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A survey of the GIT picture for the
Yang-Mills equation over Riemann surfaces

Samuel TRAUTWEIN

Abstract. The purpose of this paper is to give a self-contained exposition of the Atiyah—Bott
picture [AB83] for the Yang-Mills equation over Riemann surfaces with an emphasis on
the analogy to finite dimensional geometric invariant theory. The main motivation is to
provide a careful study of the semistable and unstable orbits: This includes the analogue
of the Ness uniqueness theorem for Yang—Mills connections, the Kempf—Ness theorem,
the Hilbert-Mumford criterion and a new proof of the moment-weight inequality following
an approach outlined by Donaldson [Don4]. A central ingredient in our discussion is the

Yang—Mills flow for which we assume longtime existence and convergence (see [Rad]).
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1. Introduction

The purpose of this paper is threefold: The first goal is to provide a self-
contained and essentially complete exposition of the geometric invariant theory
for the Yang—Mills equation over Riemann surfaces from the differential geometric
point of view. We follow closely the line of arguments of finite dimensional GIT
(e.g., as it is explained in [SGR]) and emphasize this analogy throughout.

The second goal is to include a careful study of the semistable and unstable
orbits. This is in contrast to most of the developments after the landmark paper
[AB83] of Atiyah and Bott, which deal with the characterization of stable objects
in more general moduli problems, i.e., the analogue of the Narasimhan—Seshadri
theorem. In the unitary case Daskalopoulos [Das] established the Morse theoretic
picture of Atiyah and Bott. A direct corollary of this stratification is the analogue
of the Ness uniqueness theorem and the moment limit theorem (see Theorem A
below). We present an alternative proof of this result following the arguments
discovered by Calabi—Chen [CC] and Chen—-Sun [CS] in a different infinite
dimensional setting. This argument does not depend on the Harder-Narasimhan
filtration or on other aspects from the holomorphic point of view and works for
general structure groups. Following an approach outlined by Donaldson [Don4],
we also carry out a new proof of the moment-weight inequality which is essentially
contained in the work of Atiyah and Bott.

The third goal is to provide a transparent exposition of the central ideas
used in gauge theoretical moduli problems. While several results are known in
greater generality, the key ideas are still immanent in our treatment. We hope
that this enables non experts to explore the beauty of this subject without having
to worry about the technical difficulties which come along with more general
moduli problems.

The article concentrates on the stability questions in Yang—Mills theory and
does not discuss the topology of the resulting moduli space, which is one of
the main topics in the work of Atiyah and Bott. There is no claim of originality
(except to my knowledge Theorem A has only been proven in the case G = U(n)
in the existing literature). However, the various results and underlying ideas are
spread over the literature and the present paper provides a unified exposition.
The main technical ingredients in our discussion are long time existence and
convergence of the Yang—Mills flow. The presented arguments allow for various
generalizations to moduli problems in gauge theory, where the main obstacles are
again long time existence and convergence of the relevant parabolic gradient flow.
These obstructions can be overcome for the Yang—Mills—Higgs flow under suitable
assumptions and the results of this article can be carried over to the symplectic
vortex equation over Riemann surfaces, see [Tra], [Ven]. For the extension of the
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theory to bundles over higher dimensional Kihler manifolds, the situation is more
delicate and various known results are discussed at the end of the introduction.

There are two essentially different perspectives on GIT — the algebraic
geometric and the symplectic point of view. The recent survey of Thomas [Tho]
provides some background from both perspectives and explores several finite and
infinite dimensional examples. Originally, Mumford [Mum] introduced GIT as
a method to construct quotients and moduli spaces in algebraic geometry. The
work of Atiyah—Bott [AB83] and the thesis of Kirwan [Kir] have shown that
GIT is closely related to moment maps and symplectic reduction, where the link
between both theories lies in the Morse—Bott stratification of the moment map
squared functional. This leads to an entirely differential geometric version of GIT.
Another important ingredient in this approach is the Kempf-Ness function: Let
(X, J,w, ) be a closed Kihler manifold with Hamiltonian G -action and moment
map p. Here G denotes a (real) compact Lie group with complexification G€¢.
For a given point x € X there exists a G -invariant function

&, 1 G 6 =R

such that the gradient flow of ®, intertwines with the gradient flow of the
moment map squared functional under the map g + g !'x. The global analytic
properties of @, are related to the algebraic weights of x and to the solvability
of the equation pu(gx) =0 by the Kempf—Ness theorem.

We follow throughout this survey the differential geometric approach. For a
modern algebraic treatment we refer to [ADK] and the references therein. The new
edition of [MFK] also contains a discussion of the GIT picture for the Yang—
Mills equations. Nevertheless, it leaves some refined question open: What are
the appropriate analogous versions of the Ness uniqueness theorem, the Kempf—
Ness theorem or the Hilbert-Mumford criterion? The analog of the Kempf—Ness
functional has been used to provide analytic proofs for various generalizations
of the Narasimhan—Seshadri theorem, but it has seen little discussion beyond
these applications in the literature. The recent work of Calabi, Chen, Donaldson
and Sun [CC, Don4, Chel, Che2, CS] has shown that the underlying geometric
properties of the Kempf-Ness functional can be used to provide analytic proofs
for the Ness uniqueness theorem and the Kempf-Ness theorem. We follow their
ideas and obtain new proofs of the corresponding results in the Yang—Mills case.
The exposition [SGR] provides a finite dimensional discussion of these arguments.

Main results. Let G be a compact connected Lie group and let £ be a closed
Riemann surface. Fix a volume form on X, compatible with the orientation, and
let P — ¥ be a principal G bundle. Atiyah and Bott [AB83] observed that the
curvature
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p(A) = xFy € Q°(Z,ad(P))

defines a moment map for the action of the gauge group G(P) on the space of
connections A(P). For any constant central section 7, the symplectic quotient

A(P)//G(P) = p™ (1) /G(P)

yields the moduli space of projectively flat connections on P with constant central
curvature t.

Let G¢ be the complexification of G and P¢ := P xg G¢ the associated
principal G¢ bundle. The complexification of the gauge group is G°(P) := G(P°).
The space A(P) can naturally be identified with the space J(P¢) of holomorphic
structures on P¢ (see Lemma 2.5) and the complexified gauge group G¢(P) acts
naturally on this space. The corresponding GIT quotient

AP (P)//G*(P)

of A(P) by G°(P) is obtained in two steps. First, one defines a dense and open
subset AS(P) C A(P) of semistable connections or holomorphic structures on
P and second, one identifies two semistable orbits in the quotient if they cannot
be separated in A% (P). The restriction to semistable orbits is necessary to obtain
a good quotient in the sense of algebraic geometry. There are two approaches
to define semistable objects. In the symplectic approach, one chooses a moment
map for the gauge action on A(P) to define semistable objects. In the algebraic
geometric approach, one defines a notion of semistability J°°(P¢) C J(P¢) on
the space of holomorphic structures on P¢. A classical result due to Narasimhan
and Seshadri [NS] in the case G = U(n) and due to Ramanathan [Ram] for
general G shows that both of these notions agree if one restricts to further open
subsets of stable objects.

The Yang-Mills picture introduced by Atiyah and Bott [AB83] shed new
light on this result and inspired Donaldson [Donl] to an analytic proof of the
Narasimhan—Seshadri theorem. The Yang—Mills functional is given by the formula

YM: AP) >R,  YM(A) ;:%f || Fa||* dvols.
£ Jx

Standard arguments from Chern—Weil theory show that there exists a unique
central element t € Z(g) such that

(1) YM(A) = inf YM(B) — wFy =t
Be A(P)

We shall consider in the following connections of Sobolev class W12 and gauge
transformations of Sobolev class W?2-2. Rade [Rad] showed in this setting that
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for every initial data Ay € A(P) the negative gradient flow of the Yang—Mills
functional

(2) 8, A(1) = ~VYM(A®W)) = —djo Faey.  A(0) = Ao

has a unique (weak) solution which exists for all time. Moreover, this solution
remains in a single complexified G¢(P)-orbit and converges in the W2 -topology
to a Yang—Mills connection A, € G°(Ap). The following is the analogue of the
Ness uniqueness theorem in finite dimensional GIT.

Theorem A (Uniqueness of Yang—Mills connections). Let Ag € A(P) and let
Ao be the limit of the Yang—Mills flow (2) starting at Ag. Then

(1) YM(Ax) = infgegepy YM(gA).
(2) If B € G¢(Ap) is contained in the W12 -closure of G°(Ag) and

M(B) = inf M(gA
YM(B) = inf YM(gA)

geg

then G(B) = G(Ax).

In the case G = U(n) one can replace P by a hermitian vector bundle
E — ¥. Daskalopoulos [Das] established in this case the convergence of the
Yang-Mills flow over Riemann surfaces by different methods. He proves a suitable
slice theorem near Yang—Mills connections and shows that the limiting Yang—
Mills connection A, is determined up to a unitary gauge transformation by the
isomorphism class of the Harder—Narasimhan filtration of (£, 5,40). This proves
Theorem A in the unitary case and it should be possible to deduce the general
result from this using the methods in [BW]. We present a different proof of
Theorem A in Theorem 4.14 and Theorem 4.15 by following the line of arguments
from finite dimensional GIT ([SGR], Chapter 6). These arguments were originally
given by Calabi—Chen [CC] and Chen—Sun [CS] in the context of extremal Kahler
metrics.

A connection A € A(P) is called p,-semistable resp. . -unstable if

inf * Foqa—1||z2 =0 resp. inf ¥ Foa—1l||z2 >0
L | * Fea =l p o || * Fea—1llL
where 7 is defined by (1). Moreover, A is called p,-polystable if there exists
g € G°(P) with *Fy4 = v and it is called pu.-stable if gA is in addition
irreducible. Then Theorem A implies that the map which sends A4y € A(P) to
the limit A, of the Yang—Mills flow starting at A, yields the identifications

AP (P)[/GE(P) = AP(P)/GS(P) = u™H(2)/G(P).
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Conversely, the . -unstable orbits converge to higher critical points of the Yang—
Mills functional. More details on this correspondence are given in Theorem 4.18.

The theory has greatly evolved since the paper [AB83] of Atiyah and Bott. The
main goal in those developments has been the characterization of stable objects in
more general moduli problems (e.g. [Don2], [Don3], [UY], [Hit], [Simp], [Bra]).
The characterization of unstable orbits is in general much more difficult as it
refers to higher critical points of the Yang—Mills functional. Given a connection
Ae A(P) and & € Q°(Z,ad(P)) the weight w,(A4,£) is defined by

WA &) i= Il_i}rgo(*Feing —17,&) € R U {oo}.

The first part of the following theorem is the analogue of the moment-weight
inequality and the last two claims are the analogue of the Kempf existence and
uniqueness theorem in finite dimensional GIT.

Theorem B (Atiyah—Bott). Let A € A(P) and let © € Z(g) be defined by (1).
Then

(1) For all 0+# & € Q°X,ad(P)) there holds

(4,
—ME inf ||>x<FA—r||2.
€] 2€GC(P)

(2) If the right-hand-side is positive, then there exists up to scaling a unique
0 £ Eg € Q2. ad(P)) such that

A,
_WeSo) e ik g — 1.
|1€ol] gEGE(P)

Moreover, &y is rational in the sense that it generates a closed one parameter
subgroup of G(P).

(3) Let A be the limit of the Yang—Mills flow starting at Ao. Then there exists
u € G(P) such that & agrees up to scaling with u(*Fa, —t)u"!.

This is essentially contained in the work of Atiyah and Bott ([AB83], Prop. 8.13
and Prop. 10.13). A connection A € A(P) induces a holomorphic structure on the
complexified bundle P¢ := P xg G¢ and its Lie algebra bundle ad(P*). Atiyah
and Bott explicitly determine the infimum of the Yang—Mills functional over G¢(A)
in terms of the Harder—Narasimhan filtration of ad(P¢). The analogous result has
been shown by Calabi, Chen, Donaldson and Sun [CC, Don4, Chel, Che2, CS] in
the context of extremal Kéhler metrics. Donaldson [Don4] compares the Atiyah—
Bott picture in the vector bundle case G = U(n) with their results on the Calabi
functional and mentions that their methods should lead to a new proof of the
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moment-weight inequality in the Atiyah—Bott case. We carry out this proof in
Theorem 5.12. We reformulate and prove the last two claims in Theorem 7.1. The
case G = U(n) follows along the line of arguments of Atiyah and Bott from the
Harder—Narasimhan filtration and the Narasimhan—Seshadri theorem. The general
case can be reduced to this by the use of Theorem A. For this, choose a faithful
representation G — U(n). Then any G -connection A can be considered as
U(n)-connection and Theorem A implies

inf YM(gd) = inf YM(gA).
geGe(E) g<GL(E)

It now remains to compare the weights for the gauge action with respect to the
two structure groups G and U(n) to conclude the proof. We would also like
to mention the work of Bruasse and Teleman [BT, Bru]. They prove for more
general gauge theoretical moduli problems that whenever the supremum over the
normalized weights is positive, then it is attained in a unique direction corre-
sponding to the Harder—Narasimhan filtration.

There is a classical algebraic geometric notion of stability for holomorphic
principal bundles (see Definition 3.2). In the vector bundle case G = U(n) this
corresponds to the notion of (slope-)stable holomorphic vector bundles, which are
easier to define: A holomorphic vector bundle E is called stable (semistable) if

alF) _ elE) (CI(F) - CI(E))
rk(F) 1k(E) tk(F) = 1k(E)

holds for every proper holomorphic subbundle 0 # F C E. Moreover, E is
called polystable if it decomposes as the direct sum of stable vector bundles all
having the same slope and E is called unstable if it is not semistable.

Theorem C (Generalized Narasimhan—Seshadri-Ramanathan theorem). Let A €
A(P) and define t by (1). Then A induces a holomorphic structure J4 on the
complexified bundle P¢ := P xg G and the following holds true:

(1) (P€,Jq) is stable if and only if A is [.-polystable and the kernel of the
infinitesimal action L4 : Q%Z,ad(P€)) — QY (T, ad(P))

La(§ +1in) 1= —da§ — xdan
contains only constant central sections.
(2) (P€, Jq) is polystable if and only if A is j.-polystable.
(3) (P€,J4q) is semistable if and only if A is u.-semistable.
(4) (P, J4) is unstable if and only if A is i -unstable.
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Proposition 5.9 characterizes the stability of (P€,J4) in terms of the weights
w(A.&) and shows that this theorem is the appropriate analog of the Hilbert—
Mumford criterion in finite dimensional GIT. The first claim is the Narasimhan—
Seshadri-Ramanathan theorem. We present an analytic proof of this classical result
in Theorem 6.5 which was originally given by Bradlow [Bra] and Mundet [iR]
for more general moduli problems. The main step in their proof is to establish the
analogue of the Kempf—Ness theorem (see Theorem 6.2) in the stable case. The
polystable case is deduced from the stable case by induction on the dimension
of G. The unstable and semistable case follow directly from Theorem B by
Proposition 5.9. We reformulate and prove Theorem C in Theorem 3.10.

Outline. In Section 2 we review the necessary preliminaries. The first part deals
with the relevant background on gauge theory. Besides fixing notation, the main
goals are to provide an explicit description of the complexified gauge action in
both the vector bundle and principal bundle case and to describe the moment
map picture of Atiyah and Bott. We show that this picture remains valid if one
considers connections and gauge transformations in suitable Sobolev completions.
The second part discusses parabolic subgroups of complex reductive Lie groups.
These play a crucial role in the algebraic geometric definition of stability and the
geometric description of the weights.

In Section 3 we discuss the algebraic and symplectic definitions of stability. The
main result in this section is the generalized Narasimhan—Seshadri-Ramanathan
theorem (Theorem 3.10) which states that these definitions are essentially equiva-
lent. The proof of this theorem is based on the whole remainder of the exposition.

In Section 4 we review the analytical properties of the Yang—Mills flow which
Rade [Rad] established in his thesis. We prove Theorem A in Theorem 4.14
and Theorem 4.15 and close this section with Theorem 4.18 which characterizes
the . -stability of a connection A € A(P) in terms of the limit A, of the
Yang—-Mills flow starting at A.

In Section 5 we introduce the weights w. (A4, &) and show that they are closely
related to holomorphic parabolic reductions of the complexified bundle (P€, J4).
Proposition 5.9 shows that the weights provide an alternative description of the
algebraic notion of stability. We close this section with the proof of the moment
weight inequality (Theorem 5.12) following the approach outlined by Donaldson
[Don4].

In Section 6 we describe a general procedure which associates to a given
connection A € A(P) a G(P)-invariant functional &4 : G°(P) — R. We call
this the Kempf—Ness functional of A. The slope of this functional at infinity agrees
with the weights discussed in Chapter 5 and hence relates to the algebraic notion
of stability by Proposition 5.9. The analogue of the Kempf—Ness theorem (see
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Theorem 6.2) relates the global behavior of ®4 to the symplectic . -stability of
A. This provides a link between the algebraic and symplectic notions of stability
and leads to an analytic proof of the Narasimhan—Seshadri-Ramanathan theorem
in Theorem 6.5. These arguments are given by Bradlow [Bra] and Mundet [iR]
in more general settings.

In Section 7 we establish the analogue of the Kempf existence and uniqueness
theorem (see Theorem 7.1). We include a self-contained account on the Harder—
Narasimhan filtration for the convenience of the reader.

Higher dimensional base manifolds. We restrict our discussion to the case
where X is a Riemann surface, although several results remain valid in greater
generality. The main reason for this is to simplify the presentation. Let us indicate
in the following to which degree the discussion could be generalized.

Replace ¥ by a closed Kihler manifold (X, J,®») and denote by

A QV(X) = QY%X)
the adjoint operator of f +— fw. The Hermitian Einstein equation is given by
AFA =T

for some constant central element T € Q°(X,ad(P)). Denote by Al! the space
of connections on P whose curvature F4 is of type (l,1). This space can be
given a Kihler structure and u(A) = AF4 yields a moment map for the gauge
action. In the vector bundle case, the Narasimhan—Seshadri theorem has been
generalized to this setting by Donaldson [Don2, Don3] in the algebraic framework
and by Uhlenbeck and Yau [UY] in the analytic framework over arbitrary Kéhler
manifolds. We would like to point out an observation by Anouche and Biswan
[AB]. They show that a holomorphic principal bundle P¢ is polystable (resp.
semistable), if and only if the associated holomorphic vector bundle ad(Ff¢) is
polystable (resp. semistable). Further generalizations involving more complicated
moduli problems have been studied by Hitchin [Hit], Simpson [Simp] and Bradlow
[Bra]. In his thesis [iR], Mundet generalizes this correspondence to a very general
moduli problem.

Our discussion of the Yang—Mills flow in Chapter 4 relies heavily on the
fact that ¥ is a Riemann surface. In particular, the group of W?? gauge
transformations no longer acts continuously on the space of W2 connections for
higher dimensional base manifolds. To avoid this issue, one could consider the flow
directly on the space of smooth connections. Donaldson showed in [Don2] that the
Yang-Mills flow starting at smooth A"! connections admits a smooth solution
which exists for all time. In the stable case, Donaldson used this flow to prove
his extension of the Narasimhan—Seshadri theorem. See [Siu] for a survey on this
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approach. The main issue is the complicated limiting behavior of solutions which
yields profound technical difficulties. Bando and Siu ([BS], Theorem 4) showed
that the limit “breaks up” into Hermitian-Einstein sheaves in the unstable case
and conjectured that the limit corresponds essentially to the Harder—Narasimhan
filtration. This is very similar to our discussion in Chapter 7. The Bando-Siu
conjecture has been confirmed by Daskalopoulos—Wentworth [DW] in the case
of Kéhler surfaces and by Sibling [Sib] and Jacob [Jacl, Jac2] for general Kéhler
manifolds. This yields the analogue of Theorem C for vector bundles over Kihler
manifolds.

