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Transversely holomorphic flows and contact circles
on spherical 3-manifolds

Hansjörg Geiges and Jesus Gonzalo Pérez

Abstract. Motivated by the moduli theory of taut contact circles on spherical 3-manifolds,

we relate taut contact circles to transversely holomorphic flows. We give an elementary

survey of such 1-dimensional foliations from a topological viewpoint. We describe a

complex analogue of the classical Godbillon-Vey invariant, the so-called Bott invariant,

and a logarithmic monodromy of closed leaves. The Bott invariant allows us to formulate a

generalised Gauß-Bonnet theorem. We compute these invariants for the Poincaré foliations

on the 3-sphere and derive rigidity statements, including a uniformisation theorem for

orbifolds. These results are then applied to the classification of taut contact circles.
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57R30, 58D27.

Keywords. Transversely holomorphic flow, moduli of taut contact circles, Godbillon-Vey

theory, Gauß-Bonnet theorem, Poincaré foliations.

1. Introduction

Transversely holomorphic'flows on 3-manifolds have been classified by Brunel-
la [Bru] and Ghys [Ghy2]. The taut contact circles (Definition 2.3) studied by

us in a series of papers beginning with [GG1] are special instances of such

transversely holomorphic flows. Indeed, the classification in [Bru] of 3-manifolds
that admit a transversely holomorphic flow follows a route via the Enriques-
Kodaira classification of complex surfaces similar to the one taken in [GG1],

In [GG2] we indicated that the moduli theory of taut contact circles on

spherical 3-manifolds admits a nice reformulation in terms of an invariant for

transversely holomorphic flows, which, it turns out, is the basic incarnation of a

secondary characteristic class first constructed by Bott [Bot],
In order to develop this moduli theory in a way accessible to contact geometers,

we present in this paper a detailed survey of transversely holomorphic flows (or
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oriented 1-dimensional foliations) on 3-manifolds, notably on the 3-sphere S3.

For it is only on manifolds covered by S3 that this moduli problem is linked in

an intriguing fashion with the common kernel foliation of the taut contact circle.

We describe the construction of the Bott class (Definition 3.1), a global
invariant for transversely holomorphic flows, as a direct complex analogue of
the Godbillon-Vey invariant [GV]. We also introduce a logarithmic monodromy
for closed leaves in such foliations (Definition 5.1), which can be interpreted as

a simple instance of the residue theory for transversely holomorphic foliations

developed by Fleitsch [Hei], We use the Bott invariant to formulate a generalised
Gauß-Bonnet theorem (Theorem 3.3), from which we deduce the classical Gauß-
Bonnet theorem in Corollary 3.5.

Motivated by the moduli problem for taut contact circles [GG2], we then turn

our attention to transversely holomorphic foliations on the 3-sphere S3; these

are the so-called Poincaré foliations of [Bru], The Bott invariant turns out to be

the moduli parameter in each of two families of taut contact circles.

We give explicit models for the transversely holomorphic foliations on S3 and

show this list to be exhaustive (Theorem 4.9) by appealing to the Poincaré-Dulac
normalisation theorem for Poincaré singularities. We compute the Bott invariant
of these foliations, and the logarithmic monodromy of their closed leaves.

Section 6 is devoted to a detailed study of the topology of transversely

holomorphic foliations on S3. With the aid of associated 2-dimensional foliations
we provide means to visualise these foliations. This includes an analysis of the

asymptotic behaviour of the non-compact leaves, and the Poincaré return map of
compact ones. The figures in Section 6 give an inkling of the rich geometry and

dynamics displayed by transversely holomorphic foliations.
The calculations of the invariants from Sections 4 and 5, together with some

information gained from the explicit descriptions of the Poincaré foliations in
Section 6, are then used to prove a number of rigidity results, for instance about

the uniqueness of the transverse holomorphic structure (Theorem 7.3). Within the

realm of taut contact circles, we show that the classification can be given in terms
of the common kernel foliation (Theorem 7.9). An application of these rigidity
results is a uniformisation theorem for orbifolds (Theorem 7.8), which has been

proved previously using the Ricci flow.

In the case where the transversely holomorphic foliation defines a Seifert

fibration, we determine the Seifert invariants explicitly (Proposition 6.2). In the

context of the rigidity results, we make an observation about Seifert fibrations of
S3 and lens spaces (Proposition 7.6) that may be of independent interest.

Much of what we say about transversely holomorphic flows on 3-manifolds,

except probably for the generalised Gauß-Bonnet theorem and the explicit analysis
of the Poincaré foliations, can be found in some form in the specialist literature.
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We hope that our survey of the relevant material will not only make this paper self-
contained from a contact geometric perspective, but also serve as an introduction
to the beautiful theory of transversely holomorphic flows for a wider audience.

2. Transversely holomorphic flows and taut contact circles

In this section we describe some equivalent definitions of transversely

holomorphic flows on 3-manifolds and relate them to so-called taut contact
circles.

Let F be a nowhere zero vector field on a closed, oriented 3-manifold M.
The flow (or the foliation) generated by F is said to be transversely holomorphic
if there is a complex structure J on the 2-plane bundle TM/(Y) invariant under
the flow of F. This is equivalent to having a transverse conformai structure and

a transverse orientation.
We shall restrict attention to the case where the bundle TM/(Y) is trivial. For

the study of transversely holomorphic flows on the 3-sphere this is no restriction.
Given any nowhere zero vector field F with this triviality condition, one can find
a pair of pointwise linearly independent 1-forms coi,a>2 on M whose common
kernel ker&q IT kera>2 is spanned by F, and such that a>\ A co2 defines the

transverse orientation. We introduce the complex-valued 1-form œc := co\ + iu>2,

and we write Ly for the Lie derivative with respect to F.

Definition 2.1. (CI) The pair (aq, co2) is said to define a transverse conformai
structure for the flow of F if there is a real-valued function f on M such

that

Ly{00\ ®(JÛ\+0Û2® co2) /(<W <S> 0)1 + CÜ2 ® co2).

(C2) The 1-form coc is said to define a transverse holomorphic structure for
the flow of F if there is a complex-valued function h on M such that

LycOc — hct)c.

(C3) The 1 -form a>c is formally integrable if coc A dcoc 0.

Condition (C2) is equivalent to our more 'naive' definition of a transverse

holomorphic structure above (in the case where TM/(Y) is trivial). In the situation

of (C2), the flow of F pulls back coc to a complex multiple of itself, cf. [Gei,
Lemma 1.5.8], and so the flow preserves the complex structure on TM/(Y)
defined by the dual basis to (a>i,&>2); the converse argument is similar.

Conditions (CI) and (C2) do not depend on the specific choice of F. This

means that 'transversely conformai resp. holomorphic' is really a property of
the line field (F) or the foliation it defines. An alternative interpretation of this
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property, more common in foliation theory, is that the holonomy pseudogroup
of the foliation consists of biholomorphisms between open subsets of C. The

terminology 'flow' emphasizes the fact that these foliations come with a natural

orientation induced from the transverse and the ambient orientation.

Lemma 2.2. Conditions (CI) to (C3) are equivalent. A further equivalent condition
is:

(C4) The pair (0)1,(02) satisfies the identities

(Oi A dft)i 0)2 A do)2,

0)i A dù)2 —0)2 A d<Ui.

Proof. The Cartan formula for the Lie derivative gives Lycoj Y _l dcoj, hence

Lycoj annihilates Y. This implies the existence of smooth functions a,y such

that

Lycoi auto 1 + ai20)2,

LyO)2 — 0210)1 + 022(02-

We compute

Ly((01 0 0)1 + 0)2 0 0)2) 2aii<X>i 0 0)1 + 2Û220)2 <8> 0)2

+ (ai2 + a2i)(o)i 0 0)2 +0)2 0
Hence, condition (CI) is equivalent to

(2.1) on — o 22,

Ü12 —021-

The manifold M being 3-dimensional, two 3-forms on M are equal if and only
if they yield the same 2-form under the interior product with Y. This interior
product transforms the first equality in (C4) into the second equality in (2.1), and

the second into the first. Thus, (CI) and (C4) are equivalent.
The system (2.1) translates into

Ly(o) 1 + 10)2) — (a a — iai2)(coi + i<w2).

