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Selberg’s central limit theorem for log |{(1/2 + it)]

Maksym Rapziwirr and Kannan SOUNDARARAJAN

Abstract. We present a new and simple proof of Selberg’s central limit theorem, according
to which the logarithm of the Riemann zeta-function at height ¢ is approximately normally
distributed with mean 0 and variance %log logt.
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1. Introduction

Motivated by the Riemann hypothesis, a classical theme in analytic number theory
has been to understand the value distribution of the Riemann zeta-function {(s).
For example, fixing 0 = Re(s) one may ask for the distribution of {(c +it) as
t varies in [T,2T7] for large T. In view of the functional equation connecting

¢(s) to £(1 —s), we may suppose here that o > 5, with the case o = % — the

value distribution on the “critical line” — being ofzgreatest interest.

When o > % is fixed, from the classical work of Bohr and Jessen [BJl, BJ2]
we have a good qualitative understanding of the distribution of (o +it). Suppose
X = X(T) <logT is a parameter tending slowly to infinity with 7" (to fix ideas
one can think of X(7) = /logT). Then for typical t € [T,2T] (by which we

mean ¢ lying outside a set of measure o(7)) one has

o +in~ ] (1 - palﬂ.t)_l.

p=X

1
2

In other words, {(o + i7) has an almost periodic structure and its value can be
usually extracted from knowledge of p'’ for small primes p. Further if X is
suitably small, then Kronecker’s theorem can be used to show that as ¢ varies,
the values p'* for p < X are equidistributed on the unit circle, with each prime
behaving “independently” of the others.
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Here and throughout the paper, we use the standard Landau and Vinogradov
notations of analytic number theory. Thus f ~ g means that the ratio f/g tends
to 1 for a suitable parameter (e.g., 7" above) tending to infinity; f = o(g) means
that | f/g| tends to 0; and f = O(g) and the Vinogradov notation f < g both
mean that | f| < C|g| for some absolute constant C and large values of the
implicit parameter.

The value distribution on the critical line o = % is very different. Here
¢ (% + it) no longer behaves like an almost periodic function, and these values
are not typically determined by knowledge of p'’ at small primes. Selberg

[Sel2, Sell] established the fundamental theorem that as ¢ varies in [7,27], the

quantity log¢ (%—H’ 1)/+/ % loglogt behaves like a standard complex normal random
variable — that is, its real and imaginary parts are distributed like independent
normal random variables with mean 0 and variance 1 (see Theorem 1 for a
precise statement for the real part). Further, Selberg’s result holds not just for
the Riemann zeta-function, but for a large class of L-functions arising from
automorphic forms (provided one has some understanding of the distribution of
zeros of such L -functions).

Selberg’s work illuminates our understanding of zeta and L -functions on the
critical line. Qualitatively, it shows that typical values of |¢ (% +it)| are either
very small (say < 1/A, for any A with log A = o(y/loglogT)) or very large
(> A with A as before), and that intermediate values appear only on a set of
measure o(7'). This is in stark contrast to |{(oc+it)| for o > % which is typically
of constant size. Here we may highlight the interesting open problem of whether
the values ¢ (% +it) as t varies are dense in the complex plane. An analogous
result for (o +1it) with % <o <1 is known, but Selberg’s result indicates why
the problem for o = % has an entirely different flavor. Selberg’s result is also a
key to understanding questions such as the rate of growth of moments of zeta
and L -functions (see [KS], [Sou]).

In this paper we give a new and simple proof of Selberg’s influential theorem
[Sel2, Sell] for the real part of log é(% +it). Thus, we establish that log ]Z(% +it)|
has an approximately normal distribution with mean zero and variance % loglog |z].
Apart from some basic facts about the Riemann zeta function, we have tried to
make our proof self-contained.