Our calculation of the weights in Chapter 5 remains valid over an arbitrary
Kihler manifold. However, the weakly holomorphic filtration yields in this case
only a filtration by torsion-free subsheaves. The proof of the moment-weight
inequality generalizes ad verbatim to this case. The proof which we present for
the Narasimhan—Seshadri—-Ramanathan theorem remains valid in this setting as
well (see [iR]).

The Harder-Narasimhan filtration is well defined for holomorphic vector
bundles over Kiahler manifolds, but consists of torsion-free subsheaves instead
of holomorphic subbundles. It corresponds again to the supremum over the
normalized weights. This is shown by Bruasse [Bru] and we present part of
his argument in Chapter 7. It is a nontrivial result that the infimum of [|AFg4]|
over the (smooth) complexified gauge orbit yields the same value and follows
from the Bando-Siu conjecture. Bruasse gives an alternative and direct argument
to prove that the supremum is in fact attained.

General assumptions. Let G be a compact connected (real) Lie group, X a
closed Riemann surface and P — X a principal G bundle. We fix a volume
form dvoly on X and assume for convenience that the volume form is scaled
such that

vol(2) = 1.

Note that the volume form also induces a fixed Riemannian metric on X.

Unless stated otherwise, all Lie groups are assumed to be connected. When
G is a compact connected Lie group, then its complexification G¢, its parabolic
subgroups Q(¢) and their Levi subgroups L({) are automatically connected (see
Lemma 2.12).

As a general rule, we consider connections of Sobolev class W2 and gauge
transformations of Sobolev class W22, The gauge action extends smoothly over
these Sobolev spaces, since the base manifold is a Riemann surface. These
regularity assumptions do not affect the overall picture and we shall discuss them
in more detail in the preliminaries below.
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2. Preliminaries

First, we review the underlying notions from gauge theory and set up our
notation. The main goal is to describe the complexification of the gauge action
and the moment map picture of Atiyah and Bott. We also discuss the regularity
assumptions which are crucial for our further analytic discussion. In the second
subsection, we describe parabolic subgroups of complex reductive Lie groups.
We also include a brief discussion of the root space decomposition of semisimple
Lie algebras for the sake of completeness.

2.1. Gauge theory. We consider throughout this section fiber bundles over a
closed connected Riemann surface .

2.1.1. Basic gauge theory. We start with the general framework of fiber bundles
and specialize our discussion afterwards to the cases of vector bundles and
principal bundles.

Fiber bundles. Let £, F and B be smooth manifolds. The manifold £ together
with a projection map n : E — B is called a fiber bundle over B with fiber F,
if for every x € B there exists a neighborhood x € U C B and a diffeomorphism

v n ' (U)—>UxF

such that pr; oy = m|y. Here pry : U x F — U denotes the projection onto
the first factor. The map v is called a local trivialization of the fiber bundle E.
Suppose v, and g are local trivializations over U, and Ug. Then there exists
a unique map ggq : Uy N Ug — Diff(F) satisfying

wﬂa(xw“) = (1‘[[,8 ° wojl)(x,u) = (xﬁgﬁa(x)u)

for all x € Uy NUg and u € F. A reduction of the structure group of E to a
subgroup G C Diff(F) consists of an open cover {U,} of B together with local
trivializations v/, such that all transition maps gg, take values in G . The bundle
E together with a fixed choice of such trivialization is called a fiber bundle with
structure group G.

The tangent bundle TE contains a canonical vertical subbundle V :=kerd .
A connection on E is a splitting of the exact sequence

0>V ->TE—->TE/V >0

and corresponds to a horizontal distribution H C TE satisfying TE = H & V.
Identifying H with the projection of TE onto V', we can describe a connection
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by a V-valued 1-form A € Q'(E,V). The curvature of a connection is the
2-Form F4 € Q3(E.V) defined by

FA(X; U, I,U) = [U =— Ax(U)- it == Ax(w)] - [UhOF’ whor]verr.

It measures the integrability of the horizontal distribution H4 C TE.

Affine connections and vector bundles. A vector bundle is a fiber bundle E
whose fiber F = V is a vector space and whose structure group G C GL(V)
is linear. In this case every fiber E, := n~!(z) has a canonical structure of a
vector space and we have well-defined maps

YieC: §,:E—E, X = Ax
a . E®E—E, (x,y) = x+ y.

A connection on E is a connection 4 € Q(E, V) of the underlying fiber bundle
which is compatible with the linear structure on the fibers: Denote by Hq C TE
the horizontal distribution corresponding to A and by Hy C T(E & E) the
induced horizontal distribution consisting of pairs (v,w) € H & H satisfying
dm(v) = dn(w). Then one requires

(3) dS;,(HYyC H YleC and  da(H) C H.

Alternatively, one can think of a connection as a covariant derivation

dy QU= . E) -5 QU TE) 5 QU(=.V) =~ Q'(S. E)

where the last map comes from the canonical identification of the vertical bundle
with the vector bundle itself. The linearity condition (3) says precisely that this
defines an affine connection.

Definition 2.1. Let £ — X be a complex vector bundle. An affine connection
on E is a linear operator D : Q°(X%, E) — Q! (X, E) which satisfies the Leibniz
rule

D(fs)=df ®s+ f ® Df
forall f:% — C and s € Q%X E).

We denote by A(FE) the space of affine connections on E. Let v : E|y, —
Uy, x V be a local trivialization and denote for a local section s : U, — E with
respect to this trivialization s, := pr, o ¥, . Then an affine connection D has the
shape
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(Ds)y = dsg + Aa%

for some A, € QY (Uy.End(V)). These A, are called connection potentials for
the affine connection D . If all connection potentials take values in the Lie algebra
g C End(V) of the structure group G C GL(V), then the affine connection D
is called a G -connection. We denote by Ag(FE) the space of all G -connections
on E.

An affine connection D induces higher covariant derivations by the formula
D : Q%(2, E) » Q*TY(z, E), Dr®s)=dt®s+ (=)t A Ds

for T € QK(X) and s € QY. E). The curvature Fp € Q2(X,End(E)) is the
unique tensor satisfying
(DoD)s=Fp-s

for all s € Q%(X, E). It is the obstruction to D? = 0 and not directly related to
the curvature of the horizontal distribution defined by D. It rather corresponds
to curvature of the induced horizontal distribution in the frame bundle of E as
we shall see below.

Connections on principal bundles. Let G be a Lie group with Lie algebra g.
A principal G bundle over X is a fiber bundle 7 : P — X together with a fiber
preserving right action P x G — P which is free and transitive on the fibers.
In particular, the fibers are isomorphic to G and using the right action we can
always construct equivariant local trivializations of P. For p € P and £ € g the
infinitesimal action of & is defined by

d
B = e pexp(té) e T, P.
Fli=o

The collection of these tangent vectors defines the vertical subbundle
V =kerdn = {pE|pe P,Ecg} CTP.

A connection on P is an equivariant connection of the underlying fiber bundle
and corresponds to an equivariant horizontal distribution H C TP satisfying
TP =V & H. Identifying H with the projection Il : TP =V & H — V,
we can describe such a connection by a g-valued 1-form A € Q(P,g) via the
relation Tl1,(p) = pA,(p) for all p € P and p € T, P. The connection 1-Form
A satisfies the conditions

(4) Ap(p§) =& and  Apg(pg) = g ' Ap(p)g

for all g € G, £ e€g, pe P and p € T,P. Conversely, the kernel of any
A € QY(P,g) satisfying (4) gives rise to an equivariant horizontal distribution
H C TP. We define by
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A(P) :=1{A e QI(P,g)| A satisfies (4)}

the space of connections on P.
The curvature of a connection 4 € A(P) is defined as

1
Fq:=dA+ 5[A A Al € Q%(P, g)

where [A A A] is given by the usual formula for the exterior product with
multiplication replaced by the Lie bracket. This curvature is linked to the curvature
of the corresponding horizontal distribution by the relation

[X Y]Uerl‘ = [Xhor‘ Yhor]vert — PFA(P, X, Y)

for pe P and XY € T,P.

Associated bundles. Let P — X be a principal G bundle as above. A smooth
manifold F together with a representation p : G — Diff(F) gives rise to the
associated fiber bundle P x, F with fiber F which is defined by

Px,F:=(PxF)/G

where G acts diagonally by g(p,x) = (pg.p(g) 'x). We denote the orbit of
(p.x) € P x F under this action by [p,x]. A connection A € A(P) induces
a connection on the fiber bundle P x, F, which is given by the image of the
horizontal distribution under TP C TP xTF — T(P x, F).

Important examples arise from the action of G on itself by inner automorphism
and from the adjoint action of G on its Lie algebra. We denote the associated
bundles for these actions by

Ad(P) =P xg G and ad(P) 1= P ¥z4 {1

Note that the bundle Ad(P) is a fiber bundle with fiber G but not a principal
bundle. The fibers of ad(P) inherit from g a well-defined Lie algebra structure.
The difference a := A; — A, of two connection I-forms A;,A4, € A(P)

satisfies

1

ap(pg) =0 and apg(ﬁg) =g f’p(ﬁ)g

forall pe P, peT,P, £Ecg and g € G. Hence a corresponds to a ad(P)-
valued 1-form a on X by the formula a(zx(p):d=x(p)p) = [p.a(p: p)]. This
describes A(P) as an affine space with underlying linear space Q'(Z,ad(P))
and with respect to any reference connection Ay € A(P) we have

A(P) = {Ap +ala € Q1(Z.ad(P)}.



GIT for the Yang-Mills equation over Riemann surfaces 7T

Similarly, the curvature F4 of a connection A is an equivariant and horizontal
2-form on P and can thus be identified with an element F4 € Q2(Z,ad(P)).

Let H be a Lie group and let p: G — H be a homomorphism of Lie groups.
Then left-multiplication p(g) := L) € Diff(H) yields a representation of G
and the associated bundle Py := P x, H is a principal H bundle. If 4 € A(P),
then A induces a connection p(A4) € A(Pg) by the formula

p(A)([p, 1 (B, h) == h™h + B p(A(p: p))h

where p:= dp(1) : g — h denotes the induced homomorphism of Lie algebras.
The curvature of the induced connection is given by

Focay = p(Fa)

where p denotes the induced bundle map ad(P) — ad(Ppy).

From principal bundles to vector bundles and back. Let V be a vector
space and let p: G — GL(V') be a faithful representation. The associated bundle
E := P %,V is then a vector bundle and the trivialization maps of P yield a
natural reduction of the structure group of E to G. For a connection A € A(P),
the induced connection on E is compatible with the linear structure and defines
an affine G -connection in Ag(FE). The bundles Aut(£) and End(E) can be
described as associated bundles

Aut(E) = P xaq(p) GL(V) and End(E) = P Xad(p) End(V)

where Ad(p) : G — GL(End(V)) is defined as the composition of p and the
adjoint action of GL(V) on End(}'). The induced map p : g — End(}') provides
an inclusion ad(P) — End(E) and with respect to this map holds

Fg, = p(Fy)

for any connection A € A(P).

Conversely, let £ — X be a vector bundle with structure group G C GL(n).
The frame bundle of E is defined by

Fr(E):={(z,e)|z€ X, e: V — E, such that pr,oyg0e € G}

where ¥y : E|ly, — Uy x V is any trivialization of E with z € U,. It follows
directly from the definition that Fr(F£) is a principal G bundle. An affine G -
connection D € Ag(FE) induces a connection Ap € A(Fr(E)) as follows: Let
y :[0,1] — X be a curve. We call e € Q°([0, 1]. y*Fr(E)) a horizontal lift of y
if for every v € V the section
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ey € QU([0,1],¥*E), ey(t) :=e(t)v € E,q

satisfies D;(ey) := Dy(ey()) = 0. In a local trivialization this condition is
equivalent to the ODE

éa + Aa(y)eq = 0.

This shows that horizontal lifts exist when the connection potentials A, take
values in g. The tangent vector along horizontal lifts trace out an equivariant
horizontal distribution in Fr(£) and hence determine a connection A € A(Fr(FE)).

The frame bundle construction is inverse to the construction of associated
bundles in the sense that

Fr(P xg V)~V and Fr(EyxgV = E
whenever G C GL(V'). This also provides a one-to-one correspondence between
A(P) and Ag(FE).
The Gauge group. The Gauge group of a principal G bundle P is defined as
G(P) := Q°Z, Ad(P)).

This group is isomorphic to the group Aut(F) of fiber preserving equivariant
automorphism of P under the map

v QY(Z,Ad(P)) = Aut(P), Ve(p) = pg(p).
It is useful think of G(P) as an infinite dimensional Lie group with Lie algebra
Lie(G(P)) = Q°(Z.ad(P))

where all Lie theoretic operations are performed fiberwise. The Gauge group acts
naturally on the space of connections via pull back

glA) ==y, A=—(dg)g™" +g4g™".
The Gauge group of a vector bundle £ with structure group G is the group
G(E) := Q°X,G(E)) C Q°=,GL(E))

which consists of all automorphisms of E taking values in G in any trivialization.
We think of G(E) again as Lie group with Lie algebra Q°(Z.g(E)). The Gauge
group acts naturally on the space of affine G -connection Ag(E) via pullback

()" D=goDog™".

This action is more explicitly described in terms of the connection potential by
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(gA)o = _dgag;1 + goeAag;1

where g, ;= (pry o V¥u)sg : Uy — G.

Suppose that p: G — GL(V) is a faithful representation and E := P x, V
is an associated vector bundle. Then p induces an isomorphism Ad(P) == G(E)
and hence G(P) = G(E). The derivative p := dp(1l) : g — End(V) yields an
isomorphism of ad(P) = g(£) and hence an identification of the Lie algebras
of G(P) and G(FE). From the naturality of the gauge action it is clear that the
identification A(P) = Ag(FE) is equivariant with respect to the action of G(P)
and G(E).

The moment map picture. Fix an invariant inner product (-,-) on g. This
induces an inner product on the fibers of ad(P) and hence an invariant inner
product on Lie(G(P)) = Q°(X,ad(P)) by the formula

() = L (6. n) dvols.

This provides a natural hermitian structure on the space A(P) as follows. Since
A(P) is an affine space, it suffices to define the hermitian structure on the
underlying linear space Q!(X,ad(P)). For a,b € Q1(X,ad(P)) we define

w(a,b) ::/(a/\b), (a,b) ::/(a/\*b), Jad = dd ==g & [
b> ¥
The following observation is due to Atiyah and Bott [AB&3].

Lemma 2.2. The action of the Gauge group is Hamiltonian with moment map
w(A) := xF4. More explicitly, for every £ € QU(X,ad(P)) the infinitesimal action
on A e A(P) is given by

exp(1§)(A) = —d4§.

1=0
The function A(P) — R, A+ (xFy4,&);2, is differentiable and its differential is
the 1-form

d
LA%_ = —t

T4A(P) — R, a > ﬁ(LAS Aa) = wa(LAE,-).

Proof. Let £ € Q°(Z,ad(P)) be given and think of it as an equivariant map
£: P — g. We then compute

d d
== exp(t§)(A) = —

-1
dt i~ T dexp(td)” exp(ré) + exp(€) A exp(—£)

t=0

—1
= . (dexp(t€)™") + [&, A]

= —d§ —[A.§]
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The last expression agrees with —d & along horizontal vectors in P and vanishes

along vertical vectors. Hence it coincides with —d4& for the induced affine

connection d4 on ad(P) and this proves the formula for the infinitesimal action.
From the formula

1
Faiq = Fq+dga + E[a A Cl]

we see that the variation of Fy4 in the direction a € Q!(X,ad(P)) is given by
dya. This yields

(di(A)lal: §) = f (dga, ) = [Z (@ A dak) = wa(Lak, ).

by

Here we used integration by parts in the penultimate step and the formula

d{a,§) = (daa.§) — (a N d4é)

which follows from the G -invariance of the inner product. ]

2.1.2. The complexified gauge action. Let G be a compact connected Lie group
and let P — X be a principal G bundle. We denote by G¢ the complexification
of G and call P¢ := P xg G° the complexification of P. The complexified
gauge group of P is defined as

Ge(P) :=G(P°).

One can think of elements in G°(P) as G -equivariant maps from P to G°€.
The Lie algebra bundle ad(P¢) is the complexification of the bundle ad(P) and
since all Lie theoretic operations on the gauge group are defined fiberwise, it is
reasonable to think of G°(P) as the complexification of G(P). By the Peter-Weyl
theorem, G admits a faithful representation G — U(n). Identifying G with its
image in U(n), we can describe its complexification G¢ C GL(n) explicitly as
the image of G x g under the diffeomorphism

U(n) x u(n) — GL(n), (u,n) — uexp(in).

In terms of the associated bundle E := P xg C" the complexification of the
gauge group is then given by

G°(E) = Q°(Z, G°(E)).

The goal of this section is to explain how the G(P)-action on A(P) extends
naturally to a holomorphic action of G°(P).
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Proposition 2.3. There exists a natural action of G°(P) on A(P) whose
infinitesimal action satisfies

(5) La(E +in) = Lak + *Lan = —da& — *day

for all £,n€ Q%X,ad(P)) and A € A(P).

Proof. See page 84. O

Holomorphic principal bundles. An almost complex structure J on a manifold
M is an endomorphism J € End(TM) satisfying J? = —1. It is called an
integrable or holomorphic structure if it endows M with the structure of a complex
manifold. A holomorphic structure on the principal bundle P¢ = P xg G¢ is an
almost complex structure J € End(7T'P¢) of the total space, which is G¢ invariant
and coincides with the canonical complex structure on the vertical subbundle, i.e.
J(pt) = p(i¢) for any p € P¢ and ¢ € g°. We denote by J(P¢) the space of
all holomorphic structures on P¢. The next Lemma justifies this notation.

Lemma 2.4. Every J € J(P€) is integrable.

Proof. The Newlander—Nirenberg theorem states that an almost complex structure
J on a manifold M is integrable if and only if the Nijenhuis-tensor N; :
T™ ® TM — TM given by

Nyw,w) :=[v,w]l+ J[Jv,w]+ J[v,Jw] - [Jv, Jw]

vanishes. We apply this to M = P¢. If v,w € Tp“e”(Pc) are both in the
vertical bundle, we have Nj(v,w) = 0 as the fiber is a complex manifold. If
v E Tp””‘(Pc) and w € Tph‘”(Pc) the Lie bracket [v,w] = L,(w) vanishes,
since the horizontal distribution is equivariant. In particular Ny (v, w) = 0 as all
four terms vanish separately. Let finally v, w € T:‘”’(PC) be horizontal vectors.
We may assume that p € P and denote by v := dn(p)v and w := dn(p)w
the projections onto 7X. By definition of the curvature, we obtain the vertical
component of the Nijenhuis tensor by

Ap(Ny (v, w)) = Fa(0,0) + iF4(js0,0) + iF4(0, js0) — Fa(jgd, jxd)
= 4F)* (3, ) = 0.

