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A survey of the GIT picture for the
Yang-Mills equation over Riemann surfaces

Samuel Trautwein

Abstract. The purpose of this paper is to give a self-contained exposition of the Atiyah-Bott

picture [AB83] for the Yang-Mills equation over Riemann surfaces with an emphasis on

the analogy to finite dimensional geometric invariant theory. The main motivation is to

provide a careful study of the semistable and unstable orbits: This includes the analogue

of the Ness uniqueness theorem for Yang-Mills connections, the Kempf-Ness theorem,

the Hilbert-Mumford criterion and a new proof of the moment-weight inequality following
an approach outlined by Donaldson [Don4]. A central ingredient in our discussion is the

Yang-Mills flow for which we assume longtime existence and convergence (see [Rad]).
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1. Introduction

The purpose of this paper is threefold: The first goal is to provide a self-

contained and essentially complete exposition of the geometric invariant theory
for the Yang-Mills equation over Riemann surfaces from the differential geometric

point of view. We follow closely the line of arguments of finite dimensional GIT
(e.g., as it is explained in [SGR]) and emphasize this analogy throughout.

The second goal is to include a careful study of the semistable and unstable

orbits. This is in contrast to most of the developments after the landmark paper
[AB83] of Atiyah and Bott, which deal with the characterization of stable objects
in more general moduli problems, i.e., the analogue of the Narasimhan-Seshadri
theorem. In the unitary case Daskalopoulos [Das] established the Morse theoretic

picture of Atiyah and Bott. A direct corollary of this stratification is the analogue

of the Ness uniqueness theorem and the moment limit theorem (see Theorem A
below). We present an alternative proof of this result following the arguments
discovered by Calabi-Chen [CC] and Chen-Sun [CS] in a different infinite
dimensional setting. This argument does not depend on the Harder-Narasimhan

filtration or on other aspects from the holomorphic point of view and works for
general structure groups. Following an approach outlined by Donaldson [Don4],
we also carry out a new proof of the moment-weight inequality which is essentially
contained in the work of Atiyah and Bott.

The third goal is to provide a transparent exposition of the central ideas

used in gauge theoretical moduli problems. While several results are known in

greater generality, the key ideas are still immanent in our treatment. We hope
that this enables non experts to explore the beauty of this subject without having
to worry about the technical difficulties which come along with more general
moduli problems.

The article concentrates on the stability questions in Yang-Mills theory and

does not discuss the topology of the resulting moduli space, which is one of
the main topics in the work of Atiyah and Bott. There is no claim of originality
(except to my knowledge Theorem A has only been proven in the case G U(n)
in the existing literature). However, the various results and underlying ideas are

spread over the literature and the present paper provides a unified exposition.
The main technical ingredients in our discussion are long time existence and

convergence of the Yang-Mills flow. The presented arguments allow for various

generalizations to moduli problems in gauge theory, where the main obstacles are

again long time existence and convergence of the relevant parabolic gradient flow.

These obstructions can be overcome for the Yang-Mills-Higgs flow under suitable

assumptions and the results of this article can be carried over to the symplectic
vortex equation over Riemann surfaces, see [Tra], [Yen], For the extension of the
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theory to bundles over higher dimensional Kahler manifolds, the situation is more
delicate and various known results are discussed at the end of the introduction.

There are two essentially different perspectives on GIT - the algebraic

geometric and the symplectic point of view. The recent survey of Thomas [Tho]

provides some background from both perspectives and explores several finite and

infinite dimensional examples. Originally, Mumford [Mum] introduced GIT as

a method to construct quotients and moduli spaces in algebraic geometry. The

work of Atiyah-Bott [AB83] and the thesis of Kirwan [Kir] have shown that

GIT is closely related to moment maps and symplectic reduction, where the link
between both theories lies in the Morse-Bott stratification of the moment map
squared functional. This leads to an entirely differential geometric version of GIT.

Another important ingredient in this approach is the Kempf-Ness function: Let

(A, be a closed Kähler manifold with Hamiltonian G-action and moment

map /x. Here G denotes a (real) compact Lie group with complexification Gc.
For a given point x e X there exists a G-invariant function

<S>X : Gc/G -* M

such that the gradient flow of <5* intertwines with the gradient flow of the

moment map squared functional under the map g i-> g~xx. The global analytic
properties of are related to the algebraic weights of x and to the solvability
of the equation /x(gx) 0 by the Kempf-Ness theorem.

We follow throughout this survey the differential geometric approach. For a

modern algebraic treatment we refer to [ADK] and the references therein. The new
edition of [MFK] also contains a discussion of the GIT picture for the Yang-
Mills equations. Nevertheless, it leaves some refined question open: What are

the appropriate analogous versions of the Ness uniqueness theorem, the Kempf-
Ness theorem or the Hilbert-Mumford criterion? The analog of the Kempf-Ness
functional has been used to provide analytic proofs for various generalizations
of the Narasimhan-Seshadri theorem, but it has seen little discussion beyond
these applications in the literature. The recent work of Calabi, Chen, Donaldson
and Sun [CC, Don4, Chel, Che2, CS] has shown that the underlying geometric
properties of the Kempf-Ness functional can be used to provide analytic proofs
for the Ness uniqueness theorem and the Kempf-Ness theorem. We follow their
ideas and obtain new proofs of the corresponding results in the Yang-Mills case.

The exposition [SGR] provides a finite dimensional discussion of these arguments.

Main results. Let G be a compact connected Lie group and let E be a closed
Riemann surface. Fix a volume form on S, compatible with the orientation, and

let P -> S be a principal G bundle. Atiyah and Bott [AB83] observed that the

curvature
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ß(A) := *Fa e Œ°(Z,ad(P))

defines a moment map for the action of the gauge group Q(P) on the space of
connections A{P). For any constant central section r, the symplectic quotient

A(P)//G(P) AiT\x)/Q{P)

yields the moduli space of projectively flat connections on P with constant central

curvature r.
Let Gc be the complexification of G and Pc := P xq Gc the associated

principal Gc bundle. The complexification of the gauge group is GC(P) '= G{PC)-
The space A{P) can naturally be identified with the space J(PC) of holomorphic
structures on Pc (see Lemma 2.5) and the complexified gauge group QC(P) acts

naturally on this space. The corresponding GIT quotient

ASS(P)//ÇC(P)

of A(P) by GC(P) is obtained in two steps. First, one defines a dense and open
subset ASS(P) C A(P) of semistable connections or holomorphic structures on

P and second, one identifies two semistable orbits in the quotient if they cannot
be separated in ASS{P)- The restriction to semistable orbits is necessary to obtain

a good quotient in the sense of algebraic geometry. There are two approaches

to define semistable objects. In the symplectic approach, one chooses a moment

map for the gauge action on M(P) to define semistable objects. In the algebraic

geometric approach, one defines a notion of semistability JSS(PC) c J(PC) on
the space of holomorphic structures on Pc. A classical result due to Narasimhan

and Seshadri [NS] in the case G U(n) and due to Ramanathan [Ram] for

general G shows that both of these notions agree if one restricts to further open
subsets of stable objects.

The Yang-Mills picture introduced by Atiyah and Bott [AB83] shed new

light on this result and inspired Donaldson [Donl] to an analytic proof of the

Narasimhan-Seshadri theorem. The Yang-Mills functional is given by the formula

YWl : M(P) ^ M, yM(A):=-[ \\FA\\2 dvols.
2 Js

Standard arguments from Chern-Weil theory show that there exists a unique
central element r e Z(g) such that

(1) yM(A) inf yM(B) *FA r.
BeA(P)

We shall consider in the following connections of Sobolev class IT1'2 and gauge
transformations of Sobolev class W2'2. Rade [Rad] showed in this setting that



GIT for the Yang-Mills equation over Riemann surfaces 67

for every initial data T0 e A(P) the negative gradient flow of the Yang-Mills
functional

(2) M(0 -VyM(A(t)) -d*mFA(t), T(0) T0

has a unique (weak) solution which exists for all time. Moreover, this solution
remains in a single complexified GC{P)-orbit and converges in the W1,2-topology
to a Yang-Mills connection Aœ e GC(A0). The following is the analogue of the

Ness uniqueness theorem in finite dimensional GIT.

Theorem A (Uniqueness of Yang-Mills connections). Let A0 e A(P) and let

Aqo be the limit of the Yang-Mills flow (2) starting at To- Then

(1) yM{Aoo) infgeSc(P) yM(gA).

(2) If B e Gc(Ao) is contained in the W1'2 -closure of Gc(Aq) and

yM(B) inf yM(gA)
g£Gc(P)

then G(B) <7(Too).

In the case G U(n) one can replace P by a hermitian vector bundle

E -» S. Daskalopoulos [Das] established in this case the convergence of the

Yang-Mills flow over Riemann surfaces by different methods. He proves a suitable

slice theorem near Yang-Mills connections and shows that the limiting Yang-
Mills connection Too is determined up to a unitary gauge transformation by the

isomorphism class of the Harder-Narasimhan filtration of (E,dAo). This proves
Theorem A in the unitary case and it should be possible to deduce the general
result from this using the methods in [BW]. We present a different proof of
Theorem A in Theorem 4.14 and Theorem 4.15 by following the line of arguments
from finite dimensional GIT ([SGR], Chapter 6). These arguments were originally
given by Calabi-Chen [CC] and Chen-Sun [CS] in the context of extremal Kähler
metrics.

A connection A e A{P) is called /xT-semistable resp. gtx-unstable if

inf || * FgA — r 11/ 2 0 resp. inf || * F„a — r 11 r 2 > 0
geGc(P) geGclP)

where r is defined by (1). Moreover, A is called /xr-polystable if there exists

g e GC(P) with *FgA x and it is called fxr -stable if gA is in addition
irreducible. Then Theorem A implies that the map which sends A0 e A(P) to
the limit Too of the Yang-Mills flow starting at T0 yields the identifications

ASS(P)//GC(P) Aps(P)/Gc(P) ijl-\T)/GIP).
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Conversely, the px -unstable orbits converge to higher critical points of the Yang-
Mills functional. More details on this correspondence are given in Theorem 4.18.

The theory has greatly evolved since the paper [AB83] of Atiyah and Bott. The

main goal in those developments has been the characterization of stable objects in

more general moduli problems (e.g. [Don2], [Don3], [UY], [Hit], [Simp], [Bra]).
The characterization of unstable orbits is in general much more difficult as it
refers to higher critical points of the Yang-Mills functional. Given a connection

A e A(P) and £ e f2°(£, ad(P)) the weight wz(A, Ç) is defined by

10 v (A, £) := lim (*Feu( A -i,()elU {oo}.
t—±OO

The first part of the following theorem is the analogue of the moment-weight
inequality and the last two claims are the analogue of the Kempf existence and

uniqueness theorem in finite dimensional GIT.

Theorem B (Atiyah-Bott). Let A e A(P) and let z e Z(q) be defined by (1).

Then

(1) For all 0 £ 6 £2°(S, ad(P)) there holds

-WX^:P - inf \\*Fa-t\\2.
||£|| geGHP)

(2) If the riglit-hand-side is positive, then there exists up to scaling a unique
0 £o e £2°(E,ad(P)) such that

Wr(A, £o) f II 77 I 12

iTTTi— mf I * Fa t!MI geGHP)

Moreover, is rational in the sense that it generates a closed one parameter
subgroup of G(P).

(3) Let Aoo be the limit of the Yang-Mills flow starting at Ao Then there exists

u e G{P) such that £o agrees up to scaling with u(*FAoo — z)u~l.

This is essentially contained in the work of Atiyah and Bott ([AB83], Prop. 8.13

and Prop. 10.13). A connection A e A{P) induces a holomorphic structure on the

complexified bundle Pc := P xq Gc and its Lie algebra bundle ad(Pc). Atiyah
and Bott explicitly determine the infimum of the Yang-Mills functional over QC(A)

in terms of the Harder-Narasimhan filtration of ad(Pc). The analogous result has

been shown by Calabi, Chen, Donaldson and Sun [CC, Don4, Chel, Che2, CS] in
the context of extremal Kähler metrics. Donaldson [Don4] compares the Atiyah-
Bott picture in the vector bundle case G — U(n) with their results on the Calabi

functional and mentions that their methods should lead to a new proof of the
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moment-weight inequality in the Atiyah-Bott case. We carry out this proof in
Theorem 5.12. We reformulate and prove the last two claims in Theorem 7.1. The

case G U(n) follows along the line of arguments of Atiyah and Bott from the

Harder-Narasimhan filtration and the Narasimhan-Seshadri theorem. The general

case can be reduced to this by the use of Theorem A. For this, choose a faithful
representation G U(n). Then any G-connection A can be considered as

{/(n)-connection and Theorem A implies

inf yM(gA) inf yM(gA).
g£Qc(E) geGL(£)

It now remains to compare the weights for the gauge action with respect to the

two structure groups G and U(n) to conclude the proof. We would also like
to mention the work of Bruasse and Teleman [BT, Bru]. They prove for more
general gauge theoretical moduli problems that whenever the supremum over the

normalized weights is positive, then it is attained in a unique direction
corresponding to the Harder-Narasimhan filtration.

There is a classical algebraic geometric notion of stability for holomorphic
principal bundles (see Definition 3.2). In the vector bundle case G U(n) this

corresponds to the notion of (slope-)stable holomorphic vector bundles, which are

easier to define: A holomorphic vector bundle E is called stable (semistable) if

ci(F) cfiE) LcfiFJ K
ci(E)\

rk(F)
<

rk(£) \tk(F) " rk(£) J

holds for every proper holomorphic subbundle 0 ^ F c E. Moreover, E is

called polystable if it decomposes as the direct sum of stable vector bundles all

having the same slope and E is called unstable if it is not semistable.

Theorem C (Generalized Narasimhan-Seshadri-Ramanathan theorem). Let A e

A(P) and define z by (1). Then A induces a holomorphic structure Ja on the

complexified bundle Pc P xg Gc and the following holds true:

(1) (Pc,Ja) is stable if and only if A is -polystable and the kernel of the

infinitesimal action La £l°(T<,ad(Pc)) —> G1 (E,ad(P))

+ irj) := -dA% - *dArj

contains only constant central sections.

(2) (PC,JA) is polystable if and only if A is /xT -polystable.

(3) (Pc,Ja) is semistable if and only if A is px -semistable.

(4) (Pc,Ja) is unstable if and only if A is /xr -unstable.
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Proposition 5.9 characterizes the stability of (Pc, Ja) in terms of the weights

wr(A,%) and shows that this theorem is the appropriate analog of the Hilbert-
Mumford criterion in finite dimensional GIT. The first claim is the Narasimhan-
Seshadri-Ramanathan theorem. We present an analytic proof of this classical result

in Theorem 6.5 which was originally given by Bradlow [Bra] and Mundet [iR]
for more general moduli problems. The main step in their proof is to establish the

analogue of the Kempf-Ness theorem (see Theorem 6.2) in the stable case. The

polystable case is deduced from the stable case by induction on the dimension

of G. Tire unstable and semistable case follow directly from Theorem B by

Proposition 5.9. We reformulate and prove Theorem C in Theorem 3.10.

Outline. In Section 2 we review the necessary preliminaries. The first part deals

with the relevant background on gauge theory. Besides fixing notation, the main

goals are to provide an explicit description of the complexified gauge action in
both the vector bundle and principal bundle case and to describe the moment

map picture of Atiyah and Bott. We show that this picture remains valid if one

considers connections and gauge transformations in suitable Sobolev completions.
The second part discusses parabolic subgroups of complex reductive Lie groups.
These play a crucial role in the algebraic geometric definition of stability and the

geometric description of the weights.
In Section 3 we discuss the algebraic and symplectic definitions of stability. The

main result in this section is the generalized Narasimhan-Seshadri-Ramanathan
theorem (Theorem 3.10) which states that these definitions are essentially equivalent.

The proof of this theorem is based on the whole remainder of the exposition.
In Section 4 we review the analytical properties of the Yang-Mills flow which

Rade [Rad] established in his thesis. We prove Theorem A in Theorem 4.14

and Theorem 4.15 and close this section with Theorem 4.18 which characterizes

the fiT -stability of a connection A e A{P) in terms of the limit A00 of the

Yang-Mills flow starting at A.
In Section 5 we introduce the weights wT(A,£) and show that they are closely

related to holomorphic parabolic reductions of the complexified bundle (Pc, Ja).
Proposition 5.9 shows that the weights provide an alternative description of the

algebraic notion of stability. We close this section with the proof of the moment

weight inequality (Theorem 5.12) following the approach outlined by Donaldson

[Don4],
In Section 6 we describe a general procedure which associates to a given

connection A e A(P) a Q(P) -invariant functional $>a GC(P) -> ®L We call

this the Kempf-Ness functional of A. The slope of this functional at infinity agrees

with the weights discussed in Chapter 5 and hence relates to the algebraic notion

of stability by Proposition 5.9. The analogue of the Kempf-Ness theorem (see
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Theorem 6.2) relates the global behavior of to the symplectic /xT -stability of
A. This provides a link between the algebraic and symplectic notions of stability
and leads to an analytic proof of the Narasimhan-Seshadri-Ramanathan theorem

in Theorem 6.5. These arguments are given by Bradlow [Bra] and Mundet [iR]
in more general settings.

In Section 7 we establish the analogue of the Kempf existence and uniqueness
theorem (see Theorem 7.1). We include a self-contained account on the Harder-
Narasimhan filtration for the convenience of the reader.

Higher dimensional base manifolds. We restrict our discussion to the case

where X is a Riemann surface, although several results remain valid in greater

generality. Hie main reason for this is to simplify the presentation. Let us indicate

in the following to which degree the discussion could be generalized.

Replace S by a closed Kahler manifold (X, J, m) and denote by

A : D1J(Y) -* D°(Y)

the adjoint operator of f fco. The Hermitian Einstein equation is given by

AFa t
for some constant central element r e £2°(Y, ad(P)). Denote by A1'1 the space

of connections on P whose curvature Fa is of type (1.1). This space can be

given a Kähler structure and ß(A) AFa yields a moment map for the gauge
action. In the vector bundle case, the Narasimhan-Seshadri theorem has been

generalized to this setting by Donaldson [Don2, Don3] in the algebraic framework
and by Uhlenbeck and Yau [UY] in the analytic framework over arbitrary Kähler
manifolds. We would like to point out an observation by Anouche and Biswan

[AB]. They show that a holomorphic principal bundle Pc is polystable (resp.

semistable), if and only if the associated holomorphic vector bundle ad(Rc) is

polystable (resp. semistable). Further generalizations involving more complicated
moduli problems have been studied by Hitchin [Hit], Simpson [Simp] and Bradlow

[Bra]. In his thesis [iR], Mundet generalizes this correspondence to a very general
moduli problem.

Our discussion of the Yang-Mills flow in Chapter 4 relies heavily on the

fact that S is a Riemann surface. In particular, the group of W2'2 gauge
transformations no longer acts continuously on the space of W1'2 connections for

higher dimensional base manifolds. To avoid this issue, one could consider the flow

directly on the space of smooth connections. Donaldson showed in [Don2] that the

Yang-Mills flow starting at smooth A1'1 connections admits a smooth solution
which exists for all time. In the stable case, Donaldson used this flow to prove
his extension of the Narasimhan-Seshadri theorem. See [Siu] for a survey on this
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approach. The main issue is the complicated limiting behavior of solutions which

yields profound technical difficulties. Bando and Siu ([BS]. Theorem 4) showed

that the limit "breaks up" into Hermitian-Einstein sheaves in the unstable case

and conjectured that the limit corresponds essentially to the Harder-Narasimhan
filtration. This is very similar to our discussion in Chapter 7. The Bando-Siu

conjecture has been confirmed by Daskalopoulos-Wentworth [DW] in the case

of Kähler surfaces and by Sibling [Sib] and Jacob [Jacl, Jac2] for general Kähler
manifolds. This yields the analogue of Theorem C for vector bundles over Kähler
manifolds.

Our calculation of the weights in Chapter 5 remains valid over an arbitrary
Kähler manifold. However, the weakly holomorphic filtration yields in this case

only a filtration by torsion-free subsheaves. The proof of the moment-weight
inequality generalizes ad verbatim to this case. The proof which we present for
the Narasimhan-Seshadri-Ramanathan theorem remains valid in this setting as

well (see [iR ]).

Tire Harder-Narasimhan filtration is well defined for holomorphic vector
bundles over Kähler manifolds, but consists of torsion-free subsheaves instead

of holomorphic subbundles. It corresponds again to the supremum over the

normalized weights. This is shown by Bruasse [Bru] and we present part of
his argument in Chapter 7. It is a nontrivial result that the infimum of ||AFg^||
over the (smooth) complexified gauge orbit yields the same value and follows
from the Bando-Siu conjecture. Bruasse gives an alternative and direct argument
to prove that the supremum is in fact attained.

General assumptions. Let G be a compact connected (real) Lie group, S a

closed Riemann surface and P -> S a principal G bundle. We fix a volume
form dvolj; on E and assume for convenience that the volume form is scaled

such that

vol(E) 1.

Note that the volume form also induces a fixed Riemannian metric on E.
Unless stated otherwise, all Lie groups are assumed to be connected. When

G is a compact connected Lie group, then its complexification Gc, its parabolic
subgroups Q(Ç) and their Levi subgroups L(£) are automatically connected (see

Lemma 2.12).

As a general rule, we consider connections of Sobolev class IL1'2 and gauge
transformations of Sobolev class JL2'2. The gauge action extends smoothly over
these Sobolev spaces, since the base manifold is a Riemann surface. These

regularity assumptions do not affect the overall picture and we shall discuss them

in more detail in the preliminaries below.
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2. Preliminaries

First, we review the underlying notions from gauge theory and set up our
notation. The main goal is to describe the complexification of the gauge action

and the moment map picture of Atiyah and Bott. We also discuss the regularity
assumptions which are crucial for our further analytic discussion. In the second

subsection, we describe parabolic subgroups of complex reductive Lie groups.
We also include a brief discussion of the root space decomposition of semisimple
Lie algebras for the sake of completeness.

2.1. Gauge theory. We consider throughout this section fiber bundles over a

closed connected Riemann surface E.