This gives the equivalence between (CI) and (C2).
The equivalence between (C3) and (C4) is trivial to check.

Recall the following concept from [GG1] :

Definition 2.3. A taut contact circle on a 3-manifold is a pair of contact forms

(0)1,0)2) such that the 1-form Xicoi +X2002 is a contact form defining the same

volume form for all (Ai,A2) e 51 CM2.
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This is equivalent to condition (C4), with the additional contact requirement

COj A àdùj 0.

In [GG1] it was shown that a taut contact circle on a 3-manifold M gives
rise to a complex structure on M xS1. Via the classification of complex surfaces

we arrived at a complete list of closed 3-manifolds admitting taut contact circles:

Theorem 2.4. A closed, connected 3 -manifold M admits a taut contact circle

if and only if M is diffeomorphic to a left-quotient of one of the following Lie

groups:

(i) SU(2), the universal cover of SO(3),

(ii) Ë2, the universal cover of the euclidean group,

(iii) SL2, the universal cover of PSL2M,

that is, the universal covers of the groups of orientation-preserving isometries of
the 2-dimensional geometries.

In [GG2] we developed a deformation theory for taut contact circles, and we
determined the corresponding Teichmüller and moduli spaces. Some topological
aspects of these moduli spaces were treated in [GG3], For a comprehensive survey
on contact circles see [GG4].

One of the aims of this paper will be to apply results from the theory of
transversely holomorphic flows, which will be surveyed below, in the special setting
of taut contact circles. This will include a classification of taut contact circles

on S3 in terms of the dynamics of its common kernel foliation. A dynamical
characterisation of the general contact circle property was given in [GP]. The

present paper contains, amongst other things, all the results announced in [GG2]
as to appear under the title 'Transversely conformai flows on 3-manifolds'.

The class (ii) in Theorem 2.4 contains only the five torus bundles over S1

with periodic monodromy. In class (iii), the common kernel foliation is always

given by the unique Seifert fibration on the manifold in question. So from the

viewpoint of transversely holomorphic flows, only class (i) can be expected to

give rise to a rich theory. In the discussion of explicit models, we shall restrict
attention to transversely holomorphic foliations on S3, but most of what we say
extends in a natural way to the left-quotients.

We end this section with two simple examples illustrating the relation between

transversely holomorphic flows and taut contact circles, and the issue of the

triviality of TM/(Y). Observe that any Seifert fibration admits a transverse

holomorphic structure, given by lifting a holomorphic structure from the quotient
orbifold.
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Examples 2.5. (1) The Seifert fibration given by a non-trivial circle bundle

over the 2-torus defines a transversely holomorphic flow with a trivial
complementary plane bundle, so it can be described by a formally integrable
complex 1 -form coc. However, the total space is of geometric type Nil3 and

does not appear in the list of Theorem 2.4, so there is no choice of mc

corresponding to a taut contact circle.

(2) The obvious Seifert fibration of S1 x S2 has a non-trivial complementary
plane bundle, so it defines a transversely holomorphic flow that cannot be

defined by a formally integrable complex 1-form.

3. Godbillon-Vey theory and the Bott invariant

Our aim in this section is to describe an invariant of transversely holomorphic
flows coming from formally integrable complex 1-forms. The construction is

modelled on the classical Godbillon-Vey invariant [GV] for codimension 1

foliations, which we review briefly. This so-called Bott invariant for transversely

holomorphic flows will then be used to prove a generalised Gauß-Bonnet theorem

for such flows.

3.1. The classical Godbillon-Vey invariant. Let N be a manifold of dimension

at least 3, and cd a nowhere zero 1 -form defining an integrable hyperplane field

kero), so that the integral manifolds of this hyperplane field constitute a smooth,

coorientable codimension 1 foliation. By the Frobenius integrability theorem, this

is equivalent to requiring cd A dft> 0. Computing in a local coframe extending
cd and then using a partition of unity argument, one finds a 1 -form a on N
such that dft> a A cd. Then

0 d2 cd da A eu — a A dft> da A ft) — a A a A ft) da A cd.

Arguing as before, we find a 1 -form ß such that da — ß A co. This implies

d(a A da) daAda /3Aft>Aj0Afti:=O,

so the 3 -form a A da defines a de Rham cohomology class

[a A da] e H^r(N).

This class depends only on the foliation, not on the choice of cd or a ; in particular,
the coorientation of the foliation implicit in a choice of cd plays no role:
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(i) Given any other 1 -form a' with dm a' A co, we have (a' — a) A m 0,
hence a' — a fco for some smooth function / on N. We then compute

(ii) If m is replaced by m — gm for some smooth nowhere zero function g
on N, we compute

so we may take à := g_1dg + a. Then

à A dâ (g~xdg + a) A d(g_1dg + cr) a, A da — d(g-1 dg A a).

For a nice survey on the Godbillon-Vey invariant and its history see [Ghyl],

3.2. Godbillon-Vey theory for transversely holomorphic flows. We now mimic
this construction for transversely holomorphic flows on a closed, connected,

oriented 3 -manifold M, with the plane bundle complementary to the flow being
trivial. By Section 2, any such flow determines a formally integrable complex
1 -form &>c (with pointwise linearly independent real and imaginary part), unique

up to multiplication by a nowhere zero, smooth complex-valued function.

The formal integrability of coc gives us a complex 1-form ac such that

Computations analogous to (i) and (ii) above, with / and g complex-valued,
show that the cohomology class [ac A dac] £ H%R(M) 0 C ^ C is independent
of choices. We interpret this class as a complex number:

Definition 3.1. We call the complex number

a' A da' (a + fco) A (da + df A co + / dcu)

a a da — df A dm

a A da — d(/ dcu).

dâ) dg A m + g dm

— dg A m + ga A m

(g_1dg + a) Am,

da)c — ac A mç.

the Bott invariant of the transversely holomorphic flow defined by the formally
integrable 1 -form mc.
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Remark 3.2. In the monograph by Pittie [Pit], this invariant is called the complex

Godbillon-Vey class, as one might have expected from the construction we

described. However, we follow Asuke [Asu2, Definition 1.1.5] by naming it after

Bott. As explained on page 3 of Asuke's monograph, both for historical reasons

and in order to distinguish it from a different complex generalisation of the

Godbillon-Vey invariant, the attribution to Bott is the preferred one.

This invariant makes one of its first appearances on pages 74-76 of Bott's
lectures [Bot] on characteristic classes and foliations. Its original construction (in

greater generality) was based on Bott's vanishing theorem for Pontrjagin classes

of normal bundles to integrable subbundles and Haefliger's theory of classifying

spaces for foliations, cf. [Pit]. The simple construction in terms of complex-valued
differential forms was inspired by the work of Godbillon and Vey.

Bott's lectures also contain the computation of the invariant for a certain

family of transversely holomorphic foliations on S3, see Proposition 4.4 below.

By the comment after Definition 2.3, the Bott number is in particular an

invariant of taut contact circles. Observe that if the formally integrable complex
1-form ®c stems from a taut contact circle, then so does the 1-form pe'e coc for

any smooth, nowhere zero real-valued function p on M, and any constant angle
9. The corresponding contact circles are precisely those related to each other by

pointwise scaling and global rotation; these form what in [GG1, GG2] we called

the homothety class of a contact circle. The computation in Section 3.1 (ii) shows

that the Bott number is an invariant of the homothety class.

3.3. A generalised Gauß-Bonnet theorem. In this section we discuss an

instance where the Bott invariant depends only on the 1 -dimensional foliation
defined by the transversely holomorphic flow, but not on the specific transverse

holomorphic structure. We shall deduce the Gauß-Bonnet theorem for surfaces

from this result.