Theorem 1. Let V be a fixed positive real number. Then as T — oo, uniformly
for all v e |-V, V],

1 l oo 2
?meaS{T <t £ 2T ; log‘é'(% —E—z‘r)‘ > U\/%loglOgT} ~ ﬁ v &~ 12 g
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We now outline the proof, which is broadly based on four steps. The first step
is to show that log|§(% +it)| is usually close to log|{(o + it)| for suitable o
1
near ;.
Proposition 1. Let T be large, and suppose T <t <2T. Then for any o > 1/2
we have

t+1
f ’log lé(% + iy)‘ — log ‘C(U + iy)”dy &K (o0 — %)log T.
fies]

The proof of Proposition 1 is the only place where we will briefly need
to mention the zeros of {(s). From now on, we set oy = %—F %, for a
suitable parameter W > 3 to be chosen later. From Proposition 1 it follows that
log\g'(% +it)| and log|¢(op + it)| differ by at most AW except on a set of
measure O(T/A). If AW is small compared to /loglog 7', then this difference
is negligible, and both quantities have the same distribution. Therefore we may
focus on understanding the distribution of log|¢(og + i7)|, which we may hope
is an easier problem since we have moved away from the critical line.

There is considerable latitude in choosing parameters such as W, but to fix
ideas we select

(1) W =(logloglogT)*, X =T7VloeloeloeD® = ypq y = 1/(ogloeT),

bl

Here X and Y are two parameters that will appear shortly. Put

A(n)

nslogn’

(2) P(s) =P(s: X) = >

2<n<X
where A(n) denotes the von Mangoldt function, which is given by A(n) = log p
if n = pX is a power of the prime p, and A(n) = 0 if »n is not a prime
power. By computing moments, in Section 3 we shall determine the distribution
of Re P(oy +it).

Proposition 2. As ¢ varies in T <t < 2T, the distribution of Re(P (oo +it)) is
approximately normal with mean 0 and variance ~ %loglogT. Precisely, if V
is a fixed positive real number then as T — oo, uniformly for all v € [V, V],

1 1 e 2
e T <t <2T: ReP 1) > vy/1logl T}~— — 12y
Tmeas{ <t = eP(oo +it) > v4/5 loglog 7 ) e u

Our goal is now to connect Re(P(og+i¢)) with log |¢(og+i1)| for most values
of 7. This is done in two stages. First we introduce a Dirichlet polynomial M (s)
which we shall show is close to exp(—P(s)) except for ¢ € [T,.2T] lying in a
subset of measure o(7). Define a(n) = 1 if n is composed of only primes below
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X, and it has at most 100loglog T" primes below Y, and at most 100logloglog T’
primes between Y and X; set a(rn) =0 in all other cases. Put

(3) M(s) = Z M

ns
n

Note that a(n) = 0 unless n < Y 100loglogT x100logloglog T 7€ " and so M(s) is
a short Dirichlet polynomial. The motivation behind our definition of M(s) will
emerge in Section 4 where we establish the following proposition.

Proposition 3. With notations as above, we have for T <t <2T
M(og +it) = (1 - 0(1)) exp ( —P(og + it)),

except perhaps on a subset of measure o(T).

The final step of the proof shows that {(o¢ + it)M (oo +it) is typically close
to 1.

Proposition 4. With notations as above,

—;- f:T |1 =00 +i)M(og + fr)\zdr = 0(1),
so that for T <t <2T we have
(oo +it)M(og +it) =1+ o(1),
except perhaps on a set of measure o(T).

Proof of Theorem 1. We now show how to assemble the four propositions above
to deduce Theorem 1. Proposition 4 shows that typically (that is for all 7 € [T, 27]
outside a set of measure o(7)) one has

C(oo +it) = (1 +o0(1))M(oo + i)™
Combining this with Proposition 3, outside a set of measure o(7) we have
1E(o0 +i1)] = (14 o(1)) exp(Re P(ag +i1)).

Appealing now to Proposition 2, we conclude that log|{(op + i7)| is normally

distributed with mean 0 and variance ~ ./ % loglog T .
Now by Proposition 1 it follows that

2T
[ ‘]0g|§(% +i1)| —log[¢ (o0 + iz)}‘df & T(og—1)logT = WT,
T
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so that outside a subset of [7,27] of measure O(T/W) = o(T) one has
log [¢( +i1)| = log|t(oo +ir)| + O(W?).

