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Selberg's central limit theorem for log |£(l/2 + it)\

Maksym Radziwill and Kannan Soundararajan

Abstract. We present a new and simple proof of Selberg's central limit theorem, according

to which the logarithm of the Riemann zeta-function at height t is approximately normally
distributed with mean 0 and variance \ log log t.
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Motivated by the Riemann hypothesis, a classical theme in analytic number theory
has been to understand the value distribution of the Riemann zeta-function £(s).
For example, fixing a Re(^) one may ask for the distribution of £(cr + it) as

t varies in [T,2T] for large T. In view of the functional equation connecting
Ç(s) to £(1 — s), we may suppose here that a > with the case a — \ - the

value distribution on the "critical line" - being of greatest interest.

When a > \ is fixed, from the classical work of Bohr and Jessen [BJ1, BJ2]

we have a good qualitative understanding of the distribution of Ç(cr + it). Suppose

X — X(T) < logT is a parameter tending slowly to infinity with T (to fix ideas

one can think of X(T) — -y/log T). Then for typical t e [T,2T] (by which we

mean t lying outside a set of measure o(T)) one has

In other words, 'Ç{o + it) has an almost periodic structure and its value can be

usually extracted from knowledge of p" for small primes p. Further if X is

suitably small, then Kronecker's theorem can be used to show that as t varies,
the values p" for p < X are equidistributed on the unit circle, with each prime
behaving "independently" of the others.

1. Introduction
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Here and throughout the paper, we use the standard Landau and Vinogradov
notations of analytic number theory. Thus / ~ g means that the ratio //g tends

to 1 for a suitable parameter (e.g., T above) tending to infinity; / o(g) means
that \f/g\ tends to 0; and f 0(g) and the Vinogradov notation / <$; g both

mean that j/| < C|g| for some absolute constant C and large values of the

implicit parameter.
The value distribution on the critical line a — \ is very different. Here

+ it) no longer behaves like an almost periodic function, and these values

are not typically determined by knowledge of plt at small primes. Selberg

[Sel2, Sell] established the fundamental theorem that as t varies in [T,2T], the

quantity log Ç(^+it)/^^ loglogr behaves like a standard complex normal random
variable - that is, its real and imaginary parts are distributed like independent
normal random variables with mean 0 and variance 1 (see Theorem 1 for a

precise statement for the real part). Further, Selberg's result holds not just for
the Riemann zeta-function, but for a large class of L -functions arising from

automorphic forms (provided one has some understanding of the distribution of
zeros of such L -functions).

Selberg's work illuminates our understanding of zeta and L -functions on the

critical line. Qualitatively, it shows that typical values of |£(^ + it)| are either

very small (say < l/A, for any A with log .4 o(^Jlog log T)) or very large

(> A with A as before), and that intermediate values appear only on a set of
measure o(T). This is in stark contrast to |£(cr + zf)| for a > which is typically
of constant size. Here we may highlight the interesting open problem of whether
the values £(| + it) as t varies are dense in the complex plane. An analogous
result for £(ct + it) with \ < a < 1 is known, but Selberg's result indicates why
the problem for a \ has an entirely different flavor. Selberg's result is also a

key to understanding questions such as the rate of growth of moments of zeta

and L -functions (see [KS], [Sou]).
In this paper we give a new and simple proof of Selberg's influential theorem

[Sel2, Sell] for the real part of log Ç(^+it). Thus, we establish that log |t(|+H)|
has an approximately normal distribution with mean zero and variance | log log \ t\.
Apart from some basic facts about the Riemann zeta function, we have tried to
make our proof self-contained.

Theorem I. Let V be a fixed positive real number. Then as T —> oo, uniformly

for all v e [—V,V],

1 I 1 1 poo 2—measlT < t < 2T : log |f)(^ + it)\ > vJ\ loglog 7H ~ / e~ll~^2du.
T \ v j V27T Jv
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We now outline the proof, which is broadly based on four steps. Tire first step

is to show that log|£(^ + it)| is usually close to log|£(cr +it)\ for suitable a
near \.