In the last step we use that ¥ is a complex one-dimensional manifold and thus
Q0%2(X) = 0. The horizontal part of N;(v,w) gets identified under dn(p) with
Ny(v,w) and vanishes as ¥ is a complex manifold. This completes the proof of
Nz = 0. [
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As a consequence, every holomorphic principal bundles admits holomorphic
local trivializations with holomorphic transition maps. The next Lemma is due to
Singer [Sin].

Lemma 2.5. There exists a one to one correspondence between connections
A € A(P) and holomorphic structures J € J(P°).

Proof. A connection A € A(P) induces a connection on P€¢ and thus determines
for every p € P¢ a splitting 7,(P¢) = Tphm(PC) @® T, (P°). The vertical part
is isomorphic to g° and has a canonical complex structure. The differential of the
projection 7 : P¢ — 3 restricts to an isomorphism d¢(p) : T;"r(P“) % Tip) X
and induces a complex structure on T;“’r (P°).

Conversely, let J € J(P¢) be given and think of P C P¢ as a subbundle.
For p € P we define H, :=T,P N J,(T,P) and claim that 7,P + J,(T,P) =
T,(P°). Indeed, since Tp”e”P =~ g, the sum clearly contains the vertical fiber
Tp”e”(Pc) >~ g° and dn(p) maps T, P already onto Tr,X. It is immediate
from the construction that H, is invariant under J, and defines a (real) two
dimensional complement of Tp“e”(P") in T,(P¢). As p varies over P we obtain
an equivariant distribution along P and hence a connection A € A(P). O

Let A€ A(P), g € G(P) and let J4 € J(P°) be the holomorphic structure
induced by A. Then g(A) induces the holomorphic structure (¥,-1)*Jy4, since
the construction above is clearly functorial. The action of G(P) on [J(P€) has
a natural extension to the complexified gauge group via

GE(P) x J(P°) — J(PF), g(J) = (Yg-1)*J

where ¥,-1 € Aut(P¢) is the automorphism corresponding to g '. Using the
identification of [7(P€¢) with A(P) this yields the desired action of G°(P) on
A(P) and the quotient A(P)/G°(P) parametrizes the isomorphism classes of
holomorphic structures on P¢.

Holomorphic vector bundles. We consider the special case G = U(n) and
denote by E := P xy;)C" the associated vector bundle. A holomorphic structure
on E is an almost complex structure J € End(7E) of the total space which
restricts to the linear complex structure on the fibers. Similarly as in the case
of principal bundles, one shows that every such structure is indeed integrable
and that every holomorphic vector bundle admits holomorphic trivializations. It
is then easy to see that every holomorphic vector bundle E carries a natural
operator
0g : QY%Z,E) > Q¥ (2, E)
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which in any holomorphic trivialization agrees with the usual J operator on C".
This operator is a particular Cauchy—Riemann operator on E.

Definition 2.6. Let £ — ¥ be a complex vector bundle. A Cauchy Riemann
operator on £ is a linear operator

D": Q%= E) - Q"\(Z, E)
which satisfies the Leibniz rule
D'(fs)=0f ®@s+ f@D"s

forall f:X —-C and 5s € Q%X E).

The converse is also true: Every Cauchy—Riemann operator determines a
holomorphic structure on the complex bundle £, whose local holomorphic
sections are solutions of the Cauchy—Riemann equation D”s = 0. This is another
instance of the Newlander—Nirenberg theorem. In the case of Riemann surfaces
a simpler proof of this result is given by Atiyah and Bott ([AB8&3], Section 5).

Note that the associated vector bundle E carries a canonical hermitian metric,
which in any trivialization coincides with the standard hermitian metric on C".
We claim that there is a one to one correspondence between unitary connections
on E and Cauchy-Riemann operators. For a unitary connection D we obtain a
Cauchy—Riemann operator by the formula

D"s = (Ds)%! = é(DS +i(Ds)o jz) = %(Ds —ix (Dy)).

To show that this correspondence is bijective, it suffices to examine this
correspondence locally. In a unitary trivialization ¢ : E|ly — U x C" the
connection D can be described in terms of a l-form A € Q'(U,u(n)) such
that

Ds :=ds + As, D"s = ds + A%Ls

holds for any section s € QO(U, C") with A%! := %(A +iAojx). In particular, we
recover A as twice the skew-hermitian part of A%! and therefore it is uniquely
determined by A%!. Conversely, any Cauchy Riemann operator D” is given in
this local trivialization by

D"s := ds + Bs

for some B € Q%1(U, gl(n)). Since B satisfies B(jxv) = —iB(v) for any tangent
vector v € T 2|y, the skew-hermitian and hermitian part of B interchange if we
compose B with jg. This shows that B has the form B = 1(4 +id o jx) for
some A € QY(U,u(n)) and this proves the claim.
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On the level of Cauchy-Riemann operators the complexified Gauge group
G(E) = Q°=,GL(E)) acts naturally via

1 1

g(04) :=godsog ™t = 04— da(g)g ™"

The next Lemma summarizes the discussion above and provides an explicit
formulas for this action on A(FE).

Lemma 2.7. Let E — X be a complex vector bundle.

(1) For every holomorphic structure dg and hermitian metric H there exists a
unique connection

D= D(E)E,H) = D' +D"e AI’O(E)@AOJ(E)

such that D is unitary with respect to H and D" = 0.
(2) Let g € QYZ,GL(E)) and denote h:= g*g (with respect to H). Then

D(g(@g), H) =g (D +h™'D'(h)) g~
F(g(g),H)=g(F + D"(h™'D'(h))) g™ ".

Proof. For the first part, note that there is a one to one correspondence between
hermitian metrics A and reductions of the structure group of E to U(n): Using
the Gram-Schmidt process we can always find local trivializations which identify
H with the standard hermitian product on C” and the transition map between
such trivializations are clearly unitary. The second part follows from the formula

D(g(dg), H) =g(D)=goD"og™ ' +(g7")* oD o g"

and F =DoD. ]

Remark 2.8. Consider the general case and assume that G C U(n) is a compact
connected subgroup. The structure group of FE is then contained in G and
the explicit formula in the Lemma above shows that the subspace Ag(E) of
G -connections is preserved by the action of G¢(E) = Q%E.G¢(E)). Since
holomorphic structures on E and its frame determine one another, it is clear that
this action corresponds to the action described on holomorphic principal bundles
above.

We may now deduce the formula for the infinitesimal action (5).

Proof of Proposition 2.3. As in Lemma 2.2 one calculates

d s _
il exp(t8)(04) = —04¢
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for ¢ € QUZ,g°(E)). Write ¢{ = £ +1in with £, € Q°%Z,g(E)) and use the
formula d4(in) = *d4n to deduce

La = =048 + 340" = = (048 — (048)*) — *(dan — @am)*)
= —dg§ — xdqn = Ls§ +*Lyn.
U

2.1.3. Regularity assumptions. Let G be a compact connected Lie group and
let P — X be a principal G bundle. We shall always consider connections of
Sobolev class W2 and gauge transformations of Sobolev class W?22. More
precisely, the space of W2 connections on P is defined with respect to some
smooth reference connection Ay as

A(P):={Ao+alac W (Z,T*S ® ad(P))}
and the W22 completion of the gauge group and its complexification are
G(P) := W**(Z,Ad(P)), GE(P) := W*2(Z,Ad(P9)).

We use the same notation as for the smooth groups, since all the results from
the previous section carry over. In particular, the action of the gauge group
and its complexification extend smoothly over these Sobolev completions, since
W22 < C° is in the good range of the Sobolev embedding. A connection
still determines a holomorphic structure up to isomorphism due to the following
regularity result.

Lemma 2.9. For every W2 connection A € A(P) there exists a complex W22
gauge transformation g € G°(P) such that g(A) is smooth.

Proof. This is Lemma 14.8 in [AB83]. By Proposition 2.3, the infinitesimal action
of the complex gauge group is given by

La:W*%(2,ad(P)) — W2(Z,T*E ® ad(P))
LA(§ +1in) = —da§ — *dan

For any smooth reference connection Ag, this is a compact perturbation of Ly,
which is a Fredholm operator. Hence L4 is also Fredholm and in particular its
cokernel is finite dimensional.

It follows from the implicit function theorem in Banach spaces that we can
choose a finite dimensional slice N orthogonal to the G¢-orbit through A. Say
dim(N) = r and fix r+1 connections By...., B, € N which span an r-simplex
containing A in its interior. A small perturbation of the vertices yields smooth
connections E’O, e I§r and the simplex spanned by these connections will still
intersect the orbit G°(A). This intersection point yields a smooth connection in
the G¢ orbit of A. ]
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2.2. Parabolic subgroups. Let G be a compact connected Lie group with Lie
algebra g and denote its complexification by G¢. Fix an invariant inner product
on g. This induces a (real valued) inner product on g¢ = g@®ig where we define
both factors to be orthogonal. We define parabolic subgroups of G¢ first by
using toral generators of g°. Then we recall briefly the root space decomposition
of reductive Lie algebras and give an alternative intrinsic definition of parabolic
subgroups. The first definition occurs naturally in the geometric description of the
weights in Chapter 5. The intrinsic version turns out to be useful in the proof of
Proposition 5.9 which relates the algebraic notion of stability with the weights.

2.2.1. Toral generators. An element { € g¢ is called a foral generator if

Ty := {exp(t{) |t e R} C G°

is a compact torus. We denote by 7¢ the set of toral generators. Certainly g C 7°.
Since any maximal compact subgroup of G¢ is conjugated to G, for every { € T°¢
exists g € G such that g7'T;g™' C G. The relation gTrg™ ' = T,¢,—1 then
yields g¢g~! € g and hence

T¢ = Ad(G)(g) = {gbg ' |g € G°. & € g}.
Definition 2.10. A parabolic subgroup of G€¢ is a subgroup of the form
0(¢) := {g € G° | the limit Jlim eége™ ¢ exists in G°)
for some ¢ € T¢. The Levi subgroup of Q(¢) is defined by
L) :={geG* | e ge = g}
Remark 2.11. We consider G¢ = Q(0) as parabolic subgroup of itself.

Lemma 2.12. Consider the setting described above and let { € T°.

(1) Q(&) is a closed connected Lie subgroup of G¢ with Lie algebra
q(¢) := {p € g° | the limit lim e pe™E exists in g°}.
I—00
(2) L(¢) is a closed connected Lie subgroup of G¢ with Lie algebra
() := {p € g° | S pe ™ = p}

(3) L(¢) is a maximal reductive subgroup of Q({).
(4) 0() = G° if and only if ¢ is contained in the center of g°.
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Proof. Since Q(glg™") = gQ({)g™" and L(gig™") = gL({)g™", we may as-
sume ¢ = & € g. By the Peter-Weyl theorem, there exists a faithful representation
G — U(n) and we may identify G with a closed subgroup of U(n). Then
i§ yields a hermitian endomorphism of C" which is diagonalizable with real
eigenvalues A; < --- < A,. Denote the eigenspace corresponding to A; by V.
They yield an orthogonal decomposition

Cr=Vieg---aV,.

In this decomposition we can write ¢ € G° C GL(n,C) as

g11 812 - 81r
821 822 7t Bor
g = . . )
grl gr2 grr
with g;; € Hom(V;, V;). Then
841 gzl gy wus pa—Aedip,
(A2—A1)t (A2=Ap)t o
eifége_ité _ € 821 8?2 e 82r
e(k’._kl)tgrl e(kr_/b)[grz 8rr

Thus g € Q(§) if and only if g is upper triangular (i.e. g;; =0 for i > ;) and
g € L(§) if and only if g is block diagonal (i.e., g;; = 0 for i # j). This shows
that L(§) and Q(&) are closed subgroups of G¢ and the formulas for [(§) and
q(§) are immediate.

As the spaces V; are pairwise orthogonal, the intersection G N Q(§) consists
of block diagonal matrices and hence agrees with the centralizer of the torus
Tz in G. Since the centralizers of tori in compact groups are connected
(see [Kna] Corollary 4.51) we conclude that G N Q(§) is connected. Since
L(&) is the complexification of G N Q(§) it is connected and reductive.
Moreover Q(&)/L(§) can be identified with the unipotent matrices in Q(§)
and hence L(£) is a maximal reductive subgroup of Q(¢). We observe
that

0®) — LE). g lim ge

defines a continuous retraction of Q(&) onto L(&) and hence Q(&) is con-
nected.

Finally, since G° is reductive, we have G¢ = Q(§) if and only if G¢ = L(§).
The later is clearly equivalent to & € Z(g). ]
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2.2.2. The root-space decomposition. We recall the necessary background on
Lie theory briefly and refer to [Kna] for the proofs. Note that the discussion
remains valid for any G -invariant inner product on g, which does not need to
be the negative Killing form.

Reductive Lie groups. Using the invariant inner product on g, it is easy to
show that the adjoint action of g on itself is completely reducible. This yields
an orthogonal decomposition

g=13®I[g.9]

where 3 denotes the center of g and the commutator [g,g] is a direct sum of
simple ideals and hence a semisimple Lie algebra. The same decomposition is
valid for the complexification. To see this extend the inner product on g to a
non-degenerated C -bilinear form B : g° x g¢ — C by

B(&) +ini: & +inz) = (E1.&) — (1. m2) + ({61 m2) + (1. &2)).

This bilinear form is nondegenerate and G°¢ -invariant. Moreover, the B -orthogonal
complement of a complex subspace W C g is a G¢-invariant complement and
the same argument as above yields the decomposition

g°=3"®[g° ¢

Root space decomposition. Fix a maximal torus 7 C G with Lie algebra t
and decompose it orthogonally as t = 3 & to. A nonzero imaginary valued real
linear map

o =1ia:ty — IR, a € Hom(ty,R)
is called a roor of G with respect to T if there exists ey € [g¢, g°] satisfying
[t,ea] = a(t)en for all 1 € tp.

The element e, is uniquely determined by « up to scaling. We denote by
gy := C - e, the one dimensional root space corresponding to « and denote by
R the set of all roots (relative to 7). The root space decomposition of g¢ is the
vector space decomposition

o =50t P

x€R

For a proof see [Kna] Chapters I1.1-4 and IV.5.
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Lemma 2.13. Denote g := {j.

(1) For a,B € RU{0} the Lie bracket satisfies the relation

[9e. 98] C atp

where the right-hand side is defined to be zero when o + 8 ¢ R U {0}.
(2) For a, B € RU{0} with o # —f the subspaces g, and gg are B-orthogonal.

(3) If @ € R, then —a € R. Moreover, if ey € gy then e, € g—o and
(g D 9-o) Ng =R(ey + ey) ® Riey —iey)

Proof. The first and the last statement follow directly from the definitions. For
the second statement consider first the case § =0 and « € R. Then follows for
all st €

B(a(t)eq,s) = B([t.eq). s) = —B(eq.[t.5]) =0

where we used in the second step that B is G€¢-invariant. This shows that
is B-orthogonal to g,. Now consider o, € R with ¢« + f # 0. A similar
calculation shows for all s,7 € {§

B(a(t)ea. B(s)eg) = B([1, eal, B(s)ep) = —B(1, [ea. B(s)ep]) = 0

where the last equality follows from the observation [e, B(s)eg] € gu+8- O

The Weyl group. Using the inner product on g, we identify the roots & = ia € R
with vectors 7, € ty by the relation

G = Ay L) for all 1 € tp.
This yields a subset ®r = {1y | € R} C tp which satisfies the properties of an
abstract root system:
(1) ®g is a spanning set for tg.
(2) For every t, € &, the orthogonal reflection along ker«

24t )

Sq - to — to, Se(t) =1t — -
|2

carries g to itself.

3) ZI(Itri]tfzy) is an integer for all 74,15 € ®g.

This is discussed in [Kna] Chapters II.5. The subgroup W generated by all
the root reflection s, inside the orthogonal group O(tp) is called the Weyl
group. Since ®r is a spanning set of {y, any orthogonal transformation which
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fixes ®r must be the identity and hence the Weyl group is always finite. After
removing all hyperplanes ker(«) the Weyl group acts transitively and freely on
to\U{ker(x) |« € R}. The closure of a connected component of this space is called
a Weyl chamber Qw C to. In particular, Qy is the closure of a fundamental
domain for the action of W. The Weyl group can alternatively be described as

W = Ng(T)/Zg(T).

Here the normalizer Ng(7T) acts on the maximal torus 7 by conjugation. This
action is trivial on the center Zy(G) C T and its derivative induces an action on
to. Since the inner product on g is G -invariant, this identifies Ng(7)/Zg(T)
with a subgroup of the orthogonal group O(ty) and it is easy to check that
this group permutes the roots f,. The equivalence of both descriptions of the
Weyl-group is shown in [Kna] Chapters IV.6. Since any two maximal tori in G
are conjugated, this shows that the conjugation classes in G are parametrized by
T/W and in particular any element ¢ € g is conjugated to an element in the
Weyl chamber Qy C tp.

Simple roots. Consider a notion of positivity on the set R satisfying the
properties

(1) For every root @ € R exactly one of @ and —« is positive.
(2) If « and B are positive, then « + B is positive.

An easy way to define such a notion goes as follows. Choose a real linear
functional ¢ : tg — R such that ker¢p N ®g = @ and define a root o € R to be
positive whenever ¢(fy) > 0. We write « > 0 for a positive root « and denote
by RT the collection of positive roots. This induces a partial ordering on the
roots according to the rule

a>f if and only if a—pf > 0.

A root @ € R™ is called simple if it cannot be decomposed as « = B + y with
B,y € R*. In other words, a simple root is a minimal positive root. We denote
by Ry = {e1,....a} the set of simple roots. It is easy to deduce from the
definitions that any root « can be written as

r

(6) g = ijaj

J=1

with coefficients x1,...,x, € Z having all the same sign (or vanish). In particular

® .+ is a spanning set of to. A less obvious fact is that @ .+ is linear independent
(0] 0

(see [Kna] IL.5 Prop 2.49). Hence every root has a unique expression (6) and a
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root is positive if and only if all the coefficients are nonnegative. This observation
shows that the collection of simple roots and the partial ordering determine one
another.

Any collection of simple roots R(')F = {oy....,qa,} determines a canonical
Weyl chamber by the formula

QW:{IEtOIa‘;(Z)EO FAll F=15es4 r}

where we denote «; = ia; as above. Conversely, given a Weyl chamber Qu we
can recover the collection of positive roots by the rule

a > 0 if and only if (z,#,) > 0 for all 1 € Qy .

Hence the choice of a Weyl chamber and a partial ordering determine one another
as well. Since any two Weyl chambers are conjugated by an element in G, this
shows that all the choices in this section are canonical up to conjugation.

We denote the simple roots in & R} for convenience by 1; := fg; . Since they

define a basis of ty, we can define a dual basis {f,.....7.} by
w 2
(7) <zi. ! >: 8sj
|2 112 ’
for i,j = 1,...,r. They are clearly contained in the Weyl chamber determined

by the simple roots and yield the characterization

.
t:ijfJ-GWQ N # =0 for ] =1isu:ss
j=1

The dual elements
)Lj cto — iR, Aj(Z) = l(lZ[)

are called the fundamental weights associated to the simple roots.

