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Sur I’exemple d’Euler d’une fonction completement
multiplicative de somme nulle

Jean-Pierre KABANE et Eric SAias

Abstract. In 1737 Euler introduced a series whose general term is the first example of a
completely multiplicative function whose sum is 0, what we write CMO. Euler proved
that the sum of his series is 0, assuming that the sum exists. The convergence of the series
was proved later, as a companion of the prime number theorem. We consider the same
problem for generalized primes and integers in the sense of Beurling 1937. A key is a
theorem of Diamond 1977, which gives a condition on the generalized primes in order that
the generalized integers have a density. According to Diamond’s condition the analogue
of the Euler series converges and its sum is 0 (theorem 2). That is a way (and the only
way as far as we can guess) to construct a CM O function in the usual sense carried by
a lacunary set of integers (theorem 1).

Mathematics Subject Classification (2010). Primary : 1IN80.

Keywords. Generalized prime numbers, completely multiplicative functions

Dans son grand article de 1737 sur les séries infinies, Euler considére la série
1—%—%+%—%+é—%—%+%+L—i—i etc (théoreme 18 de [Eul])
dont il explique la formation : lorsque le dénominateur est un nombre premier, le
signe est — ; lorsque c’est le produit de plusieurs nombres premiers, le signe est
+ ou — selon que le nombre de facteurs premiers est pair ou impair. 11 désigne
par x la somme de cette série, et un enchainement de calculs bien menés lui
permet de montrer que x = 0.

Avec les notations d’aujourd’hui, la série d’Euler s’écrit

400

A(n)
2

n=1

ou A, la fonction de Liouville, est la fonction complétement multiplicative qui
vaut —1 sur les nombres premiers. Les calculs d’Euler reviennent a la formule
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+o0 .
(1) Z¥:H(1+%)I.
n=1 p

le produit étant pris sur les nombres premiers. Compte tenu de la divergence de
la série %, ¢tablie par Euler dans le méme article de 1737 (théoréme 19), cette
formule montre bien que la somme de la série est nulle.

Le probleme est qu’Euler, en désignant sa somme par x, admettait que la
série est convergente, mais cela est loin d’étre évident. Comment faire ?

On peut s’appuyer sur la formule

An) -
A1y

n

qui est valable pour 0 = Res > 1. Comme
1 1 11
HF:(I_pZS)(I_F) ,

A(n) 1 -1 1 £(2s)
25 =T10-5) T10-5)= %5

on a

p2s

ou ¢ est la fonction dzéta de Riemann. Il est donc clair que

%
) lim @) _g
o\l - n?

+0o0

Si la série > A%l converge et a pour somme Xx, le premier membre de (2)
n=1

vaut x ; c’est, appliqué aux séries de Dirichlet, le procédé de sommation d’Abel.

+o0o

Mais le passage de (2) a la convergence de ) @ a le caractere d’un théoréme
n=l1

taubérien, et nécessite une étude.

Cette étude repose sur le comportement de la fonction {(1 4 if), et d’abord
sur le fait que cette fonction ne s’annule pas. Nous avons montré dans [KSI]
comment la mener par un procédé d’analyse de Fourier, qui va nous servir ici
de nouveau.

Notons N* = {1,2,3,4,...}. Rappelons [KSI] que T'on dit d’une fonction
non identiquement nulle f : N* — C qu’elle est complétement multiplicative de
somme nulle (en abrégé CMO) si et seulement si f(ab) = f(a)f(h) pour tout
couple (a,b) d’entiers strictement positifs et que la série § % converge et

n=1
est de somme nulle. Rappelons que le support de f est I’ensemble des entiers

n de N* tels que f(n) #0.
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La fonction (@)nEN* est I’exemple d’Euler d’une fonction CM O . Observons

que son support est 'ensemble N* entier. Nous allons étendre cet exemple dans
deux directions.

D’abord, peut-on trouver des fonctions CM O dont le support soit une petite
partie de N*, dans un sens a préciser? La réponse est positive.

Théoréme 1. Pour tout « €]0,1], il existe une fonction CMQO dont le support,
Ny, a une fonction de décompte de la forme

Ng(x) = Dx% 4+ o(x%), (x — +0)

pour un D > 0 convenable.