Proposition 1. Let T be large, and suppose T <t<2T. Then for any a > 1/2
we have

/ log + iy) I — log I £ (a + iy)\ dy «C (ct - \)\ogT.
Jt-i

The proof of Proposition 1 is the only place where we will briefly need

to mention the zeros of £(s). From now on, we set o~o
1 for a

suitable parameter W > 3 to be chosen later. From Proposition 1 it follows that

log|£(l + it)I and log|£(ao + it)\ differ by at most AW except on a set of
measure 0(T/A). If AW is small compared to yflog log T, then this difference
is negligible, and both quantities have the same distribution. Therefore we may
focus on understanding the distribution of log|^(a0 + it)|, which we may hope
is an easier problem since we have moved away from the critical line.

There is considerable latitude in choosing parameters such as W, but to fix
ideas we select

(1) w (log log log T)4, x r1/(loglog!ogr)2, and r 7-i/dogiogr)2

Here X and Y are two parameters that will appear shortly. Put

(2) V(s) V(s-X)= J2 -TT^->
2<n<x n

where A(«) denotes the von Mangoldt function, which is given by A(n) log p
if n pk is a power of the prime p, and h(n) 0 if n is not a prime
power. By computing moments, in Section 3 we shall determine the distribution
of Re V{oq + it).

Proposition 2. As t varies in T < t <2T, the distribution of Re(V(oo + it)) is

approximately normal with mean 0 and variance ~ i log log T. Precisely, if V

is a fixed positive real number then as T —> oo, uniformly for all v e [—V,V\,

1 I 1 c00
TTmeaslT < t < 2T : ReV(p0 + it) > v J2 loglogT| ~ —= / e~u'^2du.
T ' v ' -J2tt Jv

Our goal is now to connect Re(P(a0 + z'f)) with log |^(cto + H)| for most values

of t. This is done in two stages. First we introduce a Dirichlet polynomial M(s)
which we shall show is close to exp(—V(s)) except for t e [T, 2T] lying in a

subset of measure o(T). Define a(n) 1 if n is composed of only primes below
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X, and it has at most 100 log log T primes below Y, and at most 100 log log log T

primes between Y and X ; set a(n) 0 in all other cases. Put

Note that a(n) 0 unless n < < Te, and so M(s) is

a short Dirichlet polynomial. The motivation behind our definition of M(s) will
emerge in Section 4 where we establish the following proposition.

Proposition 3. With notations as above, we have for T <t<2T

except perhaps on a subset of measure o(T).

The final step of the proof shows that £(ct0 + it)M(o0 + it) is typically close

to 1.

Proposition 4. With notations as above,

so that for T < t <2T we have

£(°o + it)M {ao + it) 1 + o(l),

except perhaps on a set of measure o(T).

Proof of Theorem 1. We now show how to assemble the four propositions above

to deduce Theorem 1. Proposition 4 shows that typically (that is for all t e [T,2T]
outside a set of measure o(T)) one has

£(ct0 + it) (1 + o(1))M(ct0 + it)~x.

Combining this with Proposition 3, outside a set of measure o(T) we have

|£(a0 + it)I (1 + o(l)) exp(Re V(o0 + it)).

Appealing now to Proposition 2, we conclude that log|£(oo + '01 is normally

(3) y M-M.)
Z—J nS—' n

n

M(o0 + it) (l + o(l)) exp - V(o0 + it)),

distributed with mean 0 and variance

Now by Proposition 1 it follows that

log |£(| + it)\ - log |£(oo + it)\ dt <§; T(o0 - j) log T WT,
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so that outside a subset of [T, 2T] of measure 0(T/W) o(T) one has

log |/(4 + it)\ log |/(ct0 + it)I + 0{W2).

Since W2 o(-y/loglog T), it follows that like log |^"(cr0 + it)|, the quantity
log |^(l + it)I also has a normal distribution with mean 0 and variance

~ \ log log T. This completes the proof of Theorem 1.