Since W? = o(y/loglogT), it follows that like log|{(og + it)|, the quantity
loglé'(; + it)] also has a normal distribution with mean 0 and variance

~ ,/%log log 7. This completes the proof of Theorem I. O

After developing the proofs of the propositions, in Section 7 we compare and
contrast our approach with previous proofs, and also discuss possible extensions
of this technique.

2. Proof of Proposition 1
Put G(s) = s(s — D) ™*/2T(s/2) and let &(s) = G(s)¢(s) denote the completed
¢-function. If 7 is large and 1t —1 <y <t + 1, then by Stirling’s formula

‘1 G(o +1iy)

— e, —1/2)lost,
og G(1/2+1-y)‘ K (0 —1/2)log

and so it is enough to prove that

ft+1

Recall Hadamard’s factorization formula

E(s) = eATBs 1—[ (1 - i)es/p,

P P

E(X +iy)
é +1y)

”a’y & (o0 — —) log T.

where 4 and B are constants with B = — > Re (1/p). Here the product is
over all non-trivial zeros of {(s), which all lie in the region 0 < Re(p) < 1. Thus
(assuming that y is not the ordinate of a zero of {(s))

%+iy—p|
o+iy—p|

HG+W) =2 log

o)

Integrating the above over y € (r — 1,7 + 1) we get
t+1 g( zy) +1
I =
t—1

é(o*+w)
Suppose p = B+iy isazeroof {(s). If [f—y| > 2 then, forany r—1 < y <t+1

1 .
= +I\'_
o+iy—p
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+iy— o—3
110244'0” Reloc( ——2)’
oc+iy— G+iy—p

e | (¢ = L) = A

so that
1+1
f log ” 5
r—1 J+ iy —p f*)/)
In the range |t —y| <2 we use
t+1 _H oo 2 4 52
f log y- 'O” ‘1 (P~ 2)2 dr—n(ami).
= 0 Fiy—p SB—o0r+
Thus in either case
[ i < 2
t—1 g == 1 == 1+(f—)/)2

Inserting this in (4), and noting that there are <« log(t + k) zeros with
k <|t—y| <k+ 1, the proposition follows.

3. Proof of Proposition 2

Before proceeding to the proof of Proposition 2, we record a simple estimate
which will be useful throughout the paper: for any two natural numbers m and n

2T it T if m =n,
5) f (%) dr = | : |
T n O(mm (T 7)) if m #n.

" [log(m/n)|

This follows upon evaluating the integral. In the case m # n, the following
elementary estimates are also useful:

1 1 if m>2n, orif m<n/2;
0 [loe(m/n)| - if n/2 < 2n:
() | log(m/n)| L m/lm—n| if n/2 <m=<2n
Jmn always.

We begin work on Proposition 2 by showing that we may restrict the sum in
P(s) just to primes. The contribution of cubes and higher powers of primes is
clearly O(1), and we need only discard the contribution of squares of primes.
By expanding out, and using (5) and (6),
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T I 1
f ‘ Z 2p2(00+zr) dt LT Z

20

T (p1p2)*o0
p=vX P1:p2=vV X
P1=p2

5 Z 1 1

(p1p2)?°° [log(p1/ p2)l

p1.p2<vVX
PHEP?
«T+ Y, —-/Pp<T
(mp )<o0
plapzsf
P1#D2

Therefore, the measure of the set ¢t € [7,27] with the contribution of prime
squares being larger than L (say) is at most < 7/L?. Write

1
Polog +it) i= Y —

op+it’
p=X P

In view of our estimate for the contribution of prime squares, to establish
Proposition 2, it is enough to show that Re(Py(op + i7)) has an approximately
Gaussian distribution with mean 0 and variance ~ %log log T'. We establish this
by computing moments, keeping in mind that the Gaussian distribution is uniquely
determined by its moments.

