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Invariants of the special orthogonal group and an
enhanced Brauer category

Gustav I. Lehrer and Ruibin Zhang

Abstract. We first give a short intrinsic, diagrammatic proof of the First Fundamental

Theorem (FFT) of invariant theory for the special orthogonal group SO,«(C), given the

FFT for 0,„(C). We then define, by means of a presentation with generators and relations,

an enhanced Brauer category B (m) by adding a single generator to the usual Brauer

category B(m), together with four relations. We prove that our category B (m) is actually

(and remarkably) equivalent to the category of representations of SO,,, generated by the

natural representation. The FFT for SO,« amounts to the surjectivity of a certain functor T
on Flom spaces, while the Second Fundamental Theorem for SO,« says simply that T is

injective on Horn spaces. This theorem provides a diagrammatic means of computing the

dimensions of spaces of homomorphisms between tensor modules for SO,,, (for any m

Mathematics Subject Classification (2010). Primary: 16W22, 15A72; Secondary: 17B20.

Keywords. Invariants, Brauer category, diagrams.

1. Introduction

1.1. History. If a group H acts on a vector space W, the element vu e W
is said to be invariant if hw — w for all h e H. Tire set of invariants WH
is a subspace of W, and in general the problem of finding a spanning set for
WH is known as the first fundamental problem of invariant theory, and that of
describing all relations among the elements of the spanning set is the second

fundamental problem. When W has extra structure, e.g., if it is an associative

algebra, or a commutative algebra, the first and second problems are recast as

asking for generators and relations respectively in the appropriate category. In
the two examples given, one would ask for algebra generators of the invariants,
together with generators of the ideal of relations among them.
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If V — Cm, H GL(F) and W Endc(F®'') for some positive integer

r > 1, Schur [Schi] completely solved the fundamental problems, and proved what

are now known as the first and second fundamental theorems (FFT and SFT) of
invariant theory. Note that in this case, W is an associative, non-commutative

(if ;• > 1) algebra. It was subsequently shown that his theorem is equivalent to

solving the corresponding problem for the commutative algebra C[W], where

W V®r 0 F*®*, which is just the symmetric algebra on IF*. These results

are well known, and we shall not rehearse them here. Suffice it to say that they
have led to applications in the representation theory of Lie groups (cf. [Wey])
and to an enormous literature in what has become known as Schur-Weyl duality
(see, e.g., [DDS, KM, Aiz]), in many and varied settings.

When V above is endowed with a non-degenerate symmetric (resp. skew)
bilinear form and H 0(F) (resp. Sp(F)) is the full isometry group of
(F, Weyl [Wey] has proved results which could be interpreted as versions

of the FFT and SFT for the H action on the commutative algebra C[F®r]. His
FFT asserts that the space of invariant functions is generated as a commutative

algebra by contractions using the given form, while his SFT asserted that all
relations among these generators are generated by the obvious determinantal
condition.

This work has an important reinterpretation in terms of diagrams, which was

given in 1937 by Brauer [Bra]. With F and H as in the previous paragraph,
he defined certain algebras Br in terms of diagrams, as well as homomorphisms
Tjr : Br —> End#(F®r) (r — 1,2, 3,... whose surjectivity is equivalent to the

FFT in this setting. Brauer left open the SFT in this formulation, which amounts

to describing the kernel of rjr, an ideal of Br. This question has only recently
been resolved [LZ1, LZ2] by the present authors, who produced an explicit ideal

generator in Br for the kernel of rjr, and in this way, provided a presentation of
Endff(F®r).

Tire above circle of ideas are most efficiently expressed in the language of the

Brauer category [LZ2].
There are now many vast generalisations of this work in which the base ring

C is replaced by other domains, and in which 'group' may be replaced by Lie
algebra, quantum group, or another algebraic object which has an action or co-
action (see, e.g., below). These generalisations are often of central importance
in addressing difficult questions concerning multiplicities and character formulae

(see [Jan] for a good survey) and are related to geometric questions such as

intersection cohomology of the flag varieties (cf. [Spr, Lus, DL]) They are

part of the vast subject of 'invariant theory', which includes geometric invariant

theory, a subject distilled by Mumford [MFK] from many persistent mathematical
themes through many ages. If H is an algebraic group over C acting on an
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affine variety X, then H acts on the coordinate ring C[X], and the properties
of the 'orbit variety' X//H are reflected in the properties of the ring C[X]H of
H -invariants.

