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Sur l'exemple d'Euler d'une fonction complètement
multiplicative de somme nulle

Jean-Pierre Kahane et Eric Saias

Abstract. In 1737 Euler introduced a series whose general term is the first example of a

completely multiplicative function whose sum is 0, what we write CMO. Euler proved

that the sum of his series is 0, assuming that the sum exists. The convergence of the series

was proved later, as a companion of the prime number theorem. We consider the same

problem for generalized primes and integers in the sense of Beurling 1937. A key is a

theorem of Diamond 1977, which gives a condition on the generalized primes in order that

the generalized integers have a density. According to Diamond's condition the analogue

of the Euler series converges and its sum is 0 (theorem 2). That is a way (and the only

way as far as we can guess) to construct a CMO function in the usual sense carried by

a lacunary set of integers (theorem 1).

Mathematics Subject Classification (2010). Primary : 11N80.

Keywords. Generalized prime numbers, completely multiplicative functions

Dans son grand article de 1737 sur les séries infinies, Euler considère la série

l-5-5 + ï- | + è- 7- I + è + Â- n_n etc (théorème 18 de [Eul])
dont il explique la formation : lorsque le dénominateur est un nombre premier, le

signe est — ; lorsque c'est le produit de plusieurs nombres premiers, le signe est

+ ou — selon que le nombre de facteurs premiers est pair ou impair. Il désigne

par x la somme de cette série, et un enchaînement de calculs bien menés lui

permet de montrer que x 0.

Avec les notations d'aujourd'hui, la série d'Euler s'écrit

où A, la fonction de Liouville, est la fonction complètement multiplicative qui
vaut —1 sur les nombres premiers. Les calculs d'Euler reviennent à la formule

n 1
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<» E^=n(>4r'.
n 1 p y

le produit étant pris sur les nombres premiers. Compte tenu de la divergence de

la série
p >

établie par Euler dans le même article de 1737 (théorème 19), cette

formule montre bien que la somme de la série est nulle.

Le problème est qu'Euler, en désignant sa somme par x, admettait que la

série est convergente, mais cela est loin d'être évident. Comment faire?
On peut s'appuyer sur la formule

E^ nO + p)"'
n P

qui est valable pour a Re s > 1. Comme

1 / 1 w 1 \-i
1 + y ~ v1 ~ ^)( ~ ~p) '

on a

E^=n(>-^rno-p)=f^.
n p r p ' -> v '

où £ est la fonction dzêta de Riemann. Il est donc clair que

(2) lim V — 0.
cr\l ^ na

n

+°° w
Si la série ^ Oil converge et a pour somme x, le premier membre de (2)

72—1

vaut x ; c'est, appliqué aux séries de Dirichlet, le procédé de sommation d'Abel.
+°°

Mais le passage de (2) à la convergence de J2 ~^r a caractère d'un théorème
72 1

taubérien, et nécessite une étude.

Cette étude repose sur le comportement de la fonction £(1 + it), et d'abord

sur le fait que cette fonction ne s'annule pas. Nous avons montré dans [KSI]
comment la mener par un procédé d'analyse de Fourier, qui va nous servir ici
de nouveau.

Notons N* {1,2,3,4,...}. Rappelons [KSI] que l'on dit d'une fonction

non identiquement nulle / : N* —» C qu'elle est complètement multiplicative de

somme nulle (en abrégé CMO) si et seulement si f{ab) f(a)f{b) pour tout
OO

couple (a,b) d'entiers strictement positifs et que la série converge et
72 1

est de somme nulle. Rappelons que le support de / est l'ensemble des entiers

n de N* tels que f{n) ^ 0.
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La fonction (^7p)„eN* est l'exemple d'Euler d'une fonction CMO. Observons

que son support est l'ensemble N* entier. Nous allons étendre cet exemple dans

deux directions.

D'abord, peut-on trouver des fonctions CMO dont le support soit une petite

partie de N*, dans un sens à préciser? La réponse est positive.

Théorème 1. Pour tout a e]0,1], il existe une fonction CMO dont le support,
Na, a une fonction de décompte de la forme

Na{x) — Dxa + o(xa), (x —> +oo)

pour un D > 0 convenable.