Lemma 1. Suppose that k and { are non-negative integers with X*+t < T.
Then, if kK # €,

2T
f Poloo + f[)kpo(Uo — f[)édl LT,
T

while lf k =4¢€ we have
2T
f IPO(GO - l'[)|2kdt = k!T (loglog T)k + Ok (T (loglog T)k_1+€)_
T

Proof. Write Po(s)k = Y parx(n)n=*, where ax(n) =0 unless n has the prime
factorization n = p‘f‘ ---p,‘f" where p;, ..., p, are distinct primes below X, and
@1 + ...+ o =k, in which case ar(n) = k!/(o1!---«,!). Therefore, expanding

out the integral, we obtain
2T
f Po(oo + it)kPO(oo - il‘)gdt
T

ar(myag(n) ar(m)ag(n) 1
=T Z n270 O( Z (mn)co |log(m/n)|)

m+#£n

If m # n, then using the third estimate of (6), we see that the off-diagonal terms
above contribute
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& Z ap(ma;(n) < Xt « T
m#n

Note that if & # € then ag(n)ag(n) is always zero, and the first statement of the
lemma follows.

It remains, in the case & = {, to discuss the diagonal term, which is
T3 ar(n)?/n?° . Given positive integers oy, ..., a, with a; +... +a, =k,
the contribution of terms n of the form p{'--- py" is

<TII(X 2;()&/) & T(loglog T)'.
j=1 p=x P77

Therefore, the contribution from terms n that are not square-free (in which case
r<k—1)is O(T(loglog T)*'). Finally the square-free terms n (so that n is
the product of k distinct primes) give

fT (3 ) e

20
Pl P <X (pl Pk) ’ p=<X
p; distinct
and the lemma follows upon recalling the definition (1). l

From Lemma 1 we see that if X*¥ < T then for odd k

2T 2T

1

f (Re Po(oo + it))*dr = 7 (Po(oo + it) + Poloo —it))kdt
3 T

1 k e 2T
=72\, f Pooo + 1) Po(oo — i) tdt T,
T
=0

since £ # k —{ for odd k. If k is even then, extracting the contribution of
£ =k —{=k/2 above, we obtain

1 2T
?f (Re Py(oo + it)kdt
T

k
s K (k/z) (k/2)!(loglog T)*'? + Oy ((loglog T)K=17¢).

These moments match the moments of a Gaussian random variable with mean
zero and variance ~ %IoglogT, and since the Gaussian is determined by its
moments, Proposition 2 follows.
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4. Proof of Proposition 3

Let us decompose P(s) as Pi(s) + Pa(s), where

Pis)= Y i) and  Pals)= Y ad)

e n®logn - nslogn
Put
(—1)¥ (—DFk
Misy= > S Pi(s)¢ and Ma(s) = o Py (s5)k.
0<k<100loglogT 0<k<100logloglog T

Recalling the definitions of X and Y (see (1)) we see that M; and M, are
both short Dirichlet polynomials of length <« 7°€.

Lemma 2. For T <t <2T we have

(7) [Py (0o +it)| <loglogT, and |Pa(og + it)| < logloglog T,

except perhaps for a set of measure < T/logloglogT. When the bounds (7)
hold, we have

(8) Mi(og +it) =exp ( — Pi(og + j[))(] + O((log T)_99)),
and
9) Ma(og +it) = exp (— Pa(op + it))(l + 0((loglog T)—99)).

Proof. Using (5) and the third estimate of (6), we find

2T
/ |731(O'0_|_il)‘2dl < T Z A(”l)/\(nz)
T

1n11,2)% lognqlogn
25711,:1351’( 1n2) gnylogn,
ni=nz

A(ny)A(ns)
+ Z r(foll)o 21 . NIaLD
2z me<Y (nyn2)° logn, logn,
ni#no
< TloglogT.