2.2.3. An intrinsic definition of parabolic subgroups. We provide an intrinsic
definition of parabolic subgroups following the presentation [Ser] by Serre. Let
£ € [g,g] be given and choose a maximal torus 7 C G such that & € {,.
Moreover, let Ry := {a;,...,a,} be a choice of simple roots such that & is
contained in the corresponding Weyl chamber. Denote

8) R(§):={o e R|(E 1) >0} and R(€) :={a € R|(t.1y) = 0}.

Define the Lie subalgebras

(9) 1) =388 P g

aeR(§)
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and
(10) (§) =:8t® P g
a€R(§)

The next Lemma shows that this notation is consistent with our definition in the
section on toral generators.

Lemma 2.14. Consider the setting from above and define q(&) and (&) by (9)
and (10) respectively. Then
q(€) = {p € ¢° | the limit lim " pe ¢ exists in g°)
t—co
and

1(§) = {p € g " pe™ = p}.

Proof. Decompose p € g¢ with respect to the root space decomposition as
p=po+ Y Pa
aE€R

with pp € t and py € go. By definition of the roots we have

i€, pa] = —a(§)p(§) - po = —(ta.§)pa

and hence
ell‘&pe—lfé = po + Z e—(ta,?,’)rpw

@€R

This converges for 1 — oo if and only if p, = 0 for all « ¢ R(§). Similarly, we
have p = e pe~ if and only if py = 0 for all « ¢ R(§). U

We could now define the parabolic subgroup Q(§) and its Levi subgroup
L(&) as those connected subgroups of G¢ whose Lie algebras are given by q(§)
and [(§) respectively. These are closed subgroups, since both agree with their
normalizer in G€.

Lemma 2.15. Let 1y.....1, be defined by (7) and let
Slelrl ~|—---—|—x,fr € QW

with x; > 0. Then Q; := Q(i;) are maximal proper parabolic subgroups of G°
and Q(€) C Q(i;) if and only if x; > 0. Moreover,

0= [ Q).

{7 lx;>0}

Proof. The proof is a simple matter of comparing R(7;) and R(£). U
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3. Algebraic and symplectic stability

Let G be a compact connected Lie group and let P — X be a principal G
bundle over X. Denote by G¢ the complexification of G and by P¢ := P x5 G°
the complexified principal bundle.

The algebraic geometric construction of the moduli space of holomorphic
structures on P, in the sense of Mumford’s geometric invariant theory [MFK],
depends on the notion of stable and semistable objects. For vector bundles this
notion is due to Mumford [Mum] and it was later extended by Ramanathan [Ram]
to principal bundles. We discuss these two definitions in the first subsection and
denote the corresponding moduli space of holomorphic structures on P¢ by

TH(PE)[[G(PC).

As mentioned in the introduction, this space is obtained by identifying two orbits
in 7% (P)/G(P¢) when they cannot be separated.

The G(P)-action on A(P) is Hamiltonian with moment map p(A) = *Fy
by Lemma 2.2. For every central element t € Z(g) one obtains the symplectic
quotient

A(P)//G(P) = " () /G(P).
Note that the moment map is not uniquely determined by the gauge action and
another moment map is given by p.(A) := xF4 — . In other words, different
choices of 7 correspond to different choices for the moment map. The symplectic
version of GIT (see [SGR]) defines stable and semistable objects in A(P) in
terms of the moment map. We show in the second subsection that there exists a
natural choice for t € Z(g) determined by the topological type of P and define
the corresponding symplectic notion of stability. It will follow from Theorem 4.14
and Theorem 4.15 in the next section that this definition leads to identifications

uzH0)/G(P) = A (P)//GE(P).
The right hand side is again obtained by identifying orbits in A**(P)/G°(P) if
they cannot be separated.
Recall from Lemma 2.5 that 7(P¢) can be identified naturally with A(P).
We prove in Theorem 3.10 that the different notions of stability on A(P) and

J(P€) are essentially equivalent under this identification. In particular, this yields
isomorphism

T (P)/JG(P) = A®(P)//GE(P) = pn7 ' (0)/G(P)

for a suitable choice of 7 € Z(g). The proof of this theorem will be based on
the whole remainder of the exposition, namely on Proposition 5.9, the moment-
weight inequality (Theorem 5.12), the Harder—Narasimhan-Ramanathan theorem
(Theorem 6.5) and the dominant weight theorem (Theorem 7.1).
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3.1. Algebraic stability. We discuss the algebraic notion of stability on the space
J(P€) of holomorphic structures on the principal G¢ bundle P¢. This definition
depends only on the complexified bundle P¢ itself and not on the reduction
P C P¢. Consider as a warmup the case G¢ = GL(n). This allows us to identify
P¢ with a complex vector bundle. The slope or normalized Chern class of a
vector bundle £ — X is defined as

_ca(E)
wE) = )

The following definition is due to Mumford [Mum].

Definition 3.1. Let £ — ¥ be a holomorphic vector bundle.

(1) E is called stable if for every proper holomorphic subbundle 0 # F C E
we have p(F) < p(E).

(2) E is called polystable if E is the direct sum of stable vector bundles all
having the same slope.

(3) E is called semistable if for every proper holomorphic subbundle 0 # F C E
we have p(F) < u(E).

(4) E is called unstable if E is not semistable.

The analogue of this definition for general Lie groups was formulated by
Ramanathan [Ram]. Lemma 3.4 below shows that Definition 3.1 corresponds to
the special case G¢ = GL(n) in Definition 3.2.

Definition 3.2. Let G¢ be a connected reductive Lie group and P¢ — ¥ be a
holomorphic principal G¢ bundle.

(1) P¢ is called stable if for every holomorphic reduction Pg C P¢ to a maximal
proper parabolic subgroup Q C G€ the subbundle ad(Pg) C ad(P¢) satisfies
ci1(ad(Pp)) < 0.

(2) P€ is called polystable if there exists a parabolic subgroup Q C G¢ and
a holomorphic reduction Pz C P¢ to a Levi subgroup of O satisfying the
following

(a) Pr is a stable principal L bundle.

(b) For every character y : L — C*, which is trivial on the center of G¢,
the associated line bundle y(Pr) := Pp x, C satisfies ¢1(x(Pr)) = 0.

(3) P¢ is called semistable if for every holomorphic reduction Pp C P€ to a
maximal proper parabolic subgroup O C G¢ the subbundle ad(Pp) C ad(P¢)
satisfies ¢;(ad(Q)) < 0.

(4) P°¢ is called unstable if ad(P€) is not semistable.
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Remark 3.3. Let L,,---,L, and G° be complex connected reductive Lie groups
such that the product L; x---x L, C G° embeds as a subgroup. Let P;
be stable principal L; bundles for j = 1...., r. Then it is easy to see that
Pp := Pp, x---x Pr, is a stable principal L bundle. However, the extension
P¢:= Pp xp G is in general not a semistable G°-bundle. The second condition
in the definition of polystability is needed to guarantee the semistability of P€.
To see this let Por C P¢ be the reduction to a maximal parabolic subgroup and
consider the determinant of the adjoint action of Q' C G¢ on its Lie algebra.
This character is clearly trivial on the center of G¢ and either restricts to L
or to a maximal parabolic subgroup Q” = Q'N L C L. In the first case, it
follows from the definition of polystability that c¢;(ad(Pg-)) = 0. In the other
case observe that Py determines a maximal parabolic reduction Por C Pp and
ci(ad(Pgr)) = c1(ad(Pgr)) < 0, since P is stable.

Lemma 3.4. A holomorphic vector bundle E is stable, polystable, semistable or
unstable if and only its GL(n)-frame bundle P°¢ := Fr(E) is stable, polystable,
semistable or unstable respectively.

Proof. We discuss the stable (resp. semistable) case first. A maximal parabolic
subgroup of GL(n) is the stabilizer a subspace 0 # V' C C” and the holomorphic
reduction Pp of the GL(n)-frame bundle to a maximal parabolic subgroup is
thus the stabilizer of a holomorphic subbundle F C E. Consider the orthogonal
splitting £ = F & G with respect to some fixed hermitian metric on E. Then
ad(Pp) C End(E) is given by the space of upper block diagonal matrices. We
choose unitary connections 4; on E and 4, of G and denote by A the induced
connection of £ = F @ G. This induces also a connection on ad(Pp) and the
curvature of this connection is given by the endomorphism

£ ko gk — &y

for § € ad(Pp). Since F4 = diag(Fy4,. F4,) is block-diagonal, a short calculation
shows that the trace of this map is given by rk(G)tr(Fy4,) — rk(F)tr(Fy,) and
Chern—Weyl theory yields

c1(ad(Pg)) = 1tk(G)ey (F) — tk(F)er(G)

ci(F) ¢ (E/F)
tk(F) rk(E/F))'
This expression is nonpositive if and only if ¢ (F)/rk(F) < ¢;(E)/rk(£) and
negative whenever strict inequality holds. This proves the equivalence of both
definitions in the stable and semistable case.

The unstable case is equivalent to the semistable case and it remains to discuss
the polystable case. A general parabolic subgroup of GL(V) is the stabilizer of

= rk(E/F)rk(F) (
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a filtration V3 C --- C V, = V and a Levi subgroup in given as the stabilizer of
a splitting V=W, &---@ W, with V; =W, &---& W;. Hence, a holomorphic
reduction Pr C P€¢ to the Levi factor of a parabolic subgroup corresponds to
the L = GL(n,) x --- x GL(n,) frame bundle of a holomorphic splitting

E=EFE&:-®E,.

We claim that P is a stable principal L bundle if and only if all factors FE;
are stable holomorphic vector bundles. Indeed, a maximal parabolic subgroup of
L has the shape

0 = GL(11) @+ ® GL(1;_1) & Q; @ GL(nj41) -+~ & GL(1,)
where Q; C GL(n;) is a maximal parabolic subgroup. Then
ad(Pg) = End(E;) @ --- @ ad(Pp;) @ --- ® End(E;)

and hence ¢;(ad(Pp)) = c1(ad(Pg;)). The claim follows now from our discussion
of the stable case.

It remains to verify that the slopes of all subbundles satisty p(E;) = u(E)
if and only if for every character y : L — C* which is trivial on the center
of GL(n) the associated line bundle y(Pr) has degree zero. Every character
x: L — C* factors as y = y;--- x» with x; : GL(n;) — C* and induces on the
Lie algebra the representation

F=d1+-
with ¥; = dy;(1) : gl(n;) — C. Since every traceless matrix in gl(n;) is a
commutator, there exist A; € C such that
Xj(pj) = Ajtr(pj)

for all p; € gl(n;). We choose unitary connections A; € A(E;) and denote by
A=A &---® A, the induced unitary connection on E. Then follows from
Chern—Weil theory

i i .
Cq (X(PL)) = ELFX(A) dvoly = EL)((FA) dvols
= Aici(E1) + -+ Area(Er).

Note that y vanishes on the center of GL(n) if and only if niA; +-+-+n,A, =0
is satisfied. If in addition p(E;) = w(E) holds for all j, then

r

c1(x(Pr)) = Z"JMIJ«(EJ) = 0.

j=1
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For the converse consider the character y : GL(ny) x --- x GL(n,) — C*
2(Bi....,By) :=det(B;)" det(B)™"/.
This vanishes on the center of GL(n) and satisfies () = ntr(§;)—n;tr(§). Hence

c1(x(Pr)) =nci(Ej) —njci(E)

and this vanishes precisely when w(E;) = p(FE) is satisfied. O]

The next lemma shows that we can always reduce to the case where G¢ has
discrete center.

Lemma 3.5. Let G° be a complex connected reductive Lie group and P¢ — X
be a principal G¢ bundle. Denote by Zo(G°) the connected component of the
center of G¢ containing the identity. Let H¢ := G°/Zy(G) and denote by

PHc = PC/Zo(GC)

the associated H¢ bundle. This carries a natural induced holomorphic structure
and P°€ is stable, polystable, semistable or unstable if and only if Pgc is stable,
polystable, semistable or unstable respectively.

Proof. The Lie algebra of G¢ splits as g¢ = Z(g°) & [¢°, g¢] and [g°, g°] can be
identified with the semisimple Lie algebra of H¢. This splitting is preserved by the
adjoint action of G¢ and produces a splitting ad(P€) = V & ad(Pgc) where V =
¥ x Z(g) is a trivial bundle. Parabolic subgroups O C G¢ correspond bijectively
to parabolic subgroups Q := Q/Z(G¢) C H and parabolic reductions Py C P°¢
correspond bijectively to parabolic reductions Pg := Po/Zo(G®) C Pge. Since
ad(Pp) =V @ ad(PQ), we have cj(ad(Pg)) = cl(ad(PQ-)) and this shows that
P¢ is stable (resp. semistable) if and only if Pgyc is stable (resp. semistable).

If L is a Levi subgroup of the parabolic subgroup Q C G€¢, then L := L/Z,
is a Levi-subgroup of O = Q/Z, C H¢. Moreover, reductions Py C P¢ to L
correspond bijectively to reductions P; = Pp/Zy(G) C Ppc. We have already
shown that P; is stable if and only if P; is stable. The characters y: Q — C*
which are trivial on the center Z(G¢) of G¢ correspond bijectively to the
characters ¥ : O — C* which are trivial on Z(G¢)/Zy(G¢) and

x(Po) = x(Pg).

Thus P°€ is polystable if and only if Pgc is polystable. O]
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3.2. Symplectic stability. Let G be a compact connected Lie group and P — X
a principal G bundle. Let y : G — S' be a character and denote by ¥ = dy(1) :
g — iR the induced character on the Lie algebra. Since g = Z(g) & [g,g], we
may identify —2xiy with an element in Z(g)* = Hom(Z(g),R). Denote by
x(P):= P x, C the line bundle associated to P via y. Then

an (1(P) = 5 [ iEn

for any connection A4 € A(P). The assignment y — —2mic;(x(P)) extends to a
unique element in Z(g)**, since the lattice of all infinitesimal characters spans
Z(g)* as a vector space. This corresponds under the canonical isomorphism
Z(g)** = Z(g) to an element t € Z(g) which satisfies

(12) a(t) = / a(Fyq) for all « € Z(g)* and A € A(P).
p

Here we identify Z(g)* C g* with the subspace of linear functionals vanishing
on [g,g]. We call t the central type of P.

Remark 3.6. Recall our standing assumption vol(2) = 1 and suppose that
A € A(P) satisfies xF4 = A for some A € Z(g). Then (12) yields

a(r) = f a(Fy) = f a(A) dvoly = a(A)
3 7
for all @ € Z(g)* and hence A = .

Let t € Z(g) be defined by (12). It follows from Lemma 2.7 that
(13) jie T A(P) — L*(Z,ad(P)), pe(A) ;= %F4 — 1

is a moment map for the G(A)-action on A(P). The following definition is the
precise analogue of Definition 7.1 in [SGR] with respect to this moment map.

Definition 3.7. Let G be a compact connected Lie group, let P — X be a
principal G bundle with central type 7 € Z(g) defined by (12), and define pu.
by (13). For A € A(P) denote by G¢(A) the W12 -closure of the complex gauge
orbit G°(A).

(1) A is called p,-stable if and only if G(A) N p;'(0) N A*(P) # & where
A*(P) denotes the irreducible connections on P .

(2) A is called p.-polystable if and only if G¢(4) N p;1(0) # @.
(3) A is called p,-semistable if and only if G¢(A) N p;1(0) # @.
(4) A is called p,-unstable if and only if G¢(A) N p;1(0) = .
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Remark 3.8. We call 4 € A(P) an irreducible connection if the map
dg : WH*(2,ad(P)) —» W' (Z,T*S ® ad(P))

is injective. In particular, u.-stable connections can only exist when the center
of G is discrete and v = 0. Since the infinitesimal action of the gauge group is
given by L4& := —d4&, a connection A is irreducible if and only if the isotropy
group of the orbit G(A) is discrete. Suppose that A is an irreducible connection
satisfying o(A) = *xF4 = 0. The infinitesimal action of the complexified gauge
group

LA(ég’ -+ i?;) — —dA"g' — *a’An

is readily seen to be injective in this case: Assume L4(£ +in) = 0 and apply
d4 to the equation. There follows djd4qn = 0 and hence d4n = 0. Since A
is irreducible, we conclude n = 0 and then & = 0. This argument shows that

the s, -stable orbits are precisely the p.-polystable orbits with discrete G°(P)
isotropy.

The next Lemma relates the different notions of stability on P and on the
quotient bundle Py := P/Zy(G) with fiber H := G/Zy(G). Note that Py has
central type O since its center is discrete.

Lemma 3.9. Let G be a compact connected Lie group, let P — % be a principal
G bundle of central type t© € g defined by (12) and let Py := P/Zy(G) be the
associated H := G/Zy(G) bundle. Let A € A(P) and denote by Ag € A(Pg)
the induced connection.

(1) Ag is po-stable if and only if A is p.-polystable and the kernel of the
infinitesimal action
Li:W**(2,ad(P€)) - WS, T*E @ ad(P))
LA(E +1in) = —da& — xdun

consists of constant central sections.
(2) Ag is po-polystable if and only if A is .-polystable.
(3) Ag is po-semistable if and only if A is p-semistable.
(4) Ag is po-unstable if and only if A is . -unstable.

Proof. We begin with the polystable case. Every constant central curvature
connections on P clearly induces a flat connection on Pg. Conversely, assume
that A; is a flat connection on Py . As a general property of compact Lie groups,
there exists an exact sequence
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(14) 1= F— Z¢g(G)x[G,G] = G — 1

where F = Zo(G)N[G, G] is a finite group. From this follows the exact sequence
(15) 1> F -G — (G/Zo(G)) x (Zo(G)/F) — 1.

Consider the associated (G/Zo(G)) x (Zo(G)/F) bundle

(16) P = P xg ((G/Z0(G)) x (Z0(G)/F)) = Py x5 P»

where P, is a principal Zy(G)/F -bundle over X. Since Zy(G)/F is connected
and abelian, it is a torus and P, is isomorphic to the direct sum of S! bundles.
It follows from Hodge theory that every line bundle admits a connection with
constant central curvature and these yield a connection A, on P, with constant
central curvature. Together with 4; we obtain an induces a connection on P
which lifts to a connection on P with constant central curvature. It follows from
Remark 3.6 that the curvature of this connection is given by t.

For the proof of the stable case observe that ad(P) = V @ ad(Py) where
V = X x Z(g) denotes the trivial Z(g) bundle. The infinitesimal action

Lqg:W**(Z,ad(P)) » W (2, T*E ® ad(P))

agrees with Ly,, on ad(Ppg). Since dy restricts to a flat connection on V', it
follows that ker(L4) = Z(g) @ ker(L4,,) and this shows the claim.

It remains to discuss the semistable case. Assume first that A is . -semistable.
Then exist connections A% € G°(A) such that A¥ — AT for k — oo and
(A1) = 0. The induced connections A’fq € A(Py) are clearly contained in
G°(Ag) and converge to the induced connection A;;. Since pL(AT) = 0, it
follows that MO(A[—;) = 0 and hence Agy is po-semistable.

For the converse, we consider the exact sequences (14) and (15) from above.
Then (16) yields a finite covering

P— P ="PyxsP

with covering group F = Z¢(G) N [G,G]. We have seen above that P, is
a polystable Zo(G)/F -bundle. Note that the natural identification A(P) =
A(Pg) x A(P>) yields an inclusion

(17) G°(Pu) x G°(P2) C G°(P).