Seconde question. La notion de CMO et celle de fonction de Liouville
s'étendent dans le cadre des nombres premiers et des nombres entiers généralisés
de Beurling [Beu], Nous travaillerons avec un multiensemble infini V de ] 1, +oo[,
localement fini dans [l,+oo[, et avec le multiensemble Af formé des produits
finis d'éléments de V. Le multiensemble V est celui des nombres premiers
généralisés, le multiensemble Af est celui des nombres entiers généralisés. La
fonction de Liouville associée au couple ("P,Af) est la fonction k-p à valeurs ±1
qui vérifie

pour Res suffisamment grand. On utilisera les notations V(x) et Af(x) pour
désigner les fonctions de décompte de V et A/". Elles sont à valeurs entières sauf

éventuellement aux points de discontinuité, où leur valeur dépend de la convention

adoptée, et leurs sauts aux points de discontinuité mesurent la multiplicité du

multiensemble en ces points. Insistons : V et Af sont des multiensembles, c'est-

à-dire des ensembles de points comptés avec leur multiplicité, et les notations

V(x) et Af(x) désignent des fonctions. Si l'on prend pour V une suite strictement
croissante et multiplicativement libre de réels > 1, Af est un ensemble. Comment,
dans ce cadre, étendre l'exemple d'Euler?

Voici une réponse, qui fait intervenir un nombre a > 0 arbitraire. On désigne

par pi le plus petit des nombres premiers généralisés. Les multiensembles V et

Af que nous allons considérer dépendent du paramètre a {V — Va et Af Afa).

Théorème 2. Soit a > 0. Supposons

f+°° xa dx
(3) L
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Alors Af(x) Dxa + o(xa) (x —> +00) pour un D > 0 convenable, et

(4)

(somme suivant l'ordre croissant dans Af).

A-p(n)
_ ^

,r

On démontrera d'abord le théorème 2 dans le cas crucial a — 1, puis pour
a > 0 quelconque, et on prouvera ensuite le théorème 1. Nous ne voyons

pas d'autre approche pour établir le théorème 1, qui concerne les nombres

entiers et les nombres premiers usuels, que de passer par les nombres entiers

et premiers généralisés de Beurling. Nous recommandons au lecteur soucieux
de s'initier à leur théorie l'exposé rapide qu'en a fait Michel Balazard dans

L'Enseignement Mathématique [Bal] et le livre récent de Harold Diamond et

Wen-Bin Zhang [DZ].
Le présent article développe et démontre les résultats annoncés dans [KS2].

Le théorème 1 de [KS2] est notre présent théorème 1, le théorème 2 de [KS2]
est notre théorème 2 réduit aux nombres premiers usuels, et le théorème 3 de

[KS2] est notre théorème 2, exprimé pour a 1 et sous une forme un peu moins

générale.

Démonstration du théorème 2, cas a 1. Notre première conclusion découle

du beau résultat de Diamond suivant

Lemme (Diamond [Dia]). Sous l'hypothèse

r+oo

Jpi
V(x)

logx

on a pour un D > 0 convenable,

Af(x) Dx + o(x),

dx
— < +00.
x2-

(x —> +00).

Nous allons réutiliser ce résultat à la fin de notre argumentation. Avant, il
nous faut étudier la fonction, associée à Af et V,

Av(n) -r-r /. 1 N-1

ns LL v pàneXf peV

Nous allons l'étendre en une fonction continue sur le demi-plan fermé a > 1,

contrôler sa croissance puis évaluer les sommes partielles en t 0 de la série

Ap(n)
/ J yi it

neM
(t e
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Ecrivons

F (s) exp <p(s)

avec
/ 1 \ C°°

V(s) lo§(1 + ~)=~/ log(l +x~s)dV(x),
pev P JP\

log(l + x_,s) étant le prolongement analytique de la fonction réelle log(l + x~a)
dans C\R~(M~ =] — oo, 0]). L'intégration par parties donne