Seconde question. La notion de CMO et celle de fonction de Liouville
s’étendent dans le cadre des nombres premiers et des nombres entiers généralisés
de Beurling [Beu]. Nous travaillerons avec un multiensemble infini P de ]1, +ocf,
localement fini dans [l,+4o0[, et avec le multiensemble N formé des produits
finis d’éléments de P. Le multiensemble P est celui des nombres premiers
généralisés, le multiensemble N est celui des nombres entiers généralisés. La
fonction de Liouville associée au couple (P, N) est la fonction Ap a valeurs +1

qui vérifie
Z Aq;(sn) _ 1—[ (1 N L)_l

s
neN PEP P

pour Res suffisamment grand. On utilisera les notations P(x) et A(x) pour
désigner les fonctions de décompte de P et A . Elles sont a valeurs entiéres sauf
éventuellement aux points de discontinuité, ou leur valeur dépend de la convention
adoptée, et leurs sauts aux points de discontinuité mesurent la multiplicité du
multiensemble en ces points. Insistons : P et A/ sont des multiensembles, c’est-
a-dire des ensembles de points comptés avec leur multiplicité, et les notations
P(x) et N(x) désignent des fonctions. Si I’on prend pour P une suite strictement
croissante et multiplicativement libre de réels > 1, A est un ensemble. Comment,
dans ce cadre, étendre 1’exemple d’Euler?

Voici une réponse, qui fait intervenir un nombre « > 0 arbitraire. On désigne
par p; le plus petit des nombres premiers généralisés. Les multiensembles P et
N que nous allons considérer dépendent du parameétre o (P = Py et N = Ny).

Théoreme 2. Soit « > 0. Supposons

00 x% dx
3 ‘73, — .
3) [pl (x) alogx [ x1te SRS
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Alors N(x) = Dx* + o(x%) (x — +o0) pour un D > 0 convenable, et

4) Z Ap(n) —0

nY
neN

(somme suivant ['ordre croissant dans N°).

On démontrera d’abord le théoréme 2 dans le cas crucial « = 1, puis pour
a > 0 quelconque, et on prouvera ensuite le théoreme 1. Nous ne voyons
pas d’autre approche pour établir le théoreme 1, qui concerne les nombres
entiers et les nombres premiers usuels, que de passer par les nombres entiers
et premiers généralisés de Beurling. Nous recommandons au lecteur soucieux
de s’initier a leur théorie 1’exposé rapide qu’en a fait Michel Balazard dans
L’Enseignement Mathématique [Bal] et le livre récent de Harold Diamond et
Wen-Bin Zhang [DZ].

Le présent article développe et démontre les résultats annoncés dans [KS2].
Le théoreme 1 de [KS2] est notre présent théoreme 1, le théoreme 2 de [KS2]
est notre théoreme 2 réduit aux nombres premiers usuels, et le théoreme 3 de
[KS2] est notre théoreme 2, exprimé pour @ = 1 et sous une forme un peu moins
générale.

Démonstration du théoreme 2, cas « = 1. Notre premicre conclusion découle
du beau résultat de Diamond suivant

Lemme (Diamond [Dia]). Sous [’hypothése

B X | dx
f "P(x) - 2% < +po,
Pl

logx | x2

on a pour un D > 0 convenable,

N(x) = Dx + o(x), (x = +00).

Nous allons réutiliser ce résultat a la fin de notre argumentation. Avant, il
nous faut étudier la fonction, associée a N et P,

F(S)=ZAP(”)=1—[(1+L)_1. {6 =Res> 1).

pS

Nous allons 1’étendre en une fonction continue sur le demi-plan fermé o > 1,
contréler sa croissance puis évaluer les sommes partielles en t+ = 0 de la série

Ap(n)
Z ”71D+ir ‘ (t €R).

neN
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Ecrivons
F(s) = expo(s)
avec

) =- / log(1 + x~*)dP(x),
p

' I

1
go(s)——z log(l—l—;

peEP

log(1 + x™*) étant le prolongement analytique de la fonction réelle log(l + x77)
dans C\R™(R™ =] — c0,0]). L'intégration par parties donne