After developing the proofs of the propositions, in Section 7 we compare and

contrast our approach with previous proofs, and also discuss possible extensions

of this technique.

2. Proof of Proposition 1

Put G(s) s(s — 1)jt s/2T(s/2) and let Ç(s) — G(s)Ç(s) denote the completed
Ç -function. If t is large and t — 1 £ y < t + 1, then by Stirling's formula

log
G(ct + iy)

G( 1/2 + iy)

and so it is enough to prove that

çt+1
logJt-l o Ç(a + iy)

«; (a - 1/2)logt,

dy « (or - \) log T.

Recall Hadamard's factorization formula

where A and B are constants with B 1 /p) - Here the product is

over all non-trivial zeros of Ç(s), which all lie in the region 0 < Re(p) < 1. Thus

(assuming that y is not the ordinate of a zero of £(s))

log
ïi\+iy)
Ç (a + iy)

1

2 + iy - p
CT + iy - p

Integrating the above over y e (t - 1, t + 1 we get

(4)
rt + l

Jt-1
log

Kè + iy)
t + iy)

dy < ?/
t+i

-l
log 2 + iy - p

a + iy - p
dy.

Suppose p ß + iy is a zero of /(s). If \t — y\ > 2 then, for any t — 1 < y < t+ 1
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log
+ iy -p

a + iy - p
>g(lRe log 1 —

a + iy - p>

Re-
ct + iy - p

O d"-l)2) 0( °-i \
MV — v)2 '

M V — v)2'

so that
rt + 1

Jt-1
log 2 + iy - P

er + iy - p
dy

(y - r)2

(°-\)

iy - y)2'

(t -y) 2 '

In the range \t — y\ <2 we use

pt+1

Jt-1
log

+ iy-p
a + iy - p

Thus in either case

"y - 2
log

iß - \)2 + X2

rt+1
log

1

2 My -P
Jt-1 CT -My - P

dy «;

iß — ct)2 + x2

i°~\)

dx 71 (CT — i).

i + it -y)2'

Inserting this in (4), and noting that there are <§; log(r + k) zeros with
k <\t — y\ <k + \, \he proposition follows.

3. Proof of Proposition 2

Before proceeding to the proof of Proposition 2, we record a simple estimate

which will be useful throughout the paper: for any two natural numbers m and n

(5) J — dt
2T /m\u J T if m n,

n) dt I O min (T, |log(^/n)|)) if m£n.

This follows upon evaluating the integral. In the case m ^ n, the following
elementary estimates are also useful:

(6)
I / «

I \og{m/n)\

1 if m > 2/7, or if m < n /2;

m/\m — n\ \ï n/2 < m < 2n\

sjmn always.

We begin work on Proposition 2 by showing that we may restrict the sum in

V(s) just to primes. The contribution of cubes and higher powers of primes is

clearly 0(1), and we need only discard the contribution of squares of primes.

By expanding out, and using (5) and (6),
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/;
2T

^ j 2 A J

2p2(-CJ0+it)
dt^T XI (pip2)2a°

p<JY P\,P2<^/X
Pi =P2

+ E
_ (PlPl)2"0 \ \og{px/p2)\

P1 1P2 —V X
P\ ¥"P2

«T+ £
Pl,P2<~SX

PI^PI

Therefore, the measure of the set f e [T, 2T] with the contribution of prime

squares being larger than L (say) is at most <5; T/L2. Write

Vo{oo + it) := £ —1—~-
Da0+it

p<X ^

In view of our estimate for the contribution of prime squares, to establish

Proposition 2, it is enough to show that Re(Vq{oq + it)) has an approximately
Gaussian distribution with mean 0 and variance ~ ^ log log T. We establish this

by computing moments, keeping in mind that the Gaussian distribution is uniquely
determined by its moments.