Moreover, since Ad(P¢) — Ad(P€) is a finite covering with covering group
F C Zo(G®), it is easy to see that every gauge transformation in G¢(P) lifts
to an element in G°(P) and this lift commutes with the natural identification
A(P) = A(P).



GIT for the Yang—Mills equation over Riemann surfaces 101

Now assume that A € A(P) induces a po-semistable connection Ay €
A(Pg). Since P, is polystable, it follows from (17) that there exists go € G°(P)
such that go(A4) induces Ay € A(Py) and a connection A, € A(P,) with
constant central curvature. Since Apy is jug-semistable, using (16) again, there
exists gauge transformations g € G°(P) such that gr(go(A)) induce the same
connection A, on P, and induce a sequence of connections AII‘{ on Py which
converges to a flat connection A;;. Clearly, gx(goA) converges to the connection
AT which is induced by A, and Aj;. Hence A" has constant central curvature
and it follows from Remark 3.6 that *F,+ = t. This completes the proof of the
semistable case. ]

3.3. Equivalence of algebraic and symplectic stability. The following theo-
rem shows that the algebraic notion of stability from Definition 3.2 and the
symplectic notion of p.-stability from Definition 3.2 are essentially equiva-
lent.

Theorem 3.10 (Generalized Narasimhan—Seshadri-Ramanathan theorem). Let G
be a compact connected Lie group and P — X a principal G bundle with central
type t € Z(g) defined by (12). Let A € A(P) and consider the complexified bundle
P¢ := P xg G with the induced holomorphic structure Jy.

(1) (P°€,Ja) is stable if and only if A is ji.-polystable and the kernel of

Ly:W**(2,ad(PC)) - W' (S, T*E ® ad(P))
La(§ +in) = —da§ — *dan

contains only constant central sections.
(2) (P€,Jq) is polystable if and only if A is . -polystable.
(3) (P€,Jyq) is semistable if and only if A is p.-semistable.

(4) (P€, Jyq) is unstable if and only if A is -unstable.

The stable case was first proven by Narasimhan and Seshadri [NS] for
G = U(n) and later extended by Ramanathan [Ram] to arbitrary compact Lie
groups. They establish these results using algebraic geometric methods.The first
analytic proof was given by Donaldson [Donl] for the case G = U(n). We present
a different approach given by Bradlow [Bra] and Mundet [iR] in Theorem 6.5.
The equivalence of both definitions for semistability is essentially contained in
the work of Atiyah and Bott [AB83].
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Proof of Theorem 3.10. We assume the following results for the proof:

e The characterization of algebraic stability in Proposition 5.9,

the moment-weight inequality (Theorem 5.12),

the Narasimhan—Seshadri-Ramanathan theorem (Theorem 6.5),

the dominant weight theorem (Theorem 7.1).

We establish these results independently in the remainder of the exposition.

The stable case is equivalent to Theorem 6.5. By Lemma 3.5 and Lemma 3.9
we may assume in the sequel that Z(G) is discrete and 7 = 0. We then deduce
the polystable case from the stable case by an inductive argument: Assume first
that P¢ is polystable. Then there exists a reductive subgroup L C G¢ and a
holomorphic reduction P; C P¢ which is stable. We may assume that L = K¢
is the complexification of a compact subgroup K C G. Since G°/L = G/K, we
have an induced reduction Px C P and Pp agrees with the complexification of
Pg . It follows from the construction in Lemma 2.5 that A restricts to a connection
on Pg. Assuming the stable case (i.e., Theorem 6.5) we conclude that there exists
a gauge transformation g € G°(Pg) C G°(P) such that xFgy = 1 € Z(¥). It
remains to show that tx € Z(g) = 0 vanishes. If tx # 0 then there exists a
character y : L — C* with y(tx) # 0. Since Z(G) is finite, we may replace y
by a suitable power and assume that it is trivial on Z(G¢). Using the definition
of polystability then yields the contradiction

0= c1(x(PL)) = 5'; fz 7(F4) dvols = ix(m) £ 0.

For the converse, assume that A € A(P) is a flat connection. Let H C G
be the holonomy subgroup and Py C P be a reduction to the holonomy. Let
K := Cg(Z(H)) be the centralizer of the center of the holonomy and denote
the induced connection on Px = Py xy K again by A. It is well-known that
the isotropy subgroup of A consists of constant gauge transformations and is
naturally isomorphic to the centralizer of its holonomy, i.e.,

Ga = {g € G(Pr) | g(A) = A} = Ck(H).

Comparing the Lie algebras of both sides, one checks that Cx(H) = Zy(K) is
satisfied and A € A(Pg) has only trivial isotropy. It follows now from the stable
case (i.e. Theorem 6.5) that Pg is a stable principal L = K¢ bundle. Note that
L is a Levi-subgroup of a parabolic subgroup of G¢, since K is the centralizer
of a torus in G. Since F4 = 0, we have for any character y : L — C*

e1(x(PL)) = i L 7(Fy) dvols, =0

and hence P¢ is polystable.



GIT for the Yang—Mills equation over Riemann surfaces 103

Assume that P¢ is unstable. By Proposition 5.9 there exists £ € Q(Z,ad(P))
with wg(A4, £) < 0. The moment-weight inequality (Theorem 5.12) yields po(gA4) =
—wo(A.£)/||E]] > 0 for all g € G°(P) and hence A is jp-unstable. Assume
conversely that A is po-unstable. The dominant-weight theorem (Theorem 7.1)
shows that there exists £ € Q°(Z,ad(P)) such that wo(A4.£) <0 and hence P¢
is unstable by Proposition 5.9. This completes the proof of the unstable case and
the semistable case is equivalent to this case. O

4. The Yang—Mills flow and symplectic stability

Let G be a compact connected Lie group and let P — £ be a principal G
bundle of central type v € Z(g) defined by (12). In the differential geometric
approach towards GIT the moment map squared functional plays a crucial role.
This is defined by

(18) F.: A(P) = R, F:(A) ;:%f || * Fq — t||* dvols.
%

Note that (12) implies [y (F4.7) = [|z||* for every connection 4 € A(P) and
hence

1 |
(19) Folad) = ;f || % Fq — 7||*dvoly = = (f || Fa||*dvols — ||r||2) :
2 Jxy 2 by
Thus F; agrees up to a constant shift with the Yang—Mills functional
|
(20) YM: AP) =R, YM(A) = 5/ | Fq]|? dvols.
p>

Rade showed in his thesis [Rad] that the negative gradient flow of the Yang—Mills
functional is well-defined and converges if the base manifold has dimension 2
or 3. We summarize his results in the first subsection. Recall that we always
consider the W12-topology on A(P) when nothing else is specified.

A crucial observation is the following: Any solution of the Yang-Mills flow
remains in a single complexified orbit and there exists a canonical lift of a solution
A(t) of the Yang-Mills flow under the projection G¢ — G°(A) to a curve in
G°(P). Since the Yang—Mills flow is G(P)-invariant, the geometric importance
lies within the projection of such curves in G°(P)/G(P). The fibers of this quotient
coincide with the homogeneous space G¢/G which is a complete, connected,
simply connected Riemannian manifold of nonpositive sectional curvature (see
[SGR] Appendix A and B). This underlying geometry is crucial for the following
application.

As a first application, we establish the moment limit theorem (Theorem 4.14)
and the analogue of the Ness uniqueness theorem in Theorem 4.15 following the
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line of arguments in [SGR]. The first result says that the limit Ay := lim;—o A(2)
of the Yang—Mills flow starting at Ay, € A(P) minimizes the Yang—Mills
functional over the complexified orbit G°(Ap). The second result asserts that
any connection in the W1?-closure of G(4¢) which minimizes the Yang—Mills
functional over this orbit must be contained in G(A~). In particular, every .-
semistable orbit contains a unique . -polystable orbit in its closure. This yields
the identification

A5 (P)//GE(P) = AP* /G (P) = u7'(0)/G(P)

where two semistable orbits on the left hand side are identified if and only if
they contain the same polystable orbit in their closure.

In the last section we extend this observation and characterize in Theorem 4.18
the p.-stability of A € A(P) in terms of the limit of the Yang—Mills flow starting
at A. We observe in particular that A*(P) and A°(P) are both open subsets
of A(P) in the W'2-topology.

4.1. Analytical foundations.

4.1.1. The Yang Mills flow on low dimensional manifolds. Recall for 4 € A(P)
and a € WL2(Z,T*E ® ad(P)) the formula

1
Fivq = Fa 4+ dga + E[a Aal.

From this follows directly that the L?-gradient of the Yang-Mills functional (20)
is given by

VIM : A(P) - W™L2(Z,ad(P)), VIM(A) := d} Fy.

The critical points of the Yang—Mills functional (20) are called Yang-Mills
connections and satisfy the equation

A Ey = 0.

It follows from the strong Uhlenbeck compactness result (see e.g. [Weh] Theorem
E) and elliptic regularity that every Yang—Mills connection is gauge equivalent
to a smooth Yang-Mills connection and the set A := {YM(A)|diF4 = 0} of
critical values is discrete. The negative gradient flow of the Yang—Mills functional
is given by the degenerated parabolic equation

(21) 3¢ At) + djj ) Fay = 0.
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Definition 4.1 (Weak solutions). Let 49 € A(P) be a connection of Sobolev
class Wh2. We call 4 € C°([0,00), A(P)) a weak solution of the initial value
problem

(22) 0 AW + dfyFay =0.  A(0) = Ag

if A(0) = Ap and there exists a sequence Ax : [0,00) — A(P) of smooth
solutions of (21) which converges in Cﬁ)c [0,00), A(P)) to A, where A(P) is
endowed with the W12 -topology.

The next two theorems state that the initial value problem (22) has a unique
(weak) solution for every initial data A9 € A(P) existing for all time and that
this solution converges to a Yang—Mills connection.

Theorem 4.2 (Long time existence). Let G be a compact connected Lie group,
P — ¥ a principal G bundle and Ay € A(P).

(1) There exists a unique weak solution A(t) € C,%C([O. ), A(P)) for the initial
value problem (22). The curvature has the additional regularity properties

FA(,) el ([O OO),LZ) and FA(,) e Lo ([OOO) Wl’z).

loc loc

(2) The solution A(t) and its curvature Fgaq) depend smoothly on the initial
data Ay in these topologies.

(3) If Ay is smooth, then the solution A(t) is smooth and satisfies (21).
Proof. 'This is Theorem 1 in [Rad]. L]

Theorem 4.3 (Convergence). Assume the setting of Theorem 4.2 and let A(t) €
CP2 ([0,00), A(P)) be a weak solution of (22). Then there exist a Yang—Mills

loc
connection Ao € A(P) and constants c,B > 0 such that

[|A(f) — Acollw1.2 < ct™F

holds for all times t > 0.

Proof. 'This is Theorem 2 in [Rad]. O

The key ingredient in the proof of the convergence result is the appropriate
analogue of the Lojasiewicz gradient inequality. This approach was introduced by
Simon [Sim] for a general class of evolution equations.

Proposition 4.4 (Lojasiewicz gradient inequality). Let A € A(P) be a Yang—
Mills connection. There exist constants € > 0, y € [%, 1) and ¢ > 0 such that
for every A € A(P) with ||A — Acol|lw1.2 < € the estimate

ld4 Fallw—1.2 = c|[YM(A) = YM(Aco)|”

is satisfied.
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Proof. 'This is Proposition 7.2 and (9.1) in [Rad]. U]

In finite dimensions the Lojasiewicz inequality always guarantees convergence
by some standard arguments. We recall these arguments in the sequel and discuss
additional technical difficulties arising in the infinite dimensional setting. Suppose
that A(r) satisfies (22). It follows from the weak Uhlenbeck compactness (see
[Rad], Proposition 7.1) that there exists a G(P)-orbit G(As) of Yang—Mills
connections such that

inf YM(A(1)) = YM(Aco)
>
and for every § > 0 there exist 7 > 0 and g € G(P) such that

[|A(T) — g(Aco) || w12 < 8.

Since the Yang-Mills functional and the Lojasiewicz inequality are invariant
under the action of G(P), the constant € = €(g(Ax)) > 0 from the Lojasiewicz
inequality does not depend on g. Now choose § < € and define

T:=inf{t > T [||A(t) — g(Aco)|l1.2 = €}.

For any s1.s50 € (T.T) with 5s; < s, we obtain

52

1AGs1) — AGs)ll12 sf"ncz:FAan dt

5]

$ * I 2
5] |ld3 Fallz, s
5] C|yM(A)_yM(Aoo)|y

1 1—y
< —(PM(A6D) —YM(A62))

To conclude the convergence result, one needs to show 7 = oo and extend the
estimate above to the W12-norm. Both can be achieved by using the following
Lemma.

Lemma 4.5. Let Ao € A(P) be a Yang—Mills connection and € = €(As) > 0
as in Proposition 4.4. There exists a constant ¢ > 0 with the following
significance: For every solution A(t) of the Yang—Mills flow (22) and real numbers
0 <s1 <s52—1 such that ||A(t) — Aso||w1.2 <€ for all t € [s1,52] we have

52 52
[ ||d;FA||W1.zdfgcf ||} Fallp2 dt.
A\

1 +1 S1

Proof. This is Lemma 7.3 in [Rad]. O]
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Now the calculation above yields
(23) |A(s1 + 1) = A(s2)| w1z < C (YM(A(s1)) = YM(Aw)) "

for any T <s; < s, + 1 < T. Since the solutions of the Yang-Mills flow depend
continuously on the initial condition in the CP ([0.cc). W'?) topology. there
exists a constant ¢y > 0 such that

AT +1) — g(Aco)llwr2 < c1]|A(T) — g(Aco)|lw1 2

holds for all ¢ € [0, 1]. This follows as we may view g(As) as constant flow line
and the constant ¢; depends only on the orbit G(As). For sufficiently small &,
we have 8c; < e and hence 7 > 1. Then (23) yields

AT + 1) = 4Dl g2 = C(YM(AT) - YM(4x)) | < C8

for any T +1 <t < T . For sufficiently small § > 0 the right hand side is smaller
than € and this yields T = oo. The calculation above then shows then that the
integral fooo [|0; A(t)||y1.2dt < oo is finite and A(¢) converges uniformly to a
Yang—Mills connection A4 .

Replacing A, in the argument above by the limiting connection A, yields

A = Aool w12 < C (VM(AQD)) — YM(As)) "

Let T > 0 be such that for every r > T the Lojasiewicz inequality in Lemma 4.5
for A(r) with respect to the Yang—Mills connection Ao . Then

3 (YM(A®) = YM(A)) = —[VYM(A@) |2
< (¥M(40) - YM(An))
and hence (YM(A(1)) — yM(A"oo))” < C(t — T)™ . This shows

1A() = Aoollwr2 < C(t — T)T2

for all + > T and completes the proof of the convergence result. This argument
also proves the following result:

Corollary 4.6. Let B € A(P) be a Yang—Mills connection and let € > 0. Then
there exists § > 0 such that for every solution A(t) of the Yang—Mills flow (22)
with ||A(0) — Bl|lw1.2 <8 we have either

sup [|A(0) — A(t)||w12 < €

t>0

for all t = 0 or there exists T >0 with YM(A(T)) < YM(B).
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4.1.2. The Kempf-Ness flow. By Proposition 2.3 the infinitesimal action of the
complexified Gauge action is given by

) d .
Ls(E+1in) = r exp(té +irn)A = —da& — xdyn
1=0

for £,n e W?2(Z,ad(P)) and A € A(P). With this formula we can express the
gradient of the Yang—Mills functional as

VyM(A) = d,ZFA = — =k dA * FA = LA(I *® FA).

This implies that any solution of the Yang—Mills flow (20) remains in a single
complexified orbit.

Proposition 4.7. Let Ay € A(P) and let A(t) be the (weak) solution of the
Yang—Mills flow (22) starting at Ag. Let g :[0,00) — G°(P) be the solution of
the ODE

(24) g()7'&(1) = i(xFawy), g(0) = 1.

Then g e C?

loc

([0,00).G°(P)) and
A(t) = g(1)" " Ag

for all t € [0,00). Moreover, g depends continuously on Ay.

Proof. Recall from Lemma 2.7 the formula

B(t) := g7 (Ao) = Ao + g dagr — g7 (W7 aghs) g

with /1, := (g7 ")*g; . By Theorem 4.2 holds F € L7 ([0.00). W'?) and hence
g € W3[0, 00), W) and B € W,'?([0,00), L'). The same calculation as in

loc loc
the smooth case shows

B(t) = Lpuy(g;'g:) = —dpi Faw)-
Approximation of Ay with smooth connections shows A € I/Vllo’cz([(), o0), L) and

Define C(r) := A(t)—B(t) and W(r) := *F4(y € L7 ([0,00). L'). The calculation
above shows that C solves the linear ODE

C(t) = #[C (1), V(1)) C(0) = 0.

and hence C = 0. The Sobolev embedding W 1-2([0, 0], L!) < C%([0, 1], L)
then yields A(z) = B(t) = g, ' Ao for all 1.
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Since A maps continuously in W2 it follows from the expression
A1) = g7 Ao = Ao + &7 'daygr — &; ' (hy ' daphe)g:

that A(1)%' = A)" + g7 '04,8: and g;'04,g; maps continuously into W'2.
Let A be a smooth reference metric and write A9 = A + ao. Then g;'d 80!
maps continuously into L# for any p < co and by elliptic regularity, g maps
continuously in WP, Since W!? <« C° we can rerun the argument where
g7'0 7g, now maps continuously in W12 and conclude g € C ([0,00), W>?).
Since A and F4 depend continuously on Ag, the solution g depends con-
tinuously on Ap in Wllo’cz([O, 00), W12) and then by elliptic regularity also in
CP ([0,00), W?%2). [

loc

Remark 4.8. Let Ap € A(P) and let A(¢) be as in Proposition 4.7. For
go € G°(P) consider the more general equation

(25) g1 g(t) = ix Fy), 2(0) = go.

Then () = g5 'g(t) solves equation (24) with respect to Ag = g5 ' (Ao). Hence
(25) has a unique solution in Cﬁ)c [0, 00),G°(P)), which depends continuously
on go and Ap.

We shall consider the following variant of this equation.

Definition 4.9 (Kempf-Ness flow). Let A9 € A(P) and gg € G°(P). We say
that g(¢) € C? ([0.00),GE(P)) is a weak solution of the equation

loc
(26) g7 OE@) =i * Fy10y4,s g(0) = go

if there exist a sequence of smooth initial data (A, glg ) € A(P)xG°(P) converging
to (Ag, go) and smooth solutions g () of the equation

g &) =ix Fyoigyy. ge(0) = g5

such that gy (z) converges to g(t) in CIOOC([O,OO),WZ’Z).

Remark 4.10. We call a solution g € C? ([0,00),G°(P)) of (25) a solution of

loc

the Kempf-Ness flow starting at go (with respect to Ap). We show in Section
6 that there exists a G(P)-invariant functional

Dy, :G°(P) =R
whose negative gradient flow lines correspond to solution of (26).

