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Branched coverings and equivariant smoothings
of 4-manifolds

Stawomir Kwasik and Reinhard SchHuLrtZz

Abstract. This paper describes some new families of finite group actions on 4-manifolds, in-
cluding infinite families of smoothly inequivalent actions which are topologically equivalent
and locally linear actions which are not smoothable. The constructions involve a variety of
results on 4-manifolds and branched coverings. One common feature is that these families
are counterexamples to the Lashof—Rothenberg homotopy classification results for equivari-
ant smoothings which hold for actions with no 4-dimensional strata. Related examples with
4-dimensional fixed point sets are also described.

Mathematics Subject Classification (2010). Primary: 57M12, 57M60, 57R10, 57R55, 57S17;
Secondary: 32Q55, 57825.
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Let M be an unbounded topological n-manifold, where n # 4. By [KiS],
suitably defined equivalence classes of smooth structures on M are classified by
bundle data; more precisely, one can define a topological tangent bundle wps | M
whose fibers are homeomorphic to R”, and classes of smooth structures are in 1-1
correspondence with vector bundle structures on 7. In [LR] R. Lashof and M.
Rothenberg proved a similar result for manifolds with suitably restricted actions
of a finite group G. Specifically, they consider actions which are locally linear
(or locally smooth [Bre]); for such actions one has an equivariant bundle structure
i, on the topological tangent bundle; and classes of equivariant smoothings of
a locally linear G -manifold M correspond to G -vector bundle structures on the
equivariant bundle tps g if one avoids 4-dimensional problems. More precisely,
for each subgroup H C G one must assume that no component of the fixed point
set M is 4-dimensional.

Advances in 4-manifold theory since the appearance of [LR] have yielded
many examples which show that the conclusions of [KiS] do not extend to 4-
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manifolds (e.g., see [FQ], [Goml], [Donl], [Don2]), and these results indicate that
counterexamples should also exist for the equivariant smoothing theory of [LR]
if some fixed set M# has a 4-dimensional component.

The main purpose of this paper is to describe relatively simple 4-dimensional
examples by combining several advances in 4-manifold theory with the theory of
cyclic branched coverings (cf. Fox [Fox], Reddy [Red] and [Sch]). We shall also
discuss a few other examples and closely related results. One approach to this
problem would be to study free G -actions by considering candidates for orbit
spaces. We shall mention a few examples of this type, but our main interest will
concern actions which are not free. One reason for doing so is that questions
about smoothings free actions quickly reduce to similar questions about their orbit
spaces, and numerous examples have been constructed (e.g., see the results of L.
Hambleton and M. Kreck in [HK] or [Kre] and of M. Ue in [Uel] or [Ue2]; see
also [Tor]). An equally important reason is that the underlying manifolds are often
very familiar objects, and a third reason is to construct examples with nontrivial
fixed point data.

For the sake of conciseness, we have only described limited families of
examples in this paper, with emphasis on methods developed during the nineteen
eighties and nineties. Other advances in 4-manifold theory — particularly from the
past two decades — clearly yield many other examples like those considered here.

Here is a brief outline of the paper. The first section discusses some preliminary
results: One is a smoothability result for certain noncompact locally linear 4-
dimensional G -manifolds, which parallels the smoothing theorem for noncompact
4-manifolds due to Freedman and Quinn [FQ] and (independently) Lashof and
Taylor [LT]. Another is a variation of the results about smooth structures for certain
orbit spaces in [Sch]. In the second section we shall use branched covering to
construct locally linear 4-dimensional G -manifolds of the following two types:

(1) The equivariant tangent bundle reduces to a G -vector bundle, but the manifold
is not equivariantly smoothable.

(2) There are nondiffeomorphic equivariant smoothings which correspond to the
same G -vector bundle structure on the equivariant tangent bundle.

The third section constructs uncountable families of nondiffeomorphic smooth-
ings for linear actions on R*; since linear actions on R* are equivariantly con-
tractible, there is a unique isotopy class of G -vector bundle structures on their
equivariant tangent bundles, so these actions are noncompact counterexamples to a
4-dimensional analog of [LR]. The existence of equivariant smoothings on certain
exotic 4-spaces has been known for some time (cf. [Goml], [FT], [Gom4]), but
most of the uncountable families in this paper have not previously appeared in
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the literature. Our examples include some families which can be realized as G-
invariant open subsets of the corresponding linear action on R*, and others which
are not (nonequivariantly) diffeomorphic to open subsets of R* with the usual
smooth structure. Finally, Section 4 considers some related questions involving
higher dimensional G -manifolds, in particular we construct higher dimensional
counterexamples to the conclusions of [LR] for locally linear G -manifolds whose
fixed point sets have 4-dimensional components.

There is a limited amount of overlap between the results of this paper and
the theorems and problems in A. Edmonds’ excellent survey of group actions
on 4-manifolds [Edm2]. This may reflect the present state of 4-manifold theory,
in which we are still only beginning to understand the wide-ranging aspects of
this subject. A more systematic understanding of smooth simply connected 4-
manifolds might provide a framework for organizing the sorts of examples which
are currently known to exist.

1. Preliminaries

This section considers two unrelated questions. One is the equivariant smootha-
bility of certain noncompact 4-dimensional G -manifolds and the other involves
some extensions of standard results about smooth structures on certain orbit spaces
(see [Sch], Section 1).

1.1. Noncompact locally linear 4-manifolds. By [FQ] and [LT], every connected
noncompact 4-manifold is smoothable, and we shall prove an analog for locally
linear group actions on such manifolds. To simplify the discussion we shall restrict
attention to certain group actions which are semifree (the only isotropy subgroups
are G and {1}).

Theorem 1.1. Let G be a finite group, and let M be a connected, noncom-
pact, unbounded locally linear 4-dimensional G -manifold. Assume that G acts
semifreely on M and each component of MY is even-dimensional. Then M is
equivariantly smoothable.

Remark 1. The condition on M© is always satisfied if G has odd order.

Remark 2. A more detailed analysis shows that the theorem and its proof extend
to locally linear actions satisfying the following condition: For each subgroup
H C G, every component of M# is even dimensional.
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Remark 3. Results of [KwL] and [KwS] imply that every locally linear G -
manifold of dimension < 3 has a unique equivalence class of equivariant
smoothings, so it follows that every noncompact, connected, semifree locally
linear G -manifold of dimension < 4 is equivariantly smoothable if G has odd
order. The analogous statement is false in all higher dimensions. Specifically,
let M* be the closed simply connected manifold whose intersection form on
H,(M:Z) is given by the Eg matrix, and consider the locally linear Z, actions
on M* in [Edml], where p > 5 is prime. Since the Kirby-Siebenmann smoothing
obstruction for M# is non-trivial (cf. [FQ]), the product manifolds M AxRR(k > 1)
are not even smoothable as manifolds in the non-equivariant sense.

Proof of Theorem 1.1. The hypotheses imply that G acts freely on M —MC and
MC is a union of pairwise disjoint components which are isolated points and
surfaces.

Claim. There is a G -invariant closed neighborhood N of MY such that N is
an equivariantly smoothable G -manifold with boundary.

If the claim is true, then the theorem follows immediately from [FQ] and
[LT]; by the claim and the Equivariant Collar Neighborhood Theorem, there is an
equivariant smoothing of an open neighborhood for N in M. and the results of
[FQ] and [LT] imply that the induced smoothing of dN/G extends to a smoothing
of (M —IntN) /G because the latter is noncompact. If we pull this smoothing
back to the covering space M — Int N and attach it to the given equivariant
smoothing on a neighborhood of N, we obtain an equivariant smoothing of M .