In this work we shall be concerned with a particular issue in the orthogonal

case. Consider the situation described above, when the form is symmetric.

Taking IV Endc(F'8"') as above, but with H SOIE) rather than O(F),
evidently there are more invariants, but the structure of the ring of invariants has

always been somewhat imperfectly understood. It is this case and its generalisations

upon which this work is focussed.

1.2. This work. Many results in invariant theory have a categorical formulation
in terms of the Brauer category, see, e.g., [LZ1, LZ2, LZ3, Del],

In this note we give a short diagrammatic argument to deduce the FFT for

SO(F) from that for 0(F). This is direct, and involves no induction on dimension,
which appears in traditional proofs such as those in [FH, Ri ]. In order to facilitate
the study of homomorphisms between tensor modules for 0(F) and SO(F), we

recall the definition of the Brauer category in §3.2. The FFT for 0(F) amounts

to the statement that the functor from the Brauer category to the category of
tensor representations of O(F) is full.

However this functor is not full when regarded as a functor to representations of
SO(F), because extra morphisms are needed. We therefore define an enhancement

of the Brauer category in §5.1, which is again described in terms of a presentation

using diagrams, with the generators and relations which define the Brauer category
(cf. [LZ2]) plus one extra generator and several extra relations which involve it.
We prove a FFT for SOm — SO(F) for F Cm) for our new category, i.e.,

we show that the functor from our enhanced category to the category of tensor

representations of SO(F) is full, but the surprising fact to emerge is that one

can prove that the new relations at the categorical level include the generator
of the kernel of the functor from the Brauer category to the category of tensor

representations. This implies that the maps induced on Horn spaces by the functor
to representations, are all automatically isomorphisms, i.e. that our new category
is equivalent to the category of tensor representations of S0,n. In particular,
the dimensions of the endomorphism algebras may be computed formally in

our category. That is, we may determine the Horn spaces (for example their

dimensions) between SO(F)-tensor modules by a formal computation using just
the generators and relations in our enhanced category.

The calculation which yields that the ideal of relations we give here includes
the kernel of the maps from the Horn spaces in our abstract category to those

in the category of tensor representations of SOm appears for m 3 in [BE],
which was part of our inspiration for this work.
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Although our results here are framed for spaces over C, they actually apply
without extra effort to any field of characteristic p > m dim F, and with a

little more effort to any field of odd characteristic. That is, our main theorems

hold if C is replaced by an algebraically closed field of characteristic p > m

as an analogue of the argument in [LZ1, Thm. 9.4] shows. If C is replaced by

an algebraically closed field of smaller odd characteristic, the methods of [HX]
may be applied.

In a future work we intend to apply similar methods to the case of the

orthosymplectic Lie super algebra osp(m\2n). In this case, the space of super
Pfaffians (cf. [LZ4]) will come into play as the harmonic generators of those

invariants of osp(m\2n) which are semi invariant for the super group scheme

OSp(m|2n).

2. Preliminaries

Let V Cm be equipped with a non-degenerate symmetric bilinear form
Let G := 0(F) be its isometry group, and G' SO(F), the identity

component of G. We refer to F as the natural module for G or G', and we

shall be concerned with the invariants (F®r)G'.
Assuming the first fundamental theorem (FFT) of invariant theory for G,

we give a short proof of the FFT of the invariant theory for the special

orthogonal group G', in the context of tensor powers of the natural module.

That is, we shall give a spanning set for (F®r)G'. The result is of course

classical, but our proof is particularly short and depends only on diagrammatic
ideas.

If M is any finite dimensional G-module, then MG' — MG © MG'det, where

MG'det jm e M | g(m) det(g)m, Wg e G}.