Lemma 4.11. For every initial data (Ap, go) € A(P) x G°(P) there exists a
unique (weak) solution of (26) which depends continuously on the initial data.
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Proof. We use the notation introduced in Definition 4.9 and define Ax(¢) :=
g1 (t) ' Ax . Then
00 Ak (1) = Lay (8 (08k(0)) = =Lago) (1% Fayo) = —dj, oy Farw

and thus Ag(z) yields a smooth solution of the Yang-Mills flow. Conversely, the
solution Ag(z) is uniquely determined by the initial condition (gg)_lAk and we
may recover gi(f) from this solution via Proposition 4.7 and Remark 4.8. Since
solutions of the Yang—Mills flow and solutions of (25) depend continuously on the
initial data, it follows that the weak solution g(r) of (26) is uniquely determined
by the weak solution A(z) of the Yang-Mills flow starting at g;'Ao. O

The next proposition shows that solutions of the Kempf—Ness flow (26) remain
at bounded distance in the homogeneous space G¢/G.

Proposition 4.12. Let Ay € A(P) and let g.g € C? ([0,00),G(P)) be (weak)

loc

solutions of (26) starting at go, g0 € G(P). Define n(t) € W2(Z,ad(P)) and
u(t) € G(P) by the equation

g(t) exp (in(1))u(t) = g().
Then the following holds:

(i) p(2) :=||In(t)|| 2 is non-increasing in t. More precisely, if n(t) # 0 then

) 1 }
o) = — fo lda ,1(0)| P ds

with As; 1= eﬁiS”(’)gt_le.

(i) The differential inequality
@: + M)[nl* <0

is satisfied. In particular, ||n(t)||pee is non-increasing by the maximum
principle for the heat equation

(iii) n is uniformly bounded in W22,
(iv) u is uniformly bounded in W??2.
Proof. We prove (i) and (ii): By approximation, we can assume that Ay, g
and g are all smooth. Let = : G° — G¢/G denote the projection and define

y(s. 1) = m(g(t)e"®) . Pointwise y(-,7) is the unique geodesic of length |n()]
connecting 7(g) and 7(g). The following calculation is pointwise valid:
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1 1
|l = atf (8,9, By} ds = z[ (V:8s7, 057} ds
0 0

1 1
=z] (V4317 357} ds = 2/ 3,10, Bywh s
0 0
2((:y(1,1), 95y (1, 1)) = (3:¥(0, 1), 857(0,1)))
208N 0)E() — g7 (D)g(1), in(0))
2 * Fzi-140 — *Fg(0)-140 1(2))

With A, 1= e 570 g1 4, this yields

1 1
0 |Inl]* = 2[ (n(t), %day, * da, (D)) = —Allnl]* ~ 2[ llda, ()| ds.
0 0

This proves the second claim and the first one is obtained by integrating this
inequality over X.

We prove (iii) and (iv): Recall that A@r) = g7 (Ag) and A(r) := g7 '(Ap) are
solutions of the Yang—Mills flow. Since they converge in W2, they are both
uniformly bounded in W2, With a(z) := el u, we have A = a~'(A4) and hence

A%l = 40! 4 a_lf_iAa.

This shows that d4¢ is uniformly bounded in W'?2 and hence a is uniformly
bounded in W22, From the formula aa* = e?" we conclude that 7, is uniformly
bounded in W22 and then u is also uniformly bounded in W22, O

4.2. Uniqueness of Yang-Mills connections. We follow the arguments from
([SGR], Chapter 6) to prove the analog of the Ness uniqueness theorem and
the moment limit theorem. These are originally due to Calabi—-Chen [CC] and
Chen—Sun [CS] in the context of extremal Kihler metrics.

Proposition 4.13. Let Ao, Ay € A(P) be Yang—Mills connections with G°(Ag) =
G(A1). Then G(Ao) = G(A1) holds.

Proof. Choose g € G°(P) such that
Ay =§14,.

Since Ay and A, are Yang—Mills connections, they generate constant flow lines
Ao(r) = Ag and Ai(t) = A;. Let go.g1 € Cp _([0,00).G°) be the solutions of
the equation

8o 60 =%Fay. go(0)=1 and g;'¢;=%F4,. g1(0)=¢g
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from Proposition 4.7 and the following Remark. They satisfy
Ao=g;' (40 and A; =gy (1A

and go and g; are solutions of the Kempf—Ness flow (26) with respect to Aj.
Define n(z) € W?2(X,ad(P)) and u(t) € G by the equation
go(t) exp (in(1))u(t) = g1(1)

as in Proposition 4.12. Then there exist ne € W22(Z,ad(P)), us € G(P) and
a sequence f; — oo such that

2 2

. B H= .
lim p(5;) = 0, n(ti) = Moo uti) = Uoo.
1—>C0
By taking a further subsequence if necessary, we may assume that
lim ||da, , n(t:)]|2 =0
I—>0C0
holds for almost every s € [0, 1], where we defined
Ay = B0 (g (1) Ag) = ¥ 4.

Moreover, by Rellich’s theorem, 7(#;) and u(z;) converge for every p < oo
strongly in W17 to e and ue. By continuity of the Gauge action G'7 x A? —
A? for p > 2, we conclude

L? s Lr
Asg; = Aso0 1= €70 A, and  da,, 1) = di; oo Moo

This implies that for almost every s € [0,1], we must have d4, oo = 0. For
s — 0 we conclude dy4, . N = dayNec = 0 and hence e 1Moo 4o = A, . It follows
now

a ; LP . . _
A = g1(t) " Ao = u(t) e g Z5 u e Ag = ug) Ao.

This shows A; = u_J Ao and thus A¢ and A; lie in the same G-orbit. O

Theorem 4.14 (Moment Limit Theorem). Let Ag € A(P) and A :[0,00) — A(P)
be the solution of the Yang—Mills flow starting at Ag. The limit Ax =
lim; o A(t) satisfies

YM(Ax) = inf  YM(gAo).
g€Ge(P)

Moreover, the G(P)-orbit of Ax depends only on the complexified orbit G¢(Ay).
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Proof. Let go € G°(P) be given and define g.g € C2 ([0,0),G°) by

loc
g '¢=x%F4, g0)=1 and g 'g=xFs, g(0)=go

as in Proposition 4.7 and the following Remark. Let A(r) and A(r) be the
solutions of the Yang-Mills flow starting at Ay and Ag 1= go 14, . Then

Ao(t) = g (Ao). A1) = §; " (4o)

and g, g are solutions of the Kempf-Ness flow (26) with respect to Ay. Define
n(t) € W22(2,ad(P)) and u(r) € G(P) by the equation

go(t) exp (in(1))u(r) = g1(2)

as in Proposition 4.12. It follows that there exist 7o, € W?2(X,ad(P)) and
Uso € G(P) and a sequence #; — oo such that

2. 2:2
P W-....

() — Neo, u(ti) — Ueo.

By Rellich’s theorem we obtain strong convergence in W !? and using the Sobolev
embedding W2 < L? for every p < oo we obtain:

1,2

177 200 = w1l a() Lo y=1,-1
Aso Alt;)) =u(t;) e A(t) — U N Aco.

Hence Ao = ulni!Aeo. Thus Ao and A, are Yang-Mills connections

lying in a common complexified orbit and Proposition 4.13 shows that in fact
G(As) = G(Aw). This shows YM(Ax) = YM(Ax) < YM(gz'4p) and
completes the proof. O

The following theorem is the analog of the Ness uniqueness theorem in finite
dimensional GIT.

Theorem 4.15 (Uniqueness of Yang—Mills connections). Let Ay € A(P) and
A, A" € GE(Ag) be in the W2 -closure of a single complexified orbit satisfying

YM(A) = YM(A") = inf YM(gAo).
Then follows G(A") = G(A”).

Corollary 4.16. Let P — X be a principal G bundle of constant central type
T € Z(g) defined by (12). Suppose A € A(P) is ji.-semistable. Then the W12-
closure G°¢(A) contains a unique i -polystable orbit.

Proof. 1t follows from (19) that solutions of the equation % F4 = v correspond to
global minima of the Yang-Mills functional on A(P). O
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Proof of Theorem 4.15. Let A(f) be the solution of the Yang-Mills flow starting
at Aop and let Ay := lim;, o A(f). Then Theorem 4.14 implies

YM(Ax) = inf Y M(gAp) =: m.
gege

Since Ao € G°(Ap), it suffices to show that any connection B € G¢(Ap) with
YM(B) = m is contained in G(As). For this let 4; € G°(Ap) be a sequence
which converges to B. Denote by A;(f) the corresponding solutions of the Yang—
Mills flow and set B; := lim;—» A4; (). Note that B is necessarily a Yang—Mills
connection, since

YM(B®) = lim YM(4;(t)) = m = YM(B(0))

where B(f) denotes the solution of the Yang—Mills flow starting at B. Thus, we
may apply Corollary 4.6 with respect to B and conclude that ||A; — B;||y1.2
converges to zero and hence

lim B; = B.

I—00
By Theorem 4.14 holds G(B;) = G(Ax) and hence there exists u; € G(P) such
that u;'(As) = B;. Since the connections B; are uniformly bounded in W2,
the gauge transformations u; are uniformly bounded in W?22. Thus there exists
U € G(P) such that after passing to a subsequence u; converges weakly in
W22 t0 ux and strongly in W2 for any p < co. Using the continuity of the
gauge action G17 x A? — A” we conclude

)2
Bi = ur' (Aeo) = Uz Ao

and in particular B = u Ao € G(Aeo). O

4.3. Yang-Mills characterization of pu.-stability. We characterize the .-
stability of a connection A € A(P) in terms of the the limit A, of the
Yang-Mills flow starting at A. This is Theorem 4.18 below. The proof relies
on the following proposition.

Proposition 4.17. Let P — X be a principal G bundle of central type © € Z(g)
defined by (12). The subsets of . -semistable connections

A (P):={A € A(P)| A is p-semistable}
and i -stable connections
A*(P):={A € A(P)| A is p-stable}

are open subsets of A(P) with respect to the W12 -topology.
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Proof. 1t follows from (19) that

1
inf A) > — 2 = m.
LN YMA) = Sl =

Moreover

27) ASS(P) = {A e A(P)

inf YM(gA) =m
gege(P) (&4) }
and YM(A) = m 1is equivalent to *F4 = 7.

Step 1. A*(P) is open.

Let 49 € A*(P) be given. Let A(f) be the solution of the Yang-Mills
flow starting at Ag and A := lim;—~ A(2). It follows from Theorem 4.14 and
(27) that A, is a Yang—Mills connection satisfying Y M (As) = m. By the
Lojasiewicz inequality (Proposition 4.4) there exist € >0, ¢ >0 and y € [%. 1)
such that for all B € A(P) with ||B — Axl||w1.2 < € the inequality

(28) 1d3 Fallz2 = c[YM(B) — m|?

is satisfied. By Corollary 4.6 there exists § > 0 such that for every B € A(P)
with ||B—Axo||w1.2 <8 we have ||Boo — As||wi1.2 < €. In particular, (28) applies
to By and yields Y M(By) = m. This shows

U:={B e AP)|||B — A|lw12 < 8} C A™(P).

Now choose T > 0 such that A(7T) € U and choose g € G°(P) with
A(T) = g '4y. By continuity of the gauge action there exists an open
neighborhood V of Ay with g='V C U and hence V C AS(P).

Step 2. Denote by A*(P) C A(P) the space of irreducible connections. This is
an open subset and

Z:={Ae A |YM(A) =m}/G

is a finite dimensional smooth submanifold of A*/G.

We may assume that Z(G) is discrete, t = 0 and m = 0, since otherwise
A*(P) = @. Let Ay € A*(P) be a smooth irreducible connection. The Laplacian
dZOdAo is then injective and by elliptic regularity there exists ¢y > 0 such that

ld4,dao§ L2 = coll§ w222

for all £ € W22(X,ad(P)). For a € WH2(Z, T*E ® ad(P)) expand

diralao+ak = di dagk + dj la,§] — x[a, *da,E] — *[a, x[a. §]].
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Since dimg(X) = 2, we have the Sobolev estimate || fgll;2 <c||fllwi2]lgllw.2
and || fgllwiz < 1/ llw12llglly22 . This yields

ld gy +a@ao0+abllL2 Z colléllw22 — cllallwr2||§llw2.2

and Ao +a is irreducible if ||a||p1.2 is sufficiently small. Hence A*(P) is open.

Now fix an irreducible connection Ay with %F4, = 0. We may assume without
loss of generality that Ay is smooth and work in a Coulomb gauge relative to
Ao . This allows us to identify a neighborhood of [4¢] in A*(P)/G(P) with
ae Wh2(Z, T*S ®ad(P)) satisfying ||a||p1.2 < € and dy a =0 under the map
a > [Ag 4+ a]. Consider

¢:{ae WH(Z, T*S @ad(P)) |df,a =0.|lal[y12 < €} — L*(T,ad(P))

¢(a) = >|‘FAO+a

and define Z4, := ¢~ '(0). We claim that 0 is a regular value for ¢ (after possibly
shrinking €). Once this is established, the claim follows from the implicit function
theorem. The derivative of ¢ at a point a is given by

dp(a): {ad € W' (2, T*E @ ad(P)) |df a = 0} — L*(Z,ad(P))
dp(a)a = xd4,a + *[a A al.

Since d¢(a) is the restriction of a compact perturbation of the Fredholm operator
*(dg, B d;iko)’ its kernel is finite dimensional. We denote by

K:={a e W?(Z,T*S ®ad(P)) |ds,a = 0,d} i = 0}

the space of Ap-harmonic 1-forms with values in ad(P”) and define V' by the
L? -orthogonal decomposition

Wh(E, T*S ®@ad(P)) =V & K.

Then the restriction of the Fredholm-operator dy, @ djo to V defines an
isomorphism

dag ®dy, : V — L*(Z,ad(P)) & L*(Z, A’T*S ® ad(P))

It is injective by definition of V' and to prove surjectivity let f € L?(%,ad(P))
and o € L?(Z,A*T*X ® ad(P)) be given. Then by Hodge theory we can solve
the equation

AAoé = d:ow + dAof'

From this follows
d;{o(dAO& — @) = daz(f — d:oc”z).
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Since *Fy4, = 0, both sides of the equation are orthogonal and hence must vanish.
Since Ao is irreducible, it follows d4,d = @ and dj a = f. In particular, for
any s € L?(X,ad(P)) exists a solution @ € V of the equations

(29) digd +lanal=s*s, dja=0

for a = 0. Since the equation is linear in @, another application of the inverse
function theorem shows that after possibly shrinking e the equation (29) has a
solution a(a) € V for all a with ||a||p12 <e€.

Step 3. A° is open.

We may assume that Z(G) is discrete, t = 0 and m = 0, since otherwise
AS(P) = @. Let A € A*(P) be given. By definition there exists g € G°(P) such
that Ag = g7 1A is smooth and satisfies YM(Ag) = 0. Let Z4, be as in Step 2
and consider the map

v Zay x WH2(2,ad(P)) x W?(Z,ad(P)) — A
V(A £, 1) = eMef A.

We have seen that Z,4, is a smooth manifold with tangent space
TaoZao = {d € WH2(Z,ad(P)) |dj,d =0, dayd = 0}.
The differential of ¥ at the point (Ap,0,0) is given by
dY(A0.0,0)(a, &, 7] := @ — dayf — xda, .

Since F4, = 0, it follows as in Step 2 from Hodge theory that dy¥/(A4o,0,0) is
an isomorphism. The implicit function theorem yields thus an open neighborhood
U of Ay, with

Ao € U C Im(y) C A°.

Finally, by continuity of the gauge action, there exists an open neighborhood V
of A with g7'V C U and hence AS(P) is open. (]

Theorem 4.18. Let P — X be a principal G bundle of central type t € Z(g)
defined by (12) and denote m := %Hr”z. Let Ag € A(P) and denote by Ay the
limit of the the Yang—Mills flow A(t) starting at Ag.

(1) Ag is pu,-stable if and only if As is irreducible.

(2) Ao is po-polystable if and only if YM(Ax) =m and As € G°(Ay).
(3) Ao is po-semistable if and only if YM(Ax) = m.

(4) Ag is p.-unstable if and only if YM(Ag) > m.
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Proof. 1t follows from (19) that m is a lower bound for the Yang—Mills functional
on A(P) and A € A(P) satisfies YM(A) = m if and only if *xF4 = t.
Thus the characterization for p,-unstable and pu-semistable orbits follows from
Theorem 4.14.

Suppose next that Ay is p.-polystable. Then exists go € G°(P) such that
Ao = g5 ' (Ap) satisfies YM(Ay) = m. The Yang-Mills flow line A(r) starting
at A, is constant and it follows from Theorem 4.14 and Theorem 4.15 that
Ax € Q(/fo) C G°(Ap). The converse is immediate and this proves the criterion
for p.-polystable orbits.

Suppose now that Ay is . -stable. Then the orbit G°(Ap) has only discrete
G°(P) isotropy. Since Ag is in particular . -polystable, we have Ao € G(Ap).
Hence the infinitesimal action Ly : & — —d4 & is injective and Ao is
irreducible. Suppose conversely that A, is irreducible. Since A, is a Yang-—
Mills connection, it satisfies d4_ % F4., = 0 and hence F4., = 0. This shows that
G¢(As) is stable. By Proposition 4.17, the subset A*(P) of . -stable connections
is open and hence A(r) € A°(P) for all sufficiently large . Since the notion of
[ -stability is G°(P)-invariant, and since A(r) € G°(Ap), we conclude that Ay
is ju¢-stable. L]

5. Maximal weights

Let G be a compact connected Lie group, let P — X be a principal G
bundle and let € Z(g) denote the central type of P defined by (12). It follows
from Lemma 2.2 that p.(A) = *F4 —t defines a moment map for the action of
G(P) on A(P). The weights associated to the gauge action with respect to this
moment map are defined by

(30) W (4,§) 1= lim (xFyuey — 7. 8)

for every £ € W22(X,ad(P)) and A € A(P). Differentiating the right hand side
in time yields
d
(31) E<*FeiffA - T E> = (_ * dei’EA * dei’EA§~g> = ”de“éA%-Hiz >0
and therefore w;(A4,§) € R U {400} is well-defined.

Remark 5.1. The weights can be defined when £ is only of Sobolev class W12,
The calculation above shows

(32) we(A4,8) = (xFg —7.§) + |dgies 45172 dt
0

and the right hand side is well-defined for £ € W12(Z, ad(P)).
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We show in Proposition 5.2 and Lemma 5.7 that there exists a one to one
correspondence between finite weights w.(4,£&) < co and

§o€g, Q= 0(o)
(Po.%o) Pp is a principal Q bundle
Po C (P, J4) is a holomorphic reduction

For the definition of the parabolic subgroup Q(&)) C G¢ see Definition 2.10.
Using a deep regularity result of Uhlenbeck and Yau [UY], we note that for every
finite weight the section & € Q°(X,ad(P)) is smooth provided A is a smooth
connection.

Using this geometric description, we show in Proposition 5.9 that the algebraic
stability of (P¢,J4) is equivalent to the conditions on the weights w.(A4.¢)
required in the Hilbert—-Mumford criterion. In the last subsection we prove the
moment weight inequality

we(A,§) o
G t T 2
Eln = selpy i8I

This shows that A is p.-unstable whenever there exists a negative weight. By
Proposition 5.9 the later is true if and only if (P, J4) is unstable.

5.1. Finite weights. It is more convenient to describe the weights in the language
of vector bundles: We fix a faithfull representation G — U(n), identify G with
a subgroup of U(n) and denote by FE := P xg C" the associated vector bundle
with structure group G . Consider the bundles

G(E). g(E). G°(E). g°(E) C End(E)

which consist of endomorphisms that in any trivialization are contained in G, g,
G¢ and g respectively. There are canonical identifications

G(P) = G(E) = Q°(Z,G(E)), ad(P) = g(E) C End(E)
and
G(P°) = G°(E) = Q°(Z, G°(E)), ad(P°) = g°(E) C End(E).