Lemma 1. Suppose that k and I are non-negative integers with Xk+t < T.
Then, if k I,

2 T

T
Vo(cio + it)kVo(cr0 - itfdt <£ T,

while if k i we have

f2Tc
J \Vo(a0 + it)\ dt k\T(\og\ogT)k + Ok(T(\og\ogT)k~l+e).

Proof. Write Vo(s)k — ak(n)n~s, where ak(n) — 0 unless n has the prime
factorization n — p••• p"r where p\, pr are distinct primes below X, and

ati + + ar k, in which case ak(n) k\/(pt\! • • -ar!). Therefore, expanding
out the integral, we obtain

r Vo{oa + it)kVo(cro - itfdt

TX^ ak(n)ai(n) / ak{m)at(n)
2—1 n2an \ Z-y2oro \ 2—1 (mn)a° I log(/77/«)I

m^n

If m ^ n, then using the third estimate of (6), we see that the off-diagonal terms
above contribute
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^ ak{m)af{n) <<C Xk+C < 7.

m^n

Note that if k ^ i then ak(n)a^(n) is always zero, and the first statement of the

lemma follows.

It remains, in the case k — I, to discuss the diagonal term, which is

T Y2n ak(n)2/n2"0 Given positive integers oq, ar with oq + + ar k,
the contribution of terms n of the form p"1 p"r is

« r fi E 755557) « niogbgTy,
7=1 P<X F

Therefore, the contribution from terms n that are not square-free (in which case

r <k — 1) is 0(T(loglogT)k~l). Finally the square-free terms n (so that n is

the product of k distinct primes) give

« E + n'-).
Pi,...,Pk<x yFl yk) p<xy
Pj distinct

and the lemma follows upon recalling the definition (1).

From Lemma 1 we see that if Xk < T then for odd k

r-2T j r2T
J (Re Vq{(Jq + it))kdt — J (V0(a0 + it) + V0(o0 ~ it))kdt

i
k (k\ r2T

JT
V°(a° + it)lV^o ~ it)k~ldt « T,

since I ^ k — I for odd k. If k is even then, extracting the contribution of
I — k — I — k/2 above, we obtain

i c2^
— J (Re V0((Jo + itfdt

2~k(^{k/2)\{\og\ogT)kl2 + Ofc((log log T)k~x+£).

These moments match the moments of a Gaussian random variable with mean

zero and variance ~ j log log T, and since the Gaussian is determined by its

moments, Proposition 2 follows.



Selberg's central limit theorem for log |£(l/2 + it)\

4. Proof of Proposition 3

Let us decompose V{s) as V\(s) + V2(5), where

W E -#!L and P2(S)= E A(,,)

^' 11s OCT 11 L ',ns\ogn „ „ns\ogn2<n<Y b Y<n<X 0

Put

Mi(s)= and J2 ^rhV2^k'
o<fc<iooiogiogr o^/t^iooiogiogiogr

Recalling the dehnitions of X and Y (see (1)) we see that M i and M2 are

both short Dirichlet polynomials of length <«C Te.

Lemma 2. For T < t < 2T we have

(7) I (cr0 + it) I < log log T, and 17^2 (o"o + *01 < logloglogT,

except perhaps for a set of measure <£ T/ log log log T. When the bounds (7)

hold, we have

(8) M\{oq + it) exp - V\ (i7q + t'0)(l + <?((log E)-99)^,

and

(9) M2{o0 + it) — exp - V2((Jq + *'0)(l + O((loglog T)-")).

Proof. Using (5) and the third estimate of (6), we find

C2T T
/ \Pi (op + it)\2dt ^2

J T

A(72i)A(«2)

It («i«?)170 log/ti logn?1 2<nun2<Y v 1 6 1 6 z
«1 =«2

7t(;ti)A(«2)
/ Jn\ii2

2<nf~n2<Y (" log n i log n2
n\fn2

r log log t.

Similarly

/;
2T

V2(c>o + it)\2dt T log log log T.

The first assertion (7) follows.