Our aim is to explicitly describe MG when M F®'". We assume that (F®r)G
is known, and given by the FFT for G as stated in Theorem 3.2 below; hence

we need only consider (^v^>r)G'det. To state our theorem, we need the element

C e F®F and its dual C introduced in §3.2 below. We note also that we shall

be dealing with the Horn spaces of the category whose objects are the vector

spaces F®r, r — 0,1,2,... Since F®° C, an element D of F®r may be

thought of as an element of Hom(F®°, F®r), and an element a e Symr (the

symmetric group) as an element of Hom(F®r, F®r).
With this understanding, an element D e F®r is harmonic if

(C ® (idj/)®r 2) o a o D — 0 for all a e Symr.
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Theorem 2.1. Maintain the above notation. Assume that for some integer rc > 0,

there exists a harmonic element A in (v®rc)G'det satisfying the condition

(A, A) ^ 0. Then (i/®r)G>det ^ 0 if and only if r — rc >0 is even, and in

this case,

(V®rf, det CSymr(A (gl C®^).
Here CSymr is the group ring of the symmetric group Symr over the complex

numbers. Note that AgC0^ e V®r, so that CSym,.(A<gC®ZL^) denotes the

space of all linear combinations of A <g composed with a permutation.

Remark 2.2. (1) Since any nonzero element A e AdimKF evidently satisfies

the conditions of Theorem 2.1, we recover the FFT of invariant theory of
the special orthogonal group (see [FH, Appendix F] and [Pro, §10.2]).

(2) One of our motivations in formulating the result in this way is to stress the

role of harmonicity, because that is what generalises to other cases, such as

the orthosymplectic Lie super algebra.

We prepare for the proof by explaining a diagrammatic way of viewing the

problem.

3. The category T

Let T be the full subcategory of the category of finite dimensional modules

for G' SO(F) with objects F®r, where re N. For any i,j e N, let

TtJ := HomG'(F®', F®;).

Remark 3.1. Note that T is naturally a tensor category: if A e T]J and B eTrs,
then A (g B e T/+rs is defined in the obvious way. All categories in this work
have a similar tensor structure, which is realised by juxtaposition of either tensors

or of diagrams, depending on the context. The symbol g will always denote this

tensor product, or juxtaposition, and should be distinguished from composition
of morphisms.

We also have a natural duality on T arising from the fact that the form
extends naturally to a non-degenerate symmetric bilinear form, also denoted

on F®r for any r, so that the dual space (F®r)* is naturally identified with V®r.

If v e F®r, denote by v* the element of (F®r)* defined by v*(w) (v,w) for
all w e K®r. Note that if g e 0(F), then g(v*) (gv)*

For A e T/, the dual A* e Tj is defined by

(Av,w) — (v, A*w)

for all v e F®(' and w e F®;.
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3.1. Diagrammatics. If A e T', we denote A by a diagram D :

j
A

i

Then A* is represented by the reflection D* in a horizontal of the above

diagram:

i

A*

j
Composition of morphisms is thought of as concatenation of diagrams.

An element v e (F®r)G may be thought of as the map in Tq which sends
1 e C to u. Then v* is the map in T? which takes w to (v,w). Diagramatically:

v

and

If v, w e we may form the compositions vow* e 77 and

w* o v e and it is easily verified that

(3.1)
vow : x h» (w, x)v and

uf* o v : 1 (w,v).
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In terms of diagrams, (3.1) may be written

187

bw*,v £ 77

where </y*,£(x) (ml,*)« for all x e F®r, and

(v, w) 77

3.2. The Brauer subcategory B cl~. Let e\ ,em be an orthonormal basis

of F. The element C := JF e F®F is independent of the basis, and 0(F)-
invariant. Regarded as an element of 7^ := Homr(0,2), its dual is C* C e 7^,
where for u,iu e F, C(u ® w) — (v,w) (since (C,v ® w) (v,w)). Note that
the relations (3.1) show that C o C — m and C o C : v <S> w (v, w)C

We recall the definition of the Brauer category B — B(m) (over C from

[LZ2]. It has objects N and morphisms which are generated by the four morphisms

LU, A — U* and X in B\, Bq, B\ and B\ respectively. Moreover we have a

functor T from B to T which takes I to id^, U to C, d to C and X to

r e 77 given by r(w<g)iu) w®v. We abuse language by referring to the image of
this functor as the Brauer subcategory B := L(B) c T, and to its morphisms Bf
as Brauer morphisms. Note that CSymr C Brr Diagrammatically, the morphisms

idy,C,C and r are respectively the images of the following diagrams:

id^ C C
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The FFT for 0(F) may be stated as follows.

Theorem 3.2. In the above notation, the functor T : B(m) —» f°(V) is full, where

T°(v> is the subcategory of T with 0(F) -invariant morphisms. In particular,
for any non-negative integers i, j, we have

(3.2) {Tf)0(y) B{.