We shall now prove the claim. It suffices to prove this for each component
of MG separately. If a component of MY consists of a single isolated point,
then the conclusion follows immediately by local linearity, for we can take N
to be a small orthogonal disk centered at the point. If a component C of M©
is a surface, then there is an invariant open neighborhood U of C such that
U/G is a 4-manifold and C C U/G is a locally flat surface (see [Bre], Lemma
IV.4.2 for the assertion that U/G is a manifold; local flatness follows because
the action is locally equivalent to R? x V', where G acts trivially on R and V
is a 2-dimensional G -representation with V¢ = {0}). We can now use [FQ] to
conclude that C has a closed vector bundle neighborhood D* in U/G, and it
follows that the inverse image D C U of D* C U/G is the unit disk bundle of
a G -vector bundle; furthermore, since G acts semifreely on M, this G -vector
bundle must come from a complex line bundle. Since surfaces are smoothable
and G -vector bundles over smooth manifolds are smoothable, it follows that D
is equivariantly smoothable, and this completes the proof. U
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1.2. Remarks on branched coverings. Let G be a finite cyclic group, and let
M be a locally linear semifree G -manifold such that M© is a codimension 2
submanifold. As noted in the preceding discussion, the orbit space M* = M/G
is a topological manifold such that M/G is a locally flat submanifold and the
orbit space projection M — M™ is a regular branched covering whose branch
set is MY (compare [Fox], [Red]). Furthermore, if G acts smoothly on M, then
there is a canonical smooth structure on M* such that M — M™ is a smooth
branched covering map (see [Sch], Section 1). In the remainder of this section
we shall collect a few simple results that will be needed later.

Proposition 1.2. Let G be a finite cyclic group, and let M" and N" be smooth
semifree G -manifolds whose fixed point sets are (n — 2)-dimensional, and take
the smooth structure on M"/G and N"/G given in [Sch]. If f : M" — N”"
is a G-equivariant diffeomorphism, then the induced map of orbit spaces
f/G:M"/G — N"/G is topologically isotopic to a diffeomorphism.

Proof. This result is a straightforward elementary exercise if M® = N =@ —
in which case f/G itself is a diffeomorphism — but otherwise one must look

more closely at the construction of the smooth structures on the orbit spaces in
Section 1 of [Sch].

Suppose now that f : M — N is an equivariant diffeomorphism, and
let A and B be smooth structures on M/G and N/G which satisfy the
conditions of [Sch]. The smooth structures involve choices of good G -invariant
Riemannian metrics f*B on M, then one can check directly that the induced
homeomorphism f/G : M"/G — N"/G defines a diffeomorphism from
(M/G, f*B) to (N/G,B). By our previous comments the identity map from
(M/G,A) to (M/G, f*B) is topologically isotopic to a homeomorphism, and
therefore it follows that f/G : (M/G, A) — (N/G,B) is topologically isotopic
to a diffeomorphism. O

We shall also use the following result on connected sums.

Proposition 1.3. Let G be a finite group, and let M" be a locally linear semifree
G -manifold such that every component of M is (n —2)-dimensional. Assume
further that M is oriented (hence G acts orientation-preservingly). Let N" be
a compact oriented n-manifold, and let #° N denote the connected sum of |G|
copies of N. Then the following hold:

(i) There is a locally linear action of G on M"# (#5 N) such that the fixed
point set is MY and the orbit space is homomorphic to M/G#N .



206 S. Kwasik and R. ScuurtZ

(ii) If the group action on M is smooth, and N is smooth, then there is a
smooth action of G on M" # (#° N) such that the fixed point set is M©
and the orbit space is diffeomorphic to M/G # N .

Proof. Take an equivariant connected sum of M and #%° N by choosing an
orientation preserving equivariant embedding of G x D" in M — M/G and an
orientation preserving embedding of D" in N, removing the interiors of the
embedded disks from M — MY and G x N respectively, and identifying the
common boundaries by a suitable equivariant homeomorphism of G x S*~ ! If
everything is smooth, choose embeddings which are smooth and identify the
copies of G x S"~! by an equivariant diffeomorphism. This yields an action on
M"™ # (#% N) whose fixed point set and orbit space have the desired properties,
and the construction yields a smooth G -manifold whose fixed point set is
diffeomorphic to MY if the G -manifold M and the manifold N are smooth. [

2. Compact examples

In contrast to all other dimensions, a compact 4-manifold might not be
smoothable even if its topological tangent bundle comes from a vector bundle.
For example, if M* is the closed simply connected manifold whose intersection
form on H,(M:Z) is the Eg matrix, then the tangent bundle of the connected
sum M#M is isomorphic to a vector bundle by [KiS], [FQ] and [LT], but by
[Donl] this manifold is not smoothable. Here are some corresponding examples
of locally linear G -manifolds.

Proposition 2.1. Let k > 1 be an integer, let V be a nontrivial irreducible
| -dimensional unitary representation of Zj, and consider the Zj -action on the
2k -fold connected sum #** M which is an equivariant connected sum of the
linear action on the 4-dimensional unit sphere S(R®* @ V) and Zj x (M#M) as
in Proposition 1.3. Then the equivariant tangent bundle of this action reduces to
a Zy -vector bundle, but the group action is not equivariantly smoothable.

Proof. The result of [Donl] imply that #* M is not smoothable, so the group
action certainly cannot be equivariantly smoothable. Therefore the proof reduces to
showing that the Zj -tangent bundle of the group action comes from a Zj -vector
bundle.

Let D C S(R*@® V) be a disk which is disjoint from the fixed point set and is
so small that g1-DNgy-D = @ if g1 # g2 in Zy (hence Zi x D is embedded in
the complement of the fixed point set). Since Z; acts smoothly on S(R3*@ V), the
restriction of the equivariant tangent bundle to S(R*@®V)—Zj xIntD comes from
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a Zy -vector bundle. The construction in Proposition 1.3 expresses the group action
on #* M as the union of S(R*@V)—Z, xIntD with Z; x M # M —IntE , where
E € M #M is a closed disk and one identifies the boundaries Zj xdD =~ Z; x 0E
by a homeomorphism dE = dD . This homeomorphism determines a vector bundle
structure on the restriction of the tangent bundle a4 to dE, and it follows
that the Zj -tangent bundle to the group action comes from a vector bundle if and
only if the vector bundle structure over dF extends to a vector bundle structure
over M #M — IntE.

In fact, there is a vector bundle structure on d£ which extends to a vector
bundle structure over M #M — Int E because the tangent bundle tprypr 1S
isomorphic to a vector bundle. Furthermore, the two structure on dFE are equivalent
if the homeomorphism dD — dF is topologically isotopic to a diffeomorphism.
Since every homeomorphism of 3-manifolds is isotopic to a diffeomorphism, this
condition is fulfilled and hence the first vector bundle structure on dE extends
to M #M — Int E. Therefore the Zj -topologial tangent bundle to the Zj -action
on #2k M comes from a Zj -vector bundle. []

There are also examples of nonsmoothable locally linear actions which satisfy
the tangent bundle condition and act on smoothable closed simply connected
4-manifolds. Our discussion will use the following generalization of a formula
due to F.Hirzebruch [Hir] (specifically, formula [15]) for smooth actions:

Proposition 2.2. Let d > 2, and let M 4 be a closed oriented 4-manifold
with a locally linear 7.4 -action. Assume all components of F = MZ%d qare 2-
dimensional. Then M™*™ = M/Z4 is a closed oriented 4-manifold such that the
image F* of F is a locally flat submanifold and the signature of M and M™
satisfy the following identity:

g —1
3d

sgn(M) = d sgn(M™) — (F*- F*)

where F* - F* denotes the self-intersection number of F* in M*.

Proof. The generalization of Hirzebruch’s result for smooth actions is essentially
a special case of Theorem 14B.2 in Wall’s book [Wal2] because the argument
proving Theorem 1.1 in this paper shows that the components of F in M
all have equivariant tubular neighborhoods given by G -vector bundles. Both
sides of Hirzebruch’s branched covering formula are oriented equivariant bordism
invariants, so one can apply Lemma 14.3 in [Wal2] to conclude that the result
remains true in the topological setting. It is worth noting that the special argument
in the 4-dimensional case of Wall’s proof can be avoided because subsequent
results in [FQ] imply a topological transversality theorem for 4-manifolds. ]
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The preceding results yield some relatively simple examples of nonsmoothable
actions on smoothable simply connected 4-manifolds.