Similarly
2T
f ‘732(60—#1'[)\26!: < TlogloglogT.
T

The first assertion (7) follows.
Suppose K > 1 is a real number. If |z| < K then, using that k! > (k/e)*,
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2o 2 f—f)=82+0( %))

0<k<100K k>100K k>100K
= ¢% 4 O(e~199K)
Since |z| < K, we may also write the right side above as e*(1 + 0O(e~°K)).
The estimate (8) holds upon taking z = —P;(0¢g +it) and K = loglog7, and
similarly (9) follows. L]

Put a;(n) =1 if n is composed of at most 100loglog 7" primes all below Y,
and zero otherwise. Put a,(n) = 1 if n is composed of at most 100 logloglog T’
primes all between Y and X, and zero otherwise. Note that a;(1) = a»(1) = 1.
Define

ns

M, (S) = Z Lﬁl(ﬁ and Mz(S) - Z ,LL(I?)(IZ(H).

n

so that the Dirichlet polynomial M(s) (introduced in (3)) may be factored as
M(s) = M,(s)M,(s). If we expand out M;(s) as a Dirichlet polynomial, the
result is similar to M;(s) but the two quantities are not identical. The next lemma
shows that in mean square M, (s) is indeed close to M;(s).

Lemma 3. With norations as above, we have
2T
f My (00 + it) — My(0p + fz))zdz &« T(log T)™%°,
i

and

2T
f | Ma(og + it) — Ma(oo + it)|2dz‘ < T(loglog T)~°°.
T

Proof. We establish the first estimate, and the second follows similarly. Expand
Mi(s) into a Dirichlet series ), b(n)n™*. Then we may see that b(n) satisfies
the following properties:

(i) |b(n)| <1 for all n,
(ii) b(n) = 0 unless n < y100logloeT g composed only of primes below Y, and
(iii) b(n) = pu(n)a;(n) unless Q(n) > 100loglog T, or if there is a prime p <Y
such that p*|n with p* > Y.
Putting c¢(n) = b(n) — p(n)a;(n) temporarily, using (5) and (6) we obtain

2T
f 1M1(00—i—il)—Ml(Uo—i—l‘l‘)]zdI
T

le(mie(nz)] lc(ny)e(nay)l
T + —_— Jnin,.
12;1 C(nmng)%0 ; (n1n2)%0 12
n 2 niFno
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The off-diagonal terms with n; # n, contribute

< > | < T¢.
nl#,jzsyloologlogT
The diagonal terms 71 = n, contribute, (recalling property (iii) above)
1 1 l
LT S T( _)( _)‘
Z n Z pk Z -
pln = p<Y p<Y o5 . g

Q(n)>100loglog T ph>vy

A small calculation shows that the second term above is <« T'(logY)/VY «
T(log T)™®°. To handle the first term above, note that for any 1 < r < 2 the
quantity r@0)—100logloeT ¢ always non-negative, and is > 1 on those n with
Q(n) > 100loglog T'. Therefore

2

T Z %<< T},-loologlog'f 1_[ (1 i L + "_2 +)

pln = p=<Y p=Y PP
Qn)>100loglog T

& T(log T)~100er (Jog T)"

Choosing r = ¢?/3 = 1.94 ..., say, the above is < T(log 7)™, completing our
proof. ]

Proof of Proposition 3. From Lemma 3 it follows that except on a set of measure
o(T), one has

M, (o9 + it) = My(oo +it) + O((log T)™*°).
Moreover, from (8) (except on a set of measure o(7)) we note that
Mi(oo +it) = exp (= Pi(oo +i1))(1 + O((log T)™>)).

Now, by (7) we see that (logT)~! <« |M(o¢ +it)| < logT except on a set of
measure o(7'), and therefore

Mi(oo+it) = Mi(oo+it)+0((log T)™*°) = exp (—P1(oo+it))(1+0((log T)~27)).
Similarly, except on a set of measure o(7'), we have
Ms (0o +it) = Ma(oo +it) + O((loglog T)™>?)
= exp(—P2(gp + it))(l + O((loglog T)_ZO)).
Multiplying these estimates we obtain
Moy +it) = exp (— Plog + ir))(l + O((loglog T)—zo))_

completing our proof. g



12 M. Rapziwirt and K. SOUNDARARAJAN
5. Proof of Proposition 4

For T" <t < 2T, one has {(oo+it) =), R R O(T’%) (see Theorem
411 of [Tit]), and so

ud . . a(m)u(m) it Ly
C(op +it)M(og +it)dt = Z Z (mn) dt + O(T27°)

T (mn)°

=T 4+ O(TzT).