Suppose K > 1 is a real number. If \z\ < Al then, using that A:! > (k/e)k,
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E i <' + o{ E £)-* + < E (£)'
o<^<ioo^r vfc>ioo/f y vfc>ioo.s:

ez + O(e~100K).

Since \z\ < K, we may also write the right side above as ez(l + 0(e~99K)).
The estimate (8) holds upon taking z —V\(oo + it) and K log log T, and

similarly (9) follows.

Put a\{n) — 1 if n is composed of at most lOOloglogT primes all below Y,
and zero otherwise. Put a2in) =1 if « is composed of at most 100 log log log T

primes all between Y and X, and zero otherwise. Note that ai(l) a2( 1) 1.

Define

and y'"'-
n n

so that the Dirichlet polynomial M(s) (introduced in (3)) may be factored as

M(s) — Mi(s)M2(s) If we expand out Mj(s) as a Dirichlet polynomial, the

result is similar to M/(s) but the two quantities are not identical. The next lemma
shows that in mean square Mj(s) is indeed close to Mj(s).

Lemma 3. With notations as above, we have

f2T
|ATi(cro + it) - Mi (ct0 + it)\2dt <$C E(log T)~60,

T

and
2T

/; \M2(oo + it) - M2{ao + it)\ dt <$C Efloglog T)

Proof. We establish the first estimate, and the second follows similarly. Expand

.Mi (s) into a Dirichlet series ffnb(n)n~s. Then we may see that bin) satisfies

the following properties:

(i) \b(n)\ < 1 for all n,

(ii) b(n) 0 unless n < E100 81087 is composed only of primes below Y, and

(iii) b(n) ß(n)ai(n) unless Ç2(n) > lOOloglogE, or if there is a prime p <Y
such that pk\n with pk > Y.

Putting c(n) — b(n) — p,(n)ai(n) temporarily, using (5) and (6) we obtain

-2T

/; \M.i(<tq + it) — Mi(ctq + it)I dt

4C T > b > — Jn\n2.
n_n (n i>i2)ao (ni?i2)a°
n i —n2 n\yen2
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The off-diagonal terms with n \ ^ n2 contribute

« J2 1 «r-
n]^n2<Yl00ioSi°ST

The diagonal terms n i n2 contribute, (recalling property (iii) above)

1 \/ vn 1

«7 E -n + T(Zj*)( E i).
p\n ==> p<Y p<Y p\n ==> p<Y

Q(n)>lOOlog \ogT pk>Y

A small calculation shows that the second term above is <SC T(\ogY)/y/Y <§;

T(log T)~60. To handle the first term above, note that for any 1 < r < 2 the

quantity rfi(»)-iooiogiogr js a]wayS non-negative, and is > 1 on those n with
Q.(n) > 100 log log T. Therefore

T J2 ~ « 7>~1001oglog:r Y\ (l + - + *— + •••)
p\n^p<Y

U
p<Y P P

fi(«)>100loglogr

« r(iogT)-100Iogr(iogr)r.

Choosing r e1^ 1.94..., say, the above is <$C T^ogT)-60, completing our
proof.

Proof of Proposition 3. From Lemma 3 it follows that except on a set of measure

o(T), one has

Mi(a0 + it) Mi(a0 + it) + 0((log T)~25).

Moreover, from (8) (except on a set of measure o(T)) we note that

M\(o0 + it) exp (-TMcto + z'0)(1 + 0((log T)~99)).

Now, by (7) we see that (logT)-1 <$; \M\{oq + it)\ <$; logT except on a set of
measure o(T), and therefore

Mi(o0+it) - Mi((J0+it) + O((\ogT)~25) exp (—V\(a0+z'r))(l + O((logT)~20)).

Similarly, except on a set of measure o(T), we have

M2(o0 + it) M2(o0 + it) + 0((log log 7)_2S)

exp(-P2(cro + i0)(' + O((loglog T)-20)).