Equivalently, (F®r)0^ 0 if r is odd, while if r — 2d is even, then

(3.3) (K®2rf)0(F) csym2d(C®d).

Remark 3.3. (i) In terms of diagrams, the theorem states that (K®r)°F/) c
is spanned by diagrams of the following form:

The depicted diagram has image in T equal to Tco{C)®d, where r 2d and

it e Sym2^ is the relevant permutation (in this case (1)(2,4, 6.7,5, 3)(8, 9)( 10) if
the are ignored and the nodes are numbered from 1 to 10 from left to right).

(ii) It follows from Theorem 3.2 that if f e (V®2d)G, where q — 0(F) (so

that e lfd), and if o D — 0 for each diagram of the above form, then

1 0.

(iii) The diagram shown represents an element of Tf — (V®r)G. Its dual in

if, which is the diagram obtained by reflecting the one shown in a horizontal
line, applied to v iq ® ® vr is the product of the contractions (ivj) over

pairs (i, j lying on a common arc.

4. Proof of Theorem 2.1

Suppose we have A e (F®rc)G'det SUch that (A, A) ^ 0 and A is harmonic.
Let iia F®r<" —> CA ç F®rc be the G-module homomorphism given by

xa(m) (a'a) A for any w e F®rc. The G -equivariance of ita follows from the

fact that gA det(g)A for g e G. For any integer r > 0, let TZA,r 71k C>idi/®r ;

then J^Ar ~ ^A.r, so that tïA,r is the orthogonal projection from V®(-rc+r^ to
CA ® F®r A ® F®r.
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Proof of Theorem 2.1. Since G is linearly reductive, taking G-fixed points of
G-modules is an exact functor, we have an isomorphism

(4.1) (A ® V®r)G ~ ((y®^-+r))G)

The FFT for G enables us to determine the right hand side of (4.1) by using the

harmonicity of A.
We show first diagrammatically that (A <g> F®r)G 0 if r < rc. For this,

observe that (A,A)nA,r e Tff+f is represented by the diagram

rc

A

A*

r =(A,A)tta ,r-

rC

Now if r < rc, it is evident that in any composition of the form (A, A)7Ia,r°D,
where D is the diagram in Remark 3.3, there will be an arc of the lower diagram
which has both ends joined to A* By duality, the fact that A is harmonic implies
that for any a e Sym^., we have A* o o o (C <g> (id)®rc~2) 0. It follows that

by harmonicity of A, if r < rc, any composition (A* <g> idK®r) ojro (C)®^^
is zero, where n e Symr +r, and by Remark 3.3 (ii), it follows that any element

of (A <S> F®'')g is zero.

Moreover, it follows by a straightforward manipulation of diagrams (see below),
that if r > rc, then again applying the FFT for G in the form (3.3), the right
side of (4.1) is a linear combination of the diagrams A ® a o (A 0 C®"?^),
where o e Symr. That is, if r >rc, then as elements of (F®(r+rc))G c Tfc+r,

(4.2) nA!r((F®(r+r^)G) A ® CSymr o (A ® (j/®!*—r<9)G)

This may be seen as follows. When a diagram D of the form in Remark 3.3 is

composed with (A,A)7TA,r» then if the composition is non-zero, all the arcs of
D have at most one end in A*, and each string of A* connects with an arc

of D. Hence one may interpose (between D and (A. A)nAtr) a permutation in

Symr.. x Symr to obtain an element in A ® (A ® (y)®r~rc)G, after sliding A*
and rotating through n to obtain A.
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Next observe that evidently

(4.3) A ® (L®'-)G4et — (A (g) y®r)G ^ /(F®(r+rc))G\
_

It follows from (4.2) and (4.3), as well as the above analysis of the case r < rc,
that

^ 10 if r < rc, and
(4.4) (F®r)G,det I

/(CSym,. (A <g> (V®(r~r^)G), Vr > rc.

Applying the FFT for G (3.3) to identify (V®r~rc)G, we obtain the theorem.

Example 4.1. Let e1,...,em be an orthonormal basis of V, and take A

e\ a • A em Am{ex <g> <g> em) where Am (m!)"1 EtreSym,. £(°")CT e BZ
Then A is evidently harmonic, and (A, A) (m!)-1 ^ 0.