2.1.1. Basic gauge theory. We start with the general framework of fiber bundles

and specialize our discussion afterwards to the cases of vector bundles and

principal bundles.

Fiber bundles. Let £, F and B be smooth manifolds. Tire manifold E together
with a projection map 7r : E -» B is called a fiber bundle over B with fiber F,
if for every x e B there exists a neighborhood x e U C B and a diffeonrorphism

if : -+U x F

such that prj o if/ n\u. Here prj : U x F —»• U denotes the projection onto
the first factor. The map is called a local trivialization of the fiber bundle E.
Suppose ira and i/ß are local trivializations over Ua and Uß. Then there exists

a unique map gßa : Ua (T Uß -» Diff(£) satisfying

irßa{x,u) := 0h ° f~l)(x,u) (.x,gßa(x)u)

for all x 6 Ua (T Uß and u G F. A reduction of the structure group of £ to a

subgroup G c Diff(F) consists of an open cover {Ua} of B together with local
trivializations i/G such that all transition maps gßa take values in G. The bundle

E together with a fixed choice of such trivialization is called a fiber bundle with
structure group G.

The tangent bundle TE contains a canonical vertical subbundle V := ker^/rr.
A connection on £ is a splitting of the exact sequence

0 ^ V -* TE -» TE/V -* 0

and corresponds to a horizontal distribution H c TE satisfying TE FI © V.
Identifying H with the projection of TE onto V, we can describe a connection
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by a F-valued 1-form A e Ç21(E,V). The curvature of a connection is the

2-Form Fa e Q2(E, V) defined by

FA(x; v, w) := [u - Ax(v), w - Ax(w)] [vhor, whor]vert.

It measures the integrability of the horizontal distribution FtA C TE.

Affine connections and vector bundles. A vector bundle is a fiber bundle E

whose fiber F — V is a vector space and whose structure group G C GL(F)
is linear. In this case every fiber £z n~l(z) has a canonical structure of a

vector space and we have well-defined maps

VA e C : Sx : E -» E, x Ax

a : E © E E, (x, y) x + y.

A connection on £ is a connection A £ll(E, V) of the underlying fiber bundle

which is compatible with the linear structure on the fibers: Denote by HA C TE
the horizontal distribution corresponding to A and by HA C T(E © E) the

induced horizontal distribution consisting of pairs (v,w) e H © H satisfying
dn(v) dn(w). Then one requires

(3) dSx(H) C H VA G C and da(H) C H.

Alternatively, one can think of a connection as a covariant derivation

dA : £2°(£,£) Q}(Y,,TE) Sl^S, 7) ^
where the last map comes from the canonical identification of the vertical bundle

with the vector bundle itself. The linearity condition (3) says precisely that this

defines an affine connection.

Definition 2.1. Let E £ be a complex vector bundle. An affine connection

on £ is a linear operator D : Q°(£,£) -> Ql(E,E) which satisfies the Leibniz
rule

D(fs) df ®v + / <E> D/
for all / : £ -* C and j e f2°(£,£).

We denote by A(E) the space of affine connections on £. Let t/ra : E\ua —»•

Ua x V be a local trivialization and denote for a local section s : Ua —^ £ with

respect to this trivialization sa := pT2o\f/a. Then an affine connection D has the

shape
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(Ds)a — dsa + Aasa

for some Aa e Q1(I7a.End(K)). These Aa are called connection potentials for
the affine connection D If all connection potentials take values in the Lie algebra

0 C End(L) of the structure group G C GL(L), then the affine connection D

is called a G-connection. We denote by Ag(E) the space of all G-connections

on E.
An affine connection D induces higher covariant derivations by the formula

D : G*(E. E) Œfc+1(E,£), D(r ® s) dz 0 5 + (-l)fcr A Ds

for r e Gfc(E) and 5 e Q°ÇE,E). The curvature Ed g G2(E,End(Zs)) is the

unique tensor satisfying
(D o D)s — Fd s

for all s g £2°(E, E). It is the obstruction to D2 0 and not directly related to

the curvature of the horizontal distribution defined by D. It rather corresponds
to curvature of the induced horizontal distribution in the frame bundle of E as

we shall see below.

Connections on principal bundles. Let G be a Lie group with Lie algebra g.
A principal G bundle over E is a fiber bundle n : P —> E together with a fiber

preserving right action P x G P which is free and transitive on the fibers.

In particular, the fibers are isomorphic to G and using the right action we can

always construct equivariant local trivializations of P. Lor p e P and £ e g the

infinitesimal action of £ is defined by

P^'-=4: P exp(t£) £ Tp P.
t=o

The collection of these tangent vectors defines the vertical subbundle

V kevdTt {pÇ\p e L, f e g} c TP.

A connection on P is an equivariant connection of the underlying fiber bundle

and corresponds to an equivariant horizontal distribution H G TP satisfying
TP — V © H. Identifying H with the projection Ti:TP V®H^V,
we can describe such a connection by a g-valued 1-form A e ^(P, g) via the

relation IIP(p) pAp(p) for all p e P and p eTpP. The connection 1-Lorm
A satisfies the conditions

(4) Ap(pÇ) £ and Apg(pg) g~lAp(p)g

for all g e G, £ e g, p e P and p e TpP. Conversely, the kernel of any
A G G1!/5.g) satisfying (4) gives rise to an equivariant horizontal distribution
H c TP. We define by
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A(P) := {A e ^(P.g) \ A satisfies (4)}

the space of connections on P.
The curvature of a connection A e A(P) is defined as

FA := dA + ^[A A A] e ß2(P, g)

where [A A A] is given by the usual formula for the exterior product with

multiplication replaced by the Lie bracket. This curvature is linked to the curvature
of the corresponding horizontal distribution by the relation

[X, Y]vert [xh°\Yhor]vert pFA(p\ X, Y)

for p e P and X.Y e TpP.

Associated bundles. Let P -> S be a principal G bundle as above. A smooth

manifold F together with a representation p : G -> Diff(F) gives rise to the

associated fiber bundle P xp F with fiber F which is defined by

P XpF :=(P x F)/G

where G acts diagonally by g(p,x) (pg, p(g)_1 x). We denote the orbit of
(p,x) e P x F under this action by [p,x]. A connection A e A(P) induces

a connection on the fiber bundle P xp F, which is given by the image of the

horizontal distribution under TP cTPxTF^T(PxpF).
Important examples arise from the action of G on itself by inner automorphism

and from the adjoint action of G on its Lie algebra. We denote the associated

bundles for these actions by

Ad(.P) P xq G and ad(P) := P xaj g.

Note that the bundle Ad(P) is a fiber bundle with fiber G but not a principal
bundle. The fibers of ad(P) inherit from g a well-defined Lie algebra structure.

The difference a := A\ — A2 of two connection 1-forms A\,A2 e A(P)
satisfies

ap(pÇ) 0 and apg(pg) g~lap(p)g

for all peP,pTpP,^eQ and g e G. Hence a corresponds to a ad(P)-
valued 1-form ä on S by the formula ä(n(p); dn(p)p) [p,a(p; p)]. This

describes A(P) as an affine space with underlying linear space
1 (S. ad(i3))

and with respect to any reference connection A0 e A(P) we have

A(P) {A0 + a\a e ß1 (E.ad(P)}.
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Similarly, the curvature Fa of a connection A is an equivariant and horizontal

2-form on P and can thus be identified with an element Fa e ß2(S, ad(P)).
Let H be a Lie group and let p : G -> H be a homomorphism of Lie groups.

Then left-multiplication p(g) L~p^ e Diff(//) yields a representation of G

and the associated bundle Pn := P xp H is a principal H bundle. If A e A(P),
then A induces a connection p(A) e A(Ph) by the formula

p(A)([p, h\; [p, h]) := h~xh + h'1 p(A(p; pj)h

where p := dp(l) : g —» f) denotes the induced homomorphism of Lie algebras.

The curvature of the induced connection is given by

Fp(A) p(Fa)

where p denotes the induced bundle map ad(.P) -> ad(Pn)-

From principal bundles to vector bundles and back. Let f be a vector

space and let p : G ^ GL(L) be a faithful representation. The associated bundle

E := P xp V is then a vector bundle and the trivialization maps of P yield a

natural reduction of the structure group of E to G. For a connection A e A(P),
the induced connection on E is compatible with the linear structure and defines

an affine G-connection in Ag(E). The bundles Aut(£) and End(Z7) can be

described as associated bundles

Aut(£) P xAd(p) GL(F) and End(£) P xAd(p) End(F)

where Ad(p) : G —> GL(End(L)) is defined as the composition of p and the

adjoint action of GL(F) on End(F). The induced map p : g -> End(F) provides
an inclusion ad(P) -» End(£) and with respect to this map holds

FdA P(FA)

for any connection A e A(P).
Conversely, let E —> S be a vector bundle with structure group G C GL(n).

The frame bundle of E is defined by

Fr(£) := {(z, e) \ z 6 S, e : V —> Ez such that pr2 o^oeeG)
where xjra : E \ ua —> Ua x V is any trivialization of E with z e Ua. It follows

directly from the definition that Fr(£) is a principal G bundle. An affine G-
connection D e Ag{E) induces a connection io e Fl(Fr(£)) as follows: Let

y : [0,1] —> S be a curve. We call e £2°([0, l],y*Fr(£)) a horizontal lift of y
if for every be! the section
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ev e fi°([0,1], y*E), ev{t) := e(t)v e EY(t)

satisfies Dt(ev) := Dy(t)(ev(t)) 0. In a local trivialization this condition is

equivalent to the ODE
èa ~l~ Aa(y)ea 0.

This shows that horizontal lifts exist when the connection potentials Aa take

values in g. The tangent vector along horizontal lifts trace out an equivariant
horizontal distribution in Fr(£) and hence determine a connection A e ^4(Fr(£)).

The frame bundle construction is inverse to the construction of associated

bundles in the sense that

Fr(P xG V) s V and Fr(£) xG V E

whenever G c GL(L). This also provides a one-to-one correspondence between

A(P) and AG(E).

The Gauge group. Tire Gauge group of a principal G bundle P is defined as

G(P) := ß°(E. Ad(P)).

This group is isomorphic to the group AutlP) of fiber preserving equivariant
automorphism of P under the map

f : f2°(S, Ad(F)) ^ Aut(F), fg(p) := pg(p).

It is useful think of Q(P) as an infinite dimensional Lie group with Lie algebra

Lie(£(F)) fi°(E.ad(P))

where all Lie theoretic operations are performed fiberwise. The Gauge group acts

naturally on the space of connections via pull back

g(A) := V*-i A -(dg)g~l +gAg~\

The Gauge group of a vector bundle E with structure group G is the group

Ç(E) := fi°(E,G(£)) C £20(E,GL(£))

which consists of all automorphisms of E taking values in G in any trivialization.
We think of Q{E) again as Lie group with Lie algebra Q°(Z. g(£)). The Gauge

group acts naturally on the space of affine G-connection Ag(E) via pullback

{g~l)*D — g o D o g~l.

This action is more explicitly described in terms of the connection potential by
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(gA)a dgagal + gaAag,a1

where ga := (pr2 o fa)*g : Ua G.

Suppose that p : G <—» GL(F) is a faithful representation and E := P xp V

is an associated vector bundle. Then p induces an isomorphism Ad(P) G(E)
and hence G(P) G(E). The derivative p := dp(t) : g End(K) yields an

isomorphism of ad(P) g(7?) and hence an identification of the Lie algebras

of G(P) and G(E). From the naturality of the gauge action it is clear that the

identification A(P) Ag(E) is equivariant with respect to the action of G(P)
and G(E).

The moment map picture. Fix an invariant inner product (•, •) on g. This

induces an inner product on the fibers of ad(F) and hence an invariant inner

product on Fie(G(P)) ß°(S,ad(P)) by the formula

This provides a natural hermitian structure on the space A(P) as follows. Since

A(P) is an affine space, it suffices to define the hermitian structure on the

underlying linear space ^(E,ad(P)). For a,b e G1(E,ad(P)) we define

The following observation is due to Atiyah and Bott [AB83].

Lemma 2.2. The action of the Gauge group is Hamiltonian with moment map
p(A) := *Fa. More explicitly, for every £ e £2°(Y,,ad{P)) the infinitesimal action

on A e A(P is given by

The function A{P) —» R, A i-> is differentiable and its differential is

the 1 -form

Proof Let £ e G°(E,ad(P)) be given and think of it as an equivariant map
£ : P —> g. We then compute

d
LaÇ —r exp(f£)(A) -dAÇ.

— {dexpte)-l) + [ï,A}
UI t==n

dÇ~[A,$]
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The last expression agrees with —d.% along horizontal vectors in P and vanishes

along vertical vectors. Hence it coincides with —dA% for the induced affine

connection dA on ad(P) and this proves the formula for the infinitesimal action.

From the formula

Fa+u Fa + dAa + -[a a a]

we see that the variation of FA in the direction a e ad(P)) is given by
dAa. This yields

{dß(A)[a];tj) / {dAa,Ç) / (a A dAÇ) coA(LAÇ, a).
J s J s

Here we used integration by parts in the penultimate step and the formula

d(a, £) {dAa,t-) - (a A dA%)

which follows from the G-invariance of the inner product.

2.1.2. The complexified gauge action. Let G be a compact connected Lie group
and let P —>• E be a principal G bundle. We denote by Gc the complexification
of G and call Pc := P xG Gc the complexification of P. The complexified

gauge group of P is defined as

GC{P) :=G{PC).

One can think of elements in GC(P) as G-equivariant maps from P to Gc.
The Lie algebra bundle ad(Pc) is the complexification of the bundle ad(P) and

since all Lie theoretic operations on the gauge group are defined fiberwise, it is

reasonable to think of GC(P) as the complexification of G{P). By the Peter-Weyl

theorem, G admits a faithful representation G U(n). Identifying G with its

image in U(n), we can describe its complexification Gc C GL(n) explicitly as

the image of G x g under the diffeomorphism

U(n) x u(«) GL(«), (m, rj) u exp(ir]).

In terms of the associated bundle E := P xG C" the complexification of the

gauge group is then given by

GC(E) G°(E,GC(£)).

The goal of this section is to explain how the Q(P)-action on A(P) extends

naturally to a holomorphic action of QC(P).
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Proposition 2.3. There exists a natural action of QC{P) on A(P) whose

infinitesimal action satisfies

(5) LA(Ç + irj) LaÇ + *Lat) -dAÇ - *dAr)

for all e £l0fE,ad(P)) and A eA(P).

Proof See page 84.

Holomorphic principal bundles. An almost complex structure 1 on a manifold
M is an endomorphism J e End(TM) satisfying /2 —1. It is called an

integrable or holomorphic structure if it endows M with the structure of a complex
manifold. A holomorphic structure on the principal bundle Pc — P xq Gc is an

almost complex structure J e End(TTc) of the total space, which is Gc invariant
and coincides with the canonical complex structure on the vertical subbundle, i.e.

J{pi,) p{i£) for any p e Pc and Ï, e gc. We denote by J{PC) the space of
all holomorphic structures on Pc. The next Lemma justifies this notation.

Lemma 2.4. Every J e J{PC) is integrable.

Proof. The Newlander-Nirenberg theorem states that an almost complex structure
J on a manifold M is integrable if and only if the Nijenhuis-tensor Nj :

TM <g) TM —> TM given by

Nj{v, w) := [u, w] + J[Jv, ic] + J[v, Jw] — [/v, Jw]

vanishes. We apply this to M Pc. If v,w e Tfert{Pc) are both in the

vertical bundle, we have Nj(v,w) 0 as the fiber is a complex manifold. If
v e Tfert(Pc) and w e Tp°r(Pc) the Lie bracket [u.u;] £v(w) vanishes,
since the horizontal distribution is equivariant. In particular Nj(v,w) — 0 as all
four terms vanish separately. Let finally v,w e Tp°r{Pc) be horizontal vectors.
We may assume that p e P and denote by v := dn(p)v and w := dn(p)w
the projections onto TE. By definition of the curvature, we obtain the vertical

component of the Nijenhuis tensor by

Ap(Nj(v,w)) Fa(v,w) +iFA(jxv,w) + iFA(vJxw) - FA(jxv, j^w)
4 F°'2(v,W) 0.

In the last step we use that E is a complex one-dimensional manifold and thus

ST°'2(E) 0. The horizontal part of Nj(v,w) gets identified under djz{p) with

Nj(v,w) and vanishes as E is a complex manifold. This completes the proof of
Nj — 0.
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As a consequence, every holomorphic principal bundles admits holomorphic
local trivializations with holomorphic transition maps. The next Lemma is due to

Singer [Sin].

Lemma 2.5. There exists a one to one correspondence between connections
A e A(P) and holomorphic structures J e J{PC).

Proof. A connection A e A(P) induces a connection on Pc and thus determines
for every p e Pc a splitting Tp{Pc) Tp°r(Pc) © Tfert(Pc). The vertical part
is isomorphic to gc and has a canonical complex structure. The differential of the

projection n : Pc —> S restricts to an isomorphism df(p) : Tp°r(Pc) -> Tn^S
and induces a complex structure on Tpor(Pc).

Conversely, let J e J{PC) be given and think of P c Pc as a subbundle.

For p e P we define Hp := TpP n Jp{TpP) and claim that TpP + Jp{TpP)
Tp(Pc). Indeed, since TfertP g, the sum clearly contains the vertical fiber

Tfert(Pc) gc and dn(p) maps TpP already onto Tn(p)S. It is immediate
from the construction that Hp is invariant under Jp and defines a (real) two
dimensional complement of Tfert{Pc) in Tp(Pc). As p varies over P we obtain

an equivariant distribution along P and hence a connection A e A(P).

Let A e A(P), g e G(P) and let Ja e J(PC) be the holomorphic structure
induced by A. Then g (A) induces the holomorphic structure (fg-i)*JA, since

the construction above is clearly functorial. The action of G(P) on J{PC) has

a natural extension to the complexified gauge group via

QC{P) x J(PC) J(PC), g(J) := (^-iy J

where fg-\ e Aut(Pc) is the automorphism corresponding to g1. Using the

identification of J{PC) with A(P) this yields the desired action of GC(P) on

A(P) and the quotient A(P)/GC{P) parametrizes the isomorphism classes of
holomorphic structures on Pc.

Holomorphic vector bundles. We consider the special case G U{n) and

denote by E P x^C" the associated vector bundle. A holomorphic structure

on E is an almost complex structure J e End(ri?) of the total space which
restricts to the linear complex structure on the fibers. Similarly as in the case

of principal bundles, one shows that every such structure is indeed integrable
and that every holomorphic vector bundle admits holomorphic trivializations. It
is then easy to see that every holomorphic vector bundle E carries a natural

operator
dE : n°(S,£) -* n°'l(Z,E)
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which in any holomorphic trivialization agrees with the usual 3 operator on C".
This operator is a particular Cauchy-Riemann operator on E.

Definition 2.6. Let E -» S be a complex vector bundle. A Cauchy Riemann

operator on £ is a linear operator

D" : Œ0(I;,£) -*

which satisfies the Leibniz rule

D"{fs) 9f <8) s + f <8> D"s

for all /:£->- C and te ß0(E,£).

The converse is also true: Every Cauchy-Riemann operator determines a

holomorphic structure on the complex bundle E, whose local holomorphic
sections are solutions of the Cauchy-Riemann equation D"s 0. This is another

instance of the Newlander-Nirenberg theorem. In the case of Riemann surfaces

a simpler proof of this result is given by Atiyah and Bott ([AB83], Section 5).

Note that the associated vector bundle E carries a canonical hermitian metric,
which in any trivialization coincides with the standard hermitian metric on C".
We claim that there is a one to one correspondence between unitary connections

on E and Cauchy-Riemann operators. For a unitary connection D we obtain a

Cauchy-Riemann operator by the formula

D"s := (Ds)0'1 := -(Ds + i(Ds) o ;s) ^(Ds — i * (Ds)).

To show that this correspondence is bijective, it suffices to examine this

correspondence locally. In a unitary trivialization f : E\u -> I/xC" the

connection D can be described in terms of a 1 -form A e Œ1 (U, u(n)) such

that

Ds := ds + As, D"s := ds + A0'1,?

holds for any section 5 e Œ°(t/, C") with A0,1 := \{A+iAoys). In particular, we

recover A as twice the skew-hermitian part of A0,1 and therefore it is uniquely
determined by A0'1. Conversely, any Cauchy Riemann operator D" is given in
this local trivialization by

D"s := ds + Bs

for some B e C20'1 (L/, ß[(«)). Since B satisfies B(jsv) — —iB(v) for any tangent
vector v e TE\u, the skew-hermitian and hermitian part of B interchange if we

compose B with y's. This shows that B has the form B i(A + iA o y's) for
some A e

1

(C7, u(«)) and this proves the claim.
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On the level of Cauchy-Riemann operators the complexified Gauge group
GC(E) — 0°(E, GL(.E)) acts naturally via

g(ßA) := go dA 0g~' 3A- 3A(g)g~1.

The next Lemma summarizes the discussion above and provides an explicit
formulas for this action on A(E).

Lemma 2.7. Let E —» E be a complex vector bundle.

(1) For every holomorphic structure dE and hermitian metric H there exists a

unique connection

D := D{dE,H) =: D' + D" e Al'°(E) © A°'l(E)

such that D is unitary with respect to H and D" — dE

(2) Let g e 0°(E,GL(E)) and denote h := g*g (with respect to H). Then

D(g(dE),H) g(D+h-1D'(h))g-i
F{g{~dE). H) g {F + D"(h-1 D'(h))) g~l.

Proof. For the first part, note that there is a one to one correspondence between

hermitian metrics H and reductions of the structure group of E to U(n) : Using
the Gram-Schmidt process we can always find local trivializations which identify
H with the standard hermitian product on C" and the transition map between

such trivializations are clearly unitary. The second part follows from the formula

D(g(~dE). H) g(D) =goD"o g-1 + (g-1)* o D' o g*

and F D o D

Remark 2.8. Consider the general case and assume that G c U(jT) is a compact
connected subgroup. The structure group of E is then contained in G and

the explicit formula in the Lemma above shows that the subspace Ag(E) of
G-connections is preserved by the action of GC(E) £2°(E, GC(E)). Since

holomorphic structures on E and its frame determine one another, it is clear that
this action corresponds to the action described on holomorphic principal bundles
above.