Multiplying these estimates we obtain

M(a0 + it) exp - V(o0 + it)) (l + O ((log log T)"20)),

completing our proof.
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5. Proof of Proposition 4

For T <t < 2T, one has Ç(oo + it) J2„<t n~a°~lt + 0(T~^) (see Theorem
4.11 of [Tit]), and so

[ £(q0 + it)M(er0 + it)cLt ^ j (mn)~ltdt + 0(T^+e)
Jt ^ W JT

T + 0(r2+e).

Therefore, expanding the square, we see that

r2T
(10) / |1 - £(a0 + it)M(cr0 + it)\2dt

r2T i
J \Ç((70 + it)M(cr0 + it)\2dt - T + 0(T^+e).

It remains to evaluate the integral above, and to do this we shall use the following
familiar lemma (see for example Lemma 6 of Selberg [Sell]). For completeness

we include a quick proof of the lemma in the next section; we give only a version
sufficient for our purposes and not the sharpest known result.

Lemma 4. Let h and k be non-negative integers, with h,k < T. Then, for any
1 >a >

[2T (h\il o

J (^) \K(o + it)\dt

+ 0(Tl~a+e min{h,k}).

Assuming Lemma 4, we now complete the proof of Proposition 4. In view
of (10) we must show that

d(h)ß(k)a(h)a(k) [2T(hyf 2(11) S ïhkyo JT (jfe) l^o + 'OI ~T.
h,k

and to do this we appeal to Lemma 4. Recall that \a(n)\ < 1 always, and that

a(n) 0 unless n < Te. Therefore, the error terms arising from Lemma 4

contribute an amount

« Y" —-—r1_ao+emin{/z,L} « Tl~a°+e o(T).^ (hk)ao
U ls^T v J
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We now focus on the main terms arising from Lemma 4, beginning with the first

main term. This contributes

(12) n(2a^m^a(k\k,kf'o.
Write h — h\h2 where h\ is composed only of primes below Y, and h2 of
primes between Y and X, and then a{h) — a\{h\)a2(h2) in the notation of
section 3. Writing similarly a(k) a\(k\)a2{k2), we see that the quantity in (12)
factors as

(13) „„)( £ )»,(/.>»,(t,)(,ii ti)2J0)
h i ,k 1

/ ^ ß(h2)ß(k2)a2{h2)a2{k2) 2c \(Y cm ")
"2>'c2

Consider the first factor in (13). If we ignore the condition that h\ and k\ must
have at most 100 log log T prime factors, then the resulting sum is simply

£ (hwo {hi'ki) 0

h\,kx
V 1 U p<Y F

P\h\k\ => p<Y

In approximating the first factor by the product above, we incur an error term
which is at most

V \KhMki)\ 2aoK< ft {hlkl)** {hM '

h\,k\
p\h\k\ => p<Y

t2(Al)>1001oglogr

where we used symmetry to assume that h \ has many prime factors. Since
eß(Ai)-iooiogiogr js always non-negative, and is > 1 for those h\ with
Q.(h\ > 100 log log T, the above may be bounded by

^ -100 log log T V Im(^i)M(^i)| > x2ct0 £2(Al)«e ft (h\k\)2ao
6

h\,k\
p\h\k} ==> p<Y

« (log7T100 Yl{{ + « (logT)
p<Y P

-90

Thus the first factor in (13) is

P<Y F p<Y 1
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Similarly one obtains that the second factor in (13) is

n (i-^)+o((iogiogTr»°)~ n o-jk)-
Y<p<X y Y <p<X y

Using these in (13), we obtain that the first main term is

~ n(2o„) n (> - -U)=t n (i - -U)"1 ~ T.

p<X ' p>X y

since, recalling from (1) the definitions of do, W, and X and using the prime
number theorem and partial summation,

1 f°° 1 dt x1'200
« 74 777 77 o(l).X]

p2a0 ^ jx
p>x

P2a° ^x r2<T°logf (2a0 — 1) log X

In the same way we see that the second main term arising from Lemma 4 is

«2 - 2a0)(J'' E it)""»
^ h,k

2T / t \ 1-2(70 \ y-r / 2 1 \(_) A)«2-2<,0)n(i--+^)
p<X

« T2~2a°
1

n (i - -)=°^-
° - P < X

PJ

This completes our proof of (11), and hence of Proposition 4.

