we deduce the following local-to-global theorem for
injective metric spaces.

Theorem 1.2. Let X be a complete, locally compact, simply-connected, locally
injective length space with locally finite combinatorial dimension. Then X is an
injective metric space.

It is well known that injective metric spaces are the same as absolute
1 -Lipschitz retracts. For Lipschitz retracts, the weaker notion of absolute Lipschitz
uniform neighborhood retracts is common, see Section 4 for more details. Absolute
1 -Lipschitz uniform neighborhood retracts are locally injective but the converse

is not true as we will see in Example 4.2. In fact, it turns out that the following
holds.

Theorem 1.3. Let X be a locally compact absolute 1-Lipschitz uniform neighbor-
hood retract with locally finite combinatorial dimension. Then X is an absolute
1-Lipschitz retract.

This paper is organized as follows. We start Section 2 by studying spaces with
local geodesic bicombings, establish an appropriate exponential map and finally
prove Theorem 1.1. In Section 3, we first show that every uniformly locally injective
metric space with a reversible, convex geodesic bicombing is injective. Afterwards,
we describe how to construct a reversible, convex local geodesic bicombing on
locally injective metric spaces, which extends to a convex geodesic bicombing
by Theorem 1.1. Thereby we establish Theorem 1.2. Finally in Section 4, we then
investigate absolute 1-Lipschitz neighborhood retracts and prove Theorem 1.3.

2. Local geodesic bicombings

Let us first fix some notation. In a metric space X, we denote by
Ux,r):={yeX:d(x,y) <r}
the open ball of radius r around x € X and by
B(x,r):={yeX:dx,y)<r}

the closed one.
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Let X be a metric space and y: [0,1] — X a continuous curve. The length
of y is given by

1) i= sup{Zd(y(tk_l).y(rk)) D=l Bwes Tl = 1}.
k=1

Then .
d(x,y):=inf{L(y):y:[0,1]] = X, y(0) = x,y(1) = y}

defines a metric on X, called the induced length metric. If we have d = d. we
say that (X, d) is a length space.

For a metric space X, let G(X) :={c: [0,1] — X} be the set of all geodesics
in X, i.e. continuous maps c¢: [0, 1] = X with d(c(s),c(r)) = |s—t]|-d(c(0),c(1))
for all s,¢ € [0, 1]. Note that geodesics need not be parametrised by arc-length.
We equip G(X) with the metric

D(c.c") == sup d(c(1).c'(1)).
r€[0,1]

Let ¢ € G(X) and 0 <a < b <1, then we denote by c[, 5 the reparametrized

geodesic given by cpgp1: [0,1] = X with cgp1(¢) 1= c((1 —t)a + 1b).

Definition 2.1. A local geodesic bicombing on a metric space X is a local
selection of geodesics, i.e., a map o: U x [0,1] — X, (y,z,1) + 0y,:(¢), with
U C X x X open and the following properties:

(i) For all x € X, there is some r, > 0 such that, for all y,z € U(x,ry), there
is a geodesic 0,,: [0.1] — U(x.ry) from y to z, and

U={(y,z) € X xX :y,z€U(x,ry) for some x}.
(i) The selection is consistent with taking subsegments of geodesics, i.e.,

UU,\':(SI)U)':(S2)U) — Uyz((l - [)Sl + ISZ)

for (y,z) eU, 0<sy1<sp, <1 and 1 €0, 1].

We call a local geodesic bicombing o convex if it is locally convex, i.e. for
y.z.y'.z € U(x,ry), it holds that

t > d(oyz(1), 0y (1))
is a convex function. Furthermore, o is reversible if
0zy(t) = 0yz(1 — 1)

for all (y,z) e U and t € [0, 1].
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Remark. Observe that, by property (ii), a local geodesic bicombing is convex if
and only if

d(0yz (), 0y (1)) < (1 —1)d(y,y') +td(z.2')
for all y,z,y’,z’ € U(x.ry) and t € [0, 1].