Theorem 2.3. Let d > 6 satisfy d = 2 mod 4. Then there is a locally linear
Z g -action on a simply connected 4-manifold Mj with the following properties:

(i) The equivariant tangent bundle of the action comes from a Z4 -vector bundle,
but the action is not smoothable.

(ii) For all but at most finitely many choices of d, the manifold M;' is
nonequivariantly smoothable.

Proof. The idea behind the construction is fairly direct and very similar to the
approach of Fintushel, Stern and Sunukjian in [FSS] for constructing topologically
equivalent smooth actions. Results of R. Lee and D. Wilczynski [LW] imply
that ¢ times the generator of H,(CIP?) =~ Z can be represented by a simply
topologically embedded surface X of genus g = %dz — 1. If w denotes the
pullback of the canonical complex line bundle E | $? to ¥, by a map of
degree 1, then the normal bundle of the embedded surface is E (®d 2a)), where
®™ w is the m-fold tensor product of a complex line bundle with itself. The
construction in [LW] yields an embedding such that 71 (CP?—X,) is isomorphic
to Zg (by [LW] the fundamental group is abelian, and direct computation shows
that H3(CP?, ;) = H(CP?—X;) = Z4 ). Therefore we can construct a locally
linear action on some closed 4-manifold M j such that the orbit space projection
M ; - Mj /Z4 is a regular d-fold cyclic branched covering whose branch set is
D

We shall first prove that the Z,;-tangent bundle of this action comes from
a Zg-vector bundle. It will be useful to begin by considering the more general
question of analyzing the equivariant tangent bundle associated to a cyclic branched
covering M — M™ of an closed oriented 4-manifold along an connected oriented
surface £ C M ; let F* denote the image of F in M™*. Let T C M be a closed
tubular neighborhood of F in M, and let T* be its image in M* (hence T*
is a closed tubular neighborhood of F*). Then the vector bundle structures on
T* and the unique smooth structure on F* define an equivariant smoothing of a
neighborhood of 7* and we can pull this back as in [Sch] to obtain an equivariant
smoothing of an invariant neighborhood of 7'. Also, if M™ is a smooth manifold
there is an induced smoothing of M* — F*, and since M — F — M* — F* is
a regular covering there is an induced equivariant smoothing of M — F. On the
overlap set Int(7) — F one has two smoothings from these constructions; if F*
is smoothly embedded these two smoothings coincide, and this yields the standard
smoothing of the branched covering.
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Suppose now that F* C M™* is not smoothable, and consider the problem of
putting a linear structure on the equivariant tangent bundle tjs. The preceding
methods now yield two linear structures on the equivariant tangent bundle
restricted to Int(7) — F; these are pullbacks of two linear structures on
Int(7*) — F* under the (unbranched) covering space map Int(7) — F —
Int (7*) — F*, and the equivariant tangent bundle to M will have a linear
structure if and only if the two smoothings of Int (7*) — F* determine the same
linearization of the latter’s nonequivariant tangent bundle.

We can reformulate this problem homotopically as follows: Let §* C Int(7")
be a closed tubular subneighborhood given by a disk bundle of sufficiently small
radius, and let W* be the cylinder T* — Int(S*), so that dW™* = 9T* U dS*.
Then the obstructions to linearization lie in the cohomology groups

HY (W*, 0W*: 7;(Top,/O4))

where 0 <i < 4. Results of [LT] and [Qui] imply that m; (Top,/O4) = m;(Top/O)
(= 7; (K(Z>,3))) in this range, and therefore the only possible nonzero obstruction
lies in H*(W*, 0W*;Z,) = Z,. Since the composite

HY*(W*, 0W*:Z,) = H*M*,S* UM* —Int(T*); Z,) —
HYM*, M* —Int(T*): Z,)

is an isomorphism, it follows that this obstruction is equal to the obstruction for
extending the linear structure on the tangent bundle to M™* — Int(7*), which is
given by the smoothability of M™, to a linear structure on the tangent bundle
to M*. Since the original smooth structure on M* extends the smooth structure
on M* —Int(S*), this obstruction vanishes. This completes the proof that the
equivariant tangent bundle of M comes from a Z,-vector bundle.

The nonsmoothability of the group action may be seen as follows: If there
were an equivariant smoothing of M, then we could use [Sch] to find a smooth
structure on CP? (possibly not the usual one) such that X, is smoothly embedded.
However, by results of D. Kotschick and G. Mati¢ ([KM], Theorem 3.1 and
Corollary 1.2) no such smooth structure exists.

For the remainder of the proof, we return to the special case where
M* = CP>,M = My, and F =~ F* is a closed simply embedded surface
of genus %dz — 1 representing d times the generator of H,(CP?;Z). The only
statement left to prove is the smoothability of M. The results of [FQ] imply
that the closed simply connected manifold M; is smoothable if the rank b, (M)
of Hy(My:Z) is at least 181 times the absolute value |o(My)| of the signature:
If the intersection form on H,(My:7Z) is odd, then we have shown that the
Kirby-Siebenmann invariant vanishes (since tjr, comes from a vector bundle),
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and bp(My) = 11|0(My)|/8 implies that the form is indefinite, so by [FQ] the
manifold My is homeomorphic to a connected sum of + CP?2’s. On the other
hand, if the form is even, then we may proceed as follows: Since the surface
F* c CP? has degree d, it follows that its self-intersection number is 2. If we
substitute this into Hirzebruch’s formula for the signature of a branched covering,

then the latter reduces to
{ =1
o(My)=d —2-((—; )

and since d = 2 mod 4 it follows that the right hand side is divisible by
16. Therefore H,(My:7Z) is isomorphic to a direct sum of an even number of
copies of Eg and also some copies of the intersection form for S? x S2. If
by(My) > %|U(Md)| then by [FQ] the branched covering M, is homeomorphic
to a connected sum of copies of S? x §? with copies of K3 surfaces and hence
M, is smoothable.

We shall prove that the % inequality holds for all but at most finitely
many choices of d. Predictably, this requires information about b,(My;) =
¥(M;)—2, and this follows from elementary considerations and the genus equation

g=1d*-1:

X(Mg) = x(Zg) + x(Mg,%,) = (2—-2g) +d(2g + 1)

2 _
:(d~1)2g~|—d+2:(d—1)(2g+1)+2:(d—1)(d > 4+2)+3

d3
= 5 + lower terms.

It follows that

o ba(Mg) 3 11

lim — -—

dmoo [o(Mg)] 2 8
and by the preceding discussion we have shown that M, is nonequivariantly
smoothable. U]

2.1. Other examples. There are numerous results which yield other examples
of nonsmoothable locally linear actions on closed 4-manifolds (e.g., see [Kiy],
[Nak] and the references listed in [LN]). In particular, the results of [Kiy] produce
infinite families of such actions on connected sums of two or more copies of
§2 x §2, where the group is a cyclic group of order p > 19 and the singular set
consists of isolated points (in contrast, for most of our examples the fixed point
sets are 2-dimensional).

Claim. The equivariant (topological) tangent bundles for the Kiyono examples
in [Kiy] come from equivariant vector bundles.
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Proof. Given a locally linear action of an odd order group G on a connected
sum of two or more copies of S? x S? with an isolated singular set S, let M
be the connected sum. By local linearity the action is smooth near the singular
set, and the obstruction to extending the linear structure from a neighborhood of
the singular set to all of M lies in

H*(M/G,S/G:m3(Top,/04)) = Zos.