y»+oo sx—s—1
<P(S) ~ / LT _V{x)dx

Jp\ 1 ~r X

On peut mener le calcul en écrivant V(x) + (V{x)—. Il est plus rapide
d'observer que 7r(x), la fonction de décompte des nombres premiers usuels, qui
vérifie

x x \jt(x) h 01-—j— (x^+oo),logx V log x /

permet, lorsque V{x) satisfait (3) avec a 1, de l'écrire

r+°° dx
V(x) — 7v(x) + p{x) avec / |/o(x)| — < +oo

p{x)dx

Ainsi
f-°° SX~s~l f-°° SX~'~l

<p(s) - / Ti—=7 n{x)dx - / ——— p{?
JPl \+x s Jpi 1 + x J

Le premier terme est log yyy, dont on connaît bien le comportement dans le

demi-plan Res > 1. Retenons que c'est log(.s — 1) + 0(1) pour |j — 1| < 1 et

0(5) pour |s — 1| > 1. Le second terme, en vertu de la condition sur p(x), est

0(i) dans tout le demi-plan Res > 1. Il en résulte que F (s) se prolonge en une

fonction continue sur le demi-plan Res > 1, qui est 0(s - 1) au voisinage de

5 — 1, et exp 0(s) dans tout le demi-plan.
Les sommes partielles de la série (4) pour a 1, vont être évaluées à partir

de F(l +it). Ecrivons

^v(n) A-p(n) r ^
1 f+°° sinxf u2^ —— ~~~ * 5-iog«(0)) - / + ltïdt >.Il II Jl J—CT) lneXT n&M 00

log n<x

la dernière égalité étant pour l'instant purement formelle. Introduisons la gaus-
sienne

y(t) : e~'2/2

et notons, pour a > 0,
1 1 /£\

Ya(l) —?= - y(-) •

V2rr a Va/
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On a alors, de façon rigoureuse cette fois,

ik-x,x] *Ya* 5-iog«)(0) ~ f + it)dt.
„tv- n n 1

Les majorations établies pour |F(s)| entraînent que l'intégrale de droite existe

et de plus, F(1+lt) y (at) étant intégrable, qu'en vertu du lemme de Riemann-
Lebesgue elle tend vers 0 quand x —> +oo. Reste à utiliser le fait que ya est

une très bonne approximation de la mesure de Dirac 80 quand a est petit.
On sait ou on vérifie que

r+°° J x2.
J Y(Ç)dÇ < exP - y y(x), (X > 0),

d'où

/ il^ \ /^\(Ir- * Ya)(u) J ya(Ç)dÇ <exp( - —) y(~j. (w > 0),

avec ya paire, positive et d'intégrale 1. Il en résulte

|(Ir- * Ya ~ Ir-)0)| < k(^) - (weffi).

En posant

r(a,X,u) (I[-x,x] * ya ~ I[-*,*])(")

on en déduit

I / U — X \ / U + X \(5) \r(a,x,u)\ < ———J + —-—J (x > 0).

On a

T. V^ ^

(h-x,x\ * (Ya - So) *3_iog„)(0) R(a,x)
n

neAT

avec
P+OO

R(a,x):= / r(a,x,u)e~u\-p(eu)dj\f(eu).
J log Pl/log PI

Comme la fonction X-p prend ses valeurs dans [—1,1], on déduit de (5) que

(6) \R{a,x)\<£~(y(ü^)+r(ü±£))t-«^(C")

et c'est ici que l'on réutilise le lemme de Diamond. Ecrivons

Af(e") De" + r](u)eu avec lim rj(u) 0,
u—^+oo
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d'où, en termes de mesures,

dAl(eu) Deudu + r](u)eudu + el'dr](u)

et

dJ\f(eu) < D'e"du + ewdrj(it) avec D' D + sup r)(u).
U

Le second membre de (6) est majoré par

+/r
2D'à J y{t)dt + J r](u)d + y{~~) •

Pour a > 0 fixé, le second terme tend vers 0 quand x -» +oo, parce que
lim rj(u) — 0. On voit ainsi que

w—>-+oo

lim lim sup \R(a, x)| 0.
û\0 x—>+oo

Comme nous avons montré que

lim V Xv(n}
(k-x,x] *Ya* S-logn)(0) 0,

*—>•+00 nnej\f

il en résulte que

lim Vl[-x,x] * S0 * S-iog«)(0) 0,
X-S-+0O z—< nneM

c'est à dire

lim y ^=0,x^+oo znneM
log n<x

et le théorème 2 est ainsi établi dans le cas a 1.