A (local) geodesic c¢: [0,1] — X is consistent with the local geodesic
bicombing o if
Cla.b](1) = Oc(ayep) (1)

forall 0 <a <b <1 with (c(a).c(b)) € U.

To prove Theorem 1.1, we roughly follow the structure of Chapter 11.4 in [BH].
Adapting the methods of S. Alexander and R. Bishop [AB], we can prove the
following key lemma.

Lemma 2.2. Let X be a complete metric space with a convex local geodesic
bicombing o and let ¢ be a local geodesic from x to y which is consistent with o .
Then, there is some € > 0 such that, for all X,y € X with d(x,Xx),d(y,y) <€,
there is a unique local geodesic ¢ from X to y with D(c,¢) < € which is
consistent with o. Moreover, we have

L(c)y < L(c)+d(x,x)+d(y,y)
and if ¢ is another consistent geodesic from X to y with D(c,¢) < €, then
1 d(¢(1),¢(1))

IS convex.

Proof. Let € > 0 be such that 0‘U(c(t).2e)xU(c(I) 26)%[0.1] is a convex geodesic
bicombing for all € [0.1]. Now, let P(4) be the following statement:

P(A): For all a,b € [0,1] with 0 < b —-a < A and for all p,g € X with
d(c(a), p),d(c(b),q) < €, there is a unique local geodesic ¢p,: [0,1] - X
from p to g with D(c[g ], Cpg) < € which is consistent with o. Moreover,
for all such local geodesics the map ¢ +— d(Cpq(t).Cprg(2)) is convex.

By our assumption, P(,(‘E—C)) holds. Therefore, let us show P(A4) = P(% :

Given a,b € [0,1] with 0 < b —a < %, define po = c(%a — %b) and

qo = c(%a + %b). Then, by P(A), there are consistent local geodesics ¢y from p
to go and ¢} from py to ¢. Inductively, we set p, = C,,(%) anid gy o= (’:1(%),
where ¢, is a consistent local geodesic from p to ¢,—; and ¢, from p,—; to q.
Observe that, by convexity of the ¢,,c;, we have d(py—1. pn). d(Gn-1.491) < %
and hence the sequences (pn), and (g,), converge to some ps and ¢Geo,
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respectively, and we have d(poso, Po). d(Goo.qo) < €. Furthermore, by convexity,
the ¢, c], converge to the consistent local geodesics ¢ from p to goo and ¢,
from p to ¢, which coincide between poo = coo(%) and ¢oo = cgo(%). Hence,
they define a new local geodesic c,; from p to g which is consistent with o
and peo = Cpq(%)a Joo = Cpq(%)-

Now, given two local geodesics ¢p, and ¢,y with D(c[qp].Cpg) < € and
D(clap), cprg’) < €, set s :=d(p,p), t := d(q,q/); sh= Cg(cpq(%)ecp’q’(%))
and ¢’ = d(cpq(%),cp/qf(%)). Then we have s’ < %, il S;f and therefore
§ =54 % + %, ie § < % and similarly ¢’ < &32’ follows. Hence, we get
convexity of = d(cpq(t).cprg/ (1)) and therefore also uniqueness follows.

It remains to prove that L(c) < L(c¢)+d(x,x)+d(y,y). Let ¢ be the unique
consistent local geodesic from x to y with D(c,c¢) < e. For ¢ small enough we
have

(L(3) = d(¢(0). (1)) = d(c(0).E(r))
< d(c(0). c(t)) + d(c(1).é(t)) < tL(c) + td (c(1),E(1)),

ie, L(¢) < L(c)+d(y,y) and similarly L(¢) < L(¢) +d(x,X). O

Definition 2.3. Let X be a metric space with a local geodesic bicombing o.
For some fixed xp € X, we define

Xyo = {c:[0,1] = X local geodesic with ¢(0) = xo, consistent with o}.

We equip X,, with the metric D(c,c’) = Sup,efo,11 4(c(t),¢'(¢)) and define the
map
exp: )fxO — X, ¢ c(1).

If X is complete, this map has the following properties.