6. Proof of Lemma 4

Put G(s) n~s/2s(s — l)T(s/2), so that tj(s) G(s)Ç(s) £(1 —s) is the

completed zeta function. Define for any given îêC

I(s) I(T) -—[ £(z +s)Ç(z +s)ez2^,
Zill J(c) Y

where the integral is over the line from c — ioo to c + ioo for any c > 0.

By moving the line of integration to the left, and using the functional equation

£(z + s)Ç(z + s) Ç(—z + (1 — s))£(—z + (1 — s)) we obtain that

(i4) i^)i2 +

From now on suppose that s a + it with T <t<2T, and 1 > a > If z

is a complex number with real part c — 1 — a + 1 / log T, then an application of
Stirling's formula gives
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G(z + s)G(z + s) (±_\z (i D(\?l\\
|G(^)|2 \2tt / V \T))'

Therefore, we see that

7^7% Y~ f (^-)Z!;(z + s)t(z +s)e*2— + 0(T~°+*).
|G(j)F 2jti J(i-a+\/\ogT) v2tt/ z

Since we are in the region of absolute convergence of £(z + s) and £(z+T), we

obtain

-
l+uw^

+ 0(T1~a+e).

In the integral in (15), we distinguish the diagonal terms hm — kn from the

off-diagonal terms hm ^ kn. The diagonal terms hm kn may be parametrized
as m Nk/(h,k) and n — Nh/(h,k), and therefore these terms contribute

a« -i-/ d
2tci J(\-o+\l\ogT) z V hk J \JT V2n> J

As for the off-diagonal terms, the inner integral over t may be bounded by
r1-ffmin(r, 1/1 \og(hm/kn)\), and therefore these contribute

(17)
oo

2 i

^ ji-a —-min(Y, — ———— < mm{h,k}Tl~a+e.
' (fflfl)1+1/|osr V log (hm kri)\)

m,n=l v 7

hm^kn

The final estimate above follows by first discarding terms with hm/(kn) > 2 or

<1/2, and for the remaining terms (assume that k <h) noting that for a given
m the sum over values n may be bounded by kTe (here it may be useful to

distinguish the cases hm > T and hm <T).
From (15), (16) and (17), we conclude that

-
+ 0(min{/r, k}T1~a+e).

A similar argument gives
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<"> f -0?W..Q)
1 f e2,2 ((h,k)2\z+l~a f2T / t Y+l~2a \+^7{a+1/logT)~U2z+2~2a)[~i^r) Ut fe)

With a suitable change of variables, we can combine the main terms in (18) and

(19) as

1 f w / (h,k)2\z r2T / r \fe^z-^2 eU-i+cr)2

^Unotr,a2Z>{—) Ut fc) *')(.—+ ^T7tK
and moving the line of integration to the left we obtain the main term of the lemma

as the residues of the poles at z ct and z — 1—a (note that the potential pole at

z — 1/2 from £(2z) is canceled by a zero of e^z~a^2/(z—a)+e^z~x+a^2/{z— 1+a)
there). This completes our proof of Lemma 4.

7. Discussion

In common with Selberg's proof of Theorem 1 our proof relies on the Gaussian

distribution of short sums over primes, as in Proposition 2. In contrast with
Selberg's proof, we do not need to invoke delicate zero density estimates for Ç(s)

(see (1.14 of [Sell]), the easier mean-value theorem in Proposition 4 provides for
us a sufficient substitute; nevertheless, our ideas are closely related to the mollifier
technique that underlies zero-density results (going back to work of Bohr and

Landau). Selberg's original proof also used an intricate argument expressing

log£(j) in terms of primes and zeros; an elegant alternative approach was given
by Bombieri and Hejhal [BH], although they too require a strong zero density
result near the critical line. We should also point out that by just focussing on the

central limit theorem, we have not obtained asymptotic formulae for the moments
of log 1^(5 + zT)| which Selberg established.