Since G has odd order, the image of this obstruction in H*(M.s) = H*(M) is
zero if and only if the obstruction itself is zero. However, by construction the
image of the obstruction in H*(M) is just the Kirby-Siebenmann obstruction to
linearizing the nonequivariant tangent bundle of M. Since M is a connected
sum of copies of S2 x S?, we know that M is smoothable and hence the
Kirby-Siebenmann obstruction is trivial. Therefore the obstruction to linearizing
the equivariant tangent bundle is also trivial. [

2.2. Smoothly inequivalent group actions with equivalent (equivariant) tan-
gent bundle linearizations. We have already noted that the proof of the preceding
result is in some respect similar to that of [FSS], which yields infinite families
of smoothly inequivalent, but topologically equivalent, actions of finite cyclic
groups on simply connected 4-manifolds. Their methods also involve sophisti-
cated applications of gauge theory methods and delicate surgery constructions. It
is natural to ask whether branched covering methods yield further examples of
smooth finite group actions which are topologically but not smoothly equivalent,
and the remainder of this section is devoted to describing such families of group
actions.

We shall describe examples constructed from simply connected Dolgachev
surfaces (see [FMI], [FM2], [FM3] and [OV]); there is an infinite family of
such 4-manifolds Xy, indexed by the nonnegative integers, such that they are
all homeomorphic to CP2#9CP? (the bar denotes the opposite orientation) but
no two are diffeomorphic. Since these closed manifolds are simply connected,
it follows that H3(Xj:Z5) = 0 and hence all of these smoothings correspond
to the standard linearization of the topological tangent bundle over the smooth
manifold Xg.

As in [Uel] and [Ue2], one method of constructing exotic actions is to form
suitably chosen equivariant connected sums, and this will be the basis for all our
examples. In many cases the key point is to recognize that such connected sums
of 4-manifolds have alternate descriptions (unlike the situation for 3-manifolds).
Our first examples use a result of R. Gompt [Gom3]; namely, if we generically
let M denote M with the opposite orientation, then for each k the manifold

X # X} is orientation presevingly diffeomorphic to #!° (CPz#(C]PQ).
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Proposition 2.4. There are infinitely many smoothly inequivalent smooth involu-
tions on #'9(CP? # CP?2) which are topologically equivalent and define equivalent
linearizations of the equivariant tangent bundles.

Proof. Start with the orientation-reversing involution on S* given by hyperplane
reflection, and take equivariant connected sums with X; L1 X} for each nonnegative
integer k. By Gompf’s result, one obtains a family of smooth involutions ®; on
#19(CP2#CP2?). These actions are topologically equivalent because the manifolds
Xy are homeomorphic to each other. If two actions were smoothly equivalent,
then an equivariant diffeomorphism would preserve the components of the fixed
point sets’ complements, and likewise for their closures. Since the latter are the
punctured manifolds Xj — Int(D?), it would follow that the latter would be
diffeomorphic for two choices m # n of k. Therefore X, would be obtainable
from X, by cutting out an open disk and attaching a closed disk along the
boundary by some diffeomorphism of S2. Since every diffeomorphism of S3
extends to D% by a fundamental theorem of J. Cerf [Cer], it follows that X,,
and X, would be diffeomorphic. Therefore the smooth involutions &, and
®, are smoothly inequivalent if m # n. Since H?*(X¢:Z>) = 0 all of the
smoothings X; — X, determine the same linearization of the tangent bundle,
and the reasoning in the proof of Proposition 2.1 now shows that the linearizations
for the equivariant tangent bundles of the actions ®; are equivariant. O

Similar considerations easily yield other infinite families of smoothly inequiv-
alent, but topologically equivalent, actions that are orientation-preserving, but in
these cases we cannot determine whether any of these manifolds with group
actions are nonequivariantly diffeomorphic.

Proposition 2.5. Let n > 2 be an integer, let V be a |-dimensional unitary
representation of Z,, and for each k > 0 consider the smooth 7, action
@y on the n-fold connected sum #" Xy which is an equivariant connected
sum of the linear action on S(R> & V) with Z, x Xx as in Proposition 1.3.
Then the actions ®p are topologically equivalent, but no two are smoothly
equivalent. However, these smooth actions determine equivalent linearizations for
the topological equivariant tangent bundles associated to ®y.

As noted above, it would be enlightening to know if for some n > 2 there is
an infinite family of actions as above on the same smooth manifold:

Question. For some n > 2 is there an infinite family of smooth manifolds
{#" Xim)) that are pairwise (orientation preservingly) diffeomorphic?
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We shall conclude this section with another example in which the smoothly
inequivalent actions all operate on the same smooth manifold. To simplify the
notation, if p and ¢ are positive integers we shall let pCPHﬁqW denote the
(oriented) connected sum of p copies of CP? and ¢ copies of CP2.

Theorem 2.6. There is an infinite family of inequivalent smooth involutions Oy
on 3CP?#18CP2 such that the involutions are topologically equivalent and
determine equivalent linearizations of the equivariant topological tangent bundle.

Proof. The construction starts with the conjugation involution on CP?, which
takes a point with homogeneous coordinates (a, b, c) to the point with homoge-
neous coordinates (a,b,c). The fixed point set of this action is RP? (viewed
as the subset of points representable by real homogeneous coordinates), and it
is well known that the orbit space CP?/Z, is diffeomorphic to S* (e.g., see
Atiyah—Berndt [AB], Kuiper [Kui] or Massey [Mas]). Since the normal bundle
of RP2? in CP? is not orientable, this example does not quite fit into the setting
of Section 1 in [Sch], so comments are in order regarding the smooth structure
on the orbit space discussed in [AB] and [Kui]. In the situations of interest,
there are compatible orientations on the manifold with involution M and its orbit
space M/Z, such that the orbit space projection has positive degree (equal to
2). Therefore, in the construction of the smooth structure it is enough to consider
smooth coordinate charts that preserve orientations. One key result is Theorem 1.2
in [Sch], which implies that two special atlases satisfying condition (I.1a)—(1.1f)
in [Sch] define the same smooth structure on the orbit space, and in our situation
we need a similar result for oriented special atlases. One crucial step involves a
commutative diagram

RS xR? —2 RS x R?
1qu lqu
RS xR?2 —2 RS x R?
where ¢(x,y) = (x2—y2,2xy) is the map given by squaring a complex number
and v (u,v) = (u, (u)v) where
g : Rf — 02

is smooth. In the setting of this result, the maps ¢ and Y are orientation
preserving, and therefore we can lift # to a map 8 : R/ — U, = SO,.
This yields a refined version of Lemma 1.4 in [Sch], where o : Uy — O, is
the composite of the squaring homomorphism U; — U; with the embedding
U; = SO, C O,. This means ¢ satisfies the identity

¢(u,q(v)) = (u, 0°0'(W)v)
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and hence ¢ is a diffeomorphism. As in [Sch], this means that if A and B
are oriented special atlases for M/Z,, then the identity from (M/Z,,A) to
(M/Z,,B) is a diffeomorphism. One can then proceed as in [Sch] and Section 1
of this paper to show that an orientation preserving equivariant diffeomorphism
M — N yields an orientation preserving diffeomorphism from M/Z, to N/Z,.

If we now take an equivariant connected sum of the conjugation action on
CP? with two copies of a Dolgachev surface Xy, then the orbit space of the
resulting action is CP2/Z,# X, = S*#X; = Xi. so there is no orientation
preserving equivariant diffeomorphism relating the actions defined using Xj and
X; if k # j. Furthermore, there cannot be an orientation reversing equivariant
diffeomorphism either, for such a map would define an orientation reversing
homeomorphism from CP?#X; # X; to itself. Since the signature of the latter
is nonzero, this manifold is not orientation reversingly homeomorphic to itself.
Therefore the actions defined using X; and X; are smoothly inequivalent if
k #% j. On the other hand, one can now use the same arguments as before
to show these actions are topologically equivalent and the associated eqivariant
linearizations of the equivariant topological tangent bundle are also equivalent.