Corollary 4.2. Let i,j e N. Any element a e (7f')so^-) is uniquely expressible
in the form a u\ +a2, where a\ e and «2 « obtained from an element of
(y®rc^O(V),det c (7^c)SO(Z) jyy fensoring anci composition with elements of B,
i.e., with Brauer morphisms.

Example 4.1 and Theorem 2.1 give a complete description of the space
(L®'')0(K)'det, so that Corollary 4.2 is the FFT for SO(F).

Notice that Corollary 4.2 states more than simply that all SO(F) -morphisms
between tensor powers of V are obtained from Brauer morphisms (i.e., those

which commute with 0(F)) and A by composition and tensor product. It
states that A need only arise at most once in any such 'word' for an invariant

homomorphism.

Remark 4.3. The arguments above may be adapted to prove a corresponding
result [LZ4] (where the super Pfaffian enters) for ospi|2„.

5. The enhanced Brauer category ß (S)

Let A be a commutative ring and S e R. We fix a positive integer m. With
this data, we shall define a tensor category B (5), which contains a quotient of
the usual Brauer category B(8) [LZ2] as a subcategory. We shall see that the

relations we impose imply a relationship between 8 and m, so that for each m
there are only finitely many values of 8 which make our relations consistent. Both

categories have objects N {0,1.2,...}, morphisms which may be described

diagrammatically. There is an involution *
: FIom(m,n) —> Hom(n,m) which is
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described on diagrams by reflecting diagrams in a horizontal line, if they are

drawn as we have shown in §§3,4. This map may be interpreted as a functor
from the category to its opposite.

5.1. Definition of B{8). We have seen that B(8) may be presented as the

category with object set N and morphisms which are generated by the four

morphisms I,U, A and X under composition, tensor product and duality, subject
to certain relations, which are described in [LZ2]. In the definition below, we
shall make extensive use of the total anti-symmetriser e Brr, where B — B(8).
This is defined by

(5.1) £r ^2 s(n)7t,
tc eSymr

and is depicted diagramatically as

r

r

r

Remark 5.1 (Remark about notation). This notation is inconsistent with that of
§3.1, but justified because of its simplicity, and the extensive use we make of the

endomorphism Er.

Definition 5.2. Let R be a ring, 8 e R and m > 2 a positive integer. Tire category
B (8) has object set N and morphisms which are generated by I,U, A,X and

one new generator Am e B'q subject to the following relations, which describe

the interaction of the new generator with the Brauer morphisms.

(1) Hie relations [LZ2, Ihm. 2.6(2)] for the generators /, U, A and X.

(2) (Harmonicity) For each positive integer r with 0 < r <m — 2,
(I®r ® X ® I®m-T~2) oAm=0.

(3) For each positive integer r with 0 < r < m — 2,
(7®r <8> X <8> I®m-r~2) oAm= —Am.

(4) Am o

(5) Am ® I (8) Am (cm+1 ® /®m) o (Am ® Am ® /), where cm+i is the

m + 1 -cycle (m + 1. m, m — 1,..., 1) e Symm+1.
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The new generator Am will be depicted diagrammatically (as a morphism
from 0 to m) as follows.

The relations above have suggestive diagrammatical interpretations, which are

helpful in performing computations in the category B (5). For example, the

relation (4) may be depicted diagrammatically as in Fig. 1, and the relation (5)
is shown in Fig. 2.

m

m

m

m

Figure 1

The relation (4)

Figure 2

The relation (5)

Remark 5.3. With our application to invariant theory in mind, we shall assume

that the base ring R is an integral domain, and that m\ ^ 0 in R.
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For any integers r > 0 and i — l,2,...,r — 1, write cr; (7'_1) 0 X 0
(/®r-»-i) e Brr. Evidently the 07 generate the symmetric group Symr ç H J!,

and condition (3) of Definition 5.2 asserts that the generators a; of Symm satisfy

ai o Am — —Am, whence w o Am — s(w) Am for w e Symm, where s is the

alternating character of Symm. It follows that £m o Am mlAm, and hence by
the above assumptions, that, if 0, then Am 0. If Sm 0, the category
B (5) therefore is just a quotient category of B(S).

To avoid this degeneracy, we shall therefore assume that Y,m ^ 0.