Theorem 3.3. Let &>c be a formally integrable complex 1 -form on M for which

there exists a pure imaginary 1 -form ia. such that

da>c ia A coc.

Then any other formally integrable complex 1 -form defining the same 1 -

dimensional foliation has the same Bott invariant.
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Remark 3.4. The condition on the existence of the 1 -form ia is equivalent to

COi A da>2 0 — U>2 A dftJi.

As a condition on a>c this can be written as Im(ft}cAdnJc) 0. In the context of
taut contact circles, this is what we called a Cartan structure, cf. [GG1, GG2],

In general, the real and imaginary part of a formally integrable complex 1-

form a>c define a transverse orientation on the 1 -dimensional common kernel

foliation. The complex conjugate mc defines the opposite transverse orientation,
and the corresponding Bott invariants are complex conjugates of each other. In
the situation of Theorem 3.3, the Bott invariant is a real number, so the choice

of coorientation is irrelevant.

Proof of Theorem 3.3. A simple pointwise calculation shows that, up to scaling
by a nowhere zero complex-valued function, any 1-form defining the same 1-

dimensional foliation and coorientation can be written as

co'c — a>c + fcöc

with some complex-valued function f satisfying \f\ < 1. Then

dco'c ia A coc + (df — ifa) A arc.

The requirement that co'c be formally integrable gives

0 co'c A dco'c

— (a>c + <pa>c) A (ia A coc + (df — ifa) A coc)

— (2i<pa — df) A coc A 7öc.

This implies the existence of complex-valued functions a, b such that

Ufa — df — acoc + bcoc.

Then dœ'c can be rewritten as

dco'c ia A (cuc + <p(üc) + (df — 2ifa) A cbc

— ia A co'c — acoc A cöc

(ia + acöc) A co'c,

which means that we may take

a'c ia + aci>c.

With this choice we have
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do)c —ia acoc — —a'c A coc.

The argument in Section 3.1 (i), applied to the formally integrable 1-form coc,

then shows that the difference

(ia) a d(ia) —a'c a da£

is exact.

Corollary 3.5 (Gauß-Bonnet). Let E be a closed surface with a Riemannian

metric of Gauß curvature K. The value of the integral K dA only depends

on E, not on the choice of metric.

Proof. Let Jt : M -» E be the unit tangent bundle of E. Let us first assume that

E is orientable. On M we then have the standard Liouville-Cartan pair cüi.cl>2,

cf. [GG1, p. 149], [GG2, Section 3], and a connection 1-form a. These satisfy
the structure equations of a Cartan structure:

dûJi a>2 A ot

da>2 a A co\

da - (ti*K)a>i A m2-

The complex 1-form coc := co\ + ia>2 is then formally integrable, with d&>c

ia a coc. When we change the metric or orientation on S, we can interpret this as

keeping the fibration M —> E, but changing the transverse holomorphic structure

on it. By Theorem 3.3, the total Gauß curvature

[ K dA — [ (it* K)a>i A a>? A a — [ a A da
JE 2TT Jm 2tx Jm

is, up to a factor —1/2tt, the Bott invariant determined solely by the fibration.

If E is not orientable, we apply the preceding discussion to an orientable
double cover of E.

4. Transversely holomorphic foliations on S3

We now turn our attention to transversely holomorphic foliations on the 3-

sphere S3. We shall introduce two families of such foliations, and in Theorem 4.9

we show that this is a complete list. We also compute the Bott invariant of these

foliations.
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4.1. Poincaré foliations - the parametric family. In this section we study

transversely holomorphic foliations on S3 induced from a formally integrable
complex 1-form on C2 given by

(4.1) coc azxdz2-ßz2dzx

for a pair (a, ß) of complex numbers in the so-called Poincaré domain. A finite
set of points in the complex plane is said to be in the Poincaré domain [Arn] if
their convex hull does not contain the origin. For a pair (a, ß) this simply means
that a, ß ^ 0 and a/ß ^

The reason for this restriction is provided by the following lemma, which is

implicit in [Bru], In a wider context, this is studied in [IS],

Lemma 4.1. 77îe real ancl imaginary parts of coc as in (4.1) induce pointwise
linearly independent I-forms on S3 C C2, and hence define a transversely

holomorphic flow there, if and only if (a, ß) is in the Poincaré domain.

Proof Clearly both a and ß have to be non-zero, otherwise the 1-form ooc

vanishes along one of the Hopf circles S1 x {0} or {0} x 51 C 53 C C2.

Write a>i, co2 for the real and imaginary part of az\ dz2 — ßz2 dz\, respectively.
The condition for üj\,cd2 to induce pointwise linearly independent 1-forms on S3

is that the plane field V := kernii nkerco2 on C2\{(0,0)} be transverse to S3.

The plane field V is in fact the complex line field spanned by the holomorphic
vector field X az\dZl + ßz2dZ2. So we need to ensure that the real and

imaginary part of X are not simultaneously tangent to S 3. This translates into

0 fi X(|zi|2 + \z2\2) o;|z!|2 + ß\z2\2

at all points (21,22) e S3, which is equivalent to (a,ß) being in the Poincaré

domain.

By scaling coc with a constant in C*, we may restrict attention to Poincaré

pairs of the form (a, ß) (a, 1 - a) with a 0,1 and (1 — a)/a This

means

a e V := (C \M)U]0,1[.

Remark 4.2. We claim that, as shown in [GG1],

ioa û)j + io>2 := azi dz2 — (1 — a)z2 dzj

defines a taut contact circle on S3 if and only if 0 < Re (a) < 1, which describes

a proper subset of V. Indeed, with X := az\dZ{ + (1 — a)z2dZ2, and using the

fact that coa is formally integrable, one finds

2tu" A den" Re(ä)° A dcoa) (X + A) _l (dzi A dz2 A dzi A dz2).
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So the contact circle condition is that X + X be transverse to S 3. From

the claim follows.
Even for a general a e V, the pair (oo^colf) will satisfy the contact circle

condition near at least one of the Flopf circles, since Re(a) and 1 — Re(u)

never vanish simultaneously. This observation will be relevant in the proof of
Theorem 7.3.

Definition 4.3. The 1-dimensional foliations Ta on S3 defined by the coa with
a e V are said to constitute the parametric family of Poincaré foliations.

We shall say more about this terminology in Section 4.2. The symbol Ta is

meant to denote an oriented and cooriented foliation: the coorientation is the one

defined by coa, the orientation is the one which together with this coorientation

gives the standard orientation of S3. No specific transverse holomorphic structure
is meant to be implied by the symbol Ta. One of our main objectives will be

to investigate to what extent the foliation Ta alone determines the transverse

holomorphic structure or the homothety class of the contact circle, see Theorem 7.3

and Remark 7.4.

The map {z\, z2) (—z2, zf) defines an orientation-preserving diffeomorphism
of S3 and pulls back coa to &>1_a. So (Ta,wa) and (J"1-0,ml~a) are

diffeomorphic as transversely holomorphic foliations. The set

constitutes the non-discrete part of the moduli space of taut contact circles on S3,

see [GG1, GG2],
The existence of a diffeomorphism between the transversely holomorphic flows

defined by ma and wl~a is reflected in the following computation of their Bott
invariant.

Proposition 4.4. For a e V, the Bott invariant of coa equals

(.X + 20(|zi|2 + \zi\2) 2Re(a)|zi|2 + 2(l -Re(a))|z2|2

M {a e C : 0 < Re(a) < l}/(a ~ 1 — a)

-4TÏ2

a( 1 — a)

Proof On C2 \ {(0,0)} we have dcua aa A a)a with

On TS3 we compute
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aa A daa — (z\ dzi A dz2 A dz2 + z2 dz2 A dzq A dzi)
a( 1 — a)

-4
(zi3z[ + z23z2)_I (dA'i A dy\ A dx2 A dy2).

a( 1 — a)

The real part of z"i3z1 equals (xi3Xl + y\dyi)/2\ the imaginary part {x\dyi
jq3xl)/2 is tangent to S3. It follows that on TS3 we have

—2
2

a" A daa
_ ^(xjdXj + yjdyj)-l (dxi a dyi A dx2 A dy2),

^ ^ j— 1

which integrates to
2

-volCS3) —.a( 1 — a) a{\ — a)

Remark 4.5. In [Asu2], the 1-form ac in the construction of the Bott invariant
is defined via the equation dco 2niac Aco. With this normalising factor 27ri,
the Bott invariant of coa takes the value l/a(l — a). The definition without this

factor, which is also the one in [Pit, p. 8], is notationally more convenient for
the computations in Section 2.