Therefore, expanding the square, we see that

2T
(10) fT 11 — (oo + it)M(og + it)|2dt

2T
== f 1E(00 + it)M(op + it)[2dt — T + O(T2+9).
T

It remains to evaluate the integral above, and to do this we shall use the following
familiar lemma (see for example Lemma 6 of Selberg [Sell]). For completeness
we include a quick proof of the lemma in the next section; we give only a version
sufficient for our purposes and not the sharpest known result.

Lemma 4. Let h and k be non-negative integers, with h,k < T . Then, for any
lzeg> &
pra 29

fTZT (g)”ma +it)|dt

_ f:T (Z(zo)((h];];)z)g + (%)1_2(7@“(2 _ 20)((}2;2?2)10)(!1
+ O(T'~ 7" min{h, k}).

Assuming Lemma 4, we now complete the proof of Proposition 4. In view
of (10) we must show that

(11) Z,u(h)u(k)a(h)a(k) i (h

o k) (0 + i ~T,

h.k

and to do this we appeal to Lemma 4. Recall that |a(n)| < 1 always, and that
a(n) = 0 unless n < T°€. Therefore, the error terms arising from Lemma 4
contribute an amount

< >

hk<T¢

T  min{h, k} « T'70T = o(T).

(hk)oo
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We now focus on the main terms arising from Lemma 4, beginning with the first
main term. This contributes

(hWyuk)a(h)a(k

(hk)?e JO0

(12) T¢(200) Y &
h,k

Write h = hyh, where hy is composed only of primes below Y, and h, of
primes between Y and X, and then a(h) = a,(h1)az(h2) in the notation of
section 3. Writing similarly a(k) = a;(k1)a2(k,), we see that the quantity in (12)
factors as

13 Teem( Y u(hlmgi]:zl)gﬁ;)al(kl)(h],kl)zoo)
hi.ky

( Z p(ha) p(ka)asz(ha)as (k)

2
(hakz)290 (h2, k2) UO)'

h.ko

Consider the first factor in (13). If we ignore the condition that /; and k; must
have at most 100loglog 7" prime factors, then the resulting sum is simply

(h)pky) . 1
Y B e T (1o L)

hik p<Y
plhiky = p<Y

In approximating the first factor by the product above, we incur an error term
which is at most

Z |pe(hy) (k)]

(h1ky)2%0 (h1, k)0,
1K1

<
hyk)
plhiky = p<Y
Q(h1)>100loglog T
where we used symmetry to assume that /#; has many prime factors. Since
¢S2(h1)—100loglog T i always non-negative, and is > 1 for those #; with
Q(hy) = 100loglog T', the above may be bounded by

& em100loglogT  §7 )R] g 2000200

Pt (hiky)290

plhiky = p=<Y

142
< (logT)~ 100 H (1 + ; e) < (logT)™°.
p=<Y

Thus the first factor in (13) is

[1(0- p,joo) + 0((log 7)™ ~ [T (1- pzla())'

p=Y p<Y
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Similarly one obtains that the second factor in (13) is

1_[ (1 2.100)+0((10g10gT)“90)~ H (1—— 2100).

Y<p<X Y<p<X 7

Using these in (13), we obtain that the first main term is

~T¢o0) ] (1- zlao) =7 [ (1- p;go)_l ~ T,

p<X p>X

since, recalling from (1) the definitions of oy, W, and X and using the prime
number theorem and partial summation,

5 /oo 1 di X 17200

K
20 —
g x 1490 logt (200 — 1) log X

= i T].

20
pO

In the same way we see that the second main term arising from Lemma 4 is

¢~ 200) fTZT( )i )Z/L(h)u(k)a(h)a(k)(],k)z_ZUO

N(/TQT (5%)1"2 41)5(2—200) H( _E+p22100)

p=<X

& Tz‘z"o(zm)l_])p]l (1 — }1)—) = g(T}.

This completes our proof of (11), and hence of Proposition 4.