We denote by Ag(E) the space of G -connections on E which is canonically
isomorphic to A(P). Assume for convenience that the invariant inner product on
g is obtained by restriction of the standard inner product

(£.m) :==t(§n™)

on u(n).
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Proposition 5.2. Consider the setting described above. Let A € Ag(E) be a
smooth connection and let £ € WE2(Z, g(E)\{0}. If w.(A.§) < oo, then the
following holds:

(1) The endomorphism if has constant eigenvalues iy < --- < A,.. The
corresponding eigenspaces are unitary subbundles D; and decompose E as
orthogonal direct sum E =D, &---® D,.

(2) Each partial sum E; == Dy & ---® D; is a holomorphic subbundle of E.
This yields a holomorphic filtration

O<Ei<Ey<--+<E, =E.

(3) The weight of & is given by the formula

we(4,§) =27 ) Aje1(D)) — (v, )

J=1

This is Lemma 4.2 in [iR]. Before giving the proof, we need to discuss the
regularity of weakly holomorphic subbundles.

Definition 5.3. Let E be a holomorphic hermitian vector bundle. A weakly
holomorphic subbundle of E is a section 7 € W12(Z,End(E)) satisfying
r=n2=x* and (1 —x)d(x) = 0.

The following theorem is a special case of a more general result of Uhlenbeck
and Yau [UY]. They prove that weakly holomorphic subbundles of holomorphic
hermitian vector bundles over arbitrary Kéhler manifolds correspond to torsion-
free coherent subsheaves. Since any torsion-free coherent sheaf over a Riemann
surface is locally free, this reduces to the following:

Theorem 5.4 (Uhlenbeck and Yau [UY]). If m# € WY2(2,End(E)) is a weakly
holomorphic subbundle, then mw is the projection on a smooth holomorphic
subbundle E' C E.

Proof of Proposition 5.2. Let 0 # & € W12(X,g(E)) be given and assume
w(A4,§) < 0o. Since g¢ = gPig is per definitionem an orthogonal decomposition
we have

1 - 1 ; 5 —f
dane €11 = 51Puue a1 = 511Ad (7€) B o d (%) @I
| - :
= S lle" aE)e 1"

and from (32) follows
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1 [ .. .
33)  we(4.f) = / (xFq —7,£) dvolx + 5] |le¥ 0,4 (£)e ™8| | d1.
) 2 Jo
Denote A, := ei’E(A) and let £k > 1 be an integer. Then follows

otr(E") = (04, (§°)) = k(871 04, ()
and the Cauchy-Schwarz inequality |tr(AB)| < ||A]|-||B]| yields

f 13 te(85)|| dvol sk[ 16511 - 113, £1] dvols
b b3 o .
= K|[EF (2 - (1€ 0a(8)e ™| 2.

Since w(A, &) is finite, it follows from (32) that there exists a sequence f; — o0
such that

(34) lim |[e®% 94(E)e % || = 0.
J—>0

Hence 5tr(§k) = 0 and it follows from the maximum principle that tr(£%)
is constant. Denote the eigenvalues of i§é with repetition according to their
multiplicity by A} <--- <4} . Then

@) = ADF +... £ (QL)F

is constant for every k& > 1. This is only possible if all the functions A are
constant and hence i¢ has constant eigenvalues.

Let A; < -+ < A, be the distinct eigenvalues of if. Since i is a normal
(hermitian) operator, the eigenspaces are pairwise orthogonal. Moreover, if I
is a small loop around the eigenvalue A; in the complex plane, the orthogonal
projection Jr]’. : E — D; onto the eigenspace of A; is given by

1

!
7l =
J 2ri

[ (z1 —if)~ ' dz.
L
These projections have regularity 7 € W'2(Z,End(E)) and satisfy 7} = (})* =
()"

We show next that the projections 7; := ) +---+7; 1 E — E; define weakly
holomorphic subbundles. By construction

(35) iE=mm +---+mpm,

for some my,.... m, € R. Write 94(¢) = [éij] with respect to the splitting
E=D&---& D,. Then there holds

[ei:gge—i:g} e ey ‘A*')féij
ij
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and (34) implies 51,- =0 for i > j. Thus d4(if) is upper triangular and (35)
yields

r

(36) 0= (1—7;)@a8)m; = ) mp(1 —7;)34 ().
k=1

The Leibniz rule provides the formula

(1 — ) (1 — 7;)34(;) for k > j
(L — 7))0a(me) 7y = 4 (1 — ;)04 () for k= j .
(1 — 7;) (0 (k) — mda(ory))  for k < j

This implies together with (36) the formula (1 — ﬂj)E_)A(Jrj) = 0 by induction
on j. Hence n; defines a weakly holomorphic subbundle and E; is smooth by
Theorem 5.4. This proves the first two parts of the theorem.

Write 94 with respect to the splitting £ = D, @ --- @ D, as

8A1 412 Al,-
_ 0 84y ... Ay
dg = .

0 0 ... 04

where A;; € Q%1(D;® D7) and d4, is the Cauchy-Riemann operator correspond-
ing to the induced unitary connection 4; € A(D;) = A(E;/E;j—1). Decompose
i = 8A+ + Ag with

94, T 0 dyg w.. dyp
_ 04y, ... O 0 0 ... Ay
da, =1 . L . Ao = :
0 0 ... 04 0 0 ... 0

We claim that e"¢(A4) converges uniformly to Ay = A4, &---® A, as t — 0.
In fact

4, — Ba, = e dge e

and
[ei.r{:AOe—it"g']ij _ _iet(kf—kj)(kj — Ai)Aij

decays exponentially to zero, since A is strictly upper triangular. This in turn
implies that ¢“$A converges to A, and hence
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r

we(4,§) = Hm (xFore g, §) = (+Fay —7.8) = Z(*FAjf) — (7. §)
j=1

= Zi/‘b Ltr(FAj) dUO[E - (T* é)

=1

=27 Y Ajer(Dy) — (t.§).

Jj=1

O

Corollary 5.5. Suppose & € QU(Z,g(E)) yields a finite weight w(A.§). Then
the limit
Ay = lim €% A

—>00
exists in Ag(E). Moreover, the splitting E = Dy ®---& D, is holomorphic with
respect to AL and on each factor the holomorphic structure agrees with the one
induced by the isomorphism D; = E;/E;_;.

Proof. 'This follows directly from the proof of Proposition 5.2. L

Remark 5.6. The Corollary shows that A, € G°(A) if and only if the holomorphic
filtration determined by & splits holomorphically.

We reformulate the characterization of the finite weights in intrinsic terms. Let
A e A(P) = Ag(FE) and suppose that & is a smooth section of ad(P) = g(E)
which yields a finite weight w.(A4,&). By Proposition 5.2 this defines a
holomorphic filtration

O<Ei1<FEry<---<E, =F

and there exist unitary trivializations of this filtration such that & = & where
£y = —idiag(A,,..., A,) is a block diagonal matrix with Ay < A, < --+ < A,.
This trivialization yields a reduction Pk C P to K(§p) := Cg(§p). Note that
o gives rise to a constant central section of ad(Pg)) C ad(P) and agrees with
£ in ad(P). We can rewrite the formula for the weight as

we(A, ) ::L(*FA+,E)dvolz—(r.‘g‘)

where A4 € A(Pg)) is a K(§)-connection. It follows from Chern—Weyl theory
that the right hand side does not change when we replace A4 by another K(§)-
connection. The weight depends therefore only on the reduction Pg) C P and §.

The complexification yields a reduction Pf{(g) = P C P¢ to the Levi subgroup
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L(§o) C G° (see Definition 2.10). The reduction Pr) C P is holomorphic if
and only if d4 takes values in (&) and this is the case if and only if the filtration
determined by & splits holomorphically. In contrast, the extension L(&) C Q(&o)
yields a reduction Pg,) C P¢ to the stabilizer of the filtration determined by
o within G€¢. This reduction is always holomorphic, since d4 is upper block
triangular.

Conversely, let Pp C P be a holomorphic reduction to a parabolic subgroup
Q = Q(&) C G°. This yields a canonical reduction Px C P to K = Cg (&),
since G¢/Q(&) =~ G/Cg(&). Since &, is contained in the center of K, it
gives rise to a constant section in ad(Pg) and its image under the embedding
ad(Pg) C ad(P) yields a section & € Q°(X,ad(P) which gives rise to a finite
weight w;(A4,&). We summarize our discussion in the following Lemma.

Lemma 5.7. Let P — ¥ be a principal G bundle, let A € A(P) be a smooth
connection and let P° := P xg G¢ denote the complexification of P endowed
with the holomorphic structure determined by A. There exists a one-to-one
correspondence between

{6 € Q%Z.ad(P)) | w.(A4.§) < o0}

and

5o g Q= 0()
(Po.&o) Pg is a principal Q bundle
Pg C P¢ is a holomorphic reduction

Every reduction Pg C P€ yields a canonical reduction Px C P to K = Cg(§o).
The toral generator &y yields a constant section of ad(Pg) and its image in ad(P)
vields &. Moreover, the weight is given by the formula

we(A,§) = [ (xFp —1,&) dvoly
5
for any connection B € A(Pg).

Proof. This follows directly from the preceding discussion. U]

The next lemma describes how the weights behave under an extension G — H
of the structure group.

Lemma 5.8. Let H be a compact connected Lie group and fix an invariant
inner product on its Lie algebra h. Suppose that there exists a monomorphism
G — H which identifies G with a subgroup of H and assume that the invariant
inner product on g is obtained by restriction of the one on h. Let P — X be
a principal G bundle of central type v € Z(g) defined by (12) and denote by
Py := P xg H the associated H bundle.
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(1) The central type tyg € Z(h) of Py is the image of v under the orthogonal
projection
Z(g) = b= Z(b) & [h.h] — Z(b).

(2) Let A € A(P), let £ € Q°2,ad(P)) and denote by &g € Q2. ad(Pg))
the image of & under the embedding ad(P) C ad(Py). Then

wr(4,8) = woy (4.6) + [ (e .60} dvols:
)
(3) Let A € A(P), let &y € QYX,ad(Pgr)) be a section with wy, (A,§) < oo
and denote by £ € QU(Z,ad(P)) the image of &y under the orthogonal
projection ad(Pg) — ad(P). Then

W (A, £) = we,, (A, Ex) + [E ez — 7, £) duoly.

Proof. For the first part, note that h = Z(h) & [h,h] yields an orthogonal
decomposition with respect to any invariant inner product of h. The orthogonal
projection of ¢ onto Z(h) does therefore depend only on the embedding of G
into H and it is easy to verify that it satisfies (12) for Py .

By Lemma 5.7 there exists & € g and a reduction Px C P to a principal
K = Cg(&p) bundle such that £ is the image of the constant section &, under
the embedding ad(Pg) C ad(P). Moreover,

wr(A,g-'):fE(*FB—r,E)dvolz

for any connection B € A(Pg). Define K =Cy (Eo) and Pg := Pk xxg K C Pyg.
Then &y agrees with the image of £ under the embedding ad(Pg) C ad(Pg)
and Lemma 5.7 yields

er(A,a:L(*FB—m,m

for any connection B € A(Pg). In particular, for B € A(Pg) C A(Pg), we get

we(A, E) — wey (4, E) = fz (et — 7, ko) dvols

and this proves the second part.

The third part follows by a similar argument. Note that the proof of Proposition
5.2 implies that there exists a connection B = A, € A(P) N A(Pg) for the
reduction Pg C Py associated to §g. For such a connection (§y. Fg) = (£, F)
holds and the claim follows as in the second part. O
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5.2. Weights and algebraic stability. The following proposition characterizes
the (algebraic) stability of the holomorphic principal bundle (P€,J4) in terms
of the associated weights w.(4,§).

Proposition 5.9 (Characterization of Stability). Let P be a principal G bundle
of central type t € Z(g) defined by (12). Let A € A(P) be a smooth connection
and let P¢:= P xg G° be the complexified principal bundle endowed with the
induced holomorphic structure Jy.

(1) (P€,Jq) is stable if and only if w.(A. &) > 0 for all £ € WY2(Z, ad(P))
which are not constant central sections.

(2) (P€, Ja) is polystable if and only if w.(A.€) = 0 for all £ € W'2(Z, ad(P))
and whenever w.(A.§) = 0 the associated (smooth) reduction P C
Po) C P¢ is holomorphic.

(3) (P€, Jy) is semistable if and only if w(A,£) > 0 forall £ € WY2(Z, ad(P)).

(4) (P€,J4) is unstable if and only if there exists £ € WUL2(Z,ad(P)) with
w:(4,8) < 0.

Proof. Using the geometric interpretation of the finite weights in Lemma 5.7 we
can reduce the proof to a lemma of Ramanathan [Ram]. The proof will be given
on page 129 below. ]

Reduction argument. We reduce the theorem to the case where Z(G) is discrete
and v = 0. Recall that the invariant inner product on g yields the decomposition
g = Z(g)®|g, g] of the Lie algebra into its center and a semisimple subalgebra. The
center yields a trivial Z(g) subbundle V' C ad(P) and its orthogonal complement
can be identified with ad(P/Zy(G)).

Lemma 5.10. Assume the setting of Proposition 5.9. Let £ € Q%X,ad(P))
with w.(A,§) < oo and decompose & = E* + £5° with respect to the splitting
ad(P) =V @ ad(P/Zy(G)). Then

we(4,§) = wo(A, £)

where A € A(P/Zy(G)) denotes the induced connection on P/Zy(G).

Proof. By Lemma 5.7 exists reduction Px C P and an element & € g which
gives rise to a constant central section in ad(Pg) and such that & is the image
of & under the embedding ad(Pg) C ad(P). Decompose & = & + &§;° with
respect to g = Z(g) @ [g,g]. Then & yields £ and &;° yields &* under the
embedding ad(Pg) C ad(P). By Lemma 5.7 the weight is given by
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wI(A.S):f(*FB—‘C.g”>dv012+[(*FB—T.%'Z)(JUOIE.
= b5

for any connection B € A(Pg). The second integral vanishes by (12) and in the
first integral yields

f (xFp — 1. £%) dvoly = f (xFp, £%) dvoly = wo(A, E%).
z x

since t € Z(g) is orthogonal to [g, g]. This completes the proof. O

The main argument. The following result is a reformulation of Lemma 2.1 in
[Ram].

Lemma S5.11. Assume the setting of Proposition 5.9 and suppose in addition
that Zo(G) is discrete and v = 0. (P, J4) is stable (resp. semistable) with
respect to Definition 3.2 if and only if wo(A,&) >0 (resp. wo(A,&) = 0) for all
£ e Wh2(Z,ad(P)).

Proof. Let £ € QU(X,ad(P)) with wo(A4.&) < oo be given. By Lemma 5.7 exists
a reduction Px C P and an element & € g such that K = Cg (&) and £ is the
image of & under the embedding ad(Px) C ad(P).

Let T € G be a maximal torus whose Lie algebra contains &, and let
RS ={a1,...,a,} be a system of simple roots with respect to 7 whose Weyl-
chamber contains &p. Recall that «; = ia; with a; € Hom(t,R) and define #; € t
by a; = (t;,-). The elements fi,..., I, € t defined by (7) yield a basis of t and
& has the shape

.
§o = Z-‘jfj
F=
with x; > 0. Note that fj lies in the center of the Lie algebra of K = Cg(&p)
when x; > 0. Then {; gives rise to a constant central section of ad(Pg) and

r

(37) wo(A.§) =Y xjwo(A. 7).

J=1

Fix 1 < j <r with x; > 0 and denote Q; := Q(f;). This is a maximal parabolic
subgroup of G¢ which contains Q(&p) and the extension Py, := Po@e)Xg@) Q) C
P¢ yields a maximal parabolic reduction. Let y : Q; — C* be the determinant
of the action of Q; on its Lie algebra and denote by 7 : q; — C the induced
map on the Lie algebra. Chern—Weyl theory yields the relation

e1(ad(Pg,)) = if}:).((FB)
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for a connection B € A(Pg). For n € q; the value of y(5) is given as the trace
of ad(n) := [n.:] acting on

(38) =t P oo

aeR(f;)

where R(f;) is defined by (8). This decomposition is unitary and by definition
of the roots we have ad(t)e, = «(t)e, for t € t. This shows

(39) im= > am

a€R(i;)

for all n € t. Since y vanishes on [qg;,q;] it vanishes on all root space g, with
{a,—a} C R(f;). These are the roots in ﬁ(tvj) which produce the Levi subgroup
L({;). The remaining root spaces g, with o € R(f;)\R({;) form a nilpotent
subalgebra. This shows that (39) remains valid for all n € q; if one extends the
roots by complex linearity over t° and by zero over the root spaces.

Denote by R the positive roots and by R™(i;) = R(i;)\R™" the negative
roots whose root spaces are contained in q;. Then y = y; + y» with

V1:Za. Y2 = Z o

acRt a(—:R‘(fj)
and
(wiy)) = > (tita) =167+ Y (tita)
aeERT aeRT\{a;)}

holds for every simple root «;. The root reflection

2(t, tj)[
|2 7

Sjif—>f, Sj(l‘) =11 —

restricts to a permutation of R™\{e;}. Indeed, any root has a unique representation
fa = Y p—; cklr and all coefficients happen to have the same sign. Applying the
reflection s; changes only the coefficient ¢; and thus s;(«) remains positive if
¢ > 0 for some coeflicient k # j. Using this symmetry we conclude

(40) {ois ¥y = [l

A similar argument shows for i # j

@) (ww)= ), () =—ulP+ ) () =—lul’
@€R(}) aeR™ () \ o)}

This shows x(f;) = 0 for i # j. As a general property of root systems (see
[Kna] Lemma 2.51) there holds (¢;.#;) < 0 for distinct simple roots «;.,«; and
thus
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(42) i) =P+ > {t.ta) >0
aER‘(l“j/‘)

Combining (40), (41) and (42) we conclude
q(@) =im(i;. 1)

for some m > 0. Hence

—m . —m .
43 1(ad(Pp.)) = — Fg,tj} = — A, ;).
(43) 61(ad(Pg,) = o fz< 5.7 = S wo(4, )

Suppose now that P¢ is stable (resp. semistable). Then the left hand side
in (43) is negative (resp. nonpositive) and (37) implies wo(A4,&) > 0 (resp.
wo(A, &) = 0). Conversely, Lemma 5.7 show that every holomorphic reduction
Po C P¢ to a proper maximal parabolic subgroup Q(§y) C Q is induced by
some & € Q%X ad(P)) with wo(A4,£) < co. Lemma 2.15 shows that in (38)
exactly one coefficient x; does not vanishes. Hence (43) implies that ¢;(ad(Pp))
is negative or vanishes if and only if wo(A. &) is positive or vanishes respectively.
This establishes the converse direction and completes the proof of the lemma. [J

Completion of the proof.

Proof of Proposition 5.9. We may assume by Lemma 3.5 and Lemma 5.10 that
Zo(G) is discrete and v = 0. The stable and semistable case follow then from
Lemma 5.11 and the unstable case is equivalent to the semistable case.