To conclude the proof, we need to show that CP2# X # X splits smoothly
into a connected sum of copies of CP? and CP2. This follows from two
applications of Corollary 9 in [Gom3] (the result is due to R. Mandelbaum
[Manl] and B. Moishezon [Moi]; see also the survey article [Man2]). This result
implies that CP2# X, splits as a connected sum 2CP2#9CP2, and another
application yields the desired splitting:

CP2# X, #X, =~ 2CP2#9CP2#X, =~ 3CP2#18CP2 O

2.3. Minimal examples. One fundamental question about exotic smoothings of
simply connected 4-manifolds is to find examples for which Hy(M:Z) is as
small as possible. Much work has been done on this problem since [Don2] and
[FM1]-[FM4] (e.g., see Fintushel and Stern [FS]), and one can combine these
advances with the methods of this section to construct exotic smooth actions on
nCP2#n CP2 and 3 CP2#m CP2 where n < 10 and m < 18. We have focused
on Dolgachev surfaces to simplify the discussion and to leave space for further
advances in an active research area; new results on minimality questions will
surely figure in determining the least possible values of m and n for which such
exotic families exist.

Linear actions on S* are another fundamentally important class of minimal
examples. It is well known that two linear actions of finite groups on S* are
topologically equivalent if and only if they are linearly equivalent (compare [dRh]),
and it would be particularly illuminating to know if there are smooth actions of
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finite groups on S* which are topologically but not smoothly linear. In higher
dimensions there are are many such examples and extensive literature beginning
with [CMY] and [Son] (see [RS] for a definitive account of the latter).

3. Actions on exotic 4-spaces

Theorem 1.1 implies that all locally linear actions of odd order groups on
noncompact connected 4-manifolds are smoothable, and the same conclusion is
valid for a large class of even order group actions. In view of this, henceforth
we shall limit the discussion of the noncompact case to constructing examples of
nondiffeomorphic smoothings of a locally linear action which define equivalent
linearizations of the equivariant topological tangent bundle. In fact, we shall
specialize even further to locally linear actions on R* which are equivariantly
contractible; note that the latter property implies there is a unique equivalence
class of linearizations for the equivariant topological tangent bundle (cf. tom
Dieck [tDie] or Lashof [Las]). Orthogonal actions of finite groups on R* clearly
satisfy this condition, and additional examples are given by deleting a fixed point
from a smooth semifree cyclic group action on S* for which the fixed point
set is a knotted 2-sphere (see Giffen [Gif], Gordon [Gor] or Sumners [Sum] for
examples and additional background information).

Shortly after the discovery of exotic smooth structures on R*, it became clear
that there were examples which supported smooth actions which are topologically
equivalent to the previously mentioned types of equivariantly contractible smooth
actions on the standard R*. In particular, if Q* denotes the “universal” smoothing
structure on R* constructed by M. Freedman and L. Taylor [FT], the following
result was well known when that paper appeared in print:

Proposition 3.1. Let G be a finite group, and let ® be a smooth effective
orientation preserving action of G on R* (with the standard smooth structure)
such that ® is equivariantly contractible. Then there is a smooth action ®q of
G on Q% which is topologically equivalent to ®.

These examples can be viewed as special cases of a more general construction
which we shall use. If R is the set of oriented diffeomorphism classes of smooth
manifolds homeomorphic to R*, then the Gompf end connected sum construction
(U,V) — UV of [Goml] and [GS] (see Definition 9.4.6 and the accompanying
discussion on pp. 368-369) makes R into a commutative monoid with involution
(given by reversing the orientation); the identity is the class of the standard
smooth structure on R*, and the class of the Freedman-Taylor manifold Q% is a
null element by the results of [FT] (i.e., for every oriented representative V* of a
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class in R we have V4§ Q* =~ Q* as oriented smooth manifolds). Furthermore,
R has an infinite end sum operation {72, U; associated to a countably infinite
sequence {U;} of representatives for classes in R, and this infinite operation has
good commutativity and associativity properties. As noted in [GS], this implies
that UV = R* (smoothly) if and only if U and V are diffeomorphic to
R* and that for every exotic oriented smoothing V of R* the iterated sums
1™ V (m > 1) are never diffeomorphic to R*. In particular, the commutative
monoid R has no invertible elements aside from the identity.

As in Section 2, if W is a connected oriented manifold, then W will denote
W with the opposite orientation.

We can now place Proposition 3.1 into the desired general context:

Proposition 3.2. Let G be a finite group and let ® be an effective smooth action
of G on R*, and let V be a smooth oriented manifold which is homeomorphic
to R%.

(i) If G acts orientation preservingly then there is a smooth action ®y of G
on 1161V (where |G| is the order of G) such that ®y is topologically
equivalent to ®.

(ii) If G = Z, and the action reverses the orientation then there is a smooth
action ®y of G = Z, on V1V such that ®y is topologically equivalent
to P.

Derivation of Proposition 3.1 from Proposition 3.2. The first result follows im-
mediately from the second if we take V = 524_,f01' in this case the absorption
property implies that §/¢l Q* =~ Q* and Q*1Q4 = Q. O

Comments on the proof of Proposition 3.2. The first part of the result is stated
informally on page 202 of Gompf’s exotic menagerie paper [Gom4], and the
idea of the proof is fairly simple. In particular, if x € R” has a trivial isotropy
subgroup (such points form an open dense subset), we can construct the end sum
1161V by means of a smooth proper equivariant embedding y : G x [0, oc) — R*
such that y(1,0) = x and an extension of y to a smooth invariant tubular
neighborhood. In the orientation reversing case there is a similar construction but
the ambient manifold for ®y is given by V V. U

Section 4 of [Gom4] describes some considerably more complicated examples
of finite group actions involving exotic 4-spaces. We shall proceed in a more
elementary direction and consider the following basic question:

Question 1. Let G be a finite group which acts smoothly and semifreely on R*.
Is there an uncountable family of pairwise nondiffeomorphic smooth actions W
which are topologically equivalent to the given action?
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We shall be particularly interested in constructing examples with the following
additional properties:

Question 2. Let G be as above, and let V' be an exotic smoothing of an action
on R* obtained by deleting a fixed point from a smooth action on S*. Is there
an uncountable family of invariant open subsets W; C V' such that the induced
smooth actions on W, are pairwise nondiffeomorphic but the actions W; are all
topologically equivalent to the original action?

If G =Z, and the action reverses orientation, then a positive answer to the
first question is implicit in the results of [Gom2] and [Gom4]:

Proposition 3.3. Suppose that 7., acts effectively, smoothly and orientation
reversingly on R*, and denote the action by ®. Then there is an uncountable
family V(t) of exotic 4-spaces such that the associated action @y are pairwise
smoothly inequivalent.

Comment on the proof. This follows immediately from the construction of [Gom?2]
and [Gom4] which gives a family of 2% mutually inequivalent exotic 4-spaces
V, such that no two of the end sums V,0V, are diffeomorphic. U

Examples of continuous families of orientation preserving actions on R* are
not so apparent in the existing literature, so we shall explain some ways of
constructing such families. If we knew there was continuum of exotic 4-spaces
V; such that no two end sums ™ V; were orientation preservingly diffeomorphic
for some m > 2, then the first part of Proposition 3.2 would yield the desired
families of actions for all groups G of order m, but results of this type do not
seem to be in the literature.

We shall answer Question 2 positively in many important cases. The idea is to
construct continua of actions starting with the initial examples of exotic 4-spaces
arising in the work of Donaldson and Freedman (cf. Gompf’s description in
[Goml]). Strictly speaking, we shall need modified versions of those examples,
and it will be convenient to work in an axiomatic setting modeled on results
in [Goml].

Our construction will use the following standard observation involving the local
equivalence of coordinate charts in a topological manifold; in the 4-dimensional
case it is a consequence of the Annulus Theorem in [Qui] and the Topological
Isotopy Extension Theorem.
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Lemma 3.4. Let A be an oriented smooth 4-manifold, let h: S3x(—1,1) — A be
a homeomorphism, and let U C §3 be an open 3-disk whose closure U is a locally
flat closed 3-disk in S3. Then there is an isotopy of h (through homeomorphisms)
to a homeomorphism h' and a concentric subdisk Uy C Uy C U such that h' is
a smooth embedding on an open neighborhood of Uy x {0} in S3 x (—1,1).