We may now deduce the formula for the infinitesimal action (5).

Proof of Proposition 2.3. As in Lemma 2.2 one calculates

exp(f£)(3,0 -dAÇ
d

dt t—o
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for £ e Œ°(£, qc(E)) Write £ £ + it] with %,rj e ß°(E,g(£')) and use the

formula 3^(i?7) *3^477 to deduce

LAK -3^£ + ~{dAÇ - m)*) - *(dAr] - (3Ari)*)

-dA% — *dAr] — LA% + *LArj-

2.1.3. Regularity assumptions. Let G be a compact connected Lie group and

let P —>• X be a principal G bundle. We shall always consider connections of
Sobolev class W1'2 and gauge transformations of Sobolev class PL2'2. More

precisely, the space of W1'2 connections on P is defined with respect to some

smooth reference connection Aq as

A(P) := {A0+a\a e W1'2(S, r*X <g> ad(P))}

and the W2'2 completion of the gauge group and its complexification are

g(P) ;= PL2'2(X,Ad(P)), gc(P) := W2'2(E, Ad(Pc)).

We use the same notation as for the smooth groups, since all the results from
the previous section carry over. In particular, the action of the gauge group
and its complexification extend smoothly over these Sobolev completions, since

IL2'2 ^ C° is in the good range of the Sobolev embedding. A connection

still determines a holomorphic structure up to isomorphism due to the following
regularity result.

Lemma 2.9. For every W1'2 connection A e A{P) there exists a complex W2'2

gauge transformation g e QC{P) such that g{A) is smooth.

Proof. This is Lemma 14.8 in [AB83], By Proposition 2.3, the infinitesimal action

of the complex gauge group is given by

La : W2'2(S,ad(Pc)) ^ W1'2^, T*E ® ad(P))

LA(f + it]) -dAÇ - *dAr]

For any smooth reference connection A0, this is a compact perturbation of LAq

which is a Fredholm operator. Hence LA is also Fredholm and in particular its

cokernel is finite dimensional.

It follows from the implicit function theorem in Banach spaces that we can
choose a finite dimensional slice N orthogonal to the Qc-orbit through A. Say

dim(iV) r and fix r + 1 connections B0 B, e N which span an r -simplex
containing A in its interior. A small perturbation of the vertices yields smooth

connections Bo,...,Br and the simplex spanned by these connections will still
intersect the orbit GC{A). This intersection point yields a smooth connection in
the Gc orbit of A.
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2.2. Parabolic subgroups. Let G be a compact connected Lie group with Lie
algebra g and denote its complexification by Gc. Fix an invariant inner product
on g. This induces a (real valued) inner product on gc g © ig where we define

both factors to be orthogonal. We define parabolic subgroups of Gc first by

using toral generators of ge. Then we recall briefly the root space decomposition
of reductive Lie algebras and give an alternative intrinsic definition of parabolic

subgroups. The first definition occurs naturally in the geometric description of the

weights in Chapter 5. The intrinsic version turns out to be useful in the proof of
Proposition 5.9 which relates the algebraic notion of stability with the weights.

2.2.1. Toral generators. An element e gc is called a toral generator if

7j := {exp(fÇ) |t 6 M} C Gc

is a compact torus. We denote by Tc the set of toral generators. Certainly g c Tc.
Since any maximal compact subgroup of Gc is conjugated to G for every (e7"c
exists g e Gc such that g~1Tçg~} c G. The relation gT^g"1 Tgçg-1 then

yields e g and hence

Tc Ad(Gc)(g) {gÇg-1 \g e Gc, e g}.

Definition 2.10. A parabolic subgroup of Gc is a subgroup of the form

0(£) := {g e Gc I the limit lim eu^ge~u^ exists in Gc\
t^OO

for some £ eTc. The Levi subgroup of Q(Ç) is defined by

L(0 e Gc I e'^ge-'t gj.

Remark 2.11. We consider Gc — Q(0) as parabolic subgroup of itself.

Lemma 2.12. Consider the setting described above and let Ç eTc

(1) Q(Ç) is a closed connected Lie subgroup of Gc with Lie algebra

q(£) {p E gc I the limit lim eitl;pe~"^ exists in gc|.
1 t —>-oo

(2) L(^) is a closed connected Lie subgroup of Gc with Lie algebra

[(£) := {p e gc | el7?pe~''? p}

(3) L(^) is a maximal reductive subgroup of Q(Ç).

(4) Q(Ç) Gc if and only if Ç is contained in the center of gc.
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Proof. Since Q(gÇg *) gQ(ï,)g and L(gÇg x) gL(Ç)g ', we may
assume f f e g. By the Peter-Weyl theorem, there exists a faithful representation
G <-> U(n) and we may identify G with a closed subgroup of U(n). Then

if yields a hermitian endomorphism of C" which is diagonalizable with real

eigenvalues X\ < < Xr. Denote the eigenspace corresponding to Xj by Vj.
They yield an orthogonal decomposition

V\ ® Vr.

In this decomposition we can write g e Gc c GL(n,C) as

gh
g21

g 12

<§"22

glr
g2r

\<§rl grl

with gij e Horn (Vj, Vi). Then

/

eittge-M

g ii
e(A2-Ai )tg21

grl

g(Ai-A2)tg12

g22

g (Ar *2)tgr2

e(Ai Ar)tgir\
ea2-xr)tg2r

Thus g e 0(1;) if and only if g is upper triangular (i.e. gij 0 for i > j) and

g e L(f) if and only if g is block diagonal (i.e., gij 0 for i j). This shows

that L(f) and 0(f) are closed subgroups of Gc and the formulas for [(f) and

q(f) are immediate.
As the spaces Vj are pairwise orthogonal, the intersection G Fl 0(f) consists

of block diagonal matrices and hence agrees with the centralizer of the torus

in G. Since the centralizers of tori in compact groups are connected

(see [Kna] Corollary 4.51) we conclude that G (1 2(f) is connected. Since

L(f) is the complexification of G (T 0(f) it is connected and reductive.

Moreover 0(f)/L(f) can be identified with the unipotent matrices in 0(f)
and hence L(f) is a maximal reductive subgroup of (7(f). We observe

that

0(£) L(?)> g >-> lim elt^ge~lt%
t —>00

defines a continuous retraction of 2(f) onto L(f) and hence 0(f) is
connected.

Finally, since Gc is reductive, we have Gc — 0(f) if and only if Gc L(f).
The later is clearly equivalent to f e Z(g).
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2.2.2. The root-space decomposition. We recall the necessary background on

Lie theory briefly and refer to [Kna] for the proofs. Note that the discussion

remains valid for any G-invariant inner product on g, which does not need to
be the negative Killing form.

Reductive Lie groups. Using the invariant inner product on g, it is easy to
show that the adjoint action of g on itself is completely reducible. This yields
an orthogonal decomposition

fl 3 © [0. ß]

where 3 denotes the center of g and the commutator [g, g] is a direct sum of
simple ideals and hence a semisimple Lie algebra. The same decomposition is

valid for the complexification. To see this extend the inner product on g to a

non-degenerated C -bilinear form B : ge x gc —»• C by

B(% 1 + •'iL %2 + irjz) (£1. £2) - (»7i. V2} + i((£i. ?72) + (»7i. £2))-

This bilinear form is nondegenerate and Gc -invariant. Moreover, the B -orthogonal
complement of a complex subspace W C gc is a Gc -invariant complement and

the same argument as above yields the decomposition

0e 3e © [0e, 0e].

Root space decomposition. Fix a maximal torus T c G with Lie algebra t
and decompose it orthogonally as t 3 © t0. A nonzero imaginary valued real

linear map

a ia : t0 -» iR, a e Hom(t0,R)

is called a root of G with respect to T if there exists ea e [gc,gc] satisfying

[t,ea\ — a(t)ea for all t e to.

The element ea is uniquely determined by 01 up to scaling. We denote by

gœ ;= C • ea the one dimensional root space corresponding to a and denote by
R the set of all roots (relative to T). The root space decomposition of qc is the

vector space decomposition

0C 3C © to ® Qa.

aeR

For a proof see [Kna] Chapters II.1-4 and IV.5.
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Lemma 2.13. Denote g0 : to-

(1) For a,ß e R U {0} the Lie bracket satisfies the relation

[0a, 0/î] C Qa+ß

where the right-hand side is defined to be zero when a + ß £ R U {0}.

(2) For a, ß £ i?U{0} with a / —ß the subspaces and gß are B -orthogonal.

(3) If a £ R, then —a £ R. Moreover, if ea £ ga then ëa £ 0-œ and

(0a © 0—a) n 0 R(ea + ëa) 0 R(iea - iëa)

Proof. The first and the last statement follow directly from the definitions. For

the second statement consider first the case ß 0 and a £ R. Then follows for
all s,t £ 1q

B(a(t)ea,s) - B([t,ea\,s) -B(ea, [Ls]) 0

where we used in the second step that B is Gc -invariant. This shows that t(j

is B -orthogonal to ga. Now consider a,ß £ R with a + ß 0. A similar
calculation shows for all s,t £

B(a(t)ea,ß(s)eß) B([t, ea], ß{s)eß) -B(t, [ea,ß(s)eß]) 0

where the last equality follows from the observation [ea,ß(s)eß\ £ Qa+ß

The Weyl group. Using the inner product on g, we identify the roots a ia £ R

with vectors ta £ to by the relation

a(t) := (ta,t) for all t £ t0.

This yields a subset {ta \ a £ R} C to which satisfies the properties of an

abstract root system:

(1) 3>,r is a spanning set for to.

(2) For every ta £ <3?^, the orthogonal reflection along kera

X X „ /t\ «
^Cl)

sa to —* fi), sa(t) — t 2
11 'a 11

carries 0# to itself.

(3) is an integer for all ta,tß £ <3?#.
N'a 11 y

This is discussed in [Kna] Chapters II.5. The subgroup W generated by all
the root reflection sa inside the orthogonal group O(to) is called the Weyl

group. Since <£># is a spanning set of to, any orthogonal transformation which
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fixes ct>Ä must be the identity and hence the Weyl group is always finite. After
removing all hyperplanes ker(a) the Weyl group acts transitively and freely on

to\U{ker(a) | ct e R}. The closure of a connected component of this space is called

a Weyl chamber Q.w C to- In particular, £lw is the closure of a fundamental
domain for the action of W. The Weyl group can alternatively be described as

Here the normalizer Nq{T) acts on the maximal torus T by conjugation. This

action is trivial on the center Z0(G) c T and its derivative induces an action on

to. Since the inner product on g is G-invariant, this identifies Ng(T)/Zg(T)
with a subgroup of the orthogonal group O(t0) and it is easy to check that
this group permutes the roots ta. The equivalence of both descriptions of the

Weyl-group is shown in [Kna] Chapters IV.6. Since any two maximal tori in G

are conjugated, this shows that the conjugation classes in G are parametrized by

T/W and in particular any element £ e g is conjugated to an element in the

Weyl chamber Çlw C to-

Simple roots. Consider a notion of positivity on the set R satisfying the

properties

(1) For every root a e R exactly one of a and —a is positive.

(2) If a and ß are positive, then a + ß is positive.

An easy way to define such a notion goes as follows. Choose a real linear
functional <p : t0 -> R such that ker <p IT <$r 0 and define a root a e R to be

positive whenever (p(ta) > 0. We write a > 0 for a positive root a and denote

by R+ the collection of positive roots. This induces a partial ordering on the

roots according to the rule

A root a e R+ is called simple if it cannot be decomposed as a ß + y with

ß,y e R+. In other words, a simple root is a minimal positive root. We denote

by Rq {«!,...,ar} the set of simple roots. It is easy to deduce from the

definitions that any root a can be written as

WZ£ NG(T)/ZG(T).

a > ß if and only if a - ß > 0.

r
(6)

with coefficients x\,...,xr e Z having all the same sign (or vanish). In particular
0„+ is a spanning set of to. A less obvious fact is that $> + is linear independent

Ko Ko
(see [Kna] II.5 Prop 2.49). Hence every root has a unique expression (6) and a
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root is positive if and only if all the coefficients are nonnegative. This observation
shows that the collection of simple roots and the partial ordering determine one
another.

Any collection of simple roots RJ* {ai,... ,ar} determines a canonical

Weyl chamber by the formula

Çlw e to I aj(t) > 0 for all j — 1 }

where we denote olj iaj as above. Conversely, given a Weyl chamber we

can recover the collection of positive roots by the rule

a > 0 if and only if (t, ta) >0 for all t e Qw

Hence the choice of a Weyl chamber and a partial ordering determine one another

as well. Since any two Weyl chambers are conjugated by an element in G, this

shows that all the choices in this section are canonical up to conjugation.
We denote the simple roots in <$R+ for convenience by tj := taj Since they

define a basis of t0, we can define a dual basis {t\,...,tr} by

(7) ti ' TiTTiT S'J
2 ti

II tj

for i,j — 1 They are clearly contained in the Weyl chamber determined

by the simple roots and yield the characterization

r
t ^2 xj tj e Wq Xj > 0 for j 1,..., r.

7 1

The dual elements

2-j ' to ~^ ^j(J) i(0''0

are called the fundamental weights associated to the simple roots.

2.2.3. An intrinsic definition of parabolic subgroups. We provide an intrinsic
definition of parabolic subgroups following the presentation [Ser] by Serre. Let
£ 6 [q, g] be given and choose a maximal torus T c G such that £ e to.
Moreover, let Rq := (ai,... ,ar} be a choice of simple roots such that Ç is

contained in the corresponding Weyl chamber. Denote

(8) R(Ç):= {a e R\(Ç,ta)>0} and Ä(£) := {a e R \ (£, ta) 0}.

Define the Lie subalgebras

(9) q(£) := 3 © to © (J) 0«

cteRQ)
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and

(10) K£) := 3 © *0 © (^3 0«-

«EÄg)

The next Lemma shows that this notation is consistent with our definition in the

section on toral generators.

Lemma 2.14. Consider the setting from above and define q(£) and [(£) by (9)
and (10) respectively. Then

l(?) — {p 6 0e I the limit lim eit^pe~it^ exists in gc|
1 t-*-oo '

and

[(£) {p e gc I e^pe'^ p).

Proof. Decompose p e gc with respect to the root space decomposition as

P PO + ^ Pa

aeR

with po 6 t and pa ga. By definition of the roots we have

[»£.Po] -a(Ç)p(Ç)- Pa ~{ta,Ç)pa

and hence

e^pe--"^p0 + J^e-^pa.
aER

This converges for t -> oo if and only if pa — 0 for all a £ /?(£). Similarly, we
have p e^pe~^ if and only if pa — 0 for all a R{%).

We could now define the parabolic subgroup g(£) and its Levi subgroup

L(fi) as those connected subgroups of Gc whose Lie algebras are given by q(£)
and [(£) respectively. These are closed subgroups, since both agree with their
normalizer in Gc.

Lemma 2.15. Let t\,... ,tr be defined by (7) and let

^ x\t\ xrtr eQjy

with xj >0. Then Qj Q(tf) are maximal proper parabolic subgroups of Gc

and Q(%) C Q(tj) if and only if xj >0. Moreover,

Q(l) n Ö(L).
{j I Xj >0}

Proof. Tire proof is a simple matter of comparing R(tj) and R(tj).
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3. Algebraic and symplectic stability

Let G be a compact connected Lie group and let P -»• E be a principal G

bundle over £. Denote by Gc the complexification of G and by Pc := P xq Gc

the complexified principal bundle.

The algebraic geometric construction of the moduli space of holomorphic
structures on Pc, in the sense of Mumford's geometric invariant theory [MFK],
depends on the notion of stable and semistable objects. For vector bundles this

notion is due to Mumford [Mum] and it was later extended by Ramanathan [Ram]
to principal bundles. We discuss these two definitions in the first subsection and

denote the corresponding moduli space of holomorphic structures on Pc by

JSS(PC)//Q(PC).

As mentioned in the introduction, this space is obtained by identifying two orbits
in JSS(P)/Q(PC) when they cannot be separated.

The G(P)-action on A(P) is Hamiltonian with moment map 11(A) *Fa
by Lemma 2.2. For every central element r e Z(g) one obtains the symplectic

quotient
A(P)//G(P) := li~\x)/G{P).

Note that the moment map is not uniquely determined by the gauge action and

another moment map is given by /iT(d) := *Fa — r. In other words, different
choices of r correspond to different choices for the moment map. The symplectic
version of GIT (see [SGR]) defines stable and semistable objects in A(P) in

terms of the moment map. We show in the second subsection that there exists a

natural choice for r e Z(g) determined by the topological type of P and define

the corresponding symplectic notion of stability. It will follow from Theorem 4.14

and Theorem 4.15 in the next section that this definition leads to identifications

lx;1(0)/G(P) Ass(P)//Gc(P).

The right hand side is again obtained by identifying orbits in ASS(P)/GC(P) if
they cannot be separated.

Recall from Lemma 2.5 that J(PC) can be identified naturally with A(P).
We prove in Theorem 3.10 that the different notions of stability on A(P) and

J(PC) are essentially equivalent under this identification. In particular, this yields
isomorphism

JSS(PC)//G(PC) ASS(P)//GC(P) nïHo)/G(P)

for a suitable choice of r e Z(g). The proof of this theorem will be based on
the whole remainder of the exposition, namely on Proposition 5.9, the moment-

weight inequality (Theorem 5.12), the Harder-Narasimhan-Ramanathan theorem

(Theorem 6.5) and the dominant weight theorem (Theorem 7.1).



94 S. Trautwein

3.1. Algebraic stability. We discuss the algebraic notion of stability on the space

J(PC) of holomorphic structures on the principal Gc bundle Pc This definition

depends only on the complexified bundle Pc itself and not on the reduction
P C Pc. Consider as a warmup the case Gc GL(n). This allows us to identify
Pc with a complex vector bundle. The slope or normalized Chern class of a

vector bundle £ —»• 51 is defined as

C,(E)
"<£):=S(£l'

The following definition is due to Mumford [Mum].

Definition 3.1. Let E -> £ be a holomorphic vector bundle.

(1) E is called stable if for every proper holomorphic subbundle 0 ^ F c E

we have p(F) < p{E).
(2) E is called polystable if E is the direct sum of stable vector bundles all

having the same slope.

(3) E is called semistable if for every proper holomorphic subbundle 0 ^ F c E

we have p{F) < pu{E).

(4) E is called unstable if E is not semistable.

The analogue of this definition for general Lie groups was formulated by
Ramanathan [Ram]. Lemma 3.4 below shows that Definition 3.1 corresponds to
the special case Gc GL(«) in Definition 3.2.

Definition 3.2. Let Gc be a connected reductive Lie group and Pc —> S be a

holomorphic principal Gc bundle.

(1) Pc is called stable if for every holomorphic reduction Pq C Pc to a maximal

proper parabolic subgroup Q c Gc the subbundle 2lA{Pq) C ad(Rc) satisfies

ci(ad(Re)) < 0.

(2) Pc is called polystable if there exists a parabolic subgroup 0 C Gc and

a holomorphic reduction Pl C Pc to a Levi subgroup of Q satisfying the

following

(a) Pl is a stable principal L bundle.

(b) For every character / : L -> C*, which is trivial on the center of Gc,
the associated line bundle x(Pl) Pl x* C satisfies c\{x{Pl)) 0.

(3) Pc is called semistable if for every holomorphic reduction Pq C Pc to a

maximal proper parabolic subgroup Q C Gc the subbundle ad (Pq) C ad(Pc)
satisfies Ci(ad(g)) < 0.

(4) Pc is called unstable if ad(Pc) is not semistable.
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Remark 3.3. Let ,Lr and Gc be complex connected reductive Lie groups
such that the product L\ x ••• x Lr c Gc embeds as a subgroup. Let Pj
be stable principal Lj bundles for j 1 r. Then it is easy to see that

Pi Pix x ••• x Pir is a stable principal L bundle. However, the extension

Pc := Pi xi Gc is in general not a semistable Gc -bundle. The second condition
in the definition of polystability is needed to guarantee the semistability of Pc.
To see this let Pq' c Pc be the reduction to a maximal parabolic subgroup and

consider the determinant of the adjoint action of Q' c Gc on its Lie algebra.
This character is clearly trivial on the center of Gc and either restricts to L

or to a maximal parabolic subgroup Q" — Q' n L c L. In the first case, it
follows from the definition of polystability that ci(ad(Pg/)) =0. In the other

case observe that Pq> determines a maximal parabolic reduction Pq« c Pi and

ci(ad(/'g')) ci(ad(Pg")) < 0, since Pi is stable.

Lemma 3.4. A holomorphic vector bundle E is stable, polystable, semistable or
unstable if and only its GL(n)-frame bundle Pc := Fr(E) is stable, polystable,
semistable or unstable respectively.

Proof. We discuss the stable (resp. semistable) case first. A maximal parabolic

subgroup of GL(n) is the stabilizer a subspace 0 / K C C" and the holomorphic
reduction Pq of the GL(n) -frame bundle to a maximal parabolic subgroup is

thus the stabilizer of a holomorphic subbundle F c E. Consider the orthogonal
splitting E F ® G with respect to some fixed hermitian metric on E. Then

ad(Pg) C EndfL) is given by the space of upper block diagonal matrices. We

choose unitary connections A\ on E and A2 of G and denote by A the induced

connection of E — F © G. This induces also a connection on ad (Pq) and the

curvature of this connection is given by the endomorphism

l»FÂÇ- IFa

for Ç e ad(Pg). Since Fa diaglF^, Fa2) is block-diagonal, a short calculation
shows that the trace of this map is given by rk(G)tr(F/i1) — rk(F)tr(Tji2) and

Chern-Weyl theory yields

ci(ad(Fg)) rk(G)Cl(F) -rk(F)Cl(G)

rk(£/FÄF)LlW_tiWLYK J y ' ^rk(F) rk(£/F) J

This expression is nonpositive if and only if ci(F)/rk(F) < c1(£')/rk(£) and

negative whenever strict inequality holds. This proves the equivalence of both
definitions in the stable and semistable case.