400 Sxfsﬁl
s) = — P(x)dx .
o)== [ PP

On peut mener le calcul en écrivant P(x) = ]O’gcx +(P(x)— lo)gx)‘ I1 est plus rapide

d’observer que w(x), la fonction de décompte des nombres premiers usuels, qui
vérifie

X x
X) = 0 , X ,
m(x) o + (10g2 x) (x = +00)

permet, lorsque P(x) satisfait (3) avec o = 1, de I'écrire

wea dx
P(x) = m(x)+ p(x) avec / |p(x)] ) < 4oc.
1

Ainsi

—00 Sx—s—l —o0 Sx—s—l
—_ — ) d_'— D, d,‘.
o) = [ TP wdx = [ pds

Le premier terme est log C/:((QSS)) , dont on connait bien le comportement dans le
demi-plan Res > 1. Retenons que c’est log(s — 1) + O(1) pour |[s — 1| <1 et
O(s) pour |s —1| > 1. Le second terme, en vertu de la condition sur p(x), est
O(s) dans tout le demi-plan Res > 1. Il en résulte que F(s) se prolonge en une
fonction continue sur le demi-plan Res > 1, qui est O(s — 1) au voisinage de
s —1, et exp O(s) dans tout le demi-plan.

Les sommes partielles de la série (4) pour @ = 1, vont étre évaluées a partir
de F(1+it). Ecrivons

Ap(n) Ap(n) B i/“‘o sin x7 ,
2, a—— . (I—x.x] * 8-10g1(0)) = ] — P+ inde,

neN nenN B 4 00

logn<x

la derniere égalité €tant pour I'instant purement formelle. Introduisons la gaus-
sienne

y(t) =72

et notons, pour a > 0,
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On a alors, de facon rigoureuse cette fois,

A 1 [7%° s
> 22 (G # va 4 Botogn)© = = [ By +inar.

n
neN 2o

Les majorations établies pour |F(s)| entrainent que l'intégrale de droite existe
et de plus, F“TH”}/(M) étant intégrable, qu'en vertu du lemme de Riemann—
Lebesgue elle tend vers 0 quand x — +oco. Reste a utiliser le fait que y, est
une trés bonne approximation de la mesure de Dirac 8, quand a est petit.

On sait ou on vérifie que

-2

o

fxm\/% V(é)d$<eXp(—\7)=y(x), (x > 0),

d’ou
+00 2 .
(e v = [ va@ds <ew(-55) =r(%).  @zo0.
avec y, paire, positive et d’intégrale 1. Il en résulte
u
|(Ir- * ya — Ir-) ()| < )/(—) . (WeR).
a

En posant
ria, x,u) = (I—xx] * Ya — L—x x))(u) .
on en déduit

(%) ‘r(a.x.u)|<y(ll;x)+y(u:x), (x >0).

On a

A
Z pl) (Lj—x,x] * (Ya — 80) * 6 logn)(o) = R(a, x)
neN n

avec

+o0
Riag, %) i=— [ rla,x,u)e “Ap(e*)dN(e").
1

0g 21

Comme la fonction Ap prend ses valeurs dans [—1, 1], on déduit de (5) que

6) 1R(a,x)|§/+00 ()/(M;x)+y(uj;x))e_”dj\f(e”)

—00

et c’est ici que 1'on réutilise le lemme de Diamond. Ecrivons

N(e*) = De" + n(u)e" avec lim n(u) =0,
u—-+0oo
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d’ou, en termes de mesures,
dN(e*) = De*du + n(u)e du + e*dn(u)

et
dN(e") < D'e"du + e"dn(u) avec D" = D + supn(u).
u

Le second membre de (6) est majoré par

o e ) )

=2D'a /__:O v(t)dt +f_::o n(u)d(y(u ;\) +y(u :x)) .