We shall be working with iterated connected sums #" K of the Kummer
K3 surface K. As noted in [FQ], this smooth (in fact, complex) manifold is
topologically a connected sum #”" (N#P), where P is a connected sum of 3
copies of S? x S? and N is a simply connected 4-manifold whose intersection
form is two copies of the Eg matrix [MH]. For each positive integer m, it follows
that #” K contains a region A which is homeomorphic (but not diffeomorphic)
to S3 x (—1,1) and has the following additional properties:

(1) If B C A corresponds to S3 x {0}, then #"K — B has two components
V= and VT whose closures F~ and F* are homeomorphic to (#"N)°
and (#"P)°, where X© is the compact manifold with boundary formed by
deleting the interior of a suitably embedded closed disk.

(2) If A= and A" are the subsets of A corresponding to S* x (—1,0] and
S3*x[0,1),then FNA=A" and FTNA=A4%.

Specific choices of objects in the preceding discussion will be called
Donaldson—Freedman splitting data for #" K.

Definition. A Donaldson—Freedman system for #" K will consist of the following
data:

(1) A set of Donaldson—Freedman splitting data such that the homeomorphism
h @ S3x(=1.1) — A satisfies the partial smoothness condition in the
conclusion of Lemma 3.4

(2) A pair of spaces (W, C) such that W is a smooth manifold homeomorphic to
Ri and C C W is compact, together with a diffeomorphism k£ : W—-C — A.

If we are given a Donaldson-Freedman system as above, then we set W~
equal to W —h 1[A,]. It follows that W~ is homeomorphic to R*, but it is
not diffeomorphic to R*. Although W~ is not quite the same as a Donaldson—
Freedman exotic 4-space in [Goml], it has similar properties.

Proposition 3.5. In the setting above, the smooth manifold W is not diffeomorphic
to R*. Furthermore, if ¢ : W~ — R* is a homeomorphism, and U, C R* is
the open disk of radius t centered at the origin, then there is some A >0 such
that s.t > A implies that ¢~ '[Us] and ¢~ '[U;] are not orientation preservingly
diffeomorphic.
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Proof. This is analogous to the proof of the corresponding result for the Donald-
son—Freedman exotic 4-space (see [Goml], [Gom2] and [Tau]). If W~ were
diffeomorphic to R*, then one could find a smoothly embedded 3-sphere in
A~ — B, and one could use this to define a smooth structure on #"” N as in
[Goml]; as with the latter, Donaldson’s results imply that #” N is not smoothable,
so no smooth embedding can exist. Similarly, if there is a homeomorphism ¢ such
that ¢[Us] and ¢[U;] are diffeomorphic for sufficiently large values of s # ¢, then
as in Gompf [Gom2] and Taubes [Tau] the manifold #"K — (#” P)°, which is
homeomorphic to #" N — {point}, would have a smooth structure with a periodic
end. The results of [Tau] imply that #” N —{point} has no such smooth structure,
and therefore it follows that no two of the smooth manifolds ¢[U;], ¢[Us] are
orientation preservingly diffeomorphic if s and ¢ are sufficiently large. U

A crucial step in our construction is the following relationship between Donald-
son—Freedman systems and connected sums.

Proposition 3.6. Let p and q be positive integers, and suppose that we have
Donaldson—Freedman Systems (W,., Cp: Ap.etc.) and (W,, Cy: Ay, etc.) for #7 K
and #1K respectively. Then one can construct a Donaldson—Freedman system

(Wptg> Cprgs Ap+q.ete.) for #779K such that W, = W W

Proof. The idea is to construct a smooth connected sum of #”K with #/K
in a manner compatible with all the data in the Donaldson-Freedman systems.
This can be done by choosing smooth coordinate neighborhoods E;, and Ej at
smooth points of the 3-sphere B, and B, ; more precisely, we want smooth round
closed disks E, and E, in product neighborhoods of the form A x (—e, e) such
that A x {0} corresponds to the points in B, or B;, A x (—e,0) corresponds
to the points in W, or V., and A x (0,¢) corresponds to the points in
W,F or V. This yields a bicollared topological embedding of B,#B, in
(#? K)#(#4K) which is a smooth embedding around some point, The complement
of Bp#B, splits into two components, and the closure of these components
are homeomorphic to (#7T4N)° and #?79P)°. In fact, we can say even
more. Let E,; C E, and E, C E,; correspond to the points A_ C D*
whose last coordinates are negative. Then the compact manifold with boundary
A_ is a closed tubular neighborhood of the curve [I,00) — IntA_ defined
along the fourth coordinate axis by (0,0,0,w(¢)), where w(f) is a smooth
function such that w(l) = —%, w’ > 0 everywhere, and lim; . w(t) = 0,
and therefore E, and E_ are subsets which can be used to construct the end
connected sums V, 0.V, and W, W,. If V  is the connected component of

p+q

#P+t4 K which is homeomorphic to Int(#PF¢K)°, then it follows that V7, is

orientation preservingly diffeomorphic to V" V,". Now consider the manifold
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Wy W, = (kplAp — AF1U Cp)#(ky[Ay — A71U Cy). By construction the ends
of V,;nV, and W, §W, have diffeomorphic (deleted) neighborhoods, so it
follows that this end sum is a good candidate for the manifold W,;, in suitably
defined Donaldson-Freedman data for #”77K. If we now choose 4,4, to be
a small open bicollar neighborhood of B,#B, which is contained in A,#A4,,
then the remaining data for a Donaldson-Freedman system on #”*t9K can be
constructed in a straightforward manner, and therefore we have a choice of
data for #”79K such that W, is orientation preservingly diffeomorphic to

- ptq
Wb Wy. O

Corollary 3.7. Let m > 2 be an integer and suppose that we have a Donaldson—
Freedman system (Wi, Cy; Ay, etc.) for K. Then there is a Donaldson—Freedman
system (W, Cpi Am.etc.) for #" K such that W, =" Wj.

Proof. This follows by repeated application of Proposition 3.6. [l

Remark. The existence of a Donaldson-Freedman system for K follows directly
from [Goml] and Lemma 3.4, so Corollary 3.7 implies the existence of Donaldson—
Freedman systems for each connected sum #" K.

3.1. Construction of exotic smooth actions. We are almost ready to state and
prove the main result of this section for smooth orientation preserving actions of
finite groups on R*. Our proof will use the following elementary consequence
of local linearity at fixed points of smooth actions.

Lemma 3.8. Let G be a finite group, let V be an effective, smooth and orientation
preserving action on S", and let ® be the smooth action on R"™ obtained by
deleting one fixed point pgo. For each t > 0, let U, C R" denote the open disk
with radius t which is centered at the origin. Then ® is smoothly equivalent to
an action ® of R" with the following property:

There is a positive constant Ag such that Uy, is ®'-invariant and the restriction
of this action to R" —U,,, = S"! x [Lg,00) is the product of an orthogonal action
on S™1 with the trivial action on [Ag,o0).

In particular, it follows that if t > Ay then U; is ®'-invariant and ¥'|y, is
smoothly equivalent to @'.

Lemma 3.8 allows us to simplify the formulation of the main result.
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Theorem 3.9. Let G be a finite group, and let ® be a smooth action on R*
satisfying the conditions in Lemma 3.8. Given an exotic 4-space W, let ®w be
the topologically equivalent smooth action on 1lC! W constructed in Proposition
3.2, and let U, and Ay be as in Lemma 3.8, and let 6 be an equivariant
homeomorphism from (1161 W, ®w) to (R* ®). Then for at least one choice
of W the restricted actions on the G -invariant open sets 0 '[U,].t > Ao are
all topologically equivalent to (R*, ®), but there is some Ay > Ag such that if
t,s > A and t # s then 07'[U,] and 6~ '|Uy| are not even nonequivariantly
orientation preservingly diffeomorphic.