Démonstration du théorème 2, cas général. Associons aux multiensembles V
et AT les multiensembles Va et Afa constitués respectivement des pa{p e V)
et des na(n e Af) ; ainsi

Va{xa) V(x) et Afa(xa) Af{x).

L'hypothèse du théorème 2 s'écrit
+oo

P\
v"(y) - tttt: % < +°° ' (y x")

log y r
et la conclusion

y^ \-pa(in) _ Av(n) _ „
' m ^—'r na

m Ej\fa n eM

Le cas général découle donc facilement du cas particulier a 1.
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Démonstration du théorème 1. Si a 1, l'exemple d'Euler A(ri)/n convient.
Dans la suite, on choisit a e]0,1[. Le théorème 1 sera établi si nous montrons

que l'on peut prendre dans le théorème 2 pour V un ensemble de nombres

premiers usuels. Nous le noterons P. La fonction CMO du théorème 1 sera

alors Ap{n)/na et l'ensemble Na sera l'ensemble des entiers usuels dont tous
les facteurs premiers sont dans P.

Posons par commodité
x"

f(x) —, •

a logx
Rappelons que la fonction de décompte des nombres premiers usuels vérifie

x / x \(7) jt(X) + 0[-——).
log x V log x '

Nous allons choisir P de façon que

+oo dx
(8) / \P(x) ~ < +oû'

p i
1 x

ce qui achèvera la preuve du théorème 1.

Nous définissons P par sa fonction de décompte, P(x), et nous prenons pour
P(x) la plus grande fonction croissante, à valeurs dans N, dont les sauts, égaux
à 1, n'ont lieu que sur les nombres premiers usuels, et telle que P(x) < /(x)
pour tout x > 0.

Distinguons les x > p\ pour lesquels

(9) /(x) - 1 < P(x) < /(x),

que nous appelons blancs, et les autres, que nous appelons noirs. Désignons par
Eb l'ensemble des x blancs, et par En celui des x noirs.

Dans l'intégrale (8), la contribution de Eb est majorée par fE _J*a qui est

fini. Majorons à présent la contribution de En.
Les composantes connexes de En sont des intervalles ouverts que l'on note

]u, u[, sur lesquels il nous faut étudier f — P Comme P coïncide avec l'ensemble
des nombres premiers usuels sur ces intervalles, on a

10) P(x + h) — P(x) — 7T (x + h) — 7r(x), (u<x<x+h<v).
A l'exception éventuelle du premier intervalle noir, u est l'extrémité d'un intervalle

blanc, sur lequel (9) a lieu. On a donc

(11) P(u) f(u) + 0( 1).

En utilisant (7), (10) et (11), on obtient qu'il existe des constantes c > 0 et C > 0

telles que, pour
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Cm
(12) 2 < m < m + h < v et h >

log M

on ait

P(u + h) - /(m) P(u + h)~ P(u) + 0(1)
h „ / w+ h\ „,(13) 1- 0(- J + ^(1)

log M \ log M '
> ch/ log M

Supposons désormais u suffisamment grand. On a alors

(14) f(u+h) — f(u) < hf'(u) ~ •

«-»+00 M1 a log M

Comme P(n + h) < f(u + h), on voit que (13) et (14) sont incompatibles, donc

(12) est impossible : on a
Cm

v — u <
log M

Il en résulte que

rv dx f(v) — P(u) fv dx

(u — u)f'(u) + 0(1) fv dx
<

<

aU

2 C r dx
/«/ u

fJ ulog2 M Ju x
"v dx<c'f

J u x log2 x

La contribution des intervalles noirs à l'intégrale (8) est donc également finie.
Cela achève la preuve du théorème 1.
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