The map

V — C\Eq
a 1—» a( 1 — a)

is a double branched covering, branched at the point a 1/2. This can best be

seen by writing a j + b\ then a (I — a) \ — b2. This map descends to a

bijection

V/(a~\-a) —* C\Eö
[a] 1—> û(1 — a).

Hence, with Proposition 4.4 we deduce:

Corollary 4.6. Up to orientation-preserving diffeomorphism, a Poincaré foliation
Ta with the transverse holomorphic structure given by coa is determined, within
the class of all pairs (J-a,coa), by its Bott invariant.

This means that we may regard C \ ®q as the moduli space of Poincaré

foliations (lFa,coa) in the parametric family. In particular, the image of M under

the map [a] a(\ — a), which is the convex open set {x + iy e C : x > y2},
can be thought of as (one component of) the moduli space of taut contact circles

on S3, see [GG2],
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Remark 4.7. The aa used in the proof of Proposition 4.4 is the most convenient

one for computing the Bott invariant. However, it may be replaced by

i
(zi dzi + z2 dz2).

a |zi|2 + (1 ~a)\z2\2

For a e]0,1[, that is, for a in the real part of V (or M), the restriction of this

1-form to TS3 is pure imaginary, since

zi dzi + z2 dz2 + z\ dzi + z2 dz2 2(xi dxi + y\ dyi + x2 dx2 + y2 dy2)-

So for these coa Theorem 3.3 applies. Alternatively, one may check that

Im (œa a dcoa) — 0 for a e]0,1 [.

4.2. Poincaré foliations - the discrete family. In [GG1] it was shown that the

moduli space of homothety classes of taut contact circles on S3 is given by the

disjoint union of M and the countable family defined by

a>n := nz\ dz2 — z2dzj + z\ dz2, n e N := {1,2,3,...}.

Write Tn for the oriented and cooriented 1 -dimensional foliation on S 3 defined

by con

Definition 4.8. We say the Tn, ne N, make up the discrete family of Poincaré

foliations on S3.

A larger part of the following theorem is due to Brunella [Bru] and

Ghys [Ghy2], but they do not describe the explicit models. A list of these

models is also contained in [IS, Theorem 2.1].

Theorem 4.9. Tlie Ta, a e V, and the Fn, n e N, exhaust all foliations on S3

admitting a transverse holomorphic structure.

Proof. According to [Bru, Ghy2], any foliation on S3 admitting a transverse

holomorphic structure is a Poincaré foliation, i.e., it is a foliation - on a small

sphere around the origin (0,0) e C2 - induced by a holomorphic vector field with
a singularity at (0,0) whose linearisation at the origin has a pair of eigenvalues
in the Poincaré domain.

According to the Poincaré-Dulac theorem [Arn, p. 190], [CMV], such a

singularity is biholomorphic to a polynomial normal form, where the
nonlinear terms come from resonances. For a singularity in Ck this means the

following. Write A (Ai,...,A^) for the eigenvalues of the linearisation. A
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resonance is a multi-index m (mi,..., m^) e Nq of non-negative integers with

m\ -\ 1- m/c >2, for which there is a j e {I,... ,k} such that

A m) — Xj — 0.

Any such resonance then gives rise to a monomial term cmjzx zk dZj in
the polynomial normal form.

In complex dimension two, by rescaling we may assume that X\ — a and

A2 1 — a, with a e V. The resonance condition for X\ then becomes

am i + (1 — a)rri2 a.

With mi,iri2 e No this implies a e V n R =]0,1[, and further m\ 0 and

ffl2 a/(I — a). So the resonance condition is n := a/(\ — a) e {2,3,...}. The

resonance condition for A2 leads to (1 —a)/a e {2,3,...}, which we can ignore
by symmetry.

So the only resonant term is

z%dZl for —— n e {2,3,...}.

This condition on a rules out the case of a double eigenvalue a 1/2 in the

linearised singularity, so the corresponding normal form is

17 1

——(z 1 + cz") dz2 - ——z2 dzj.
1 + 11 1 +71

By rescaling and pull-back under the map (zi,z2) i-> (c«zi,z2) for c / 0, we
obtain the con, n > 2, introduced above.

In the non-resonant case, we obtain coa, a e V, if the linearisation is

diagonalisable, and up if it is not.

Our computation of the Bott invariant of the con depends crucially on the

moduli theory of taut contact circles.

Proposition 4.10. The Bott invariant of con equals

-4tt22 (n + l)2

Proof. In [GG1, §6] we discussed the following 'jump' homotopy, which mirrors
a phenomenon in the moduli theory of Hopf surfaces discovered by Kodaira and

Spencer [KS], For given ne N, consider the family

a:= nz\ dz2 — z2 dz\ + Az" dz2, A e [0,1],
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For A e]0, 1] these complex 1-forms all define the same taut contact circle, up
to homothety and diffeomorphism. For A 0 we obtain the taut contact circle
homothetic to

,,«/(«+1) " „ „ A-co =——rZidz2 — z2dzi
n + 1 77 + 1

from the parametric family.
Although the equivalence class of the taut contact circle jumps at A 0, the

Bott invariant will depend continuously on A for all A [0, 1] and hence, being
constant on ]0,1], will be identically equal to that of con^n+lK

5. Logarithmic monodromy

In order to describe the geometry of a transversely holomorphic foliation, we

study the logarithmic monodromy along a closed leaf, which is a complex number
associated with such a leaf. It is best to explain the concept in a concrete case.

Thus, consider a Poincaré foliation Ta with transversely holomorphic structure

given by coa, and with the corresponding orientation of the leaves. For any a e V,
the two Hopf circles S1 x {0} and {()} x .S"1 constitute closed leaves of Ta.

Either of these Hopf circles, just like any other knot in S3, comes with a

preferred trivialisation (up to homotopy) of its normal bundle, namely, the surface

framing defined by a Seifert surface of the knot. The transverse holomorphic
structure J then determines an oriented conformai framing: take any vector field

Z along the knot which is tangent to the Seifert surface, and declare that the

rotate of Z through an angle it/2 be equal to JZ. For the Hopf circle S1 x {()},
such a Seifert surface is given by the disc

{(reie, Vi -7-2): r e [0, 1], 0eK}c S3.

This corresponds to the oriented conformai framing given by the oriented basis

(dX2,dy2) of tangent vector fields along the Hopf circle, or by the type (1.0)
complex tangent vector dZ2.

Such a framing allows us to identify a neighbourhood of an oriented closed

leaf y with a neighbourhood of S1 x {0} in S1 x C. The oriented foliation
then determines a family of germs of holomorphic maps <pt'. (C, 0) -» (C, 0)

by writing the intersection point of the leaf through (1, z) with the transversal

(e'jxC as (elf,^(z)).
We can then make a continuous choice of logarithm log cp't (0) with log (p'0 (0)

log 1 — 0. A different identification of y with S1 and a homotopy of the framing
will change the map tpt by conjugation and homotopy rel {0,2n}, so the following
quantity associated with a closed leaf is independent of choices.
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Definition 5.1. The logarithmic monodromy of the closed leaf y is \og(p'l7T({)).

Remark 5.2. Our notion of logarithmic monodromy may be interpreted as a

simple instance of the residue theory developed by Heitsch [Hei]; see also [Asu2,
Chapter 5] and [Asul, Example 6.1], for instance.