The unstable case is equivalent to the semistable case and it remains to discuss

the polystable case. A general parabolic subgroup of GL(L) is the stabilizer of
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a filtration Vi c • • • C Vr V and a Levi subgroup in given as the stabilizer of
a splitting V — W\ © • • • © Wr with Vj — W\ ® • • • © Wj Hence, a holomorphic
reduction Pl c Pc to the Levi factor of a parabolic subgroup corresponds to

the L GL(«i) x ••• x GL(nr) frame bundle of a holomorphic splitting

E Ei © ® Er.

We claim that Pl is a stable principal L bundle if and only if all factors Ej
are stable holomorphic vector bundles. Indeed, a maximal parabolic subgroup of
L has the shape

Q GL(«i) ® • ® GLOy-i) ® Qj © GL(n;+i) • • © GL(nr)

where Qj c GL(«/) is a maximal parabolic subgroup. Then

ad(Pq) — End(£i) © • • © ad(Pg7-) © • • • © End(£r)

and hence ci(ad(Pg)) ci(ad(Pgy)). The claim follows now from our discussion

of the stable case.

It remains to verify that the slopes of all subbundles satisfy fi(Ej) n(E)
if and only if for every character y : L C* which is trivial on the center

of GL(/i) the associated line bundle x(Pl) has degree zero. Every character

X : L -* C* factors as X Xi ' " Xr with Xj ' GL(«j) -> C* and induces on the

Lie algebra the representation

X Xl + + Xr

with Xj := dxj(X) ' sKnj) C- Since every traceless matrix in gl(«7) is a

commutator, there exist Xj e C such that

XjiPj)

for all pj e gl(«/). We choose unitary connections Af- e A(Ej) and denote by
A — Ai © • • © Ar the induced unitary connection on E. Then follows from
Chern-Weil theory

Cl {x(Pl)) ^ PX(A) dvoÏL x(Fa) dvoh

XiCi(Ei) + ••• + Xrci(Er).

Note that x vanishes on the center of GL(n) if and only if «iAi H \-nrXr — 0

is satisfied. If in addition p{Ej) p-(E) holds for all j, then

r
CI(X(PL)) Y^niXjp(Ei) °-

7 1
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For the converse consider the character / : GL(«i) x ••• x GL(«r) -» C*

X(B i,. ..,Br) := det(Bj)n det(Ä)~"G

This vanishes on the center of GL(/7) and satisfies j(£) ntr(£/)—«jtr(£). Hence

c\(x(Pl)) — nci(Ej) — rijCi(E)

The next lemma shows that we can always reduce to the case where Gc has

discrete center.

Lemma 3.5. Let Gc be a complex connected reductive Lie group and Pc —> £
be a principal Gc bundle. Denote by Zq(Gc) the connected component of the

center of Gc containing the identity. Let Hc Gc/Zq(Gc) and denote by

the associated Hc bundle. This carries a natural induced holomorphic structure
and Pc is stable, polystable, semistable or unstable if and only if Phc is stable,

polystable, semistable or unstable respectively.

Proof. The Lie algebra of Gc splits as gc Z(gc) © [gc, gc] and [flc,gc] can be

identified with the semisimple Lie algebra of Hc This splitting is preserved by the

adjoint action of Gc and produces a splitting ad(Pc) V ®ad(Phc) where V

SxZ(ge) is a trivial bundle. Parabolic subgroups Q c Gc correspond bijectively
to parabolic subgroups Q Q/Zq(Gc) c H and parabolic reductions Pq C Pc

correspond bijectively to parabolic reductions Pq := Pq/Z0(Gc) c Phc Since

ad(Pq) — V © ad(Pg), we have c\(&d(Po)) ci(ad(Pg)) and this shows that
Pc is stable (resp. semistable) if and only if Phc is stable (resp. semistable).

If L is a Levi subgroup of the parabolic subgroup Q c Gc, then L := L/Z0
is a Levi-subgroup of Q — QIZ§ c Hc. Moreover, reductions Pi c Pc to L
correspond bijectively to reductions Pi Pl/Z0(Gc) C Phc We have already
shown that Pi is stable if and only if Pp is stable. The characters x ' Q C*
which are trivial on the center Z(GC) of Gc correspond bijectively to the

characters / : Q -> C* which are trivial on Z(GC)/Z0(GC) and

and this vanishes precisely when p.{Ej) pt{E) is satisfied.

PHc := PC/Z0(GC)

X(PQ) X(Pq)-

Thus Pc is polystable if and only if Phc is polystable.
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3.2. Symplectic stability. Let G be a compact connected Lie group and P -» £
a principal G bundle. Let x ' G ->• S1 be a character and denote by x dxW :

g —» iR the induced character on the Lie algebra. Since g Z(g) © [g.g], we

may identify —2ti\x with an element in Z(g)* Hom(Z(g),R). Denote by

X(P) : P xxC the line bundle associated to P via x- Then

(11) ci(X(P)) ± f x(Fa)

for any connection A e A(P). The assignment y m- —2n'ic\(x(P)) extends to a

unique element in Z(g)**, since the lattice of all infinitesimal characters spans

Z(g)* as a vector space. This corresponds under the canonical isomorphism
Z(g)** ^ Z(g) to an element r G Z(g) which satisfies

(12) a(x) J a(Fa) for all a e Z(g)* and A g A(P).

Here we identify Z(g)* c g* with the subspace of linear functional vanishing

on [g, g]. We call r the central type of P.

Remark 3.6. Recall our standing assumption vol(Z) 1 and suppose that

A g A(P) satisfies *Fa A for some A g Z(g). Then (12) yields

a(r) — / ch(Fa) / a(A) dvols a(A)
Je JE

for all a G Z(g)* and hence X — r.

Let t G Z(g) be defined by (12). It follows from Lemma 2.7 that

(13) /ir : A(P) ^L2(S,adLP)), pz(A) := *FA - r

is a moment map for the G (A) -action on A(P). The following definition is the

precise analogue of Definition 7.1 in [SGR1 with respect to this moment map.

Definition 3.7. Let G be a compact connected Lie group, let P ->• S be a

principal G bundle with central type r G Z(g) defined by (12), and define pr
by (13). For A g A(P) denote by GC(A) the W1,2-closure of the complex gauge
orbit QC(A).

(1) A is called px -stable if and only if GC(A) n (0) n A*(P) ^ 0 where

A*(P) denotes the irreducible connections on P.

(2) A is called pr -polystable if and only if GC(A) n ¥" 0-

(3) A is called p,z -semistable if and only if GC(A) D p,~x(0) / 0.
(4) A is called pr -unstable if and only if GC(A) ft (0) 0.
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Remark 3.8. We call A e A(P) an irreducible connection if the map

dA : W2'2(S,ad(f3)) -* Wl'2(Z, L*E ® ad(P))

is injective. In particular, /xT-stable connections can only exist when the center

of G is discrete and r 0. Since the infinitesimal action of the gauge group is

given by LAlj := —dAÇ, a connection A is irreducible if and only if the isotropy

group of the orbit G(A) is discrete. Suppose that A is an irreducible connection

satisfying po(A) *FA — 0. The infinitesimal action of the complexified gauge

group
L,i(£ + ir]) -dAtj - *dArj

is readily seen to be injective in this case: Assume LA(% + irj) — 0 and apply
dA to the equation. There follows d^dAr] — 0 and hence dAt] 0. Since A

is irreducible, we conclude r] 0 and then £ 0. This argument shows that

the fiT-stable orbits are precisely the /xr-polystable orbits with discrete QC{P)

isotropy.

The next Lemma relates the different notions of stability on P and on the

quotient bundle Ph '= P/Zq{G) with fiber H G/Zo(G). Note that Ph has

central type 0 since its center is discrete.

Lemma 3.9. Let G be a compact connected Lie group, let P —> E be a principal
G bundle of central type reg defined by (12) and let Ph '= P/Zo(G) be the

associated H := G/Zo(G) bundle. Let A e A(P) and denote by Ah 6 A(Ph)
the induced connection.

(1) Ah is p,o -stable if and only if A is pz -polystable and the kernel of the

infinitesimal action

La : W2'2(Z,ad(Pc)) -> W1'2(E, T*E ® ad(P))

Lji(£ + irf) -dA% - *dAt]

consists of constant central sections.

(2) Ah is /U-o -polystable if and only if A is ptr -polystable.

(3) Ah is po -semistable if and only if A is pr -semistable.

(4) Ah is po -unstable if and only if A is pT -unstable.

Proof. We begin with the polystable case. Every constant central curvature
connections on P clearly induces a flat connection on Ph Conversely, assume

that A\ is a flat connection on Ph As a general property of compact Lie groups,
there exists an exact sequence
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(14) 1 —> F ^ Z0(G) x [G, G] -> G -» 1

where F — Z0(G)n[G, G] is a finite group. Front this follows the exact sequence

(15) i F G ^ (G/Z0(G)) x (Z0(G)/F) -> 1.

Consider the associated (G/Z0(G)) x (Z0(G)/F) bundle

(16) P PxG ((G/Z„(G)) x (Z0(G)/F)) xs F2

where P2 is a principal Z0(G)/F -bundle over E. Since Z0(G)/F is connected

and abelian, it is a torus and P2 is isomorphic to the direct sum of S1 bundles.

It follows from Hodge theory that every line bundle admits a connection with
constant central curvature and these yield a connection A2 on P2 with constant

central curvature. Together with A\ we obtain an induces a connection on P

which lifts to a connection on P with constant central curvature. It follows from
Remark 3.6 that the curvature of this connection is given by r.

For the proof of the stable case observe that ad(P) S V ® ad(Ph) where

V — E x Z(q) denotes the trivial Z(g) bundle. The infinitesimal action

La : 1T2'2(E, ad(F)) -> 1T1,2(E, F*E ® ad(P))

agrees with Lah on ad(P#). Since restricts to a flat connection on V, it
follows that ker(LJ4) Z(g) ©ker(L^) and this shows the claim.

It remains to discuss the semistable case. Assume first that A is jxT -semistable.

Then exist connections Ak e GC(A) such that Ak —> A+ for k —> oo and

fxr(A+) — 0. The induced connections AkH e A{Ph) are clearly contained in

Gc{Ah) and converge to the induced connection AJ. Since /at(A+) — 0, it
follows that fio(Afl) 0 and hence Ah is /xo-semistable.

For the converse, we consider the exact sequences (14) and (15) from above.

Then (16) yields a finite covering

P P Ph xe P2

with covering group F Z0(G) (T [G,G], We have seen above that P2 is

a polystable Z0(G)/F-bundle. Note that the natural identification .4(F)
-4(Ph) x -4(F2) yields an inclusion

(17) Gc(PH)*Gc(P2) cgc(P).

Moreover, since Ad(Fc) —> Ad(Fe) is a finite covering with covering group
F C Z0(GC), it is easy to see that every gauge transformation in GC(P) lifts
to an element in GC(P) and this lift commutes with the natural identification

A(P) A(P).
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Now assume that A e A(P) induces a p0-semistable connection Ah e

A{Ph)- Since P2 is polystable, it follows from (17) that there exists g0 e QC(P)
such that go(A) induces Ah g A(Ph) and a connection A2 e A(P2) with
constant central curvature. Since Ah is /xo-semistable, using (16) again, there

exists gauge transformations gk e GC(P) such that gk(go(A)) induce the same

connection A2 on P2 and induce a sequence of connections AkH on Ph which

converges to a flat connection AJ. Clearly, gk{goA) converges to the connection
A+ which is induced by A2 and AJ. Hence A+ has constant central curvature
and it follows from Remark 3.6 that *FA+ r. This completes the proof of the

semistable case.

3.3. Equivalence of algebraic and symplectic stability. The following theorem

shows that the algebraic notion of stability from Dehnition 3.2 and the

symplectic notion of /xT -stability from Definition 3.2 are essentially equivalent.

Theorem 3.10 (Generalized Narasimhan-Seshadri-Ramanathan theorem). Let G

be a compact connected Lie group and P —> 21 a principal G bundle with central

type x e Z(q) defined by (12). Let A e A(P) and consider the complexified bundle

Pc := P xq Gc with the induced holomorphic structure JA.

(1) (Pc, JA) is stable if and only if A is /xr -polystable and the kernel of

La : W2'2(i:,ad(Pc)) -* JE1>2(E, 7*E ® ad(P))

+ iv) ~dA% - *dAr]

contains only constant central sections.

(2) PC,JA) is polystable if and only if A is p,z -polystable.

(3) (PC,JA) is semistable if and only if A is ptx -semistable.

(4) (Pc, JA) is unstable if and only if A is ptx -unstable.

The stable case was first proven by Narasimhan and Seshadri [NS] for
G U(n) and later extended by Ramanathan [Ram] to arbitrary compact Lie

groups. They establish these results using algebraic geometric methods.The first

analytic proof was given by Donaldson [Donl] for the case G U(n). We present
a different approach given by Bradlow [Bra] and Mundet [iR] in Theorem 6.5.

The equivalence of both definitions for semistability is essentially contained in
the work of Atiyah and Bott [AB83].
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Proof of Theorem 3.10. We assume the following results for the proof:

• The characterization of algebraic stability in Proposition 5.9,

• the moment-weight inequality (Theorem 5.12),

• the Narasimhan-Seshadri-Ramanathan theorem (Theorem 6.5),

• the dominant weight theorem (Theorem 7.1).

We establish these results independently in the remainder of the exposition.
The stable case is equivalent to Theorem 6.5. By Lemma 3.5 and Lemma 3.9

we may assume in the sequel that Z(G) is discrete and r 0. We then deduce

the polystable case from the stable case by an inductive argument: Assume first
that Pc is polystable. Then there exists a reductive subgroup L c Gc and a

holomorphic reduction Pi c Pc which is stable. We may assume that L Kc
is the complexification of a compact subgroup K c G. Since Gc/L G/K, we
have an induced reduction Pk C P and Pi agrees with the complexification of
Pjc It follows from the construction in Lemma 2.5 that A restricts to a connection

on Pk • Assuming the stable case (i.e., Theorem 6.5) we conclude that there exists

a gauge transformation g e Gc(Pk) C Gc(P) such that *FgA tk e Z(£). It
remains to show that rk e Z(g) 0 vanishes. If xk 0 then there exists a

character / : L -> C* with x(tk) ^ 0. Since Z(G) is finite, we may replace /
by a suitable power and assume that it is trivial on Z(GC). Using the definition
of polystability then yields the contradiction

0 C\ (x(Pl)) f x(FA) dvolx ^X(-ck) + 0.

For the converse, assume that A e A(P) is a flat connection. Let H c G

be the holonomy subgroup and Ph C P be a reduction to the holonomy. Let
K := Cg(Z(H)) be the centralizer of the center of the holonomy and denote

the induced connection on Pk Ph xh K again by ^4. It is well-known that

the isotropy subgroup of A consists of constant gauge transformations and is

naturally isomorphic to the centralizer of its holonomy, i.e.,

Ga {g e G(Pk) I g (A) A} ss CK{H).

Comparing the Lie algebras of both sides, one checks that Ck(H) Z0(K) is

satisfied and A e A(Pk) has only trivial isotropy. It follows now from the stable

case (i.e. Theorem 6.5) that Pf is a stable principal L — Kc bundle. Note that

L is a Levi-subgroup of a parabolic subgroup of Gc, since K is the centralizer

of a torus in G. Since Fa — 0, we have for any character x L -»• C *

Ci(x(Pl)) x(FA)dvoh; 0

and hence Pc is polystable.
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Assume that Pc is unstable. By Proposition 5.9 there exists Ç g f2°(E, ad(P))
with w0(A, £) < 0. The moment-weight inequality (Theorem 5.12) yields ßo(gA) >
—Wq(A, £)/||£|| > 0 for all g G ÇC(P) and hence A is /i0-unstable. Assume

conversely that A is ßo -unstable. The dominant-weight theorem (Theorem 7.1)

shows that there exists £ G S2°(E, ad(P)) such that iuo(A,£) < 0 and hence Pc

is unstable by Proposition 5.9. This completes the proof of the unstable case and

the semistable case is equivalent to this case.

4. The Yang-Mills flow and symplectic stability

Let G be a compact connected Lie group and let P E be a principal G

bundle of central type r G Z(g) defined by (12). In the differential geometric
approach towards GIT the moment map squared functional plays a crucial role.

This is defined by

(18) J"t : ^4(P)R, FM) := \ f || * FA - r\\2 dvol^.
1

Note that (12) implies J^(Fa,x) |[r||2 for every connection A G A(P) and

hence

(19) Tt(A) l- j^\\* Fa- r\\2dvolz — ^ \\FA\\2dvoh - ||r||2j

Thus Tz agrees up to a constant shift with the Yang-Mills functional

(20) yM:A(P)^R, yM(A) := - f \\FA\\2 dvoh.
2 Je

Rade showed in his thesis [Rad] that the negative gradient flow of the Yang-Mills
functional is well-defined and converges if the base manifold has dimension 2

or 3. We summarize his results in the first subsection. Recall that we always
consider the W1,2 -topology on A(P) when nothing else is specified.

A crucial observation is the following: Any solution of the Yang-Mills flow
remains in a single complexified orbit and there exists a canonical lift of a solution

A(t) of the Yang-Mills flow under the projection Qc -» GC{A) to a curve in
GC(P). Since the Yang-Mills flow is G(P)-invariant, the geometric importance
lies within the projection of such curves in GC(P)/G(P) The fibers of this quotient
coincide with the homogeneous space Gc/G which is a complete, connected,

simply connected Riemannian manifold of nonpositive sectional curvature (see

[SGR] Appendix A and B). This underlying geometry is crucial for the following
application.

As a first application, we establish the moment limit theorem (Theorem 4.14)

and the analogue of the Ness uniqueness theorem in Theorem 4.15 following the
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line of arguments in [SGR]. The first result says that the limit A^ := lim^oo A(t)
of the Yang-Mills flow starting at A0 e A(P) minimizes the Yang-Mills
functional over the complexified orbit QC(A0). The second result asserts that

any connection in the IT1,2-closure of G(A0) which minimizes the Yang-Mills
functional over this orbit must be contained in G(Aoo). In particular, every /rT-
semistable orbit contains a unique /xt-polystable orbit in its closure. This yields
the identification

Ass(P)//gc(P) ^ Aps/gc(P) fj,-\0)/g(P)

where two semistable orbits on the left hand side are identified if and only if
they contain the same polystable orbit in their closure.

In the last section we extend this observation and characterize in Theorem 4.18

the /xr-stability of A e A(P) in terms of the limit of the Yang-Mills flow starting
at A. We observe in particular that ASS{P) and AS(P) are both open subsets

of A(P) in the W1,2 -topology.

4.1. Analytical foundations.

4.1.1. The Yang Mills flow on low dimensional manifolds. Recall for A e A(P)
and a e W1,2(S, T*E <g> ad(R)) the formula

Fa+ü Fa + dAa + -[a A a].

From this follows directly that the L2 -gradient of the Yang-Mills functional (20)
is given by

VyM : A(P) -* W~l'2(?,,ad(P)), VYM(T) := d*FA.

The critical points of the Yang-Mills functional (20) are called Yang-Mills
connections and satisfy the equation

d*AFA 0.

It follows from the strong Uhlenbeck compactness result (see e.g. [Weh] Theorem

E) and elliptic regularity that every Yang-Mills connection is gauge equivalent
to a smooth Yang-Mills connection and the set A := {yM{A) \d^FA 0} of
critical values is discrete. The negative gradient flow of the Yang-Mills functional
is given by the degenerated parabolic equation

(21) dtA{t) + d^t)FA(t) — 0.
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Definition 4.1 (Weak solutions). Let A0 e A(P) be a connection of Sobolev

class W1'2. We call A e C°([0, oo), -A(.P)) a weak solution of the initial value

problem

(22) dtA(t) + d*(t)FA(t) 0, T(O) A 0

if A(0) Ao and there exists a sequence Ak [0, oo) -» A(P) of smooth

solutions of (21) which converges in C® ([0, oo), A(P)) to A, where A{P) is

endowed with the W1'2 -topology.

The next two theorems state that the initial value problem (22) has a unique
(weak) solution for every initial data Ao £ A(P) existing for all time and that

this solution converges to a Yang-Mills connection.

Theorem 4.2 (Long time existence). Let G be a compact connected Lie group,
P —> Y a principal G bundle and ^4o e A{P).
(1) There exists a unique weak solution A{t) e C? ([0, oo), A(P)) for the initial

value problem (22). The curvature has the additional regularity properties
Fa (t e C°c([0,oo),L2) and Fm e L2oc([0, oo), IT1'2).

(2) The solution A(t) and its curvature FA(t) depend smoothly on the initial
data Ao in these topologies.

(3) If Ao is smooth, then the solution A(t) is smooth and satisfies (21).

Proof. This is Theorem 1 in [Rad].

Theorem 4.3 (Convergence). Assume the setting of Theorem 4.2 and let A(t) e

C?oc([0,oo),A(P)) be a weak solution of (22). Then there exist a Yang-Mills
connection Moo e A(P) and constants c,ß > 0 such that

\\A{t) — AooWwl,2 < d ^

holds for all times t > 0.

Proof. This is Theorem 2 in [Rad].

The key ingredient in the proof of the convergence result is the appropriate
analogue of the Lojasiewicz gradient inequality. This approach was introduced by
Simon [Sim] for a general class of evolution equations.

Proposition 4.4 (Lojasiewicz gradient inequality). Let Ae M(P) be a Yang-
Mills connection. There exist constants e > 0, y e [j, 1) and c > 0 such that

for every A e A(P) with \\A - ^oolljyi.2 < e the estimate

\\dAFA\\w-l.2>c\yM{A)-yM{A00)Y
is satisfied.
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Proof. This is Proposition 7.2 and (9.1) in [Rad].