Assume that P€¢ is polystable. Then there exists a holomorphic reduction
Pr € P¢ to a Levi subgroup L C G¢ and Pp is a stable L bundle. Let
£ e Q%X ad(P)) with wo(A4,£) =0 be given. By Lemma 5.7 exists & € g and
a reduction Pg C P to a principal K = Cg (&) bundle such that £ agrees with
the image of &, under the embedding ad(Pg) C ad(P). Using the notation from
the proof of Lemma 5.11 above, write &, with respect to a system of simple roots

as
r

§o = Z xjlj
j=1
with x; > 0. Since P€ is in particular semistable, the proof of Lemma 5.11 shows
that wo(A,&) =0 if and only if

Xj>0 = Cl(ad(PQj)):O

where Q; := Q(/;). We may assume (after conjugation) that L = L(no) for
some ng € g and 7 is contained in the Weyl-chamber determined by our choice
of simple roots. If L is not contained in Q;, then Q;. =L N Q; is a maximal
parabolic subgroup of L and we have an induced reduction PQ} C Pr. Since L
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and G°¢ are reductive, the Lie algebra bundles ad(Py) and ad(P€) carry a non
degenerated symmetric C -bilinear form. Hence they are both self-dual and have
vanishing first Chern-class. This shows

c1(ad(Pg;)) = —ci(ad(P€)/ad(Q;)) = —c1(ad(Pr)/ad(Q}))
= cl(ad(PQ})) <0

where the last step follows from the stability of P;. We have thus proven that
L C Q; whenever x; > 0 and this yields L C L(&p). Since the reduction to L
is holomorphic, so is the reduction to L(&p).

Assume conversely, that all weights are nonnegative and if & € Q%(Z, P¢) is
a section with wg(A4,§) = 0 then Pp) C P is a holomorphic reduction (where
Pre) = P[c((g) and Pg) is determined by Lemma 5.7). It follows from Lemma
5.1 that P¢ is semistable. If P€¢ is in fact stable, then we are done. Otherwise
there exists a vanishing weight wg(A.&) = 0 and by assumption this yields a
holomorphic reduction Prg) C P¢. In particular A restricts to a connection on
Pk C P and Pk is again of central type 0. For the later claim let n € g be
contained in the center of the Lie algebra of K and consider its image n' under
the embedding ad(Pg) C ad(P). Then follows

f(*FB, n) dvoly = wo(A,n") >0
b>

for any connection B € A(Px). Replacing n by —n shows that this expression
must vanish and hence Pg) is of central type 0. Now Lemma 5.11 shows
that P is again semistable. If Pr) is not stable, then there exists £ e
QO%x, ad(Pg ) with wo(A, %—) = 0. We can consider 5 as section & of ad(P)
which then satisfies wg(A4,£") = 0 and thus yields a strictly smaller holomorphic
reduction Pr gy C Ppe. If we replace £ by £ and rerun the argument from above
we obtain after finitely many iterations a section & which satisfies wg(4,&) =0
and yields a stable holomorphic reduction Prg) C P€.

Let y : L — C* be a character. We need to show ci(x(Pre))) = 0.
Decompose &) = Z]—l xjI; as above and denote

S :=1{j|x; >0}

Since y :[(§) — C vanishes on [[(£), [(§)], it vanishes on all the root spaces gq
belonging to [(§) and the dual vectors #, € t. In particular, y vanishes on the
simple roots #; with j ¢ S and has the shape

HOEDIRGIVRN!
JjES

for some r; € R. Chern—Weyl theory yields
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c1(x(Prg)) = 2—17;[2)6(1’:3) = izirj/;(*FBgfj)
jes

for some connection B € A(Pg)). We claim that each summand vanishes
separately in the last expression. This follows from the assumption

¥ L(*FB,EJ-)(ZUO[E

JjeS

0 = wo(4,§) = E xj/(*FB.fj)dvolz =
: )2
i=1

and
wo(A, ;) = / (xFg,i;)dvols >0
3

since P€ is semistable. [l

5.3. The moment weight inequality. The moment-weight inequality provides
a lower bound for the norm of the moment-map .(A) = xF4 —t on the
complexified orbit G(A).

Theorem 5.12 (The moment-weight inequality). Let P — X be a principal G
bundle of central type t € Z(g) defined by (12). Let A € A(P) be a smooth
connection and £ € WY2(%, ad(P)). Then

A,
Wl E) < inf ||*Fg(A)_fHL2-

44 gt U 3
o el = st

The moment weight-inequality is essentially proven by Atiyah and Bott
([AB83], Prop. 8.13 and Prop. 10.13). They explicitly determine the infimum
of the Yang-Mills functional over G°(A) in terms of the Harder—Narasimhan
filtration of the holomorphic vector bundle ad(P€). It follows from the proof
of the dominant weight theorem (Theorem 7.1) in the next section that the same
description yields the supremum over the left-hand side whenever it is positive.
We provide a different approach following the arguments in [SGR] for the finite
dimensional case which are essentially due to Chen [Che2, Chel] and Donaldson
[Dond].

Proof. We reduce the proof to the case where Z(G) is discrete and 7 = 0.
Denote by A € A(P/Zy(G)) the induced connection on the quotient bundle
and decompose & = &% + £7 as in Lemma 5.7. Let g € G°(P) be given and
decompose Fgq = F** + F° in the same way. Note that F, ; = F*. Suppose
that the moment-weight inequality is satisfied on P/Zy(G), i.e.

wo (4, §%)
_W = || X ng‘I“Lz'
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We may assume w;(A.&) < 0. Then Lemma 5.7 implies

w4, §) _ wo(d )
€z = 11§%]lL2
and this completes the reduction argument.
Now assume that Z(G) is discrete and t = 0. Let £ € W12(X, ad(P)) with
wo(A,&) < co. Then £ is smooth by Proposition 5.2 and the limit

< |1 Fyllp2 < |1Fea—ll12

(45) lim ¥ A4 =: A,

I—00
exists by Corollary 35.5.
Let go = uge'™ € G¢(P) be given and define n(t) € W22(Z,ad(P)) and
u(t) € G by the equation
et = ey (1) g

From this follows pointwise the estimate

(46) [[n(e) =&l < [Inoll-

To see this, denote by 7 : G° — G¢/G the canonical projection and recall that
G¢/G is a complete simply-connected Riemannian manifold with nonpositive
sectional curvature. For a fixed time ¢ and z € ¥ define p := n("$@)) and
g := n(e®2))  Then

y : [0. 1] — GC/G )/(S) — ]T(eifg(z)e_isnO(z))

is the unique geodesic from p to g in G¢/G of length |[|no(z)||. Since the
exponential map on a Riemannian manifold with nonpositive curvature is distance
increasing, this yields

72, 2) —t€(2)|| = distge;6(p.q) = |Ino(2)]|
and hence (46). With this estimate we get

H § @) tE—n@)  n@) @)
ElL2  HIn(D)]]22

=
.2

el ez Ol |l

_ g —n(@)llz2 N ‘||n(r)||Lz —r||§||L2|

EGIE 1€z
[1n0l]2
= t||E]l2
and hence
. n(t) 5
47 1 - =0
G4T) rE&Hmumm IENl2 |12
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By (31) the map

s> (xF Y nu)

eixu_l nu goA ) L

: L : : i1 1
is nondecreasing in s. With the relation e™ " gy = u~lel€ follows

1 . 1 il
_|| s Fg()AHL2 = ||77||L2 (*}:g()A*H 77”) = HT]HLZ (*Fei”_]”“g()A’u 7]1/()
1 1 1
= Tialige T Fartevea ™) = e (e, )
_ (P, §) +<*Fing n & >
I ¢ M2 11§l

It follows from (45) and (46) that the right and side converges to woldd) g
t — oo and this proves the theorem. ]

6. The Kempf-Ness functional

Let G be a compact connected Lie group and let P — X be a principal G
bundle of central type 7 € Z(g) defined by (12). Let A € A(P) be a smooth
connection. The Kempf—Ness functional associated to A is the G(P)-invariant
functional

1
(48) ®4:G°(P) > R, @A(eiéu)zf (% F,—ie 4 — T, —E) dr.
0

We show in Lemma 6.1 below that the derivative of &4 is given by
(49) aa(g:8) = —(xFg14—7,Im(g™'8)).

The asymptotic slope of ®4 along the geodesic ray ¢ > e ¢ yields the weight
w:(A, &). This is related to the stability of the associated holomorphic principal
bundle (P€.J4) by Proposition 5.9. On the other hand, it follows directly from
(49) that g € G°(P) is a critical point of ®, if and only if xFy—1 4 = 7. The
analog of the Kempf-Ness theorem in classical GIT is Theorem 6.2 below. It
characterizes the different notions of j.-stability in terms of the global behaviour
of ®,4 and thus provides a link between the algebraic and the symplectic notions of
stability. We can deduce from this the Narasimhan—Seshadri-Ramanathan theorem
in the second subsection.
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6.1. The generalized Kempf-Ness theorem.

Lemma 6.1. Let P — X be a principal G bundle and define ®4 : G°(P) — R
by (48).

(1) The derivative of ®4 is given by
0a(g:8) = —{* Fymi g — 7. Im(g™' 8)).
(2) Let g.h € G°(P), then
Dp-14(h™"g) = Palg) — Palh).
Proof. Let g € G°(P), g € T,G°(P) and let u € G(P) be given. Then
aa(gu ' gu™t) = (% Fp—1 4. Imug ' gu™")
= (u* Fyor qu” ' ulm(g ™ Qu")
= a4(8.8)

shows that a4 is invariant under the right-action of G(P) and hence descends
to a l-form on G°(P)/G(P).

We claim that o4 is closed. Denote by 7 : G° — G°/G the canonical
projection and let ¢, = dn(g)gié and &, := dn(g)gin be two tangent vectors
in Thg)G°(P)/G(P). Then

doa(g; 81, 82) = daa(g; 82)[81] — daa(g: £1)[82] — aa(g:[81, 82])
= d{Fg—14— 1, n)[8i§] — d(Fg-14 — 7, §)[gin]
= (01 g1 45 1) — (ds ydgm14.8) = O

We used in the second step that [g;.g2] € T,G(P) is tangent to the real gauge
orbit and thus lies in the kernel of a4(g:-).

Denote for p.q € G°(P)/G(P) by [p,q] the geodesic segment connecting p
to g. Then (48) can be reformulated as

(30) Qulg) = / o4.
[r(1).7(8)]

For h € G°(P) we have ;-1 4(h g, h7'g) = aa(g, &) and hence

CDhHA(/z_Ig) — / Ap—14 = f 4.
[7(@),r(h—1g)] [x(h),m(g)

Since a4 is closed we have
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/ oA :/ CYA—[ ag = Dq(g) — Palh)
[(h).m(g)] [ (1),7(g)] [ (1),7(h)]

and this establishes the second part of the lemma.

Using the second part, we can can reduce the proof of the first part to the
case ¢ = 1 and in this case the claim follows directly from (48). O

The difficult part of the following theorem is the stable case. The proof of this
case is due to Bradlow [Bra] and Mundet [iR] in the context of more general
moduli problems.

Theorem 6.2 (Generalized Kempf-Ness theorem). Let G be a compact connected
Lie group, let P — % be a principal G bundle with central type © € Z(g) defined
by (12) and let A € A(P).

(1) A is p,-stable if and only if G°(A) has discrete G°(P) isotropy and for
every R > 0 such that

Mg :={§ e W»*(Z,ad(P) ||| * Fy—ic 4 — T||z2 < R}
LS nonempty, there exist constants c¢i,c> > 0 such that

(51) Da(e) < c1||E]lze + 2 for all £ € Mp.

(2) A is p-polystable if and only if ®4 has a critical point.
(3) A is p-semistable if and only if ®4 is bounded below.

(4) A is p-unstable if and only if ®4 is unbounded below.

Proof. We consider both implications of the stable case in the following lemmas
first. The proof will then be given on page 139 below. O

Lemma 6.3. Assume the setting of Theorem 6.2. Suppose that the orbit G(A) C
A*(P) contains only irreducible connections and that there exist c¢y,co, R > 0
such that Mg is nonempty and (51) holds. Then exists & € Mg such that

(52) Dy (e0) < Dy(e*)  for all £ € Mg

and B := e~ A satisfies Fp = 0.
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Proof. Suppose first that & € Mg satisfies (52). Let B := ¢ %04 and let
n € W22(x,ad(P)) be a solution of the equation

Apn = dgdpn = xFp

which exists since B is irreducible. Then there follows

d o L
= D4 (506" = qy(el0, e¥0in) = —(xFp,n) = —||dgnll3
=0
and
F 2 _ o lerg s 2 F
dt t=0 H* efi”’efiEOAH = L\FB* dt t=0 eE

= 2(xFp.*dp = dgn) = —2(xFg, Agn) = —2|| x Fg|3,

Now decompose 0l = ¢i€1y . Then the calculation shows that for sufficiently
small ¢ we have & € Mp and ®y4(ef1) < ®4(e'0) with equality if and only if
Fp = 0. Since (52) yields the converse inequality, we have indeed equality and
hence Fg = 0.

It remains to prove the existence of a minimizer & € Mg. Let {&} C Mg
be a minimizing sequence satisfying

(53) lim ©4(e'k) = inf D4(e).
k—o0 EeMp

By definition of Mg, the curvature F,i, , is uniformly bounded in L?. Hence
the Uhlenbeck compactness theorem asserts that there exists ux € G(P) such that
A = ukeiékA converges weakly in W12, For g := upets the expression

5,4,\, — 04 = giléAgk

is thus uniformly bounded in W2, Since & is uniformly bounded in L by
(51) and (53), we conclude that g and & are uniformly bounded in W22,
Hence, after taking a subsequence, there exists & € Mg such that & converges
to & weakly in W22 and strongly in W7 for 2 < p < co. From this follows

lim (xF,—irg; 4. —5k) = (¥ F,—irgo A. —60).

k—c0

Henge limg—uo @A(eigk) = CDA(eiEO) and &, satisfies (52). Ll

Lemma 6.4. Assume the setting of Theorem 6.2. Suppose that Zy(G) is discrete,
T =0 and wo(A,§) > 0 for all nonzero & € WH(Z,ad(P)). Let R > 0 be
given such that Mg is nonempty. Then exist constants ci,cy > 0 such that (51)
is satisfied.
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Proof. The proof consists of several steps.

Step 1. There exists C > 0 such that

1Ellco = C(IlEllr +1)  for all § € Mg.

We observe that

1 1
2(xFoie g — *Fa. §) = 2f0 (Apie 48, E) dt = AllE]]? +2f0 I deiee 48117 dt

> All§11* = 2]Ig|Al§]]
and hence
(54) All§l] < || * Fie g4 — % Fal|.

An argument due to Simpson ([Simp], Prop 2.1) shows that this implies the claim.
For this denote

f:E¥—R, f(2) = [§@)II.

For zyp € ¥ choose a local coordinate which identifies zy with the origin in
C. Let B,,(0) be a ball contained in the image of this local coordinate and let
r e (0,rg). Let w,h be solutions of

Aw = || % F,ic 4 — % F4||, wlas, o) =0 Ah =0, hl3B, ) = fB, -

Here we consider the Laplacian of ¥ which agrees with the Laplacian on C up to
a positive factor. Hence (54) and the maximum principle show that f —w—h <0
and the mean value theorem yields

. 1
S(0) —w(0) = h(0) = - —_— .

Moreover, by definition of Mg and elliptic regularity there follows

[w(O)] = Cllw[lw22 = CllAw|[g2 = C(|] * Fallz2 + R).

1
(zo) =C|r+ - aF
Sf(z0) = (’ + » v/&;B,«(O) .f)

Now choose r € (ro/2,r9) such that %.[BB,-(O) f <1/ fllz1 holds. Then follows

Hence

fzo) =C ("0 + %H.f\lu) .

0

Since ¥ is compact, we can perform this argument within finitely many charts
and choose the final constant C to be independent of zg.
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Step 2. There exist cy,cy > 0 such that

IE|lL1 < c1®Pa(e®) + ¢y for all £ € M.

Suppose the claim is false. Then exists Cx > 0 and & € Mg such that

lim G =co. lim [lgkllp =oco and |G|y > Ceda(e).
k—c0 k—o0
It follows from Step 2 that nx := —&/||ék||;1 is uniformly bounded in L°°.

Denote {x := ||&k]||;2. Then

i£
b » D4 (e"%)
Ce = k!l

The integrand is increasing by (31). Hence, for any fixed ¢ > 0 follows

1

1 %
:A (*Fei:gkA,nk)dt = Efo (*FeimkA,nk)dl‘

1 >Zk—f

t
& — I

(55) n

(*Feifnksnk) + =i}

It follows from (33) that
1 1% o ;
(*FeinikA- 771() — <*FA-, nk) + 5 [ Hemks(a/lnk)e_mks”iz ds
0

and, since 7y is uniformly bounded in C 0 we conclude that 5A77k is uniformly
bounded in L2. Since A is irreducible and ||dank|> = L||dank||® this shows
that g is uniformly bounded in W12, Hence, after taking a subsequence, there
exists n € W12 N L> such that n; — n converges weakly in W12 and strongly
in L? for every 1 < p < oo. In particular |[|n||z1 = 1 shows that n # 0
and

lim (*ng”TkA‘ rlk) = (*FeimA' n)

k—co

Now (55) implies (xF,im4.7) <0 and as ¢t — oo we obtain wo(A4,n) <0. This
contradicts our assumptions and proves Step 2.

Step 3. There exist c¢y,cy > 0 such that
|E||oo < c1®a(e®) +c2  forall £ Mg.

This follows directly from Step 1 and Step 2. O
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Proof of Theorem 6.2. Suppose A is p.-stable. Then Zy(G) is discrete, 7 =0
and G°(A) has discrete G°(P) isotropy. We claim that wgy(A4,&) > 0 for all
£ € WH2(X2,ad(P)). By Proposition 5.9 this condition is equivalent to the stability
of the induced holomorphic structure J4 on P€ := P xg G¢. In particular, this
condition is invariant under the action of G°(P) and we may assume that F4 = 0.
Then (32) shows

o0
wMAQZl;H%Mﬁﬁﬂh>O

since A is irreducible. Thus Lemma 6.4 applies and shows that the estimate (51)
is satisfied. The converse direction follows from Lemma 6.3.

The characterization of the p.-polystable case follows directly from (49).

In the following let A(f) denote the solution of the Yang—Mills flow
(22) starting at A and let Ay = lim;—o A(f). Suppose A is . -unstable.
Theorem 4.14 and (19) show that

|| Fea—tllp2 = [|Fao — Tllpz = ¢ >0

for all g € G¢(P). Now define g(¢) by (24). Then A(t) = g(t)~'(A) and
d .
ECDA(g(t)) = ay(g(1).8(t)) = —(xFaq) — . % Fy())

= —|| % Faqy — 7ll72 < —c

where the penultimate step follows from (12). This shows that &4 is unbounded
below.

Suppose conversely that A is p.-semistable. It follows from Theorem 4.14
and (19) that A, is a global minimum for the Yang—Mills functional on A(P)
and xF4__ = t. It follows from the Lojasiewicz inequality (Lemma 4.5) that
there exists y € [2.1) and C,T > 0 such that

| % Fagy — Tl172 = 2|YM(A@R)) — YM(Ax)]
1
= C||d;(z)FA(I)||zz
< Clld sy Fawll72(YM(A@D) — YM(As)) 