Notice that although we need a transverse holomorphic structure to define
the logarithmic monodromy of a closed leaf, the value of this monodromy is

completely determined by the oriented and cooriented foliation:

Lemma 5.3. The logarithmic monodromy is independent of the choice of transverse

holomorphic structure inducing a given transverse orientation.

Proof. Let one transverse holomorphic structure be given by the formally
integrable 1 -form coc. Then, as in the proof of Theorem 3.3, we observe that any
other 1 -form defining the same cooriented foliation can be scaled to

m'c toc + <pcoc

with |0| < 1. If we choose an otc such that dmc ac A œc, the condition for co'c

to be formally integrable becomes

(0c*c — fdic — d0) a wc A ûJc 0.

This condition is linear in 0, so it follows that mc + A0coc, A e [0,1], defines a

homotopy of transverse holomorphic structures.

Thus, changing the transverse holomorphic structure once again amounts to

changing the map (pt by conjugation and homotopy rel {0, 2tt}.

If we change the orientation of the foliation, the logarithmic monodromy
changes its sign; changing the coorientation amounts to taking the complex

conjugate of the logarithmic monodromy.

Proposition 5.4. For a e V, the logarithmic monodromy of S1 x {0} in Ta is

2ni(\ —a)/a, that of {0} x S1 is 27ria/(l — a).

Proof. By the proof of Lemma 4.1, the complex 1 -form to" defines a plane field

on C2\{(0,0)} transverse to S3. Therefore, for the computation of the logarithmic
monodromy of S1 x {0} we may replace S3 by S1 x C, which has the same

tangent spaces along that Hopf circle. Moreover, the trivialisation 51 xC of the

normal bundle accords with the transverse holomorphic structure and trivialisation
defined by 3Z2.
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The complex 1 -form induced by coa on S1 x C can be written as

at10 dz — (1 — a)ielöz d9.

So the induced flow is given by the vector field

de + -—-izdz,
a

and the flow lines are parametrised by

t I—> (eif,zeif(1-û)/û).

The claimed logarithmic monodromy follows. For {0} x S1 the computation is

analogous.

The following two examples are consistent with the computation in this

proposition.

Examples 5.5. (1) The orientation-preserving diffeomorphism of S3 given by
(z\, Z2) (—Z2,Zi) sends (Ta,coa) to {Tl~a, &>1_a) and exchanges the two
closed leaves.

(2) The orientation-preserving diffeomorphism of S 3 given by (zi,Z2) (zT,Z2)

pulls back coa to coa. So this diffeomorphism sends Ta to J-a with reversed

orientation and coorientation, and it maps each Hopf circle to itself. This

is consistent with the proposition, since the negative complex conjugate of
2jri(l — a)/a is 2^i(l — a)/a.

We now turn to the discrete family. The Hopf circle S1 x {0} is a closed leaf
of each of the foliations Tn (in fact, the only one, see Proposition 6.4).

Proposition 5.6. For n e N, the logarithmic monodromy of S1 x {0} in Tn

equals 2ni/n.

Proof. As in the preceding proof, we replace S3 by S1 xC, where the complex
1-form induced by œn can be written as

neld dz - ielöz dd + z" dz.

The common kernel flow near S1 x {0} is given by the vector field

H
: 3z — 3e H 9z + 0(z2).

n + e wzn n

It follows that the logarithmic monodromy is the same as for the flow

t 1— (é\zêtln).

Remark 5.7. This is consistent with 2rc\/n being the logarithmic monodromy of
S1 x {0} in Jrn/(n+1') and the limit argument in the proof of Proposition 4.10.
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6. Topology of the flows

In this section we give explicit descriptions of the Poincaré foliations.

Specifically, we determine the closed leaves and the limiting behaviour of the

non-closed ones.

6.1. The parametric family. As observed earlier, each Ta contains the Hopf
circles S1 x {0} and {0} x Sl as closed leaves. Depending on the value a e V,
these may be the only closed leaves, or all leaves may be closed:

Proposition 6.1. For aeC\I, the Hopf circles are the only closed leaves of
Ta. Every other leaf is asymptotic to the two Hopf circles, one at either end.

For a e]0,1[, all leaves apart from the Hopf circles are curves of constant

slope a/(I—a) on the Hopf tori {\z\\ — const.}, regarded as boundary of a

tubular neighbourhood of the Hopf circle S1 x {0}.

Proof. In the complement of the Hopf link we can write

for some real constants /o,0o-
Write zj — rye10', j — 1,2, and use r\ e]0,1[, 0j,02 as coordinates outside

the Hopf link. Define u,v e 1 by u + in (1 — a)/a. The leaves are then given
by equations as follows:

Notice that the ambiguity in the definition of the complex logarithm is absorbed

into the constants.

For a eC\l, and hence v ^ 0, these equations allow us to express 0i,02
as functions of r\ e]0,1[, and so they describe leaves asymptotic to the two Hopf
circles:

So each leaf of Ta in this domain can be described by an equation

1 — a
log z2 log zi l0 + i 90

a

(6.1)
log y 1 - r\ - u log ri + vdi /0,

02 — ud\ — v log n 0O-

(6.2)
0\ ~ (^0 + u log ri - log y 1 - /-j2

02 0o + ^ /o + ^(("2 + v2) 'ogD _ u loS ~rl )•
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The precise asymptotic behaviour in dependence on the value of a e C \ E will
be discussed below.

For a e]0,1[, so that v — 0 and u (1 —a)/a, equations (6.1) can be written
as

log J1 - r\ - -—- log r, Io,

(6.3) a

02 0\ — 0Q-
a

The first of these equations describes a Hopf torus {/q const.}. (It is

straightforward to check that for each a ]0, 1[ the left-hand side of the first

equation defines a strictly monotone decreasing function in r\ with image all

of E.) The second equation defines a curve of constant slope a/(\—a) on that

torus. The foliation, including the Hopf link, can be described as the flow of the

Killing vector field adgl + (1 — a)dg2 for the standard metric on S3.

The preceding proposition tells us that the leaves of Ta are all closed if and

only if a e]0,1[DQ. If a 1/2, the foliation defines the Hopf fibration of S3.

For other rational values of a, the foliation defines a Seifert fibration with one

or two singular fibres.

Proposition 6.2. Given a e]0, l[nQ, write a/{I - a) p\/pi with P\,P2
coprime natural numbers. Choose integers such that

Pi P2 _ j
-q'i

and define integers m\,m2 by the requirement that qi — mjpj + qj with
0 <qj < Pj, j 1,2.

Then the foliation Ta defines a Seifert fibration of S3 with unnormalised

Seifert invariants

{g 0,(pi,q[),(p2,q'2))

and normalised Seifert invariants

(g 0 ,b mi +m2,(p\,q\),{p2,q2))-

The quotient orbifold is S2(p\, P2)

Proof We follow the recipe in [NR] for computing the Seifert invariants; for

easy reference we retain their notation. By equation (6.3) in the preceding proof,
the leaves of Ta are the orbits of the S1 -action on S3 given by

0(zi,Z2) (eiptdzi,ei,'2$Z2).
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The singular orbits are the Hopf circles 0\ S1 x {0} and 02 {0} x S1.

Disjoint invariant tubular neighbourhoods of these two orbits are given by

Ti {\zi\2 > 3/4} and T2 {\z2\2 > 3/4}.

Set

M0 S3\lnt(T1 U T2).

Then M0 Mo/Sl is an S ^bundle over an annulus, and the quotient orbifold
S3/S1 is a 2-sphere with two cone points of order p\,p2, respectively, given
by the multiplicity of the singular orbits.

Write p,j for the meridian of 7). We think of these two curves as a homology
class of curves on any Hopf torus. Take A] := p2 and A2 := as the standard

longitudes. The non-singular orbits are in the class p\X\ + p2A2. A homologically
dual curve is q\X\ —q'2X2. This defines a section R c Mo of the S1-bundle

M0 M0/Sl. Notice that the homological intersection of these two curves on

37j is

(p2p.1 + plAx) • (—q'2p,\ + q[X\) 1.