In finite dimensions the Lojasiewicz inequality always guarantees convergence
by some standard arguments. We recall these arguments in the sequel and discuss

additional technical difficulties arising in the infinite dimensional setting. Suppose
that A(t) satisfies (22). It follows from the weak Uhlenbeck compactness (see

[Rad], Proposition 7.1) that there exists a ö(P)-orbit Q(Aoo) of Yang-Mills
connections such that

mïyM{A(f)) yM{AO0)
t> o v '

and for every S > 0 there exist T > 0 and g e G(P) such that

I\A(T)-g(A00)\\wl,2 <8.

Since the Yang-Mills functional and the Lojasiewicz inequality are invariant
under the action of Q(P), the constant e e(g(/4oo)) > 0 from the Lojasiewicz
inequality does not depend on g. Now choose 8 < e and define

T := inf {r > T \\\A(t) - > e}.

For any .s'i, s2 e (T, T) with ji < s2 we obtain

\\A(si) - A(s2)\\L2 < f \\dlFA\\L2dt
J S1

< p \\d*AFA\\l2

-A, c\yM(A)-yM(A0O)\y

< ^(yM(A(Sl)) -yM(A(s2))y~r.

To conclude the convergence result, one needs to show T 00 and extend the

estimate above to the Wl'2 -norm. Both can be achieved by using the following
Lemma.

Lemma 4.5. Let £ A(P) be a Yang-Mills connection and e(/loo) > 0

as in Proposition 4.4. There exists a constant c > 0 with the following
significance: For every solution A{t) of the Yang-Mills flow (22) and real numbers
0 < Ji < s2 — 1 such that 11M — Aoollw1-2 — e for aM t [^t.^] we have

r \\d*AFA\\Wu2dt<c rwd*AFA\\L2dt.
Js 1+1 JS1

Proof. This is Lemma 7.3 in [Rad],
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Now the calculation above yields

(23) \\A(Sl + I) - A(s2)\\wu2 < C (yM{A(Sl))

for any T<S\<si + l<T. Since the solutions of the Yang-Mills flow depend

continuously on the initial condition in the C;°oc([0, oo), W1,2) topology, there

exists a constant c\ > 0 such that

||A(J + t) — g(^oo)llwi.z < ci|M(Y) — g(^4oo)llw1-2

holds for all t e [0,1]. This follows as we may view g(^oo) as constant flow line
and the constant c\ depends only on the orbit f/(dloo)- For sufficiently small 8,

we have 8c\ < e and hence T > 1. Then (23) yields

M A{T + 1) - A(t)\\wi,2 < c(yM{A(T)) - yMiAco))1'7 < C8l~v

for any T + 1 < t < t. For sufficiently small S > 0 the right hand side is smaller

than e and this yields f oo. The calculation above then shows then that the

integral /0°° \\dtA{t)\\w\,2 dt < oo is finite and A(t) converges uniformly to a

Yang-Mills connection Äoo.

Replacing Ain the argument above by the limiting connection ^oo yields

P(0 - Äoo\\wi.2 < c {yM(A(t)) - yM(Äoo))1_y.

Let T > 0 be such that for every t > T the Lojasiewicz inequality in Lemma 4.5

for A{t) with respect to the Yang-Mills connection Aœ. Then

dt(yM(A(0)-yM(Äoo^ -\\VyM(A{t))\\L2

< [yM{A(f))-yM(Äoo))2/

and hence {yM{A{t)) — YAT(^oo))1 V < C(t - T) '~2y This shows

\\A(t) - ÄooW^a <C(t-T)è%

for all t > T and completes the proof of the convergence result. This argument
also proves the following result:

Corollary 4.6. Let B e A(P) be a Yang-Mills connection and let e > 0. Tlten

there exists 8 > 0 such that for every solution A(t) of the Yang-Mills flow (22)
with 114(0) — 51 |^i.2 < 8 we have either

sup 114(0) — A{t)\\wi,i <e
t>o

for all t > 0 or there exists T > 0 with yM{A(T)) < yM(B).
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4.1.2. The Kempf-Ness flow. By Proposition 2.3 the infinitesimal action of the

complexified Gauge action is given by

Mf + irt := ~ exp(t£ + itrj)A -dA% - *dAr]
t=o

for %,rj 6 W/2,2(S, ad(P)) and A e A(P). With this formula we can express the

gradient of the Yang-Mills functional as

VyM.(A) d\FA — * dA * Fa L^(i * FA).

This implies that any solution of the Yang-Mills flow (20) remains in a single

complexified orbit.

Proposition 4.7. Let Ao e A(P) and let A(t) be the (weak) solution of the

Yang-Mills flow (22) starting at Aq. Let g : [0, oo) —> QC(P) be the solution of
the ODE

(24) g(t)~lg(t) i(*FA{t)), g(0) 1.

Then g e C^oc([0, oo), QC(P)) and

A(t) gity'Ao

for all t [0, co). Moreover, g depends continuously on A(,.

Proof. Recall from Lemma 2.7 the formula

B(t) := gJl(Ao) A0 + gfldAogt - gJl(hfldAoht)gt

with ht (gJ^YgJ1 • By Theorem 4.2 holds F e L2oc([0, oo), W1'2) and hence

g 6 oo), W1'2) and B e B)^([0, oo), L1). Tire same calculation as in

the smooth case shows

5(0 Lm(gflgt) —dß(t)FA(t).

Approximation of A0 with smooth connections shows A e W^([0, oo), L1) and

À(t) -d2(t)FA(t).

Define C(t) := A(t)-B(t) and *L(0 := *FA(t) e L2oc([0, oo), L1) • The calculation
above shows that C solves the linear ODE

C(0 *[C(0,^(0], c(0) o.

and hence C 0. The Sobolev embedding 1P1'2([0, to], L1) •—> C°([0, to]* Lx)
then yields A(t) B(t) gf1 Ao for all t.
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Since A maps continuously in FF1'2, it follows from the expression

MO g7lA0 Ao + gVldA0gt - g7l{h~1dA0ht)gt

that H(t)0'1 A°fl + gf1dAogt an(i g71M0gt maps continuously into W1'2.

Let A be a smooth reference metric and write Ao A + ao. Then g71dAg71

maps continuously into Lp for any p < oo and by elliptic regularity, g maps

continuously in Wl'p. Since Wl'v C°, we can rerun the argument where

g71d^gt now maps continuously in IL1'2 and conclude g C^c([0, oo), IT2'2).
Since A and Fa depend continuously on Ho, the solution g depends

continuously on Aq in oo), FF1'2) and then by elliptic regularity also in

C°c([0,oo),lT2'2).

Remark 4.8. Let Aq e A(P) and let A(t) be as in Proposition 4.7. For

go £ GC(P) consider the more general equation

(25) g(0~lg(0 i * FA(t), g(0) go-

Then g(f) gö'g(t) solves equation (24) with respect to H0 göH^o)- Hence

(25) has a unique solution in Cj* ([0, oo), GC(P)), which depends continuously
on go and Ao

We shall consider the following variant of this equation.

Definition 4.9 (Kempf-Ness flow). Let A0 e A(P) and g0 e GC(P). We say

that g(t) e ([0, oo), QC(P)) is a weak solution of the equation

(26) g~\t)g(t) i * Pg~l{t)A0> g(°) go

if there exist a sequence of smooth initial data (A/c,gfi) e A(P)xQc(P) converging
to (Ho, go) and smooth solutions gkiO °f the equation

gl1 (Ogk (0 i * Fg-i {t)Ak, gk (0) gkQ

such that gk{0 converges to git) in C)0oc([0, oo), FF2'2).

Remark 4.10. We call a solution g e Cfoc([0,oo),Gc(P)) of (25) a solution of
the Kempf-Ness flow starting at g0 (with respect to Ao). We show in Section
6 that there exists a G(P) -invariant functional

$T0 : GC(P) -> M

whose negative gradient flow lines correspond to solution of (26).

Lemma 4.11. For every initial data (Ho, go) e A{P) x GC(P) there exists a

unique (weak) solution of (26) which depends continuously on the initial data.
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Proof. We use the notation introduced in Definition 4.9 and define Ak(t) :=
gk(t)~lAk. Then

dtAk(t) LAk{t) (gkl(t)gk(0) ~LAk(t) (i * FAk(t)) —^Ak(t)FAk(t)

and thus Ak(t) yields a smooth solution of the Yang-Mills flow. Conversely, the

solution Ak(t) is uniquely determined by the initial condition {g^)~lAk and we

may recover gk(t) from this solution via Proposition 4.7 and Remark 4.8. Since

solutions of the Yang-Mills flow and solutions of (25) depend continuously on the

initial data, it follows that the weak solution g(t) of (26) is uniquely determined

by the weak solution A(t) of the Yang-Mills flow starting at gQ1A0.

The next proposition shows that solutions of the Kempf-Ness flow (26) remain

at bounded distance in the homogeneous space Qc/G.

Proposition 4.12. Let A0 e A(P) and let g, g e Cf)oc([0,oo),Gc(P)) be (weak)
solutions of (26) starting at go, go 6 GC(P). Define q(t) e W2'2fE,ad(P)) and

u(t) e G(P) by the equation

g(0 exp (ir](t))u(t) g(t).

Then the following holds:

(i) p(t) := ||77(OHl2 is non-increasing in t. More precisely, if q(t) ^ 0 then

is satisfied. In particular, \\r](t)\\L°° is non-increasing by the maximum

principle for the heat equation

(iii) is uniformly bounded in W2'2.

(iv) u is uniformly bounded in W2'2.

Proof. We prove (i) and (ii): By approximation, we can assume that Ao, g
and g are all smooth. Let n : Gc -»• Gc/G denote the projection and define

y(s,t) := n(g(t)eisTl^'). Pointwise y(-,t) is the unique geodesic of length \q(t)\
connecting 7t(g) and n(g). The following calculation is pointwise valid:

with ASit := e~is^g-fxA0.

(ii) The differential inequality

(dt + A) 11 ?7112 5 0
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dtM\2 dt f (dsy, dsy)ds 2 f (V,dsy, dsy) ds
Jo Jo

2 [ (Vsdty, dsy) ds 2 [ ds{dty, dsy) ds
Jo Jo

2((3fy(l, t), dsy(l,t)) - (9,y(0, t), dsy(0, t)))

2{g~l(t)g(t) -g~l(t)g(t),ii](t))
2(* Fg(triAo -*Fg(t)-iAo, tj(0)

With ^4Jjf := e-u?,^g-1.Ao this yields

9f IM|2 — 2 f (ri(t),*dAs_, * dAs,,ri(t)) -AMI2 -2 f \\dAs lr)(t)\\2ds.
Jo Jo

This proves the second claim and the first one is obtained by integrating this

inequality over S.

We prove (iii) and (iv): Recall that Ä(t) := gyl(A0) and A{t) := g^lylo) are

solutions of the Yang-Mills flow. Since they converge in W1'2, they are both

uniformly bounded in W1'2. With a(t) eir,'ut we have Ä — a~l{A) and hence

I°,i A0'1 +a~l~dAa.

This shows that dAa is uniformly bounded in W1'2 and hence a is uniformly
bounded in IT2'2. From the formula aa* e2"1 we conclude that rj is uniformly
bounded in IT2,2 and then u is also uniformly bounded in IT2'2.

4.2. Uniqueness of Yang-Mills connections. We follow the arguments from

([SGR], Chapter 6) to prove the analog of the Ness uniqueness theorem and

the moment limit theorem. These are originally due to Calabi-Chen [CC] and

Chen-Sun [CS] in the context of extremal Kähler metrics.

Proposition 4.13. Let Aq,Ai e A{P) be Yang-Mills connections with Qc(Ao)

QC{Ai). Then Q(A0) Q{AX) holds.

Proof. Choose g e QC(P) such that

M g 1Aq

Since A0 and A\ are Yang-Mills connections, they generate constant flow lines

A0(t) Aq and A\(t) Ai. Let go.gi e C;°oc([0, oo), t/c) be the solutions of
the equation

g01^o *^k0, go(0) l and g11gi=*FAl, gi(0) g
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from Proposition 4.7 and the following Remark. They satisfy

Ao göHOAo and Ar gf\t)A0

and go and g\ are solutions of the Kempf-Ness flow (26) with respect to A0-
Define r](t) g 1P2'2(E,ad(P)) and u(t) eQ by the equation

go(0exp (irj(t))u(t) gx{t)

as in Proposition 4.12. Then there exist r)00 g R/2'2(S, ad(P)), u00 e G(P) and

a sequence h -> oo such that

H~ H~
lim p(ti) 0, 7]Ui) Poo, u(ti) — Moo.

i—>00

By taking a further subsequence if necessary, we may assume that

lim \\dAstMh)\\L2 0
1-+0O

holds for almost every 5 e [0,1], where we defined

As,, e-^Ao.

Moreover, by Rellich's theorem, rj(ti) and u(ti) converge for every p < oo

strongly in W1,p to rjœ and Moq. By continuity of the Gauge action Gl'px-Ap
for p > 2, we conclude

-4.5,00 := e u?,txMo, and dAst.rj(ti) -* dAsoorjœ.

This implies that for almost every s e [0, 1], we must have dAsooT]oo 0. For

j-^0 we conclude dAooor}oo dAor]oo 0 and hence e~I,?00To -40. It follows

now

A\ gi(ti)~lA0 M(ti)_1e_,7,('i)-4o M~1e_,,?00y4o m^-40-

This shows -4i u^A0 and thus Ao and A\ lie in the same (/-orbit.

Theorem 4.14 (Moment Limit Theorem). Let Ao g A(P) and A : [0, oo) -> A(P)
be the solution of the Yang-Mills flow starting at Ao- The limit Too :

litrp-^oo-4(f) satisfies

TAf(-4oo) inf yM(gAo).
geQc(P)

Moreover, the G(P) -orbit of d«, depends only on the complexified orbit GC(Ao).
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Proof. Let go £ GC{P) be given and define g, g e Cl°oc([0,œ),Gc) by

g~lg *Fa, g(0) 1 and g~lg *FA, g(0) g0

as in Proposition 4.7 and the following Remark. Let A(t) and Ä(t) be the

solutions of the Yang-Mills flow starting at A0 and À0 := gflA0. Then

Ao (t) g71(Ao), Â(t) gf1(A0)

and g,g are solutions of the Kempf-Ness flow (26) with respect to A0. Define

rj(t) e W2'2(H, ad(P)) and u(t) e Q(P) by the equation

go(0exp (ir](t))u(t) gx{t)

as in Proposition 4.12. It follows that there exist rj^ e W2'2(U, ad(P)) and

Mqo e G(P) and a sequence U -> oo such that

W2.2 W2.2
h fi ^ hoo? M (tj ^ Moo-

By Rellich's theorem we obtain strong convergence in Wl'p and using the Sobolev

embedding W1'2 Lp for every p < oo we obtain:

<4oo x— Mti) u{tiTlelv{ti)A{ti)

Hence n^q^A^. Thus and A<*, are Yang-Mills connections

lying in a common complexified orbit and Proposition 4.13 shows that in fact

G(Aoo) G(Aoo). This shows yM(Aœ) yM(Äoo) < yM{gflAQ) and

completes the proof.

The following theorem is the analog of the Ness uniqueness theorem in finite
dimensional GIT.

Theorem 4.15 (Uniqueness of Yang-Mills connections). Let A0 e A(P) and

A', A" e Gc(Ao) be in the W1'2 -closure of a single complexified orbit satisfying

yM(A') yM(A") inf yM(gA0).
g£Qc

Then follows G(A') G(A").

Corollary 4.16. Let P -* E be a principal G bundle of constant central type
x e Z(fl) defined by (12). Suppose A e A(P) is px-semistable. Then the fL1'2.
closure GC(A) contains a unique p.x-polystable orbit.

Proof. It follows from (19) that solutions of the equation *FA x correspond to

global minima of the Yang-Mills functional on A(P).
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Proof of Theorem 4.15. Let T(f) be the solution of the Yang-Mills flow starting
at A0 and let T^ lim,-^ A(t). Then Theorem 4.14 implies

YAd(^oo) inf yM{gA0) -:m.
g£0C

Since A^ e Gc(Ao), it suffices to show that any connection B e Gc(Ao) with

yM(B) m is contained in GiA^). For this let 4,- e Gc(Aq) be a sequence
which converges to B Denote by Ai (t) the corresponding solutions of the Yang-
Mills flow and set Bi := limr^oo Ai (t). Note that B is necessarily a Yang-Mills
connection, since

yM(B(t)) hm yM(Ai(t)) > m yM(B(0))
i—> oo

where B(t) denotes the solution of the Yang-Mills flow starting at B. Thus, we

may apply Corollary 4.6 with respect to B and conclude that \\Ai — Bi\\w\,2
converges to zero and hence

lim Bi — B.
I—>• OO

By Theorem 4.14 holds G(Bi) G{Aoo) and hence there exists iq e G(P) such

that uJl(A0o) Bi. Since the connections 5, are uniformly bounded in W1,2,

the gauge transformations w; are uniformly bounded in W2'2. Thus there exists

iioo e G(P) such that after passing to a subsequence u,- converges weakly in
IF2,2 to Uoo and strongly in Wx-p for any p < oo. Using the continuity of the

gauge action Gl,p x Ap -» Ap we conclude

LP
Bi Mj (Too) ^ Moo ^oo

and in particular B w^Too e G(Aoo).

4.3. Yang-Mills characterization of /i T -stability. We characterize the

/Testability of a connection A 6 A(P) in terms of the the limit Too of the

Yang-Mills flow starting at T. This is Theorem 4.18 below. The proof relies

on the following proposition.

Proposition 4.17. Let P —S be a principal G bundle of central type r e Z(q)
defined by (12). The subsets of pr-semistable connections

ASS(P) {A e A{P) \ A is ßT-semistable}

and p.T-stable connections

A"(P) := {T 6 A{P) I T is gtx-stable}

are open subsets of A(P) with respect to the W1'2 -topology.
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Proof. It follows from (19) that

1
oinf yM(A) > -||t|| =: m.

AtA(P) 2

Moreover

(27)

and yM{A)

Step 1. ASS(P) is open.
Let Aq e ASS(P) be given. Let A(t) be the solution of the Yang-Mills

flow starting at A0 and Aoo := lim^00^(f). It follows from Theorem 4.14 and

(27) that /loo is a Yang-Mills connection satisfying yM{Aoo) m. By the

Lojasiewicz inequality (Proposition 4.4) there exist e > 0, c > 0 and ye[|,l)
such that for all B e A(P) with ||ß — AOQ\\wi,2 < e the inequality

(28) \\d*BFB\\L2 >c\yM(B)-m\r

is satisfied. By Corollary 4.6 there exists 8 > 0 such that for every B e A{P)
with ||ß -AooWyyia < 8 we have ||ßoo — ^oollw 1.2 < c. In particular, (28) applies

to Boo and yields yM(Boo) m. This shows

U := {B e A(P) | ||ß - < 8} c ASS(P).

Now choose T > 0 such that A(T) e U and choose g e GC(P) with

A(T) g~1A0. By continuity of the gauge action there exists an open
neighborhood V of T0 with g~lV C U and hence V C ASS(P).

Step 2. Denote by A*(P) C A(P) the space of irreducible connections. This is

an open subset and

Z:= {Ae A*\yM(A) m}/Q

is a finite dimensional smooth submanifold of A*/G-
We may assume that Z(G) is discrete, r 0 and m — 0, since otherwise

A*(P) 0. Let Ao e A*(P) be a smooth irreducible connection. The Laplacian

dfQdAo is then injective and by elliptic regularity there exists c0 > 0 such that

\\d2odAML2>C0m\W2.2

for all £ e IL2'2(E. ad(P)). For a e IL1,2(E, T*E <g> ad(P)) expand

dA0+adA0+aÇ dA0dA0H + dXQ[a,Ç] - *[a,*dAoÇ\ - *[a,*[a,£]].

ASS(P) := {A e A(P) inf yM(gA) — m
geQc(P)

— m is equivalent to *FA r.



116 S. Trautwein

Since dimR(S) 2, we have the Sobolev estimate \\fg\\L2 < c\\f\\w\,2\\g\\w\,2
and 11 fg 11 iv i >2 < ll/llivi,allgll^i,2. This yields

\\dA0+adA0+a^\\L'2 > col|£|lw2.2 ~ c I\a 11W1-2 11£ 11 tV2.2

and Ao+a is irreducible if [|cz11i,2 is sufficiently small. Hence A*(P) is open.
Now fix an irreducible connection A0 with *Fa0 0. We may assume without

loss of generality that A0 is smooth and work in a Coulomb gauge relative to

A0. Tris allows us to identify a neighborhood of [H0] in A*(P)/Q(P) with
a e W1-2ÇZ,T*'Z®ad(P)) satisfying ||a|| \yi,2 < c and dAoa — 0 under the map
a I-* [H0 + a]. Consider

4> : {a e W1'2(E, T*£ ® ad(F)) | d^a 0, ||a||^i.2 < e} -> L2(E, ad(P))

*FAo+a

and define Za0 0_1(O) We claim that 0 is a regular value for cj> (after possibly
shrinking e). Once this is established, the claim follows from the implicit function
theorem. The derivative of cp at a point a is given by

d<p(a) : {â e W1'2^, T*Z <g> ad(F)) | 0} -* L2(£, ad(P))

dcp{a)â *dAoâ + *[a A a\.

Since dcp(a) is the restriction of a compact perturbation of the Fredholm operator
*(dA0 ®dAo), its kernel is finite dimensional. We denote by

K\={âe Wl'2(S, F*£ <g> ad(/>)) \ dAoâ 0, d*A(â 0}

the space of Ho-harmonic 1-forms with values in ad(F) and define V by the
L2 -orthogonal decomposition

W1'2(E, T*£ ® ad(P)) V®K.

Then the restriction of the Fredholm-operator dAo © dA(> to V defines an

isomorphism

dAo © dXQ : V —> L2(£, ad(P)) © L2(£, A27*£ <g> ad(F))

It is injective by definition of V and to prove surjectivity let / e L2(E,ad(/>))
and en e L2(S, A2r*£ ® ad(P)) be given. Then by Hodge theory we can solve

the equation

AAoa =d%0co + dAof

From this follows

dA0(dA0â ~a>) dAo(f - dAoâ).
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Since *FAo — 0, both sides of the equation are orthogonal and hence must vanish.