Pour a > 0 fixé, le second terme tend vers 0 quand x — oo, parce que

lim n(u) = 0. On voit ainsi que
U—+00

lim limsup |R(a,x)] =0.

aNO x—+co

Comme nous avons montré que

i Ap(n)
lim > S (Ten * Va * $—10pn)(0) = 0,

x—=>+0c0 n
neN

il en résulte que

) Ap(n)
1 . I —%:X * 50 8— on 0 — 0 5
\c—lr-f]:loo i;\:/' n ( [—x.x] * log )( )

c’est a dire

lim Z Ap(n) =0

X—>+00 2 n
neN
logn=<x

et le théoréeme 2 est ainsi établi dans le cas o = 1.

Démonstration du théoréme 2, cas général. Associons aux multiensembles P
et N les multiensembles P* et N'® constitués respectivement des p*(p € P)
et des n%(n € N) ; ainsi

P¥(x*) = P(x) et N*(x%) =N(x).
L’hypothese du théoreme 2 s’écrit
[
Py

et la conclusion

d
> ‘ —J; < 400, (y =x%),
logy! y?

P*(y) -

)t'pa(n’l) . /Lp(ll) .
Z m N Z n® 0.

menNe neN

Le cas général découle donc facilement du cas particulier o = 1.
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Démonstration du théoréme 1. Si o = 1, I'exemple d’Euler A(n)/n convient.
Dans la suite, on choisit « €]0, 1[. Le théoréme 1 sera établi si nous montrons
que l'on peut prendre dans le théoreme 2 pour P un ensemble de nombres
premiers usuels. Nous le noterons P. La fonction CMO du théoreme 1 sera
alors Ap(n)/n® et ’ensemble N, sera I’ensemble des entiers usuels dont tous
les facteurs premiers sont dans P .

Posons par commodité
(04

fx) =

alogx

Rappelons que la fonction de décompte des nombres premiers usuels vérifie

X X
7 X = :
(7) ) = o O(logzx)
Nous allons choisir P de facon que
+0o0 dx
®) [ 1Pe) - s Sz < oo,
Pl

ce qui achevera la preuve du théoréme 1.

Nous définissons P par sa fonction de décompte, P(x), et nous prenons pour
P(x) la plus grande fonction croissante, a valeurs dans N, dont les sauts, égaux
a 1, n‘ont lieu que sur les nombres premiers usuels, et telle que P(x) < f(x)
pour tout x > 0.

Distinguons les x > p; pour lesquels

9) Jx)—1=<P(x) < flx),

que nous appelons blancs, et les autres, que nous appelons noirs. Désignons par
Ep P'ensemble des x blancs, et par E, celui des x noirs.

Dans l'intégrale (8), la contribution de Ej; est majorée par fEb x—fﬁ;, qui est
fini. Majorons a présent la contribution de £, .

Les composantes connexes de E, sont des intervalles ouverts que I'on note
Ju, v[, sur lesquels il nous faut étudier f—P . Comme P coincide avec I’ensemble

des nombres premiers usuels sur ces intervalles, on a
(10) Px+h)—Px)=a(x+h)—n(x), u<x<x+h<v).

A I’exception éventuelle du premier intervalle noir, u est I’extrémité d’un intervalle
blanc, sur lequel (9) a lieu. On a donc

(1) P(u) = fu) + 0(1).

En utilisant (7), (10) et (11), on obtient qu’il existe des constantes ¢ >0 et C >0
telles que, pour
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(12)

on ait

(13)

Cu
logu '

2<u<u+h<v et h>

Pu+h)— f(u) = Pu+h)— Pu)+ O(1)

h O(lt+f’1)+0(l)

log u

log? u

>ch/logu.

Supposons désormais u suffisamment grand. On a alors

(14)

Fi+h) = f) Shf') ~ ——

u—+oo U1~ logu

Comme P(u + h) < f(u+ h), on voit que (I13) et (14) sont incompatibles, donc
(12) est impossible : on a

Cu
v—u < :
logu

Il en résulte que

v dx f(v)— Pu) (Vdx
fu (f(x)— P(x))XHa < = fu -
(v—u)f'(u)+ 0(1) [” dx

ue

2C f” dx
= 2
logou Ju X

V' dx
E C’[ —_’)— .
u X log— X

X

La contribution des intervalles noirs a I'intégrale (8) est donc également finie.
Cela acheve la preuve du théoreme 1.

[Bal]

[Beu]

[Dia]

[DZ]
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