It follows that the orientation of R compatible with the standard orientation of S3

and the orientation of the S1 -orbits is the one for which the oriented boundary
curves of this section are

R\ q\Aj — q'2X2 C 37"]

and

R2 := —(q[A] — q'2X2) C dT2.

In the respective solid torus these curves are homologous to

q[Oi C 7j and q'202 C T2.

This yields the unnormalised Seifert invariants. The normalised Seifert invariants
follow from the equivalences described in [NR, Theorem 1.1],

Remark 6.3. For p\ p2 1, the quotient orbifold S2(p\, p2) is simply the

2-sphere. If exactly one of the pi equals 1, we have a tear-drop. If both p\ and

p2 are greater than 1, the orbifold is a spindle. Thus, all possible tear-drops are

realised, but only spindles with coprime multiplicities at the cone points.

We now take a closer look at the asymptotic behaviour of the leaves of J-a

for a e C \t, described by equations (6.2). Recall that u + iv (1 — a)/a. If
we write a x + iy, this gives

x — (x2 + y2)
U ^ rx2 + y2
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So the case u 0 is equivalent to the condition x x2 + y2, which is the same

as \a — j I x. Similarly, we have

u > 0 if and only if
1

<

and

u < 0 if and only if a
2

The imaginary part of (1 — a)ja is

1

>
2

v —

y 2 '

which is always non-zero for a e C \ ®.
We write J-f, for the 2-dimensional foliations on the complement of the

Hopf link defined by only the first or the second equation in (6.2), respectively.
Then Ta J7" n J7^ • Notice that in J7" the angle 6>2 can take any value, while 0\

is determined by r\, so the leaves of T'[ essentially look like tubes, potentially
multi-layered, around the Hopf circle 0\ — S1 x {0}. Similarly, the leaves of J7"

look like tubes around the Hopf circle 02 {0} x S1.

First case, u — 0. Here the limiting behaviour of 6\, 02 is described by

—* lo/v
02 —> - sign(u) ex)

and

01

02

So the leaves of Ta approach a limiting angle in the direction transverse to the

respective Hopf circle, and they circle infinitely often in the direction parallel to

that Hopf circle.

The leaves of JFf are open cylinders asymptotic at one end to the Hopf circle

{n — 0} — O2, with a well-defined tangent plane determined by the limiting
angle 6\. Thus, near 02 the foliation J7" looks like an open book near its

binding. At the other end, the cylinder sits like an ever thinner tube around the

Hopf circle {r\ 1} 0\, winding infinitely often along it.

for r\ \ 0

for rx / 1.
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Second case, u > 0. Here 9\ and 62 are monotone functions of r\ with

9\ —> — sign(u) oo

02 —» - sign(u) oo

and
01 —» sign(u) oo I

02 —> sign(n) oo

for /'i \ 0

for r\ / 1.

The cylindrical leaves of J7" tube towards 0\ as before, but now the other end

of each cylinder scrolls towards 02, encircling it infinitely often.

Third case, u <0. In this case we have

sign(w) oo

— sign(u) oo

and

0! —> sign(u) oo

02 —» — sign(u) oo

for ri \ 0

for r\ / \.

One checks easily that the derivatives of 0x and 02 with respect to r\ both

change sign exactly once. The cylindrical leaves of T" tube towards 0\ and

scroll towards 02 as in the second case, but now they change the 0i -direction

once, making them look like sombreros, see Figure 1.

In all three cases, the cylindrical leaves of show the analogous behaviour,
with the roles of the two Hopf circles interchanged.

6.2. The discrete family. For each n e N, the 1 -form con defined in Section 4.2

may be regarded as a holomorphic 1-form on C2. Outside the origin, it defines

a foliation Cn := kercu„ by holomorphic curves, which we refer to as complex
leaves.

The complex line C x {0} is a leaf of Cn, and it intersects S3 in the closed

leaf S1 x{0} of lFn On the complement CxC* of that complex line, the 1 -form
a>n can be written as

con z%+l d(k)gz2 - ^).
From this description, which we shall use to analyse the topology of Tn in the

complement
Si :=S3\(S1 x{0})

of the Hopf circle S1 x {0}, we see that each leaf of Cn in C x C* is given by
an equation
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Figure i

The 'sombrero'

(6.4) log z2-—=c0
Z2

for some complex constant co. Observe that the solution set of this equation is

the image of the injective map

C 3 ir i—> {(w — co)enw,ew),

so it is indeed connected. We shall see that the intersection of each complex leaf
with 53 is also connected, and thus constitutes a leaf of Tn.

Proposition 6.4. For each ne N, the Hopf circle S1 x {0} is the only closed

leaf of Tn. Every other leaf is asymptotic to this Hopf circle at both ends.
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Proof. We take n e N as given and suppress it from the notation whenever

appropriate. Let C C U {00} be the Riemann sphere, and consider the Seifert

fibration
7rn: S3 —> C

(zi,z2) 1 ^
Z2

with fibres given by the orbits of the S ^action

0(zx,z2) (emöz1,el6,z2)-

On C C C we use the coordinate z * + \y. As before we write zy rye10/

Since z\ (x + iy)z" for z2 0, on Sq S3\jt~1(oo) the radius r2 is defined

implicitly as a smooth function r2(x, y) (depending on n by the equation

(6.5) {x2 + y2)r\n + r\ — 1, r2 > 0.

Thus, Sq can be parametrised in terms of x,y,d2 by

(zi, z2) ((x + iy) r"(x, y) ein0fr2(x, y) e^).

From (6.4) and with c0 c 1 4- ic2, we then see that the intersection of each

complex leaf with Sq is given by a system of equations

(6.6)

Implicit differentiation of (6.5) gives

x - logr2(x,y) -clt
62 ~ y c2.

dr2
_

-xr2"-1
3x n(x2 + y2)r2"-2 + L

from which we derive with r" < r2 the estimate

3 r
(6.7)

3x <r \x\rrl ^ r2

- 2
(X7-2_1)2 + 1 " 2

'

So the partial derivative with respect to x of the function (x,y) i->- x—log r2(x, y)
lies in the interval [1 /2,3/2], which means that the first equation in (6.6) implicitly
defines x as a smooth function of y el (depending on n and cq). Hence, the

solution curve of (6.6) is parametrised by

K 9 y 1—» (x(y), y, d2 y + c2),

which verifies the claim made earlier that the intersection of a complex leaf with
S3 gives a single leaf of Tn.
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For y —> ±00 we have

r2'2
00,

and hence r2 —» 0, which proves the proposition.

Next, as for the parametric family, we describe the limiting behaviour of the

angle 9\ (y) for y -> ±00. From z\ {x + iy)r"eme2 and (6.6) we have

0i Cy) n(c2 + y) + arg (x(y) + iy).

The implicit definition of x(y) in (6.6) and the limiting behaviour r2 -» 0

for y ±00 entail that x(y) -> —00 for y -> ±00. (One may notice that

x(y) x(—y), and by implicit differentiation one sees that the function y >-> x(y)
has a single local maximum at y 0.) It follows that

arg(*00 + ij0
[n/2,7t] for y » 1,

[—7t/2, —7r] for y <3C — 1.

In fact, by a more careful analysis one can show that

*00 + ci + - log |y| —» 0,
n

and hence arg(x(y) + iy) -> ±jr/2 for y -» ±00. Our more rough estimate,

however, is sufficient to conclude that 9\(y) ±00 for y ±00. Geometrically
this means that the Hopf circle .S'1 x {0} is the a- and a>-limit set of each leaf
in Tn.