Lemma 2.4. Let X be a complete metric space with a convex local geodesic
bicombing o. Then the following holds:

(i) The map exp: )Zxo — X is locally an isometry. Hence o naturally induces

a convex local geodesic bicombing 6 on Xy,.

(i) Xy, is contractible.

(iii) For each x € )EXO, there is a unique local geodesic from Xo fo X which is
consistent with &, where Xq is the constant path Xy(t) = xp.

(iv) Xy, is complete.

Proof. By Lemma 2.2, for every ¢ € )wa there is some € > 0 such that the
map exp |U(C e U(c,e) = Ul(c(l),¢€) is an isometry. Hence, o naturally induces

a convex local geodesic bicombing & on Xy, .
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Consider the map r: )zxo x [0,1] — )?_\.0. (c,s) + (rg(c): t = c(st)). This
defines a retraction of Xx(, to Xp.

A continuous path ¢: [0,1] — Xxo is a local geodesic in Xxo which is
consistent with o if and only if expoc is a local geodesic in X which is
consistent with o . Therefore, for any ¢ € )fxo, the map s+ rg(c) is the unique
local geodesic from Xg to c.

Finally, if (c,), is a Cauchy sequence in X, by completeness of X, for every
t € [0, 1], the sequences (c, (7)), converge in X, to c¢(z) say. Locally, i.e., inside
U(c(t), req)), the subsegment c¢|;—¢ sy is the limit of the consistent geodesics
(Cnlir—er+e))n and hence ¢ is consistent with o by the convexity of the local
geodesic bicombing. 0

The following criterion will ensure that exp is a covering map.

Lemma 2.5. Let p: X — X be a map of length spaces such that
(i) X is connected,
(ii) p is a local homeomorphism,
(iii) for all rectifiable curves ¢: [0,1] — X, we have L(¢) < L(po?),
(iv) X has a convex local geodesic bicombing o, and
v) X is complete.

Then p is a covering map.

Proof. The proof of Proposition 1.3.28 in [BH] also works in our setting. In
the second step, take U = U(x.ry) and define the maps sg: U(x.ry) — X by
55(y) = 0xy(1), where oy, is the unique lift of oy, with 7,,(0) = x. [

Remark. For a local isometry p, conditions (ii) and (iii) are satisfied.

Corollary 2.6. Let (X.d) be a complete, connected metric space with a convex
local geodesic bicombing o. Then exp: Xy, — X is a universal covering map.
Proof. Consider the induced length metrics d and D on X and )?x(,. Since
(X.d) locally is a length space, the metrics d and D locally coincide with
d and D, respectively. Hence p still is a local isometry with respect to the
length metrics and o is a convex local geodesic bicombing. Thus Lemma 2.5
applies. [
Proof of Theorem 1.1. First, we show that, for all x,y € X . there is a unique

consistent local geodesic from x to y. Since X is simply-connected, the covering
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map exp: X, — X is a homeomorphism which is a local isometry and by Lem-
ma 2.4, there is a unique consistent local geodesic , from x to y.

Next, we prove that 7y, is a geodesic. To do so, it is enough to show that, for
every curve y: [0,1] — X and every ¢ € [0, 1], we have L(0y0)y¢)) < L(¥|[0.0])-
Let

A:={s€[0.1]:Vr €[0,s] we have L(Gy0)y)) < L(¥|j0.1)}-

Clearly, A is non-empty and closed. To prove that A is open, consider s € A.
For § > 0 small enough, by Lemma 2.2, we have

L(éy(o)y(s+8)) = L(6y(0)y(s)) + d(y(s), y(s + 8))
< L(ylio,s]) + L [s,s481) = L(¥l[0,5+51)-
Hence, A = [0, 1] as desired.

Finally, we show that 7 + d (G, (?),0%5(t)) is convex. By Lemma 2.2, there
is a sequence 0 =1; <...<1f, =1 and € > 0 such that
e the balls U(6xx(t1),€1),...,U(0xz(ty). €n) cOver Oyxz,

e the balls U(6y5(t1),€1),...,U(Gy5(tn), €n) cover Gy5, and

e for all p,p € U(Gx#(tx), €x) and 4.9 € U((}},y([k),ék), the map [ >
d(0pq(t).0p5(1)) is convex.