Remark 5.4. Note that although <5 does not appear explicitly in the definition
above, it is inherent in the definition of B{8), where it is stipulated that UoA — 8

(note that R). The integer m enters only in the definition of B

5.2. Some computations in the category B(8). In this section, we shall

perform the computation which we shall later use to show that the kernel of the

(surjective) map from B (m)j to (7j7)SOm is zero. We shall argue diagramatically,
and recall the following result from [LZ2].

Lemma 5.5. [LZ2, Lemma 2.1(1) and (2)] For all r > 1 we have the following
relations in B{8), and hence a fortiori in B(S).

(6)

r r - 1 - (/- - 2)!-1

(7)

— (r — 1 — 5) r - 1

The next result shows that there are constraints upon the parameter 8 arising
from consistency questions in the category B (8).

Lemma 5.6. Assume that m\ 0 in R and that Em ^ 0. Then 8 satisfies the

polynomial equation

(5.2) 5(5 — 1)... (5 — (m — 1)) m

Furthermore, A* Am ml e R.
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Proof. We shall compute A^Am in two different ways. First, observe that by

inspection of the relevant diagrams, it is evident that (Am A* )2 (Am(A^ Am) A,*
where A^A,„ is a scalar; thus applying Relation (4), (AmA^)2 (A^Am)£m.

But again by Relation (4), (AmA*)2 m\T,m, whence comparing
coefficients of the non-zero element £m, it follows that

(5.3) A^Am=m\.

Next, note that we have the relation (8) depicted in Fig. 3.

Figure 3

Relation (8)

Now the right side of relation (8) is, by m applications of Lemma 5.5, equal
to (5 — (m — 1))(5 - (m — 2))... (5 — 1)5, while the left side is just A* Am The

result is now clear from (5.3).

Theorem 5.7. The assumptions of Remark 5.3 remain in force. That is, we assume
m\ 0 in R, and £m fi=- 0.

(1) In the category B (8) we have the equality of morphisms £m+i
/,„(<$)£m 0/. Here m is the positive integer occurring in the definition
of B (S) and fm is the polynomial in 8 given by fm{8) (5 — (m —1))(5 —

(777 — 2)) (5 — 1) — (m — 1)!.

(2) We have £m+i 0.

(3) We have 8 — m.

Proof We begin by proving part (1). In this proof we shall make liberal use, both

explicit and implicit, of the mutually inverse isomorphisms Up : Brp+q -> Brp+q

and : B'p+q -r Bp+q defined in [LZ2, Cor. 2.8]. Note that these isomorphisms
involve only operations (tensor product and composition) with the Brauer

morphisms in B (5).
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The relation (6) of Lemma 5.5 yields in our situation

We now replace each of the two rectangles in the second summand on the right
side above by the left side of Figure 1. A little manipulation then shows that the

result will follow if we prove the relation (9) in Fig. 4.

Figure 4

Relation (9)

Next, observe that by rotating the top half of the left side of Relation (9) in

Fig. 4 anticlockwise by it and then applying the isomorphism Uj from B\ to
the relation (9) is equivalent to Relation (10) in Fig. 5.

Now to prove Relation (10), observe first that applying the isomorphism U
to both sides of the relation (4) as shown in Fig. 1, we obtain the relation (11) in

Fig. 6.

Then, applying I ® 0 / to both sides of Relation (11), and applying
Lemma 5.5 (7) m — 1 times, we obtain the relation (10) of Fig. 5, and the proof
of part (1) is complete.

To prove part (2), note that it follows from part (1) that

Em+1 o <S> U) — fm(S)ÇEm ® I) o (J®m-' 0 U).
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Figure 5

Relation (10)

Figure 6

Relation (11)

But the left side of this equation is evidently zero, while the right side is an

invertible multiple of fm(S)T,m ® I. It follows that fm(8) — 0, and hence by (1),

that £m+i 0.

Finally to prove part (3), observe that fm(8) 0 implies that 8(8 — 1)... (8 —

(m — 1)) 8(m - 1)!. Comparing this to the relation 8(8 — 1)... (8 — (m — 1)) m\

of Lemma 5.6, we see that 8 m.