6. Proof of Lemma 4

Put G(s) = 7 */2s(s — DI'(s/2), so that &(s) = G(s)i(s) = £(1 —s) is the
completed zeta function. Define for any given s € C

1 2dz
I(s) =1I(5) = —[ E(z +5)E(z +75)e” =
2mi (¢) A
where the integral is over the line from ¢ —ioco to ¢ 4+ ioco for any ¢ > 0.
By moving the line of integration to the left, and using the functional equation

E(z+s5)s(z+5)=8(—z2+ (1 —35))E(—z+ (1 —75)) we obtain that

(14) £()I (Z(s) + (1 —5)).

~ GG

From now on suppose that s =0 +i7 with 7 <7 <27, and 1 =0 > 5. If z
is a complex number with real part ¢ =1—o0 + 1/log T, then an application of
Stirling’s formula gives
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G (o))

Therefore, we see that

) - : L “tz z 45 ZZd_: —0+¢
IG(s)|2  2mi fuoﬂ/;ogn(zn) {2+ )z +5)e” — +0(T ).

Since we are in the region of absolute convergence of {(z +s) and {(z +75), we
obtain

2T h it ()
0 f &) o

1 ol 1 2T hmNit 1 \2
L TR Yy e
271 J(1—o+1/10gT) Z (mn)?to \_Jr kn 2

min=1

1. O(Tl_0+€).

In the integral in (15), we distinguish the diagonal terms Am = kn from the
off-diagonal terms /im # kn. The diagonal terms /m = kn may be parametrized
as m = Nk/(h.k) and n = Nh/(h.k), and therefore these terms contribute

1 e?’ (h, k)2 \*T° f” £ \z
1 R bz 43 — ) dt )dz.
e 2mi (1—o+1/logT) £ C( " 6)( hik ) T (277) ‘

As for the off-diagonal terms, the inner integral over ¢ may be bounded by
< T min(T. 1/|log(hm/kn)|), and therefore these contribute
(17)

(o.0]

1 1
Tl-0 in (T, b AT Io e
< 21 (mn)1+1/logT mm( |10g(/1m/kn)|) < min{h, k}

mmn=
hm##kn

The final estimate above follows by first discarding terms with hm/(kn) > 2 or
< 1/2, and for the remaining terms (assume that & < /) noting that for a given
m the sum over values n may be bounded by k7€ (here it may be useful to
distinguish the cases im > T and hm < T).

From (15), (16) and (17), we conclude that

(18) fTQT (;{—I)H%dr

1 e?’ (h,kYEN*YO [ 23T ¢ Nz
= — (2:+2a)( ) (f . dt)a’z-
27 J—o41/10eT) Z ¢ hk T (237)

+ O(min{h, k}T1797€).

A similar argument gives
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2T pNitI(1 — ) i o

1 22 ho )2\t 2T p | z41-20
YT ‘ é'(22+2—20)((2 ) ) (/ (—) dl)dz.
2mi (o0+1/logT) Z hk T 2

With a suitable change of variables, we can combine the main terms in (18) and
(19) as

1 b2\ 2 2 o 57— (z—0)? (z—140)2
L f,‘(zz)((2 ) ) / (5=) dr)(© e dz,
278 Ja+1/10g 1) hk T 2 Z—0 z—1+4o

and moving the line of integration to the left we obtain the main term of the lemma
as the residues of the poles at z = ¢ and z = 1 —o¢ (note that the potential pole at
z = 1/2 from £(2z) is canceled by a zero of ¢ /(z—g)+eC~ 179 /(z —1 4g)
there). This completes our proof of Lemma 4.

7. Discussion

In common with Selberg’s proof of Theorem 1 our proof relies on the Gaussian
distribution of short sums over primes, as in Proposition 2. In contrast with
Selberg’s proof, we do not need to invoke delicate zero density estimates for {(s)
(see (1.14") of [Sell]), the easier mean-value theorem in Proposition 4 provides for
us a sufficient substitute; nevertheless, our ideas are closely related to the mollifier
technique that underlies zero-density results (going back to work of Bohr and
Landau). Selberg’s original proof also used an intricate argument expressing
log¢(s) in terms of primes and zeros; an elegant alternative approach was given
by Bombieri and Hejhal [BH], although they too require a strong zero density
result near the critical line. We should also point out that by just focussing on the
central limit theorem, we have not obtained asymptotic formulae for the moments
of log|¢(3 + it)| which Selberg established.