Consider now a sequence 0 =59 <s§; <... <35, =1 with

Oxz(Sk) € UOxz(tr). €k) N U(Oxz (tieg1)s €k+1),

Oy (sk) € U(oy5(tr), €x) N U(0y5 (tke+1)s €k+1),

for k =1,...,n—1. Then we get
d(5xy(r)s&i§(t))

n
= Z d (05,5 (s —1)3y 5 (sx—1) ) T5 5. (5005, 5 (1) (1))
k=1

< (1=0)( ) d(Gaxlor1) Gaxlo1)) ) + 1 ( Y d (Gyylor-1).6y5(5%)) )
k=1

k=1
= (1—-t)d(x,%) +td(y. 7).

Hence, ¢ is a convex geodesic bicombing on X .

If o is reversible, then a5, (1) := 0yx(1 — 1) also defines a convex geodesic
bicombing on X which is consistent with o. Therefore, by uniqueness, ¢* and
o coincide, i.e. ¢ is reversible. O
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3. Locally injective metric spaces

N. Aronszajn and P. Panitchpakdi [AP] proved that injective metric spaces are
exactly the hyperconvex metric spaces, namely metric spaces with the property
that for every family of closed balls {B(x;.r;)}ier with d(x;.x;) <r; +r;, for
all i,j €I, we have ();c; B(x;,r;) # @. Note that in hyperconvex metric spaces
closed balls are hyperconvex.

Definition 3.1. A metric spaée X is locally injective if, for every x € X, there
is some ry > 0 such that B(x,ry) is injective. If we can take r, = r for all x,
we call X wuniformly locally injective.

Lemma 3.2. Let X be a metric space with the property that every closed ball
B(x,r) is injective, then X Iis itself injective.

Proof. Let {B(x;,ri)}ier be a family of closed balls with d(x;,x;) < r; +7;.
Fix some ip € I and set A; := B(x;,r;) N B(x;,,ri,). Since, for r big enough,
we have x;.x; € B(x;,.r), we get that the A;’s are externally hyperconvex in
Aj, and A; N A; # @ for all i, j € I. Hence, it follows

(\BGxi.r) = ()4 # 2
iel iel

by [Mie, Proposition 1.2]. [

Proposition 3.3. Ler X be a uniformly locally injective metric space with a
reversible, convex geodesic bicombing o. Then X is injective.

Proof. Consider the following property:
P(R): For every family {B(x;,ri)}ies with d(x;,x;) <r;+r; and r; < R, there
is some x € ;7 B(xi.71).

Since X is uniformly locally injective, this clearly holds for some Ry > 0. Next,
we show P(R) = P(2R) and therefore P(R) holds for any R > 0.

Let {B(x;.ri)}ies be a family of closed balls with d(x;.x;) < r; +r; and
r; £ 2R, For i,j € I, define yy i= le-xj(%)- By convexity of o, we have

d(yij.yik) =d (Ux,-x_,- (%) Ox;xg (%)) = %d(-\‘j- Xg) < ’7/ + %‘

Hence, for every i € I, there is some z; € Mjer BOi. ’7’) Now, observe that
d(zi,zj) < d(zi, yij) + d(yij. z;) < % + % and therefore, we find

x € ﬂ B(z;, %) C ﬂ B(x;,ri).

iel iel



242 B. MiescH

Since all balls with center in B(x,r) and radius larger than 2r contain B(x,r),
P(R) for R = 2r implies that B(x,r) is injective. Hence, by Lemma 3.2, X is
injective. [

Since compact, locally injective metric spaces are always uniformly locally
injective we conclude the following.

Corollary 34. Let X be a compact, locally injective metric space with a
reversible, convex geodesic bicombing o. Then X is injective.

Corollary 3.5. Let X be a proper, locally injective metric space with a reversible,
convex geodesic bicombing o. Then X is injective.