Remark 5.8. Although Theorem 5.7 has been proved under the assumption that

£,n 0, the conclusions of parts (1) and (2) evidently remain true if £m 0,
but (3) fails. The application to invariant theory is also predicated upon this

assumption.
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6. A covariant functor-application to invariant theory

6.1. The main theorem. The results of the previous section indicate that the

category of relevance to the invariant theory of SOm is B (m). Our main
theorem is as follows.

Theorem 6.1. Let V be Cm, equipped with a nondegenerate symmetric bilinear
form and let G — SO(F). Let T be the full tensor subcategory of finite
dimensional representations of G generated by V under tensor product.

There is an equivalence of categories F : B (m) —> T defined by Fir) V®r

for r e N, F(I) id : V —> V, F(X) : V <g> V —* V ® V is interchange of tensor-

factors, F{Ä) : V <g> V —> C is the map v <8> w (v, w), F(U) : 1 h-> C and

F{Am) A, where A is the harmonic homomorphism in Example 4.1.

Before giving the proof, we shall make some elementary observations

concerning the structure of B (m).

Lemma 6.2. Let B o be the subcategory of B (m) generated by all Brauer
diagrams (i.e., by the morphisms I,X,A and U).

(1) Each diagram of B {m) is either in Bo or is obtainedfrom Am by tensoring
and composing with elements of B o.

(2) Let s,t e N. Then

B's= B'St0® B'sA,

where B's0 is the span of the Brauer diagrams in B's, and B'sl is the

span of diagrams of the second type described in (/).

Proof. If the diagram D e B (m) is not in Bo, then it may be expressed as a

'word' in the generators I.X,A,U and Am, with connectives <g> (tensor product)
and o (composition), since A*n — A° (Am). But the relation (5) in Fig. 2 above

shows that any diagram with two occurrences of Am, is equal in B to an

element where the occurrences are adjacent. Hence by the relation (5) in Fig. 5,

this diagram is equal to one in B o. Thus we may assume that there is precisely

one occurrence of Am in the word expression for D. This proves (1).

The statement (2) is an immediate consequence of (1), since each Horn space is

spanned by diagrams, and the two types of diagrams in (1) are complementary.

Proof of Tlteorem 6.1. We have seen [LZ2] that the relations satisfied by l,X,A
and U are satisfied by their images under the functor F. It is easily checked

that the relations (1) to (5) of definition 5.2 are satisfied with Am replaced by
A. so that we do have a functor.
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It remains only to see that F defines isomorphisms on Horn spaces. But
Theorem 2.1 states precisely that F is surjective on Horn spaces (the FFT). We

are therefore reduced to proving the injectivity of F on Horn spaces, which is

the SFT for SOm.

By Lemma 6.2(2), each element ß e ker(J"^) : Hornt) —>
Hoitig(F®L F®') is uniquely of the form ß ßo + ßi, where ßi e B'si
(i =0,1). Moreover F[ maps B's0 to Homo(F)(f/®'s. V®'), and B'sl to the

space of skew invariants for 0(F). It follows that ß e ker(J^) if and only if
ßi e ker(J"j) for i 0,1.

Now [LZ2, Thm. 4.8] states that the image of an element y of B (m)0 under

F is zero if and only if y is in the ideal (Sm+i) of morphisms generated under

the operations of a tensor category by E,„+1.
This proves that ßo is in (Em+1).
As for ß\, note that because of its form, we have ß\ o (A^ ® 7®r) e Bo

and hence lies in (Em+1) for some r, and so ß\ (m!)-1 (ß\ o (À^ <S> I®r)) o

(Àm ® /®r) is also in the ideal (Em+i). Hence ß e (Sm+i). By Hreorem 5.7,

(£m+1) is zero in B{m), and the proof is complete.

6.2. Dimensions of Horn spaces. The dimension of the space HomG(F®ä, F®f),
where G is either 0(F) or SO(F), depends only on r := s + t. Let

d(r) — dim(Homo(F)(C, F®r)) dim(Homo(F)(^/<gli. F®r)) when s + t — r).
The following statement is easily deduced from Lemma 6.2 and Theorems 6.1

and 2.1.

Corollary 6.3. If s + t r, we have

dim (Homso(F)(F®'s, F®')) dim B \ < ^ ^jd(r — m) + d(r).

Note that since d(r) 0 when r is odd, depending on the parity of m,
either or both terms on the right side of the above formula may vanish.
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