In Selberg's approach, it was easier to handle Im Iog£(^ + it), and the

case of log|£(| +it)| entailed additional technicalities. In contrast, our method

works well for log|£(^ + it)\ but requires substantial modifications to handle

Im log£(i + it). The reason is that Proposition 4 guarantees that typically
|£(oo + it)\ « IM(oq + it)\~l, but it could be that Im log£(| + it) and Im

logM(ao + iO-1 are not typically close but differ by a substantial integer multiple
of 2jv In this respect our argument shares some similarities with Laurincikas's

proof of Selberg's central limit theorem [Lau], which relies on bounding small

moments of |£(| T-zT)l using Heath-Brown's work on fractional moments [HB].
In particular, Laurincikas's argument also breaks down for the imaginary part of
logt(± +it).
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We can quantify the argument given here, providing a rate of convergence to

the limiting distribution, but we have not pursued the matter as it did not seem

to yield anything stronger than what is known. We also remark that the argument
also gives the joint distribution of log |£(^ + it)| and log \Ç(j + it + ia)| (for

any fixed non-zero ael) and shows that these are distributed like independent
Gaussians. One can allow for more than one shift, and also keep track of the

uniformity in a.

Our proof of Proposition 3 (in Section 4) involved splitting the mollifier M(s)
into two factors, or equivalently of the prime sum V{s) into two pieces. We

would have liked to get away with just one prime sum, but this barely fails. In
order to use Proposition 1 successfully, we are forced to take W — o(v/loglog T).
To mollify successfully on the ~ 4- line (see Proposition 4) we need to work

with primes going up to roughly Lrr If W o(yfiog log T) then this length is

TAfy/\og\ogt for a ]arge parameter A, and if we try to expand exp(V(s)) into a

series (as in Section 4) we will be forced to take more than yfioglog T terms in
the exponential series. This leads to Dirichlet polynomials that are just a little too

long. We resolve this (see Section 4) by splitting V into two terms, exploiting
the fact that the longer sum V2 has a significantly smaller variance.

Propositions 1, 2, and 3 in our argument are quite general and analogues may
be established for higher degree automorphic L -functions in the t -aspect. An

analogue of Proposition 4 however can at present only be established for L-
functions of degree 2 (relying here upon information on the shifted convolution

problem), and unknown for degrees 3 or higher. However, some hybrid results

are possible. For example, by adapting the techniques in [CIS2, CIS1] we can

establish an analogue of Proposition 4 for twists of a fixed GL(3) L -function by

primitive Dirichlet characters with conductor below 0. In this way one can show

that as x ranges over all primitive Dirichlet characters with conductor below 0,
and t ranges between —1 and 1, the distribution of log |L(| + it,f x /)| is

approximately normal with mean 0 and variance ~ \ log log 0 ; here / is a

fixed eigenform on GL(3).

Keating and Snaith [KS] have conjectured that central values of L-functions
in families have a log normal distribution with an appropriate mean and variance

depending on the family. For example, we may consider the family of quadratic
Dirichlet L-functions L(j,Xd) where d ranges over fundamental discriminants
of size X. In this setting, we may carry out the arguments of Propositions 2,

3 and 4 and conclude that logL(oo-Xd) has a normal distribution with mean

~ \ log log X and variance ~ log log X, provided that a0 \ + where W is

any function with W —> 00 as X —» 00 and with log IK o(loglogA). However
in this situation we do not have an analogue of Proposition 1 allowing us to pass
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from this to the central value; indeed, our knowledge at present does not exclude

the possibility that L(^,Xd) 0 for a positive proportion of discriminants d.
Finally we remark that the proof presented here was suggested by earlier work

of the authors [RS], where general one sided central limit theorems towards the

Keating-Snaith conjectures are established.
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