Proof. Let {B(x;.r;i)}ie;r be a family of balls with d(x;.x;) < r; +r;. Fix
some ip € I and define I, = {i € I : d(x;.x;,) < n}, for n € N. Since
B(xi,,n) is compact, by the previous corollary, there is some y, € ();c; B(xi. 7).
Especially, (y,)» C B(x;,.ri,) and hence, there is some converging subsequence
Y —> Y €[ ey B(xi, 1) W

Remark. In [Lan], U. Lang proves that every injective mefric space admits a
reversible, conical geodesic bicombing (Proposition 3.8). Observe also that this is
the only property of the geodesic bicombing used in the proof of Proposition 3.3.
Therefore, we get the following equivalence statement (in the terminology of
[Lan]): A metric space is injective if and only if it is uniformly locally injective
and admits a reversible, conical geodesic bicombing.

If an injective metric space X is proper, it also admits a (possibly non-
consistent) convex geodesic bicombing [DLI, Theorem 1.1] and if X has finite
combinatorial dimension in the sense of A. Dress [Dre], this convex geodesic
bicombing is consistent, reversible and unique [DLI, Theorem 1.2]. In our terms,
this is:

Proposition 3.6. Every proper, injective metric space with finite combinatorial
dimension admits a unique reversible, convex geodesic bicombing.

Recall that, by the Hopf—-Rinow Theorem, any complete, locally compact length
space is proper.

Corollary 3.7. Let X be a locally compact, locally injective metric space with
locally finite combinatorial dimension. Then X admits a reversible, convex local
geodesic bicombing.
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Proof. For every x € X, there is some ry > 0 such that B(x,3r,) is compact,
injective and has finite combinatorial dimension. This also holds for B(x,ry) and
therefore, there is a reversible, convex geodesic bicombing o on B(x.ry).

We will check that for B(x,ry) and B(y.ry) with B(x.rx)NB(y.ry) # @ the
two geodesic bicombings o*,o” coincide on the intersection. Assume without
loss of generality that r, > r, and hence B(x.ry), B(y,ry) C B(x,3ry). Then the
convex geodesic bicombing t on B(x.3ry) restricts to both B(x,ry) and B(y.ry)
since, for p,q € B(z,r;), we have d(z,1p4(t)) < (1 —1)d(z,p) +td(z,q) < r;.
Hence, by uniqueness, the geodesic bicombings ¢*,0” are both restrictions of
and thus coincide on B(x,ry) N B(y,ry).

Therefore o, defined by o|p(x,r )xB(x.rv) = 0% |B(x,ri)xB(x,ry)» 1S @ TEVETSible,
convex local geodesic bicombing on X . W

Proof of Theorem 1.2. Let X be a complete, locally compact, simply-connected,
locally injective length space with locally finite combinatorial dimension. By
Corollary 3.7, X has a reversible, convex local geodesic bicombing, which induces
a reversible, convex geodesic bicombing by Theorem 1.I. Hence, we can apply
Corollary 3.5 and deduce that X is injective. |

4. Absolute 1-Lipschitz Neighborhood Retracts

Absolute Lipschitz uniform neighborhood retracts appear for instance in the
study of approximations of Lipschitz maps, see [HJ, Section 7]. The question
arises, how much absolute Lipschitz uniform neighborhood retracts differ from
being an absolute Lipschitz retract. Theorem 1.3 will give a first answer in the
case of absolute I-Lipschitz retracts.

A metric space X is an absolute 1-Lipschitz neighborhood retract if, for every
metric space Y with X C Y, there is some neighborhood U of X in Y and a
1-Lipschitz retraction p: U — X . Furthermore, if we can take U = U(X,¢) for
some € > 0, we call X an absolute 1-Lipschitz uniform neighborhood retract. In
this case, € can be chosen independent of Y ; see [HJ, Proposition 7.78]. Finally,
if there is always a 1-Lipschitz retraction r: Y — X, then X is an absolute
1 -Lipschitz retract. 'This is equivalent to X being an injective metric space [AP,
Theorem 8].