In Selberg’s approach, it was easier to handle Im log((% + it), and the
case of log |<j(% +it)| entailed additional technicalities. In contrast, our method
works well for log|¢ (% + it)| but requires substantial modifications to handle
Im 10g§(% + it). The reason is that Proposition 4 guarantees that typically
|¢(og + it)| ~ |M(og + it)|!, but it could be that Im log@'(% +it) and Im
log M(og+it)~! are not typically close but differ by a substantial integer multiple
of 2m. In this respect our argument shares some similarities with LaurinCikas’s
proof of Selberg’s central limit theorem [Lau], which relies on bounding small
moments of {Q(% +it)| using Heath-Brown’s work on fractional moments [HB].
In particular, Laurin¢ikas’s argument also breaks down for the imaginary part of

log¢(3 +it).



Selberg’s central limit theorem for log |¢(1/2 + it)| 17

We can quantify the argument given here, providing a rate of convergence to
the limiting distribution, but we have not pursued the matter as it did not seem
to yield anything stronger than what is known. We also remark that the argument
also gives the joint distribution of 10g|§(% +it)| and 10g|§(% + it +ia)| (for
any fixed non-zero « € R) and shows that these are distributed like independent
Gaussians. One can allow for more than one shift, and also keep track of the
uniformity in o.

Our proof of Proposition 3 (in Section 4) involved splitting the mollifier M (s)
into two factors, or equivalently of the prime sum 7P(s) into two pieces. We
would have liked to get away with just one prime sum, but this barely fails. In
order to use Proposition 1 successfully, we are forced to take W = o(y/loglogT).

To mollify successfully on the % + kngT line (see Proposition 4) we need to work

with primes going up to roughly TW.If W = o(y/loglog T') then this length is
TA/VlogloeT for 3 large parameter A, and if we try to expand exp(P(s)) into a
series (as in Section 4) we will be forced to take more than /loglog7 terms in
the exponential series. This leads to Dirichlet polynomials that are just a little too
long. We resolve this (see Section 4) by splitting P into two terms, exploiting
the fact that the longer sum P, has a significantly smaller variance.

Propositions 1, 2, and 3 in our argument are quite general and analogues may
be established for higher degree automorphic L -functions in the ¢-aspect. An
analogue of Proposition 4 however can at present only be established for L -
functions of degree 2 (relying here upon information on the shifted convolution
problem), and unknown for degrees 3 or higher. However, some hybrid results
are possible. For example, by adapting the techniques in [CIS2, CISI] we can
establish an analogue of Proposition 4 for twists of a fixed GL(3) L-function by
primitive Dirichlet characters with conductor below Q. In this way one can show
that as y ranges over all primitive Dirichlet characters with conductor below Q,
and r ranges between —1 and 1, the distribution of loglL(% +it, [ x y)| is
approximately normal with mean 0 and variance ~ 5loglog Q; here f is a
fixed eigenform on GL(3).

1
2

Keating and Snaith [KS] have conjectured that central values of L -functions
in families have a log normal distribution with an appropriate mean and variance
depending on the family. For example, we may consider the family of quadratic
Dirichlet L -functions L(%,Xd) where d ranges over fundamental discriminants
of size X . In this setting, we may carry out the arguments of Propositions 2,
3 and 4 and conclude that log L(oy, y4) has a normal distribution with mean
~ %loglogX and variance ~ loglog X, provided that oy = %-{—% where W is
any function with W — o0 as X — oo and with log W = o(loglog X'). However
in this situation we do not have an analogue of Proposition 1 allowing us to pass
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from this to the central value; indeed, our knowledge at present does not exclude
the possibility that L(%, xa) = 0 for a positive proportion of discriminants .

Finally we remark that the proof presented here was suggested by earlier work
of the authors [RS], where general one sided central limit theorems towards the
Keating-Snaith conjectures are established.
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