Since A0 is irreducible, it follows dAoà — a and d% â /. In particular, for

any 5 e L2(S, ad(P)) exists a solution à e V of the equations

(29) dA0â + [a a â\ — *s, dAç)â — 0

for a — 0. Since the equation is linear in a, another application of the inverse

function theorem shows that after possibly shrinking e the equation (29) has a

solution â(a) e V for all a with ||a]|^1.2 < e.

Step 3. As is open.
We may assume that Z(G) is discrete, r 0 and m =0, since otherwise

AS{P) 0- Let A e AS{P) be given. By definition there exists g e GC{P) such

that A0 g^1 A is smooth and satisfies yM(A0) — 0. Let Za0 be as in Step 2

and consider the map

1]/ : ZAox JL2,2(IL ad(B)) x W2'2(Z, ad(B)) -> A

i/f(A, f, rf) eive^A.

We have seen that ZAo is a smooth manifold with tangent space

Ta0ZAo {âe W1'2(S,ad(B)) | d^â 0, dAoa 0}.

The differential of i/r at the point (/lo,0,0) is given by

df(Ao,0,Q)[â,Ç,rj] := â - dÄJ - *dAor).

Since FAo 0, it follows as in Step 2 from Hodge theory that d\jf {Aq, 0,0) is

an isomorphism. The implicit function theorem yields thus an open neighborhood
U of with

H0 e U c Im(V0 C As.

Finally, by continuity of the gauge action, there exists an open neighborhood V

of A with g~xV c U and hence AS{P) is open.

Theorem 4.18. Let P —> E be a principal G bundle of central type r e Z(g)
defined by (12) and denote m |||r||2. Let Aq e A(P) and denote by A^ the

limit of the the Yang-Mills flow A(t) starting at A0.

(1) Ao is px -stable if and only if A0Q is irreducible.

(2) A0 is px -polystable if and only if yM(Aof) m and A00 e Qc (^0).

(3) A0 is pr-semistable if and only if yAi(A00) m.

(4) A0 is px-unstable if and only if yM{Aoo) > m.
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Proof. It follows from (19) that m is a lower bound for the Yang-Mills functional

on A(P) and A g A(P) satisfies yM(A) — m if and only if *Fa x.
Thus the characterization for /xr-unstable and /x -semistable orbits follows from
Theorem 4.14.

Suppose next that A0 is /zT-polystable. Then exists go e GC(P) such that

Äo '= gfHAo) satisfies yM(Äo) m. The Yang-Mills flow line Ä(t) starting
at Ä0 is constant and it follows from Theorem 4.14 and Theorem 4.15 that

A^ g G(Äo) C GC(A0). Tire converse is immediate and this proves the criterion
for /iT -polystable orbits.

Suppose now that A0 is /xT -stable. Then the orbit GC(A0) has only discrete

GC(P) isotropy. Since A0 is in particular fxr-polystable, we have A^ e GC(A0).
Hence the infinitesimal action Lax : £ h» —cIa^ is injective and A^ is

irreducible. Suppose conversely that 4^ is irreducible. Since 4qo is a Yang-
Mills connection, it satisfies dA00*FA00 0 and hence Fax 0. This shows that

Gc(Aoo) is stable. By Proposition 4.17, the subset AS(P) of /xT-stable connections
is open and hence A(t) e AS(P) for all sufficiently large t. Since the notion of
/xT-stability is GC(P)-invariant, and since A{t) e GC(A0), we conclude that A0

is ßT -stable.

5. Maximal weights

Let G be a compact connected Lie group, let P -> E be a principal G

bundle and let x e Z(g) denote the central type of P defined by (12). It follows
from Lemma 2.2 that ßz(A) *Fa~ x defines a moment map for the action of
G{P) on A(P). The weights associated to the gauge action with respect to this

moment map are defined by

(30) tut04,£) := Um (*FeutA — r,£)
/ —>00

for every £ g 1L2'2(S, ad(P)) and A g A(P). Differentiating the right hand side

in time yields

(31) * Fe\tf a — T,£) (— * de\tiA * deit£A%>%) \\deitti A%W~l,2 - ®

and therefore wv(A,Ç) g E U {+00} is well-defined.

Remark 5.1. The weights can be defined when £ is only of Sobolev class W1'2.

The calculation above shows
/»CO

(32) Wz{A,I) (*Fa-t,Ç)+ Wd^JWhdî
Jo

and the right hand side is well-defined for f g W1'2(S,ad(i>)).
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We show in Proposition 5.2 and Lemma 5.7 that there exists a one to one

correspondence between finite weights wz(A,tj) < oo and

{Pq.So)

Ço e fl. Q — 2(£o)
Pq is a principal Q bundle

Pq C (Pc.Ja) is a holomorphic reduction

For the definition of the parabolic subgroup ß(£o) C Gc see Definition 2.10.

Using a deep regularity result of Uhlenbeck and Yau [UY], we note that for every
finite weight the section £ e £2°(£,ad(P)) is smooth provided A is a smooth

connection.

Using this geometric description, we show in Proposition 5.9 that the algebraic

stability of (Pc, Ja) is equivalent to the conditions on the weights wx(A,%)

required in the Hilbert-Mumford criterion. In the last subsection we prove the

moment weight inequality

wx(A^) < inf \\Px{gA)\\L2.
II£IIl2 geg'iP)

This shows that A is fir -unstable whenever there exists a negative weight. By
Proposition 5.9 the later is true if and only if (Pc, Ja) is unstable.

5.1. Finite weights. It is more convenient to describe the weights in the language
of vector bundles: We fix a faithfull representation G ^ U(n), identify G with
a subgroup of U(n) and denote by E := P xq C" the associated vector bundle

with structure group G. Consider the bundles

G(E), g(E), GC(E), qc(E) C End(£)

which consist of endomorphisms that in any trivialization are contained in G, g,
Gc and gc respectively. There are canonical identifications

Ç(P) ^ Ç(E) £2°(S, G(E)), ad(P) ^ g (E) c End(F)

and

Ç(PC) ^ gc{E) J2°(E, GC(E)), ad(Pc) ^ gc(£) C End(£).

We denote by Ag(E) the space of G-connections on E which is canonically
isomorphic to A(P). Assume for convenience that the invariant inner product on

g is obtained by restriction of the standard inner product

(£.??) := tr^rj*)

on u(n).
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Proposition 5.2. Consider the setting described above. Let A e Ag(E) be a

smooth connection and let e W1,2(E, g(E))\{0}. If wx(A,%) < oo, then the

following holds:

(1) Tlie endomorphism has constant eigenvalues X\ < < Xr. The

corresponding eigenspaces are unitary subbundles Dj and decompose E as

orthogonal direct sum E — D\ © • • © Dr.

(2) Each partial sum Ej := D\ ® • • • © Dj is a holomorphic subbundle of E.
This yields a holomorphic filtration

0 < Ei < E2 << Er — E.

(3) The weight of £ is given by the formula

r
wt(A,Ç) 2JÏ ^2 XjCfiDj) - (t,£)

7 1

This is Lemma 4.2 in [iRJ. Before giving the proof, we need to discuss the

regularity of weakly holomorphic subbundles.

Definition 5.3. Let E be a holomorphic hermitian vector bundle. A weakly
holomorphic subbundle of £ is a section n e W1,2(E, End(£)) satisfying
7T 7T2 7r* and (1 — 7t)3(7t) 0.

The following theorem is a special case of a more general result of Uhlenbeck
and Yau [UY]. They prove that weakly holomorphic subbundles of holomorphic
hermitian vector bundles over arbitrary Kähler manifolds correspond to torsion-
free coherent subsheaves. Since any torsion-free coherent sheaf over a Riemann
surface is locally free, this reduces to the following:

Theorem 5.4 (Uhlenbeck and Yau [UY]). If :re Wx'2fiZ,End(E)) is a weakly

holomorphic subbundle, then tc is the projection on a smooth holomorphic
subbundle E' C E.

Proof of Proposition 5.2. Let 0 £ e fkI,2(S, g(E)) be given and assume

wt(A,£) < oo. Since gc g©ig is per definitionem an orthogonal decomposition
we have

\\demM2 ^l|3ei^ll2 - ^ 11 Ad (>) o3,oAd (e~u^ (Ç)||2

^\\e^dA(l)e-^\\2

and from (32) follows
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f 1 f°°
(33) tuT(A,f) / {*Fa -T,%)d.vol?, + - / \\ex^dA{^)e~l,^\\2 dt.

Js 2 Jo

Denote T( := e'^(A) and let k > 1 be an integer. Then follows

3tr(ffc) \r(dAt(Sk)) ktr(Çk-ldA,(Ç))

and the Cauchy-Schwarz inequality |tr(HZ?)| < ||4|| ||5|| yields

f ||3tr(£*)|| dvoh<kf \\lk-l\\.\\dAtç\\dvoh
Jt, J s

mk-l\\L2-\\e^dA^)e-^\ IL2-

Since u;r(T,f) is finite, it follows from (32) that there exists a sequence fy —> oo

such that

(34) lim \\e^tjdA{g)e~^tj\\i2 0.
7 —>oo

Hence 3tr(ffc) 0 and it follows from the maximum principle that tr(ffc)
is constant. Denote the eigenvalues of if with repetition according to their

multiplicity by \\ < • < X'n. Then

tr(f*) (A',)* + + (A.'„)*

is constant for every k > 1. This is only possible if all the functions X'j are

constant and hence if has constant eigenvalues.
Let A] < ••• < Xr be the distinct eigenvalues of if. Since if is a normal

(hermitian) operator, the eigenspaces are pairwise orthogonal. Moreover, if Fy

is a small loop around the eigenvalue Ay in the complex plane, the orthogonal

projection n'j : E —* Dj onto the eigenspace of Ay is given by

n) := 2^i jv (zl _i^ ' dz'

These projections have regularity n'j e 1T1'2(S,End(£)) and satisfy n'j {nj)2
in])*.

We show next that the projections nj := jt[-\ h n'j : E Ej define weakly
holomorphic subbundles. By construction

(35) if — m \ iï\ -\ h mrnr

for some e R. Write dA(ïj) — [f;y] with respect to the splitting
E D\ © • • • © Dr. Then there holds

IJ
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and (34) implies 0 for i > j. Thus 3A (i£) is upper triangular and (35)

yields

(36) 0 (1 - Tij){'dA^)Tij ^2 mk(& - nj)dA(nk)nj
k=l

The Leibniz rule provides the formula

(1 - nj)dA{itk)nj <

(1 - 7Tfe)(l - 7tj)dA(jtj) for k > j
(1 - Ttj)dA{TZj) for k j
(1 - 7ij)(ßA(jrk)- irkdA(Ttj)) for k < j

This implies together with (36) the formula (1 — jtj)dA(jtj) 0 by induction

on j Hence tij defines a weakly holomorphic subbundle and Ej is smooth by
Theorem 5.4. This proves the first two parts of the theorem.

Write dA with respect to the splitting E — D\ © • • • © Dr as

dA

9^1 ^12 • • A\r ^

0 dA2 A2r

\ 0 0 9,4,. y

where Aij e and dAj is the Cauchy-Riemann operator corresponding

to the induced unitary connection Aj G A(Dj) A(Ej/Ej-1). Decompose
9.4 9,4+ + A0 with

9,4+

dAl 0

0 dA2

0 \
0

^ 0 Ai2
0 0

AQ

V 0 o dAr 0 0

We claim that ell^(A) converges uniformly to A+ A\
In fact

3,4, - 9.4+ el,^A0e"lti

A\r ^

A2r

© Ar as t —> oo.

and

[e'^A0e lt%j -ie,{Xi Xj*(A; À,)/!/

decays exponentially to zero, since A0 is strictly upper triangular. This in turn

implies that elt^A converges to A+ and hence
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r
Wt(A,%) lim (*Fei,iA^) {*Fa -r,l) J^{*FAj £) - (t,£)

/ —>OQ L '
j=i

ViAj f ü(FA .)dvolz - (r,£)
;=i

r

^XjCi(Dj) - (r,£).
7 1

Corollary 5.5. Suppose tj e L!0(£,g(£)) yields a finite weight wr(A,%). Then

the limit
A+ := lim

t->oo

exists in Ag(E). Moreover, the splitting E £>i © • • © Dr is holomorphic with

respect to A+ and on each factor the holomorphic structure agrees with the one

induced by the isomorphism Dj Ej /£/-i.

Proof. This follows directly from the proof of Proposition 5.2.

Remark 5.6. The Corollary shows that T+ e QC{A) if and only if the holomorphic
filtration determined by f splits holomorphically.

We reformulate the characterization of the finite weights in intrinsic terms. Let
A e A{P) Ag(E) and suppose that £ is a smooth section of ad(P) g(£)
which yields a finite weight wr(A,t;). By Proposition 5.2 this defines a

holomorphic filtration

0<£i < E2 < < Er E

and there exist unitary trivializations of this filtration such that £ £0 where

£o —idiag(Ai,... Ar) is a block diagonal matrix with A! < A2 < ••• < Ar.
This trivialization yields a reduction Pk(£) C P to K(£o) := Cg(£o)- Note that

£o gives rise to a constant central section of ad(Pjç-(j)) C ad(P) and agrees with
£ in adfP). We can rewrite the formula for the weight as

wr(A,l;):= J {*Fa+,Ç) dvol-z - (r,£)

where A+ e A(Pk^)) is a /A(£)-connection. It follows from Chern-Weyl theory
that the right hand side does not change when we replace A+ by another K(£)-
connection. The weight depends therefore only on the reduction Pxtg) C P and £.
The complexification yields a reduction Pf^ Pl(Ç) C Pc to the Levi subgroup
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L(£o) C Gc (see Definition 2.10). The reduction Pl(%) C Pc is holomorphic if
and only if 3a takes values in l(£0) and this is the case if and only if the filtration
determined by Ç splits holomorphically. In contrast, the extension L(Ço) C Q(Ço)

yields a reduction Pg(f0) C Pc to the stabilizer of the filtration determined by
£o within Gc. This reduction is always holomorphic, since 3a is upper block

triangular.
Conversely, let Pq c Pc be a holomorphic reduction to a parabolic subgroup

Q Q(£o) C Gc. This yields a canonical reduction Pjç- c P to K — Cg(£o),
since Gc/ö(£o) G/Cg(£o)- Since £o is contained in the center of K, it
gives rise to a constant section in ad(P^) and its image under the embedding

ad(P^) c ad(P) yields a section £ e f2°(E,ad(P) which gives rise to a finite

weight wr(A,%). We summarize our discussion in the following Lemma.

Lemma 5.7. Let P —> E be a principal G bundle, let A e A(P) èe a smooth

connection and let Pc := P xq Gc denote the complexification of P endowed

with the holomorphic structure determined by A. There exists a one-to-one

correspondence between

{£ e £2°(E. ad{P)) \ wz(A, £) < oo}

and
Ço£0, Q <2(£o)

Pq is a principal Q bundle

Pq C Pc is a holomorphic reduction

Every reduction Pq C Pc yields a canonical reduction Pk C P to K Cg(£o)-
The toral generator £o yields a constant section of ad{Pjc) and its image in ad(P)
yields f. Moreover, the weight is given by the formula

(PQ,&)

wr(A, f) J (*Fb - t,Ç) dvols

for any connection B e A(Pk)-

Proof. This follows directly from the preceding discussion.

The next lemma describes how the weights behave under an extension G ^ H
of the structure group.

Lemma 5.8. Let H be a compact connected Lie group and fix an invariant
inner product on its Lie algebra f). Suppose that there exists a monomorphem
G ^ H which identifies G with a subgroup of H and assume that the invariant
inner product on g is obtained by restriction of the one on 1). Let P -* E be

a principal G bundle of central type r e Z(g) defined by (12) and denote by

Ph := P xc H the associated H bundle.
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(1) The central type xh £ Z(f)) of Ph is the image of x under the orthogonal
projection

(2) Let A e A(P), let £ e Q°(T,.ad(P)) and denote by £# £ S2°(2, ad(Puj)
the image of £ under the embedding ad(P) C ad(Pn). Then

wr(A,tj) wzh(A,Çh) + / {xH - r,£0) dvoh-
J s

(3) Let A e A{P), let £# £ ST°(E, ö<7(F//)) be a section with wZH(A, £) < oo

and denote by £ e fi°(E,ad(P)) the image of £# under the orthogonal
projection ad(Pn) — ad{P). Then

wx{A,Ç) wTH(A,tjH) + J (xH - r,£) dvols-

Proof. For the first part, note that h Z(ïj) © [h, f)] yields an orthogonal
decomposition with respect to any invariant inner product of t). The orthogonal
projection of r onto Z(f>) does therefore depend only on the embedding of G

into PI and it is easy to verify that it satisfies (12) for Ph
By Lemma 5.7 there exists £0 £ 0 and a reduction Pk C P to a principal

K — Cg(£o) bundle such that £ is the image of the constant section £0 under
the embedding ad (Pk) C ad (F). Moreover,

wr(A,Ç) J (*Fb — x, £) dvols

for any connection B e A(Pk) Define K C#(£o) and F^ := PkXrK C F#.
Then £# agrees with the image of £0 under the embedding ad(F^) c ad (Ph)
and Lemma 5.7 yields

f (*Fb - tä,£O)

for any connection B e A(Pp). In particular, for B e A(Pk) C A(Pg), we get

u>t04,£) - wt„G4,£) J {xH -x,Ço) dvol-z

and this proves the second part.
The third part follows by a similar argument. Note that the proof of Proposition

5.2 implies that there exists a connection B A+ e A(P) n A(P^) for the

reduction Fg c Ph associated to £#. For such a connection (£#. FB) (£, FB)
holds and the claim follows as in the second part.
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5.2. Weights and algebraic stability. The following proposition characterizes
the (algebraic) stability of the holomorphic principal bundle (Pc, Ja) in terms
of the associated weights wx(A,Ç).

Proposition 5.9 (Characterization of Stability). Let P be a principal G bundle

of central type r e Z(g) defined by (12). Let A e A(P) be a smooth connection
and let Pc := P xg Gc be the complexified principal bundle endowed with the

induced holomorphic structure Ja-

(1) (Pc, Ja) is stable if and only if wx(A,^) > 0 for all £ e TL1,2(E, ad(P))
which are not constant central sections.

(2) {Pc, Ja) is polystable if and only if wx(A, f) > 0 for all £ e Wl'2(Yi,ad(P))
and whenever wx(A,Ç) 0 the associated (smooth) reduction Pl(Ç) C

Pq(%) C Pc is holomorphic.

(3) (Pc, Ja) is semistable ifand only if wx(A, f) > 0 for all % e Wl'2{Z,ad{P)).

(4) (Pc,Ja) is unstable if and only if there exists £ e W1'2('Z.ad(P)) with
wx(A, !•) < 0.

Proof. Using the geometric interpretation of the finite weights in Lemma 5.7 we

can reduce the proof to a lemma of Ramanathan [Ram]. The proof will be given
on page 129 below.

Reduction argument. We reduce the theorem to the case where Z(G) is discrete
and r 0. Recall that the invariant inner product on g yields the decomposition
g Z(g)©[g, g] of the Lie algebra into its center and a semisimple subalgebra. The

center yields a trivial Z(g) subbundle V C ad(P) and its orthogonal complement
can be identified with ad(P/Z0(G)).

Lemma 5.10. Assume the setting of Proposition 5.9. Let tj e Q.°ÇE,ad(P))
with wx(A,^) < oo and decompose £ £z + i)ss with respect to the splitting
ad(P) V © ad(P/Zo(G)). Then

wx(A,l) w0(À,^s)

where A e A(P /Z0(G)) denotes the induced connection on P/Z0(G).

Proof By Lemma 5.7 exists reduction P% c P and an element which

gives rise to a constant central section in ad(Px) and such that £ is the image
of £0 under the embedding ad[Pk) C ad(P). Decompose £0 £o +
respect to g Z(g) © [g,g]. Then ^ yields £z and tj yields Çss under the

embedding ad(/7f) c ad(P). By Lemma 5.7 the weight is given by
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wx(A,Ç)= f (*Fb - t,Çss) dvolx + [ (*FB - x.%z) dvols.
Jt, J s

for any connection B e A(Pk) The second integral vanishes by (12) and in the

first integral yields

[ (*Fb - rfiss) dvoh f (*FB,tjss) dvolx — w0(Ä, £").
JT. JT,

since r e Z(g) is orthogonal to [fl.g]. This completes the proof.

The main argument. The following result is a reformulation of Lemma 2.1 in

[Ram].

Lemma 5.11. Assume the setting of Proposition 5.9 and suppose in addition
that Zo(G) is discrete and r 0. (Pc,Ja) is stable (resp. semistable) with

respect to Definition 3.2 if and only if u>o(T,£) > 0 {resp. uto(T,£) > 0) for all

t e Wl>zfiZ,ad{P)).

Proof. Let £ e £2°(£,ad(P)) with w0(A,Ç) < oo be given. By Lemma 5.7 exists

a reduction Pk C P and an element £0 £ 0 such that K Cg(£o) and £ is the

image of £o under the embedding ad(Px) c ad(P).
Let T C G be a maximal torus whose Lie algebra contains £o and let

R+ {ai,... ,ar} be a system of simple roots with respect to T whose Weyl-
chamber contains £o • Recall that ay iaj with ay e Hom(t, M) and define tj e t
by ay (tj, •). The elements t\,..., tr et defined by (7) yield a basis of t and

£o has the shape
r

to — r. xj tj
7 1

with Xj >0. Note that tj lies in the center of the Lie algebra of K Cg(£o)
when xj >0. Then tj gives rise to a constant central section of ad (Pk) and

r
(37) w0(A,Ç) ^2lxjw0(Ajj).