Since the hypotheses (hence also the conclusions) of Lemma 3.8 hold for
orientation preserving orthogonal actions of a finite group G on S* with fixed
points and their associated actions on R*, it follows that every such action is
topologically equivalent to an action on an exotic 4-space which contains an
uncountable family of symmetric exotic 4-spaces as invariant open subsets where
each restricted action is topologically equivalent to an orthogonal action and no
two of the open subsets are orientation preservingly diffeomorphic to each other.

One can also state a version of Theorem 3.9 which does not require the
conditions in Lemma 3.8.

Corollary 3.10. [f the finite group G acts smoothly and orientation preservingly
on S* with (at least) one fixed point po, then there is a continuum of smooth
G -actions {Dy} on exotic 4-spaces {Vy} such that each action is topologically
equivalent to the given action on S* — {po} but the underlying exotic 4-spaces
Vo and Vpg are not orientation preservingly diffeomorphic if « # B.

Proof of Corollary 3.10. This follows immediately from Lemma 3.8 and Theo-
rem 3.9. O

Remark. In the preceding two results we have constructed families of 2%0
smoothly inequivalent actions which are topologically equivalent to a given
example. More generally, if we are given a smooth finite group action on a
second countable manifold, then by the Mostow-Palais equivariant embedding
theorem (see Mostow [Mos] and Palais [Pal]) there are at most 2%¢ smoothly
inequivalent actions which are topologically equivalent to the given one because
there are only 2%0 locally closed subsets in the spaces R”, where n runs through
all positive integers.

Proof of Theorem 3.9. Let (W;,Cy; Ay,etc.) be a Donaldson-Freedman system
for K, and let (Wg| = t]IG‘ W1.Cig|: A|g. etc) be the system for #/Gl K described
in Corollary 3.7. By Proposition 3.2 there is an equivariant homeomorphism
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6 (% W, dp) — (R*, )

and if ¢ is sufficiently large then 6 '[U,] is a smooth G -manifold which is
topologically equivalent to U; and hence is also topologically equivalent to the
original action on R*. On the other hand, by Proposition 3.5 if s and ¢ are
sufficiently large and s # ¢, then the underlying smooth manifolds 6[U;] and
0[Us] are not even nonequivariantly diffeomorphic as oriented manifolds. ]

It is not difficult to state many further questions about group actions on
exotic 4-spaces, but often it is unclear whether these questions can be studied
successfully. We shall conclude this section with one easily stated example which
is motivated by the results of DiMichelis and Freedman [dMF] on exotic 4-spaces
that are open subsets of R*:

Question. Let G act orthogonally on R*. Is there a continuum of invariant
open subsets U, C R* such that the restricted smooth actions are all topo-
logically equivalent to the given action but the sets U, and Upg are not even
nonequivariantly diffeomorphic if « # 87

Here is a statement (without proof) of a partial result:

Theorem 3.11. Suppose that G acts orthogonally and semifreely on R* with a
2-dimensional fixed point set. Then there is a continuum of invariant open subsets
Uy C R* such that the restricted smooth actions are all topologically linear
but the restricted actions on Uy and Upg are not equivariantly diffeomorphic if

o B

For the family of examples in this result, the canonical smooth structures on
the orbit spaces U,/G and Ug/G are not diffeomorphic if o # B.

4. Higher dimensions

If G is a finite group, then the results of [LR] on G -smoothings assume
that, for each subgroup H C G, the fixed point set M has no 4-dimensional
connected components. It is not difficult to construct counterexamples to the
conclusions of [LLR] if this condition is not met. For example, suppose that V" is
an positive dimensional orthogonal representation of G such that G acts freely
on V" —{0} (ie, a free linear representation). Then for each smooth manifold
W*# that is homeomorphic but not diffeomorphic to R* the G -action product
manifold W* x V" is topologically equivalent to the linear action of G on
R*@® V" and the manifold W* x V" is nonequivariantly diffeomorphic to R**”
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(since homeomorphic to R? implies diffeomorphic to RY if ¢ # 4), but W4 x V"
is not equivariantly diffeomorphic to R* @ V" because the fixed point sets are
not diffeomorphic. Furthermore, since R* @ V" is equivariantly contractable it
follows that the linearization of the equivariant tangent bundle for the smoothing
W#x V™ is equivalent to the linearization for the orthogonal action on R* @ V7",
Our main objective in this section is to describe compact counterexamples to the
conclusions of [LR] for locally linear group actions with 4-dimensional fixed point
sets. As before, there are examples of two types; the first involves nonexistence
of equivariant smoothings, and the second concerns nonuniqueness of equivariant
smoothings which determine the same linearization of the equivariant topological
tangent bundle.

Theorem 4.1. Let G be a finite group, and let V be an orientation preserving
free orthogonal representation of G such that n = dimV > 2. Then there is
an infinite family of locally linear orientation preserving, semifree G -actions on
connected oriented (n + 4)-manifolds M; (where j is a positive integer) with
the following properties:

(1) The fixed point sets F; of the G-manifolds are closed, simply connected
4-manifolds whose signatures satisfy |sgnFjuy| # |[sgnFj)| if j(1) # j(2).

(2) The equivariant tangent bundles of the G -manifolds M; come from G -vector
bundles.

(3) The actions are not equivalently smoothable; in fact, their fixed point sets
are not smoothable.

Theorem 4.2. Let G and V be as in the preceding theorem. Then there is an
infinite family of smooth, orientation preserving, semifree G -actions connected
manifolds M;y (where j runs through all sufficiently large positive integers and
h runs through all positive integers) with the following properties:

(1) The fixed point sets of the actions are closed, simply connected, oriented
4-manifolds Fjy such that [sgnFiaypa)l = [sgnlfie)ne)| if and only if
Jj() = j(2).

(2) For each j, the smooth G-manifolds M; )y and M, o) are orientably
topologically equivalent, and the equivariant linearizations of their equivari-
ant tangent bundles are also equivalent.

(3) For each j, the smooth G -manifolds M;pny and M) are not equiv-
ariantly diffeomorphic if h(l) # h(2). However, the manifolds M; )y and
M; p2y are nonequivariantly orientation preservingly diffeomorphic for all
h(1) and h(2), and M; py— Fj a1y s orientation preservingly equivariantly
diffeomorphic to M; p2y — Fjpy for all h(l) and h(2).
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The final conclusions in part (3) of the second theorem are analogs of the
replacement theorems for fixed point sets due to S. Cappell, S. Weinberger and
M. Yan (see [CW] and [CWY]). A more general statement of the replacement
principle for 4-dimensional fixed point sets is given in Proposition 4.3 below.

Proof of Theorem 4.1 We begin with an alternate description of the smooth
oriented bordism homology theory Q39(X) considered by P. E. Conner and
E. E. Floyd (see [Con], Section 1.4, and [Sto], Example 6, p. 43). Chapter II
of [Sto] discusses bordism theories for smooth manifolds with an extra (B. f)
structure arising from a suitable map f : B — BO. The structures may be viewed
as suitably defined equivalence classes of liftings for the diagram

B

M 2 B,

where Ny is the classifying map for the stable normal bundle of M, where
M is embedded in some large R?. There is an analogous theory for topological
manifolds because (i) embeddings of a topological manifold M in some large
R? have topological tubular neighborhoods (see [KiS]), (ii) there are topological
transversality theorems analogous to the usual smooth transversality results (see
[KiS] for dimensions # 4 and [FQ] for the 4-dimensional case). It follows that
the oriented bordism homology groups Q3°(X) are isomorphic to the topological
bordism groups QTOP(B, f), where f : B — BTop is the composite

coord

X x BSO — BSO i BTop
proj

and B; is the map of classifying spaces corresponding to the standard homeomor-
phism i : SO — Top. Since a smooth structure or a manifold M defines a unique
equivalence class of vector bundle structures on the topological tangent bundle,
it follows that each smooth representative of a class in Q3°(X) in the sense
of [Con] determines a unique class in the topologically defined bordism group
QTOP(B, f), and in dimensions# 4 the resulting bijection of bordism groups
reflects the fact that equivalence classes of smoothings correspond to equivalence
classes of stable tangent bundle linearizations in such cases (see [KiS]).