Lemma 4.1. Let X be an absolute 1-Lipschitz (uniform) neighborhood retract.
Then X is (uniformly) locally injective.
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Proof. Consider X C [(X). Since X is an absolute 1-Lipschitz neighborhood
retract, there is some neighborhood U of X and a I-Lipschitz retraction
p: U — X. For x € X, there is some ry > 0 such that B(x.ry) C U.
Let now {B(x;,r;)}ie; be a family of closed balls with x; € B(x,ry) N X
and d(x;,x;) < r; +r;j. Then, since [,(X) is injective, there is some y €
B(x,rx)N();e; B(xi,ri) C U.Hence, we have p(y) € B(x,ry)N(;e; Blxi, ri)NX
and therefore B(x,r,) N X is injective.

iel

If X is an absolute 1-Lipschitz uniform neighborhood retract, we have
U = U(X.¢) for some € > 0 and therefore, we can choose r, = 5 for all

xeX. U

The converse is not true, as the following example shows.

Example 4.2. Consider the unit sphere S' endowed with the inner metric. Since,
for every x € S! and € € (0, 51, the ball B(x,¢) is isometric to the interval
[—€. €], the unit sphere S! is uniformly locally injective.

But S is not an absolute 1-Lipschitz neighborhood retract. Fix some inclusion
S1 Cle(ST). We choose three points x,y,z € ST with r :=d(x,y) = d(x,z) =
d(y,z) = 27” Let U be a neighborhood of S! in [o(S!'). As U is open, there
is some € € (0.%) such that B(x.e€) C U. By hyperconvexity of /(S'), there
is some

p € B(x,e)NB(y,r—€)NB(z,r —e) C U.

But since

B(x,e)NB(y,r—e)NB(z,r—e NSt =g,

there is no 1-Lipschitz retraction p: S' U {p} — S1.

In fact, the notion of an absolute 1-Lipschitz uniform neighborhood retract is
quite restrictive.

Lemma 4.3. Let X be an absolute 1-Lipschitz uniform neighborhood retract.
Then X is

(i) complete,

(ii) geodesic, and

(iii) simply-connected.
Proof. Fix some inclusion X C [(X) and r := % > (0 such that there is a
I-Lipschitz retraction p: U(X,¢) — X.

First, if (x,)nen is a Cauchy sequence in X, it converges to some x € U(X,€).
It follows that x = p(x) € X.
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Next, assume that there is a geodesic in X between points at distance less than
d. By Lemma 4.1, this is clearly true for d = r. Consider two points x,y € X
with d(x,y) <d + r. Now, since [(X) is geodesic, there is some z € /o(X)
with d(x,y) =d(x,z)+d(z,y), d(x,z) <r and d(z,y) < d. But then, we have
p(z) € X with d(x,y) = d(x,p(z)) + d(p(z), y) and, by our hypothesis, there
are geodesics from x to p(z) and from p(z) to y which combine to a geodesic
from x to y.

Finally, since X is locally simply-connected, every curve is homotopic to a
curve of finite length and hence it is enough to consider loops of finite length.
We show that every such loop in X is contractible.

Let y be a loop in X of length L(y) = 27zR with R > r. Denote by

Sz := {x € R? : |x| = R} the sphere of radius R endowed with the inner
metric and let 4 := {x € SI% :0 < x3 < Rsin(3)} be the region bounded by the
two circles ¢ := {x € S% : x3 = 0} and ¢’ := {x € S : x3 = Rsin(%)}. Let

f: ¢ — X be a parametrization of y by arclength and let f: 4 — [(X) bea 1-
Lipschitz extension. Then y’ := po f(¢’) is a loop of length L(y") < L(c") = 2nR’
with R’ := Rcos(%). which is homotopic to y. Since cos(g) < cos(g), we
find inductively a loop y, with L(y,) < 27 R cos(4)", which is homotopic to y.

If L(y) =2nR with R <r, we can use the same argument with A replaced
by the upper halfsphere of radius R to show that y is contractible. U

We conclude that an absolute 1-Lipschitz uniform neighborhood retract
is a complete, simply-connected, locally injective length space and therefore
Theorem 1.3 follows directly from Theorem 1.2.
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