7 1

Fix 1 < j < r with xy > 0 and denote Qj := Q(tj). This is a maximal parabolic
subgroup of Gc which contains <2(to) and the extension Pqj := Pq^xq^) Qj C

Pc yields a maximal parabolic reduction. Let x ' Qj C* be the determinant

of the action of Qj on its Lie algebra and denote by j : qj —* C the induced

map on the Lie algebra. Chern-Weyl theory yields the relation

Cl(ad(Rß,)) ^ f X(pB)
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for a connection B e A(Pk). For rj e qj the value of x(rj) is given as the trace

of ad(rç) := [îj, •] acting on

(38) qj — t © 0«.

aeRfjtj)

where R(tj) is defined by (8). This decomposition is unitary and by definition
of the roots we have ad(t)ea a(t)ea for te t. This shows

(39) x(v) X
aeR(tj)

for all rj et. Since / vanishes on [qy.qy] it vanishes on all root space g« with
{a,—a} c R(tj). These are the roots in R(tj) which produce the Levi subgroup

L(tj). The remaining root spaces ga with a e R(tj)\R(tj) form a nilpotent
subalgebra. This shows that (39) remains valid for all r/ e qj if one extends the

roots by complex linearity over tc and by zero over the root spaces.
Denote by R+ the positive roots and by R~(tj) R(tj)\R+ the negative

roots whose root spaces are contained in qj. Then x — Y\ + 72 with

yi a, y2 := ^ a
a<=R+ aR~(Jj)

and

(«ï.yi>= Ui.ïa) kil2 + X! (tiJa)
aeR+ aeR+\{ctj}

holds for every simple root a,. The root reflection

2(t, tj)
sj : t->t, Sj(t):=t--^-tj

restricts to a permutation of ^+\{ay }. Indeed, any root has a unique representation
ta Ylk=i cktk and all coefficients happen to have the same sign. Applying the

reflection sj changes only the coefficient cj and thus sj (a) remains positive if
Ck > 0 for some coefficient k ^ j. Using this symmetry we conclude

(40) (a;,yi) |fi|2.

A similar argument shows for i ^ j
(41) (itXi,y2)= X (tiAci) ~\ti\2 + X (tiAa) =-\ti\2-

<XR-(tj)

This shows x{t{) 0 for i / j. As a general property of root systems (see

[Kna] Lemma 2.51) there holds (tj,ti) < 0 for distinct simple roots a,,a.j and

thus
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(42) x(tj) \tj\2+ Y (tj>ta)>0
ueR-(ij)

Combining (40), (41) and (42) we conclude

X(t) im(tj,t)

for some m > 0. Hence

(43) ci(ad(Pß,)) ^
Suppose now that Pc is stable (resp. semistable). Then the left hand side

in (43) is negative (resp. nonpositive) and (37) implies u;o(/4,Ç) > 0 (resp.

Wo(A,$) — 0)- Conversely, Lemma 5.7 show that every holomorphic reduction

Pq C Pc to a proper maximal parabolic subgroup Q(Ç0) C Q is induced by

some £ 6 fi°(S,ad(P)) with wq(A,^) < oo. Lemma 2.15 shows that in (38)

exactly one coefficient xj does not vanishes. Hence (43) implies that ci(ad(/>g))
is negative or vanishes if and only if u;0(H,£) is positive or vanishes respectively.
This establishes the converse direction and completes the proof of the lemma.

Completion of the proof.

Proof of Proposition 5.9. We may assume by Lemma 3.5 and Lemma 5.10 that

Z0(G) is discrete and r 0. The stable and semistable case follow then from
Lemma 5.11 and the unstable case is equivalent to the semistable case.

Assume that Pc is polystable. Then there exists a holomorphic reduction

Pl C Pc to a Levi subgroup L c Gc and Pl is a stable L bundle. Let
Ç e £2°(E,ad(P)) with wq(A,%) 0 be given. By Lemma 5.7 exists £o e 0 and

a reduction Pr c P to a principal K Cg(£o) bundle such that £ agrees with
the image of £o under the embedding ad{Pk) C ad(P). Using the notation from
the proof of Lemma 5.11 above, write £o with respect to a system of simple roots

as
r

& Yj xj*j
7 1

with xj >0. Since Pc is in particular semistable, the proof of Lemma 5.11 shows

that iu0 C<4, f) 0 if and only if

xj > 0 c\ (ad(PGy.)) 0

where Qj := Q(tj). We may assume (after conjugation) that L L(t]o) for
some ?7o e g and rjo is contained in the Weyl-chamber determined by our choice

of simple roots. If L is not contained in Qj, then Qj :=Lfl Qj is a maximal

parabolic subgroup of L and we have an induced reduction Pq'. C Pl Since L
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and Gc are reductive, the Lie algebra bundles ad(Pl) and ad(Pc) carry a non

degenerated symmetric C -bilinear form. Hence they are both self-dual and have

vanishing first Chern-class. This shows

where the last step follows from the stability of Pl We have thus proven that

L c Qj whenever xj > 0 and this yields L c L(£0)- Since the reduction to L
is holomorphic, so is the reduction to L(f0)-

Assume conversely, that all weights are nonnegative and if £ e Œ°(£, Pc) is

a section with iu0(/4,f) 0 then 7jl(ç) C Pc is a holomorphic reduction (where

Pm) and Pk(Ç) is determined by Lemma 5.7). It follows from Lemma
5.11 that Pc is semistable. If Pc is in fact stable, then we are done. Otherwise
there exists a vanishing weight uio(A,£) 0 and by assumption this yields a

holomorphic reduction Pl© C Pc. In particular A restricts to a connection on

Pk(£) C P and Pa:© is again of central type 0. For the later claim let ijeg be

contained in the center of the Lie algebra of K and consider its image rj' under
the embedding ad(Pk) C ad(P). Then follows

for any connection B e A(Pk)- Replacing r] by —rj shows that this expression
must vanish and hence Pa:© is of central type 0. Now Lemma 5.11 shows

that Pl© is again semistable. If Pl© is not stable, then there exists f e

f2°(S,ad(P^)) with ui0(A,f) =0. We can consider f as section £' of ad(P)
which then satisfies wo(A,£') 0 and thus yields a strictly smaller holomorphic
reduction Pl($') C Pl(£) If we replace f by £' and rerun the argument from above

we obtain after finitely many iterations a section £ which satisfies wo(A,^) — 0

and yields a stable holomorphic reduction Pl(Ç) C Pc

Let / : L -> C* be a character. We need to show ci(x(Fl©)) 0-

Decompose J2j=î xj h as above and denote

Since x ' I(£) C vanishes on [[(£), 1(^)], it vanishes on all the root spaces $a

belonging to l(^) and the dual vectors ta et. In particular, x vanishes on the

simple roots tj with j £ S and has the shape

Cl(ad (PQj)) -Cl(ad(Pc)/ad(0y)) -Cl(ad(PL)/ad(ß;))

ci(ad(Psp) < 0

S:= {j I xj > 0}.

x(v)
jes

for some rj el. Chern-Weyl theory yields
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che*.®» p-v
for some connection B e A{Pk{%)) We claim that each summand vanishes

separately in the last expression. This follows from the assumption

0 w0(A,Ç) — y^Xj / (*FB,tj) dvol-E y2xj / {*FB,tj) dvol-z

=i jes

iu0(y4,f/) J (*Fß,tj) dvols > 0

y=l yes

and

since Pc is semistable.

5.3. The moment weight inequality. The moment-weight inequality provides
a lower bound for the norm of the moment-map px(A) *Fa — r on the

complexified orbit ÇC(A).

Theorem 5.12 (The moment-weight inequality). Let P -+ E be a principal G

bundle of central type x e Z(g) defined by (12). Let A e A{P) be a smooth

connection and £ e Wl,2{Z,ad(P)). Then

(44) < inf II * FgU) - r||L2.
7 g£Qc

The moment weight-inequality is essentially proven by Atiyah and Bott
([AB83], Prop. 8.13 and Prop. 10.13). They explicitly determine the infimum
of the Yang-Mills functional over GC{A) in terms of the Harder-Narasimhan
filtration of the holomorphic vector bundle ad(Pc). It follows from the proof
of the dominant weight theorem (Theorem 7.1) in the next section that the same

description yields the supremum over the left-hand side whenever it is positive.
We provide a different approach following the arguments in [SGR] for the finite
dimensional case which are essentially due to Chen [Che2, Chel] and Donaldson

[Don4],

Proof. We reduce the proof to the case where Z(G) is discrete and r 0.
Denote by À e A(P/Z0(G)) the induced connection on the quotient bundle
and decompose £ %ss + £z as in Lemma 5.7. Let g e ÇC(P) be given and

decompose Fsa Fss + Fz in the same way. Note that Fg^ — Fss. Suppose
that the moment-weight inequality is satisfied on P/Z0(G), i.e.
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We may assume wr(A,tj) < 0. Then Lemma 5.7 implies

_wt(A|) < H „ < H H

llflh " llf'lb " "
and this completes the reduction argument.

Now assume that Z(G) is discrete and r 0. Let £ e W1,2(S, ad(P)) with
Wo(A,Ç) < oo. Then f is smooth by Proposition 5.2 and the limit

(45) lim e1'^A =: A-

exists by Corollary 5.5.

Let go — u0elvo e GC(P) be given and define q(t) e 1F2'2(E, ad(P)) and

u{t) e G by the equation
giff _ giiîfi),

From this follows pointwise the estimate

(46) H

To see this, denote by it : Gc Gc/ G the canonical projection and recall that

Gc/G is a complete simply-connected Riemannian manifold with nonpositive
sectional curvature. For a fixed time t and z e E define p := n(e"^z^) and

q Tc(elr,<-t'z^). Then

y : [0. 1] -* Gc/G, y(s) := n{emz)e-isr>^z))

is the unique geodesic from p to q in Gc/G of length ||po(z)||. Since the

exponential map on a Riemannian manifold with nonpositive curvature is distance

increasing, this yields

\\n{t,z)-t^{z)\\ < distGc/G(p,q) ||7o001l

and hence (46). With this estimate we get

7(0
llfllz.2 Mt)\\i L2

tÇ-rj(t) 7(0 7(0
t\ML2 m\L2 Mt)\\L2 L2

< 2

11^-7(6)11^2

Ölfilm

H701L2

'm\\L2

+ Mt)\\L2-m\\L2
L2

and hence

(47) lim
t->OO

7(0
II7(01Il2 ll?lli

0.
L2
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By (31) the map

s I"» {*Feisu-UugoA,u~lw)

is nondecreasing in With the relation elu 'vugo — u~lefollows

-\\*Fg0A\\L2 <j^J*FSoA,u-lr,u)<^[*Felu-lrtUsoA,u-lr,u)

1

TTTj

<

Ml2 ueA 11 ML2

{*FeitÉA, f) / 7]

+ *Feit^A
m\L2 \ e A M\L2 imh

It follows from (45) and (46) that the right and side converges to f°r
t -> oo and this proves the theorem.

6. The Kempf-Ness functional

Let G be a compact connected Lie group and let P -» £ be a principal G

bundle of central type r 6 Z(g) defined by (12). Let A e A(P) be a smooth

connection. The Kempf-Ness functional associated to A is the G{P)-invariant
functional

(48) <S>A : QC{P) -» E, <S>A{e*u) [ (*Fe-ulA - r, -Ç) dt.
Jo

We show in Lemma 6.1 below that the derivative of <&a is given by

(49) aA(g;g) -{*F'iA - r, Im(g~' g)).

The asymptotic slope of <PA along the geodesic ray t e~lt% yields the weight

wr(A,lj). This is related to the stability of the associated holomorphic principal
bundle (Pc, JA) by Proposition 5.9. On the other hand, it follows directly from

(49) that g e GC(P) is a critical point of ®A if and only if *Fg-iA x. The

analog of the Kempf-Ness theorem in classical GIT is Theorem 6.2 below. It
characterizes the different notions of pT -stability in terms of the global behaviour

of <PA and thus provides a link between the algebraic and the symplectic notions of
stability. We can deduce from this the Narasimhan-Seshadri-Ramanathan theorem

in the second subsection.
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6.1. The generalized Kempf-Ness theorem.

Lemma 6.1. Let P —> S k û principal G bundle and define §>A : QC{P) —> R.

by (48).

(1) The derivative of <&A is given by

o<A(g-,g) -( * - r,I/n(g~lg)).

(2) Let g, h ÖC(T), r/ze/î

$.4 (g) - ®A(h).

Proof. Let g e QC(P), g e TgQc(P) and let u e G{P) be given. Then

aA(gu~l, gu'1) (* Fug-i A,lm(ug~lgu~1))

(u * Fg-iAu~l,uIm(g~lg)u~l)
<*A(g, g)

shows that aA is invariant under the right-action of G(P) and hence descends

to a 1-form on GC(P)/G(P)-
We claim that aA is closed. Denote by n : Gc -» Gc/G the canonical

projection and let gi dn(g)gi% and g2 := dn{g)g'ir] be two tangent vectors

in Tn{g)Gc{P)/G(P). Then

daA(g;gi,g2) dotA{g\g2)[g\) - daA(g; gi)[g2] - aA(g\ [gi,g2Ï)

We used in the second step that [gi,g2] e TgG(P) is tangent to the real gauge
orbit and thus lies in the kernel of otA(g\-).

Denote for p,q e GC(P)/G(P) by [p.q] the geodesic segment connecting p
to q. Tien (48) can be reformulated as

d{Fg-iA-r,ri)[giÇ\-d{Fg-iA-T,l)\gir)\

(dg-iAdg~lAl'rl) ~ (d*-iAdg-iAri,Ç) 0.

ur(l),7r(g)]

For h G GC(P) we have oth-iA(h~l g, h~lg) =aA(g,g) and hence

(50)

Since aA is closed we have
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/ O-A / oca - I ocA - ^(/i)
J[>(A),jr(g)] J[jr(l),:7r(g)] J [jr(l),jr(/i)]

and this establishes the second part of the lemma.

Using the second part, we can can reduce the proof of the first part to the

case g 1 and in this case the claim follows directly from (48).

The difficult part of the following theorem is the stable case. The proof of this

case is due to Bradlow [Bra] and Mundet [iR] in the context of more general
moduli problems.

Theorem 6.2 (Generalized Kempf-Ness theorem). Let G be a compact connected

Lie group, let P —> S be a principal G bundle with central type x e Z(g) defined

by (12) and let A e A(P).

(1) A is -stable if and only if GC{A) has discrete GC(P) isotropy and for
every R > 0 such that

Mr := {£ e W2>2CZ,ad(P) 11| * Fe-*A - x\\L2 < R}

is nonempty, there exist constants C\,C2 > 0 such that

(51) < ci||£||Lco + c2 for all % e Mr.

(2) A is jAr -polystable if and only if has a critical point.

(3) A is pr -semistable if and only if <£>a is bounded below.

(4) A is p.z -unstable if and only if A>a is unbounded below.

Proof. We consider both implications of the stable case in the following lemmas

first. The proof will then be given on page 139 below.

Lemma 6.3. Assume the setting of Theorem 6.2. Suppose that the orbit GC(A) C

A*(P) contains only irreducible connections and that there exist C\,C2,R > 0

such that Mr is nonempty and (51) holds. Then exists £o £ Mr such that

(52) 0^(e''Ço) < ^A(e^) for all Ç e Mr

and B := e '^°A satisfies Fr — 0.
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Proof. Suppose first that £o e Mr satisfies (52). Let B := e '^°A and let

i] e W2'2CE, ad(P)) be a solution of the equation

Abt) — dßdBil *Fb

which exists since B is irreducible. Then there follows

d
dt

A>A(e^°elr") =aA(e^°,e^°i rj) ~{*FB,rj) -\\dBr)\\2L2
t=o

and

d

dt
d

\*Fe-*we- =2(*Fß,* — Fe->IIB
t=0t=0

2(*FB. *dB * dBrj) —2(*Fb, ABrj) —2\\ * FB||22

Now decompose e^0eir,t e^lu. Then the calculation shows that for sufficiently
small t we have e MB and ^(e1^1) < ^(e1^0) with equality if and only if
FB — 0. Since (52) yields the converse inequality, we have indeed equality and

hence FB 0.

It remains to prove the existence of a minimizer £o £ Mr. Let {§T} C Mr
be a minimizing sequence satisfying

(53) lim $>A(e^k) — inf <$>A(e^).
k—>oo

By definition of Mr, the curvature Fe%kA is uniformly bounded in L2. Hence

the Uhlenbeck compactness theorem asserts that there exists uk e G{P) such that

Aj'c u/çe'^A converges weakly in W1'2. For gk ukel^k the expression

ÜAk -3A gk^Agk

is thus uniformly bounded in W1'2. Since ^ is uniformly bounded in L°° by
(51) and (53), we conclude that gk and %k are uniformly bounded in IL2'2.

Hence, after taking a subsequence, there exists £o e Mr such that %k converges
to £o weakly in W2'2 and strongly in Wx'p for 2 < p < oo. From this follows

lim {*F -i,tskA,-$k) {*Fe-itê0A,-Ço)-
k —>-oo

Hence lim^oo $>A{e^k) <h^(e^°) and £o satisfies (52).

Lemma 6.4. Assume the setting of Theorem 6.2. Suppose that Zo(G) is discrete,

x 0 and wo(A,t;) > 0 for all nonzero £ e Wl'2(Jl,ad(Pf). Let R > 0 be

given such that Mr is nonempty. Then exist constants c\, c2 > 0 such that (51)

is satisfied.
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Proof. The proof consists of several steps.

137

Step 1. 77lere exists C > 0 such that

ll£|lc° - C(lltllz.i + l) for aM £ e Mr.

We observe that

2(*FeièA-*FA,Ç)=2 [ (AeitèAÇ,Ï) dt A\M2+2 f1 \\de»tj\\2dt
Jo Jo

> A||ri|2>2||Ç||A||^||

and hence

(54) A||f||< H *Fe,ê/1-*7<4|1.

An argument due to Simpson ([Simp], Prop 2.1) shows that this implies the claim.
For this denote

/:£-+ R, /(z) := ||£(z)||.

For z0 e £ choose a local coordinate which identifies z0 with the origin in

C. Let Bro(0) be a ball contained in the image of this local coordinate and let

r (0,r0). Let w,h be solutions of

Aw || * FeiçA - *FA\\, w|9b,.(o) 0 Ah 0, h\dBr(o) /lß, (o)-

Here we consider the Laplacian of £ which agrees with the Laplacian on C up to

a positive factor. Hence (54) and the maximum principle show that f — w —h < 0

and the mean value theorem yields

m -w(o)< h(o) -L f f.
2n>~ J dB,- (0)

Moreover, by definition of Mr and elliptic regularity there follows

k(0)| < C\\w\\W2.2 < C\\Aw\\l2 < C(|| * Fa\\l2 + R).

Hence

f(z0) <C (r + - f /V
V >' JdB,-(0) /

Now choose r e (r0/2,r0) such that ^ fdB, (o) f — II/IIl1 holds. Then follows

f(zo) < C (^o + ^II/IIl' •

Since £ is compact, we can perform this argument within finitely many charts

and choose the final constant C to be independent of zq
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Step 2. liiere exist C\,C2 > 0 such that

llfllii < ci^(e'?) + c2 for all t; e Mr.

Suppose the claim is false. Then exists Q > 0 and ^ e Mr such that

lim C/c oo, lim ll&H^i oo and ||^||Li > Ck$A(el*k).
k^-oo k—>oo

It follows from Step 2 that rçk := —tfc/||£jt||£i is uniformly bounded in L°°.
Denote := ||^||l2. Then

1 ^(e'^) f1 1 /**

The integrand is increasing by (31). Hence, for any fixed t > 0 follows

(55) -7- > —-{*Feitnk Vic) + j-{fa, *lk)-
c-k Ik Ik

It follows from (33) that

^^'•"ikA-Vk) {*FA,r]k) + fjo \\e'r'kSds
and, since 77k is uniformly bounded in C°, we conclude that dAhk is uniformly
bounded in L2. Since A is irreducible and ||9^?7fc||2 ^\\dArjk\\2 this shows

that r]k is uniformly bounded in W1-2. Hence, after taking a subsequence, there

exists 77 e Ik1'2 n L°° such that r],t -> 77 converges weakly in W1'2 and strongly
in Lp for every 1 < p < 00. In particular ||7/||li 1 shows that 77 / 0

and

lim (*FeitnkA, Vk) {*FeitnA, T])
k->oo

Now (55) implies (*Feitr,A,r]) —
0 and as t -> 00 we obtain w0(A,rj) < 0. This

contradicts our assumptions and proves Step 2.

Step 3. There exist c\,c2 > 0 such that

||£IU°° < ci®A(e1*) + c2 for all Ç e Mr.

This follows directly from Step 1 and Step 2.
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Proof of Theorem 6.2. Suppose A is /xT-stable. Then Z0(G) is discrete, r 0

and GC(A) has discrete GC{P) isotropy. We claim that wo(A,Ç) > 0 for all

f e W1'2(S,ad(P)). By Proposition 5.9 this condition is equivalent to the stability
of the induced holomorphic structure Ja on Pc := P xg Gc. In particular, this

condition is invariant under the action of QC(P) and we may assume that FA — 0.

Then (32) shows
nOO

wo(A,Ç)= \\deittAÇ\\2L2 dt > 0
Jo

since A is irreducible. Thus Lemma 6.4 applies and shows that the estimate (51)

is satisfied. The converse direction follows from Lemma 6.3.

The characterization of the /xT-polystable case follows directly from (49).
In the following let A(t) denote the solution of the Yang-Mills flow

(22) starting at A and let A^ := lmp-^ A(t). Suppose A is /zT -unstable.

Theorem 4.14 and (19) show that

\\FgA~r\\L2 > ||FAoo -t\\L2 c > 0

for all g e ÇC(P). Now define g(t) by (24). Then A(t) — g(/)_1(d) and

— <$A (g(t)) aA(g(t),g(t)) -(*Fm-x,*Fm)
-II * Fm -x\\2L2 < -c

where the penultimate step follows from (12). This shows that is unbounded

below.

Suppose conversely that A is /xT -semistable. It follows from Theorem 4.14

and (19) that A^ is a global minimum for the Yang-Mills functional on A(P)
and *FAoo r. It follows from the Lojasiewicz inequality (Lemma 4.5) that

there exists y e [|. 1) and C.T > 0 such that

II * Fm -t\\2L2= 2\yM(A{t))-yM(A00)\

< C\\d*(t)FA{t)\VL2

< C\\d*wFA{t)\\2L2(yM(A(t)) - yMiAcc))1-2?