Our reason for interest in this alternate description of Q3°(X) is that it allows
one to view classes in Q39(X) as representable by data (M* A, h: M* — X),
where A is an oriented vector bundle structure on the tangent bundle for a
topological 4-manifold and f : M* — X is a continuous map as in the Conner-
Floyd definition. If X is a point, then Qio =~ 7 is detected by the signature, so
the latter determines the class of (M*, 1) where M* and A are given as above.
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With the preceding observations, the proof of Theorem 4.1 becomes fairly
straightforward. Let S(V') denote the unit sphere in V' with its associated free
orthogonal action of G, let L(V) = S(V)/G, and let h: L(V) — BG be the
classifying map for the principal G-bundle S(V) — L(V'). Consider the class in
Qﬁgl(BG) represented by (L(V),h). Since G acts orientation preservingly, n
must be even and therefore the results of [Con]| imply that the class [L(V'), h] has
a finite order that we shall denote by m. For each j > 0 let Fj4 be the oriented,
simply connected 4-manifold which is a connected sum of 2mj copies of the
simply connected Eg manifold (hence the tangent bundle of F; 4 can be linearized).
It follows that F4 x [L(V),h] represents the trivial class in Qi?_,T(BG) A null
bordism of the class corresponds to a map k : W* — BG such that k[0W™ is the
composite of / and the coordinate projection F4><L(V) — L(V). Since FxL(V)
is connected, we might as well assume the same for W*. Take W — W™ to be
the principal G -bundle classified by &k, and form the G -manifold

M;H-Jl - (FJ4 ~ D(V)) Us W4+II

where D(V') C V is the unit disk. It follows that M4+” is a closed, connected,
semifree and locally linear G -manifold with a lmeauzatlon of its equivariant
topological tangent bundle. However, the action is not smoothable; if it were,
then Fj4 would be smoothable, and by [Donl] we know this is not the case. [

Before beginning the proof of Theorem 4.2, we shall formulate a generalization
of one step in the argument.

Proposition 4.3. (Replacement Principle for fixed point sets) Suppose that the
finite group G acts smoothly and semifreely on a closed manifold M, let F
be a connected component of the fixed point set MC, and let (N;F,F') be a
smooth s-cobordism which is topologically trivial. Assume that dimM > 5 and
dim F > 4. Then there is a smooth semifree G -action on M x [0, 1] with the
following properties:

(1) The restriction to M x {0} is smoothly equivalent to the original action.

(2) The action on M x [0,1] is topologically equivalent to the product of the
original action with the trivial action on [0, 1].

3) If M" = M x {1}, then the fixed point set of M’ is diffeomorphic to
(M¢ —F)L F'.

(4) The restrictions of the group actions to M —F and M'—F' are equivariantly
diffeomorphic.
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(5) The equivariant smoothing of M’ given by the associated G -homeomorphism
M’ — M determines a linearization of the equivariant tangent bundle of M

which is equivalent to the usual one given by the smooth structure on the
G -manifold M .

More concisely, we can form a topologically equivalent smooth action in which
the fixed point component F is replaced by F’.

Proof of Proposition 4.3. The ideas are fairly standard, so we shall only sketch
the argument. Start with a closed collar neighborhood F x[0,¢] of F x {0} = F
in the s-cobordism N . Let v be the equivariant normal bundle of F in M,
let p: N — F be a homotopy inverse to the inclusion F C dN C N, and let
D(p*v) denote the disk bundle for the pullback of v. Then the restriction of
p*v to the closed collar neighborhood F x[0,e] C N is a product D(v) x [0, €].
Form a smooth G -manifold from

W =Mx|0,¢] Ub@) x[0.e] D(p*v)

by rounding the corners at S(v) x {¢} and S(v) x {1} equivariantly. It follows
that W is equivariantly homeomorphic to M x [0, 1], and the fixed point set
of the induced action on the upper component M’ of W is diffeomorphic to
(MG — F)1I F’. The smoothness of the action on W and the homeomorphism
W = M x[0,1] imply that the equivariant linearization of the tangent bundle
to M’ given by the G-homeomorphism M’ — M corresponds to the usual
linearization coming from the equivariant smooth structure on M .

Since W = M x [0, 1] topologically, it follows that (W, M x{0}) is (nonequiv-
ariantly) an s-cobordism, and since dim M = 5 the smooth s- cobordism Theorem
implies that ¥ is nonequivariantly diffeomorphic to M x [0, 1]. Therefore M’
must be nonequivariantly diffeomorphic to M . Finally, we need to show that
M — F and M’ — F’ are equivariantly diffeomorphic. Let v' be the pullback of
v with respect to the composite

F'CN-—>F

where the second map is the homotopy inverse to F C dN C N. Then M — F
is equivariantly diffeomorphic to (M —IntD(v)) Ugy (D(v) — F) and M' — F’
is equivariantly diffeomorphic to (M —IntD(v)) Ugw) S(p*v) Uy D(v') — F" and
since D(v') — F’ is an open collar neighborhood of S(v’) in D(V') it follows
that M’ — F’ is equivariantly diffeomorphic to

(M —IntD(v")) U S(p™v) U open collar

and M — F is equivariantly diffeomorphic to
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(M —IntD(v)) U S(v) x[0,1) = M — D(v)

Note that S(p*v)—open collar is just S(p*v)—S(v'). By construction S(p*v)/G
is an s-cobordism, and therefore the Half Open /-cobordism Theorem implies
that S(p*v)/G—S(v')/G is diffeomorphic to S(v)/G x[0,1) (see Hudson [Hud],
Theorem 7.11, p. 171, for the piecewise linear case, and extend it to the smooth
case using the methods and results of [HM]). Therefore it follows that M’ — F’
is also equivariantly diffeomorphic to M — D(v) = M — IntD(v) U open collar,
which means that M — F and M’ — F’ are equivariantly diffeomorphic. ]

Proof of Theorem 4.2. Let V' be given as in the statement and proof of Theorem
4.1, and as in the proof of that result, let m denote the order of the oriented
bordism class [L(V).h] € QEQI(BG).

As noted in Theorem 3.6 in Subsection 7.3.2 of [FM4], if g is sufficiently
large then the manifold

B(g) = CP2#¢q CP2

has infinitely many smooth structures, and for a fixed value of ¢ the signatures
of these manifolds are all equal to 1—¢. Let ¢* be the least positive integer such
that ¢* is sufficiently large and ¢*—1 = 0 mod m, and let Fjp = B(¢* + jm),
where j runs through the positive integers. Then for each ; the cited theorem
in [FM4] yields an infinite family of pairwise nondiffeomorphic manifolds Fj
which are homeomorphic to Fjo. By construction [sgn Fjcpyn1)| = [sgn Fj2),n2)]
if and only if j(1) = j(2), and these signatures are all nonzero multiples of m.

We can now construct smooth actions of G on smooth manifolds M; with
fixed point sets Fjo as in the proof of Theorem 4.1; in the present setting, the
actions are smoothable because we are given smooth structures on the manifold
Fjo. For each k., there is smooth s-cobordism from Fjo to F;; by [Wall]
(recall that s -cobordism and s-cobordism are equivalent in the simply connected
case). Therefore, if we fix j, then Proposition 4.3 yields an infinite family
of nondiffeomorphic smooth G -manifolds M;; such that the fixed point sets
are given by the nondiffeomorphic 4-manifolds £}, the manifolds M;; are
nonequivariantly diffeomorphic to each other, and the remaining conditions in the
conclusion of the theorem are satisfied. L]
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