In order to visualise the global topology of the foliation Tn, we introduce an

auxiliary 2-dimensional foliation £n of S3. The flow

ft\ (z\,z2)\—>- (em'zi,e"z2), t e E,

on S3 is along the fibres of the Seifert fibration nn : S3 -» C. From
11rfcûn e^"+1^cu„ we see that the flow 1/^ preserves the foliation Tn. The

Hopf circle S1 x {0} is mapped to itself by 1//t, but on the complement Sfi the

flow is 27r -periodic and transverse to Fn, since

œn{nz idZl + z2 9Z2) z"+l.

So each leaf of Tn in Sq sweeps out a cylindrical surface. We write £n for the

singular 2-dimensional foliation of S3 made up of these surfaces and a single
1-dimensional leaf S1 x {0}. From Proposition 6.4 we deduce that the closure of
each 2-dimensional leaf of £n is the union of that leaf with S1 x {0}.
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Observe that in terms of the coordinates (x,y,62) on Sq, the flow ijrt is

simply given by

ft : (x, y, d2) I—» (x, y, 62 + ?)•

With the description of the leaves of Tn in Sq given in (6.6), this tells us that
the leaves of £n in Sq are the inverse images under ir„ of the curves in C

determined by an equation

(6.8) x - logr2(x,y) -ci-
As c2 varies in (6.6), we obtain the leaves of Tn within a single leaf of £n.

The following proposition says that, up to a C1 -diffeomorphism, the foliation
£n looks homogeneous.

Proposition 6.5. There is a C1 -diffeomorphism à of S3, fixed along S1 x {0}
and of class C°° on Sq, which sends £n to the 2-dimensional foliation of
S3 with a singular leaf S1 x {0}, and all 2-dimensional leaves of the form
Ttf1 ({x const.}). In other words, 5{£n) is the preimage under nn of the

standard foliation of C with a singular point of Poincaré—Hopf index 2 at oo.

Proof. We first construct a C1 -diffeomorphism a of C that brings the foliation
7in(£„) given by (6.8) into standard form. Set

o(z) x — logr2(x, y) + iy for z x + iy e C ct(oo) oo.

From the estimate (6.7) and the comment following it we see that o maps C

diffeomorphically onto itself, and it obviously 'linearises' the foliation of C.
Notice that cr(0) =0.

To examine the differentiability of a near oo, we use the coordinate w on
<C \ {0} C* U {oo} given by w(z) — 1/z for z e C* and ic(oo) 0. From the

implicit definition of r2(z) r2(x,y) in (6.5) we have

r2n < JL
2 M2 kl2'

Feeding this estimate back into the defining equation, we obtain

1 ~ IA~2'n
< 2n ^ _L

|Z|2
2 \z\2'

This gives us the growth estimate

logr2(z) — log \z\ + 0(\z\~2^n) — log IiuI + 0(\w\2^n) for w 0.
n x ' n

A straightforward calculation yields
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1 1 2
—— uH—w2 log |tu| + 0(|w;|2+«) forir-^O,
er(z) n

and a similar estimate for the differential of a. This means that a is C1 near

w 0, and its differential admits |tu|log|iü| as a modulus of continuity.
Next we want to construct the diffeomorphism â of S3 as a lift of a, that

is, ö should satisfy the equation itn o cr — a o n„. For this construction we use

explicit coordinates on Sq and

S^:=S3\n-H0) S^\({0}xSl).

For Sq we use the parametrisation from the proof of Proposition 6.4:

0o : CxS1 — Sq

(z,e102) I—» (zr* (z)em02, r2(z)e102),

with inverse diffeomorphism given by

For the parametrisation of S^, it is convenient to replace C by the open unit
disc DcC. We then define a diffeomorphism

0CO: 5'xD ^ 5^
(ei(?1,z2) I—» (Vl - \z2l2e'ei,z2),

with inverse map

(zi,z2)H^(ir,z2).

We first construct the lift cr near S1 x {0}, i.e., near the point oo (or w 0) in

the base. From the growth estimate for log r2 we have near w 0 a well-defined

complex-valued function

1

p(w):=
y\ - u; log r2(z)

with arg^u close to zero, and this function admits | re | log | rt? | as modulus of
continuity. For points p eC near oo we have

/ o
1 W(P)

W\a P > z(p)-\og r2(z(p)) I-w(p) log r2(z(p))'

hence

w(a(p)) w(p) p(w(p))".
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By slight abuse of notation, we now suppress the parametrisations, i.e., we think
of nn\S3 as a map S1 xD -> C, and of a as the germ of a map (D, 0) -> (D, 0).
Then

7tn(ée\z2) ^ e~ig' ^(z2)"e"iei,
V1 - lZ2 [2

where : D ->• C is the diffeomorphism

z
: z

(1 - \z\2Y'2n'

and

aojr„(e"\z2) ^(z2)"e"i0> ))".

Thus, in order to obtain a commutative diagram

S1 xD — S1 x!

TT/, I
C C

with a map a defined near S1 x {0} c 51 x D, we can simply set

ä(eif\z2):=(ei0',z2)

with

z2 := f~l(f{z2) ii(f(z2)nerieij).
Notice that à fixes S1 x {0} pointwise. Given the continuity properties of \i
near w 0, and the fact that the diffeomorphism ijr goes like z2 near z2 0,
we see that à is C1 at z2 0, with first derivative admitting |z2|log|z2| as

modulus of continuity; outside z2 0 the local diffeomorphism 5 is smooth.

Remark 6.6. In fact one can show that ä (for a given n) has derivatives up
to order n, and the nth derivative admits |z2|log|z2| as modulus of continuity.
Since xjr is a diffeomorphism, the regularity of z2 as a function of z2 and G\

is the same as that of (f, 9) t-> Ç /x(^"e-10). By a more careful growth estimate

for logr2(z), one obtains the claimed result.

Next we wish to construct the lift ö on Sq that is, over C c C in the base,

making sure that it coincides with the previous construction near oo. Again we
work in coordinates, so we want to construct à such that the diagram

C x S1 CxS1

TZn JZn

c a
> c
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commutes. From the definition of f0 we see that in this diagram the vertical

map n„ is simply the projection onto the first factor, so cr must be of the form

(6.9) â(z,ei02) (a(z),ei02)

for a suitable function 02(z,02).
The composition

51 x (D \ {0}) H 4, n Sq K (c \ {0}) X s1

is given in the second factor by z2 h» z2/\z2\. It follows that near z — oo, the

function 02 must be given by arg z2. Since the diffeomorphism f preserves the

argument, this gives

02(z, 02) 02 + arg(/t,(^(z2)"e_iei)),

where (e101,z2) (pfj ° </>0(z, e102), so we can write this as

02 (z> 02) — 02 + /(z, 02).

Our previous definition of the lift ö near z oo means that there / is given,
and it takes values close to zero. From the coordinate description of a in (6.9)
and with | /1 small we see that cr maps the S1 -fibre over z diffeomorphically
with degree 1 onto the fibre over a(z), which necessitates 3//302 > -1. This is

a convex condition, so the / given near z oo can be extended smoothly over
C subject to this condition. This completes the construction of the lift cr.

According to this proposition the topology of the foliation £n is essentially
encoded in the Seifert fibration jrn.

An alternative and more intrinsic way to understand the topology of Tn and

£n is to consider surfaces of section.

Proposition 6.7. For each n e N, the 2-disc {02 const., rx < 1} with boundary
the closed leaf S1 x {0} is a global surface of section for the foliation Tn

Proof We have

zi dzy + zT dzi + z2 dz2 + z2 dz2 2(x\ àxx + yi dyj + x2 dx2 + y2 dy2)

and

z2 dz2 — z2 dz2 —2irj d02.

The wedge product of these two 1-forms with con Acon is a volume form on C2

multiplied by a factor

n|z1|2|z2|2 + I z214 + |z2|2Re(z!Z^),

which is positive on S3 \ (51 x {0}). This means that kercu„ is transverse to the

disc {02 const., r\ < 1}.
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More interesting is the behaviour of Tn near the closed leaf 51 x {0}, so we

now consider the discs {Q\ const.}. These discs are surfaces of section near

r2 0, that is, near the closed leaf. For the concept of Leau-Fatou flower used

in the next proposition see [Mil, §10].