^(yMiAf^-yMiAoo))2'27
for all t > T. Since the right hand side is integrable, the solution g(t) of (24)
satisfies

nOO

lim <L4(g(f)) - / || * FA(t) ~x\\2L2 dt a > -oo.f^oo J0

We claim that a is a global minimum for <PA. For this let g0 e GC(P) and let

g(t) be the solution of (26) starting at go. This is a negative gradient flow line
of $,4 and satisfies



140 S. Trautwein

^<MiK0) -aA(g(t),g(0) "II * Fg(t)-iA ~x\\2L2 < 0.

Define rj(t) e W2'2ÇZ, ad(P)) and u(t) e Q(P) by the equation

g(t) exp (ir](t))u(t) g(t)

and

^:[0,1]^SC(P), ßt(s) g(t)eis^\

Then (4>a o ßt) satisfies

d

ds
($4 ° ßt)(ß) aA(g(t), 3Sßt(s)) —{*Fg(t)~lA ~ T l)

s=0

- ~ll * Fg(t)~iA - A\L2 II>?(0IIL2

and

^(®A o ßt){s) * Fe-- t, ??(/))

[dXSildAs.Mt),r](t)) \\dAs,r,m2L2 > 0

where we abbreviated := In particular, o is convex
and since 77(?) is uniformly bounded in L°° by Proposition 4.12 there exists a

constant C > 0 such that

$.4(g(0) ^ MS«)) ~ CHFg(t)~iA ~ r\\L2.

Since T^Cgo) > ^(ÜCO) f°r a'' t and the right hand side converges to a as

t —> 00 we conclude Ta (go) > a. This establishes the claim and completes the

proof of the theorem.

6.2. The Narasimhan-Seshadri-Ramanathan theorem. The Narasimhan-Se-
shadri-Ramanathan theorem relates the notion of stable objects in Definition 3.2

and Definition 3.7. This was first proven by Narasimhan-Seshadri [NS] in the

case G U(n) and later extended by Ramanathan [Ram] to general compact
connected Lie groups. Both of these proofs are entirely of algebraic geometric
nature.

In the case G U(n) Donaldson [Donl] gave an analytic proof of this result.

His argument uses the moment weight inequality and an induction argument
which is based on the Harder-Narasimhan filtration. We present a different proof
which is due to Bradlow [Bra] and Mundet [iR]. The main step in their proof
consists of establishing the stable case in Theorem 6.2.
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Theorem 6.5 (Narasimhan-Seshadri-Ramanathan). Let G be a compact
connected Lie group and P —» E a principal G bundle with central type x G Z(g)
defined by (12). Let A G A(P) and consider the complexified bundle Pc := PxqGc
with the holomorphic structure induced by A. Then (Pc, Ja) is stable if and only

if there exists a complex gauge transformation g G GC(P) such that *FgA t
and the kernel of

contains only constant central sections.

Proof. We may assume by Lemma 3.5 and Lemma 3.9 that Z0(G) is discrete

and r 0.

Suppose there exists g g Gc(P) such that *FgA 0 and gA is irreducible.
Then (32) shows

for all 0/^G Wl'2(Z, ad(P)) and by Proposition 5.9 (Pc, JgA) is stable. Since

the notion of stability is GC(P) invariant, (Pc,Ja) is stable.

Assume conversely that (Pc,Ja) is stable. For every g e GC(P) then

(Pc, JgA) is stable as well and Proposition 5.9 implies wo(gA,£) > 0 for every
nonzero £ G 1L1:2(L,ad(P)). In particular, gA is irreducible and Lemma 6.4 is

applicable and shows that A is p0 -stable.

The dominant weight theorem strengthens the moment weight inequality
(Theorem 5.12). It shows that there exists (up to scaling) a unique section

f g Œ°(E,ad(P)) which yields equality in the moment weight inequality,
whenever the right hand side is positive. In particular, it relates the notion
of unstable objects in Definition 3.2 and Definition 3.7.

Theorem 7.1 (The dominant weight theorem). Let G be a compact connected

Lie group, let P —» E be a principal G bundle of central type r G Z(g) defined
by (12) and let A e A(P) be a smooth /xT -unstable connection.

(1) There exists an element i- G T2°(E,ad{P)) such that

La : W/2'2(S, ad{Pc)) -> W1'2^, T*E ® ad{P))

La(Ç + in) ~dA% + *dAn

7. The dominant weight theorem

wz(A,%) WrlA.t)
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(2) The normalized section i/||£|]/2 is uniquely determined. Moreover, it is

rational in the sense that it generates a closed C* subgroup of GC(P).

(3) If Aqq is the limit of the Yang-Mills flow (22) starting at A, then there

exists u 6 G(P) such that tj u^Fa^ — t)m_1 satisfies (56).

Proof. This result is essentially contained in the work of Atiyah and Bott. They
determine in ([AB83], Prop. 8.13 and Prop. 10.13) the infimum of the Yang-Mills
functional on the complexified orbit GC(A) in terms of the Harder-Narasimhan
filtration of ad(Pc).

Bruasse and Teleman [BT, Bru] show in a more general gauge theoretical

setting that the supremum over the normalized weights is attained in a unique
direction whenever it is positive. This corresponds to the case where (P, Ja) is

unstable and they identify again the dominant weight with the Harder-Narasimhan
filtration.

We follow these ideas in our proof below, but simplify the arguments
considerably by using the moment weight inequality and the analytic properties
of the Yang-Mills flow. The proof will be given on page 147.

A key ingredient in the proof is the Harder-Narasimhan filtration associated to

a holomorphic holomorphic vector bundle. We review this first before we proceed
to the proof of the dominant weight theorem.

7.1. The Harder-Narasimhan filtration. Let F and G be holomorphic vector
bundles over a Riemann surface S and let a : F —» G be a holomorphic bundle

map. The kernel and cokernel of a are in general not well-defined as holomorphic
vector bundles and one may think of them as vector bundles with singularities.
These considerations lead naturally to the larger category of coherent analytic
sheaves on S which is closed under taking kernels and cokernels. The next

Lemma, however, allows us to get away without considering sheaves.

Lemma 7.2. Let F and G be holomorphic vector bundles over a Riemann

surface S and let a : F —> G be a nonzero holomorphic bundle map. Then there

exists a commutative diagram of holomorphic vector bundles and holomorphic
bundle maps

0 > F' > F > F" » 0

[ß

0 « G" < G < G' < 0

with exact rows and rk(F") rk(G'), det(jö) f 0 and C\(F") < ci(G').
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Proof. This Lemma is most easily understood in the language of analytic sheaves.

Denote by Ö the sheaf of germs of holomorphic functions on E. There exists a

one to one correspondence between holomorphic vector bundles and locally free

Ö -sheafs on E, which associates to a vector bundle its sheaf of holomorphic
sections. The homomorphism a induces a homomorphism between the associated

sheaves and the sheaf kernel and sheaf image are clearly torsion free subsheaves.

Since the stalks of Ö are isomorphic to the principal ideal domain C[[z]], these

sheaves are locally free and correspond to the the vector bundles F' and G'.

Recall that we denote for a complex vector bundle E —> E by

Cl(£)
P(E) -ttttrk(£)

its slope or normalized Chern-class.

Corollary 7.3. Let F and G be holomorphic vector bundles over E.

(1) Suppose F is semistable, G is stable and pt(F) — fi(G). Then any nonzero
holomorphic bundle map a : F -» G is surjective.

(2) Suppose F and G are stable and fi(F) — p(G). Then any nonzero

holomorphic bundle map a : F —»• G is an isomorphism.

(3) Suppose F and G are semistable and p.(F) > pt(G). Ilten every holomor¬

phic bundle map a : F —> G vanishes.

Proof. We prove the first part. Suppose a : F —»• G is neither zero nor surjective.
Using the notation of Lemma 7.2 we see that G' is a proper subbundle and thus

li(G) > fi(G') > fi(F") > ii(F)

contradicting the assumption /x(G) pt(F). The other two parts follow from a

similar argument.

Lemma 7.4. Let E be a holomorphic semistable vector bundle. Uten there exists

a filtration
0 < E\ < E2 << Er — E

such that each quotient Ej/Ej-i is stable and pt(Ej/Ej~\) pt(E).

Proof. Let F C E be a stable subbundle with /i(F) p,(E). Since E
F © (E/F) as C°°-bundles, it follows p(E/F) p.(E). Moreover, any

holomorphic subbundle G c E/F with p.(G) > /i(E) would lift under
the projection map E —» E/ F to a holomorphic subbundle G C E with
/x(G) > p.(E) and this contradicts the semistability of E. Hence E/F is

semistable and the lemma follows by induction.
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The Harder-Narasimhan filtration generalizes Lemma 7.4 to general holomor-

phic vector bundles.

Proposition 7.5 (Harder-Narasimhan filtration). Let E be an holomorphic
vector bundle. Then there exists a unique holomorphic filtration

0 E0 < Ei < < Er E

such that all quotients Ej/Ej-i are semistable and the slopes

ci(Ej/Ej-i)^ '
rk(Ej/Ej-\)

satisfy px > p2 > > pr-

Proof. The degree of any holomorphic subbundles of E is uniformly bounded by
Lemma 7.6 below. Let E\ c E be a semistable subbundle for which p(Ex) p.i
is maximal and such that E\ has maximal rank among all such subbundles. We

claim that every proper holomorphic subbundle G' C E/E\ satisfies p(G') < pi.
Otherwise, the preimage of G' under the projection E E/E\ would be a

subbundle G C E with p(G) > pi and of strictly greater rank then Ex. This

proves the claim and the existence of the Harder-Narasimhan filtration follows

by induction.
Let 0 Ëq < Ë\ << Ëi — E be another filtration of E such that all

quotients Ëj/Éj-\ are semistable and the slopes fij := p(Ëj/Ëj-1) are strictly
decreasing. In particular, Ë\ is semistable and the construction above shows

p(Ei) > p(Ë i) fii > fi2> > fit-

The last part of Corollary 7.3 shows that the projection E\ E/Ë^i must
be zero, since p{Ex) > fii and hence E\ c Ei-\. Repeating the argument, it
follows by induction that Ex c Ëj for all j > 1. If p(Ei) > p{Ë\), we could go
one step further and obtain the contradiction Ex c Ë0 — 0. This shows p\ fi\.
Finally, consider the projection

a : E\ -> E —> E/Ë\.

If it is nonzero, we can apply Lemma 7.2 with F E\ and G E/E\ to

obtain the contradiction

pi p(Ei) < p(F") < p(G') < pi < Pi Pi
This shows Ei C Ëi and by maximality of rk(£i) equality must hold. The

uniqueness of the Harder-Narasimhan filtration follows now by induction.
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Lemma 7.6. Let (E, h) be a hermitian holomorphic vector bundle over X and
denote by A e A{E) the associated unitary connection from Lemma 2.7. For a

holomorphic subbundle F c E the following holds:

(1) Let E F ®G be an orthogonal decomposition and identify G with E/F.
Denote by A p and Aq the induced connections on F and G. Then A has

the shape

*-(-: i)
with t] e Q,°'lfH,End{G, F)). Moreover, the curvature has the shape

Fa
Faf — r] Arj* dAr]

-dArf FAg-r]* Aij

(2) Tltere exists a constant C > 0, which does not depend on F, such that

ci(F)<C(1-M\2l2).

Proof We leave the first part as an exercise to the reader, see, e.g., [GH]
Chapter 0.5. For the second part, we calculate

c\(F) ^ J^tr(FAF) (Fa\f) + tr (rj A rj*).

In local coordinates write r] rjdz and hence iqA-q* — 2iî)î)*dx Ady. This yields
precisely the L2-norm of r). Since Fa is uniformly bounded in L°°, the estimate

follows.

We show next that the Harder-Narasimhan filtration is maximal among all

holomorphic filtrations in a certain sense. For this we need to introduce some

notation. Let

£ : 0 E0 < Ei < • < Er E

be a holomorphic filtration of E. Denote nj := rk(£,/£';_j), kj C\{Ej/Ej-\)
and define the characteristic vector of the filtration £ to be

(57) A(£)=ffi h F,...Mir
V«1 »1 nr >hj

where we repeat each entry kj /nj exactly nj -times. Moreover define

m

: {0, R, ls{m) ^ [jx(£)]j
7=1
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where [/2(£)]^. denotes the j -th entry of the vector fi{£). The graph of ig
interpolates linearly between the points (0,0), (ni,ki), (nx + n2,kx + k2),
(n,k). We consider the following ordering on the space of holomorphic filtrations:

£ > T if and only if ig > I jr.

We call a filtration £ concave if the function ig is concave, or equivalently, if
the entries of fi{£) are decreasing.

Proposition 7.7. Let E be a holomorphic vector bundle over £. Lite Harder-
Narasimhan filtration of E is the unique maximal concave filtration on E.

Proof. Let

£hn ' 0 < E\ < E2 < < Er — E

be the Harder-Narasimhan filtration of E and let F < E be a holomorphic
subbundle. It suffices to prove that the point pg := (rk(F),Ci(F)) lies on or
below the graph of ig. We prove this by induction on r.

Suppose r 1. Then £ is semistable and /x(F) > pt{F). In particular, i£ is

a straight line of slope p.(E) and pg clearly lies below that line.

Suppose now r > 1. The Harder-Narasimhan filtration of E/E\ is given by

£'hn : 0 < EilEx < Ej/Ei < < Er/Ex E/Ex

and the induction hypothesis applies to £'HN. Consider the commutative diagram
from Lemma 7.2

0 > F' » F > F" » 0

0 < G" < E/Ei < G' 0

with a : F —> E —>• E/E\. By the induction hypothesis, the point of
(rk(G'),Ci(G')) lies below ig/. Since rk(F") rk(G') and cx(F") < ci(G')
the same holds with G' replaced by F". This shows

(58) ci{Ei) + Ci(F") < ig(MEi) + MF")).

Since F' gets mapped to zero under a, we have F' C Ex and p(F') < p.{E\)
by semistability of E\. This shows c\(F') S is(MF')) and with (58) follows

ci(F) ci(F') +ci(F") < ig(MEi) + MF"))+i£(rk(F'))-ig(vk(Ei)).

Since ig is concave and rk(F') < rk(Fi) we have

ig(MEi) + MF")) - IsiMEi)) < ig (MF') + MF")) - ig(MF'))
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and thus

ci(F) <l£(rk(F')+rk(F")) =te(ik(F)).
This completes the proof.

Corollary 7.8. Let E be a holomorphic vector bundle over E. Let £ be a

concave filtration of E and £hn the Harder—Narasimhan filtration of E. Then

follows

mm2<msHN)\\2
where || H2 denotes the standard euclidean norm on R". Moreover, equality
holds if and only if £ £hn

Proof. An easy calculation shows that for two concave filtrations with £\ < £2

the estimate ||/2(£i)||2 < \\fi{£i)\\2 is satisfied. Moreover, equality holds if and

only if £\ — £2.

7.2. Proof of the dominant weight theorem. We proceed now to the proof of
Theorem 7.1. We consider first the case G U(n) and deduce the general case

afterwards by choosing a faithful representation G U(n).

fir -unstable orbits in the unitary case. Assume G U(n) and denote by
E := P xg C" the associated hermitian vector bundle. Note that the constant
central type r of P is related to the slope of E by the formula

(59) r —2jiip(E) • 1.

If (£,3^) is unstable, then Proposition 5.9 implies that there exists a negative

weight wr(A,%) < 0 and the moment weight inequality (Theorem 5.12) shows

that A is -unstable. The following Lemma proves the converse direction.

Lemma 7.9. Let A e A(E) be a unitary connection and suppose (E, 3a) is a

semistable holomorphic vector bundle. Then the limit of the Yang-Mills flow
A(t) starting at A satisfies

*fAoo -2jri>(£) • 1.

Proof. We show first that the Wl'2 -closure ÇC(A) contains a connection À with
—2jript(E) -1. For this, consider the refined Harder-Narasimhan filtration

from Lemma 7.4

0 < Ei < E2 < < Er — E

with stable quotients Ej/Ej-\ all having the same slope as E. Choose an

orthogonal splitting E — D\ ® ••• © Dr such that Ej D\ ® • • • ® Dj With
respect to this splitting 3^ has the shape
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Ba

9^1

0 ~dÄ2

Air ^

A2r

0 0 dAr /
Define gt := diag(f .,t~r). Then

f 'dAi tA\2 f-lAir \ dA] 0 0 >

0 dA2 tr~2A2r 0 9T2 0
dgtUi) —

I 0 0 dAr I 0 0 • dAr y

as t -> 0. Since Ej/Ej-i (D/,3^.) are stable holomorphic vector bundles,

Theorem 6.5 shows that there exist complex gauge transformations gj e Qc(Dj)
such that Äj — gj(Aj) satisfies *F4. —2nifj.(Dj). Since fi{Dj) —

we conclude that the induced connection zf zïi ® ••• © Är has curvature

F/I —2jri/z(£) 1.
It follows from (19) that Ä minimizes the Yang-Mills functional over

Au(n){E). The lemma follows thus from Theorem 4.14 and Theorem 4.15.

Proof of Theorem 7.1 for G U(n). Let £ be a section of skew-hermitian

endomorphism in u(£) c End(£) satisfying ||£|| 1 and

wz(A,i])
(60) —wt(A,^)= sup

0^Ï7SS2°(E,U(£))

Proposition 5.2 shows that £ determines a holomorphic filtration and orthogonal

splitting
£ : Ei < E2 < < E, Ej Di Di

of (£,3,4). With respect to this orthogonal splitting £ has the shape

i£ diag(Ai, A2,..., Ar)

with Ai < A2 < ••• < Ar and the weight is given by

wx(A, A) 2jt^Aj (ci(Z)y) -MDj)iA(E)).
3=i

By maximality of the weight —wr(A,^) we conclude that A (Ai,...,Ar) is a

global minimum of the function

r

f(xu...,xr) (ci(Dj) -rk(Dj)lAE))
3=1
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on the ellipsoid {^y=1 x?rk(.Dy) 1} under the open condition

Xi < X2 < • • • < xr.

Since (E, 3a) is unstable, Proposition 5.9 implies that this minimum is negative
and / does not vanish identically. Thus V/ vanishes nowhere and A must lie
on the ellipsoid. It satisfies there the Lagrange condition

(Cl(Dj) -rk(Dj)) n(E) cXjrk(Dj)
for y l r and some constant c / 0. Since /(A) < 0 we must have c < 0.

Since the Ay are increasing this yields

/i(Z)i) > /X(£>2) > > ß(Dr)
and £ is a concave filtration of E. Solving the Lagrange problem we get

fi{E)-fi(Dj) _ ß(E) — H-(Dj)

VE;=i MDj){ß(Dj) - /x(£))2 iJ\\ji(£)\\l-±(E)ii(E)2
and

(61) -wx(A,Ç)

Now Corollary 7.8 shows that £ £hn must agree with the Harder-Narasimhan
filtration of E and £ is uniquely determined.

Conversely, we can use the Harder-Narasimhan filtration to define £ and the

argument from above shows that it satisfies (60). It remains to show it also yields
equality in the moment-weight inequality. It follows from the proof of Proposition
5.2 that the limit

A+ := lim e1'^A
t—> OO

exists and splits as A+ A\ ® ••• © Ar with Aj e A(Dj) A(Ej/£y-i). The

Yang-Mills flow A+(t) starting at A+ is the product of the Yang-Mills flow on
each factor and clearly remains in the closure GC(A). It follows from Lemma 7.9

that the limit A^ := lim^oo A+(t) of this flow satisfies

{KDi) ^

KD2)
Eaoo ~2jti

H(Dr)J
Now (59) and (61) yield

î \\FgA-T\\ < \\FAoo-T\\ =2ji
g^Qc

^]rk(Z)7)(/x(£)-M(öy))2 -w(A,Ç).
Nj 7=i

Hie converse inequality follows from the moment-weight inequality (Theorem 5.12)

and this completes the proof in the unitary case.
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Proof of Theorem 7.1 for general compact connected Lie groups G. Let G

be a compact connected Lie group. We show first that one restrict the argument to
the case where Z0(G) is discrete. Recall that the Lie algebra of G decomposes

as g Z(g) © [g, g]. The center yields a trivial Z(g) subbundle V C ad(P)
and its orthogonal complement has fiber [g, g] and is canonically isomorphic to

ad(P/Z0(G)). This yields the orthogonal decomposition

(62) ad(P) V ® ad(P/Z0(G)).

Let A e A(P) and denote by I E A(P/Z0(G)) the induced connection.

Decompose £ e £2°(E, ad(P)) as £ £z + £" with respect to the decomposition
(62). Then (12) and Lemma 5.10 yields

wr(AtÇ) wr{A,ÇM) wo(Â,Fs).

Decompose similarly FgA — Fz + Fss and note that Fss Fg^. This yields

|| * FgA - r\\2 || * F-||2 + || *FZ- r||2 > || * FgÄ\\2.

As in Lemma 3.9 one shows that g can be modified to a gauge transformation

g such that g À gÄ and *FZ r. Hence

inf 11 * FgA — t 11 inf || * FgÄ\\.
geQHP) geS+P/Z0(G)) gA

This completes the reduction argument.
Now assume that Zo(G) is discrete and r 0. Choose a faithful representation

G U(n) and identify G with its image in U(n). It follows from Lemma 5.8

and (59) that the associated vector bundle E P xg C" satisfies /i(£) 0.

For A A{P) Theorem 4.14 yields

in/ II * Fsa\\ II * FkJI inf || * F^ll
geQc(P) geGL(n)

where we consider A as G -connection for the left equality and as U(n) -connection
for the right equality. It follows from the unitary case that there exists (up to

scaling) a unique section £ e £ü°(E,u(is)) satisfying

w0(A,Ç)

Let Ç be the orthogonal projection of £ onto g(E) c u(E). Then Lemma 5.8

shows w0(A, £) w0(A, f) and hence

f H r ii wo(A,£) wo(A,îj)

=—nur ^——
with equality if and only if £ f. The moment weight inequality (Theorem 5.12)

yields the converse inequality and this completes the proof.
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