Proposition 6.8. The Poincaré return map of Tn on the disc {61 const., r2 < 1}

near the central fixed point has a Leau-Fatou flower with n attracting petals.

Proof. Without loss of generality, we consider the disc A := {91 — 0, r2 < 1},
on which we take (r2,02) as polar coordinates. The Seifert fibres of nn are

transverse to A, hence so is the flow xft, which implies that the leaves of 8n

are likewise transverse. From (6.8) we see that the intersection of £n with A is

given by curves of the form

r"
cos {n62) 2 (logr2-ci)

yîMi
for varying values of c\. These are shown in Figures 2 and 3 for n 1 and

n — 3, respectively. The centre of A is the intersection point with the closed leaf
S1 x {0} of Tn.

Figure 2

The foliation A fl £\
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Figure 3

The foliation À n £3

The return time for any point p e A under the flow 1frt is t — 2n/n, and we
have

f2n/n(>'2, S2) (r2, 02 + ~)-
Hence, in the picture for n 1, each loop (without the central point) corresponds

to the intersection of A with a single leaf of £n ; in the case n — 3, each cylindrical
leaf R. x S1 of £3 cuts A in three open loops (corresponding to the R -factor)
obtained from one another by rotation through 2jt/3.

Each leaf of Tn is contained in a leaf of £n. As we saw earlier, the non-closed

leaves of Tn have infinite variation in Q\ -direction, and they approach S1 x {0}
in forward and backward time. Near the centre of A, where Fn is transverse

to A, each leaf of Tn meets n loops of A (T £n in cyclic order, and in each loop
the intersection points move from one end to the other with time. In adjacent

loops, these intersection points move in opposite direction. This means that there

are open sectors of width 2jt/k where the intersection points approach the origin
along the central direction of the sector, so we have a Leau-Fatou flower with
n attracting petals in the terminology of [Mil, §10]; correspondingly, there are n

repelling petals.
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Remark 6.9. The results in this section show that even the simple Poincaré

foliations on the 3-sphere give rise to interesting dynamical patterns. For a more
wide-ranging analysis of transversely holomorphic foliations of codimension 1

from a dynamical point of view see [Asu2, Chapter 6] and [GGS].

We end the discussion of the topology of the foliations Tn with the following
branched cover description.

Proposition 6.10. There is an n-folcl branched cover S 3 -> S3, branched along
S1 x {0}, that pulls back T\ to Tn.

Proof. We start with the branched covering

pn : C2 —> C2

(z1;z2) I—» (nzi,z'f).

This satisfies p*coi nzi?-1««, so it maps the complex leaves of the foliation
Cn to those of C\.

Define a diffeomorphic copy of S3 by

:= pf\s3) {(zi,z2): n2|zi|2 + |z2|2" l}.

Then pn restricts to a branched covering £„ S3. We denote by T'n the
1 -dimensional foliation of E„ given by the intersection with Cn ; this foliation is

mapped by pn to T\.
It remains to construct a diffeomorphism

4>„: {S3,Tn)

To this end, we consider the holomorphic vector field

[nz\ + z") 3Zl + z.2dZ2

tangent to the leaves of Cn. Its complex flow, whose orbits are the leaves of Cn,

is given by
*l^(zx,z2) (e"?zx + £e"?Z2,e^z2).

Given any smooth complex-valued function 'Ç (zi, z2), the map defined by

CK(zi,Z2) :=^(21'Z2)(Z!,Z2)

likewise preserves the leaves of Cn ; this can be seen by geometric reasoning or
with a direct computation showing <§*(Dn e("+1^Zl'Z2)<n„.

We would now like to choose £ as a real-valued function on S3 such that
<1^nP\p) ^ for each p e S3. This leads to the implicit equation
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n2e2nS\z! + £z£|2 + e2"?|z2|2n 1

for £. A straightforward computation shows that the derivative of the left-hand

side with respect to £ is everywhere positive. Moreover, the left-hand side goes

to zero for £ —> — oo, and to infinity for £ —> oo. So this implicit equation
defines a unique smooth real-valued function £ with the desired properties. Tire

map p h» <&n\p) then maps S 3 into £„, and since the inverse map can be

constructed by analogous means, it is a dilfeomorphism.

7. Rigidity results

In this section we discuss a number of cases where the common kernel foliation
determines the transverse holomorphic structure or the taut contact circle.

Lemma 7.1. Let coc — co\ + ia>2 be a formally integrable complex 1 -form.
Let Y be a vector field generating the common kernel foliation, and write

Lycoc — (/ + ig)ft)c with real-valued functions f and g. Then o>\,o)2 are

contact forms (and hence define a taut contact circle) precisely on the open set

where g 0.

Proof We compute

\Y _l (ü)\ A dûJc) — i£Uj A Ly(Oc

-icoi A (/ + ig)coc

(/ + tg)ccii A C02.

Taking the imaginary part, we find

Y _! (û)i A d(til) gCOl A 0)2•

This means

a>i A dcui g AV,

where dV is the volume form defined byT_ldT (yiAùJ2.

We retain the definition of Y, g and dT for the next lemma and its proof,
as well as the theorem that follows.

Lemma 7.2. Let co'c a>c + fiwc with \f \ < 1 be any other I-form defining
the same cooriented 1 -dimensional foliation as coc. The condition for a>'c to be

formally integrable is

Y4> 2igf.
This condition implies Y\<p\z 0, i.e., \cp\ is constant along the leaves of the

foliation.
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Proof. We compute

co'c A dco'c (a>c + 0<FC) A (dcuc + d0 A cöc + 0 d<Fc)

— d<p A Toc A a>c + f (a)c A dcöc + 7JC A dcoc)

2i dip A a>i A a>2 + 4cpg dV

2(iF0 + 20g)dF,

from which the integrability condition follows.
From

F|0|2 (F0)0 + 0(F0)

we deduce Y\cp\2 — 0 if the integrability condition holds.

Theorem 7.3. Each of the foliations Ta, a e C \R, and Tn, n e N, admits a

unique transverse holomorphic structure for the given coorientation.

Proof. In the notation of the two preceding lemmata, we need to show 0 0

if coc equals one of the coa, a e C \ M, or an cjn (provided <p defines another

formally integrable 1-form).

By the results in Section 6, in these foliations all leaves (except for the second

Hopf circle {0} x S1 in 7Fa) are asymptotic in at least one direction to the Hopf
circle S1 x {0}. It follows that |<p\, being constant along the leaves, must be

constant on S3.

If |01 were non-zero, we could define a map

fi S^S'CC,
m

still satisfying the integrability condition Yepi 2\gcpi from the foregoing lemma.

But the œn define contact circles, and so does œa near at least one Hopf circle O

by Remark 4.2, so there we have g 0 0. This implies that cpi\o S1 O —^ S1

has non-zero degree, but it also extends as a map over the Seifert disc of O.
This contradiction shows that we must have 0 0.

Remark 7.4. For the Ta with a e]0,1[, the transverse holomorphic structure is

not unique:

- If a is rational, Ta defines a Seifert fibration, and different holomorphic
structures on the quotient orbifold give us different transverse holomorphic
structures.

- If a is irrational, the leaves still lie on Hopf tori, and by changing the

metric structure in the direction orthogonal to the Hopf tori we obtain

different transverse conformai (and hence holomorphic) structures.
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We expand a bit on the second point. Outside the Hopf circles, the tangent
bundle of S3 is trivialised by the orthonormal frame (with respect to the standard

metric)

deji'i (x1dyi - yidx^/rx

de2/r2 (x2dy2 -y2dX2)/r2
r2 r\

r2dn - ridr7 — (xidXl + y13^,) (x2dX2 + yidyf).
r i r2

The third vector in this frame is invariant under the flow of dgl and dg2. Any
metric for which the first two vectors fields are orthonormal, and the third one

orthogonal with length a function of r\, defines a transverse conformai structure
for Fa, a e]0,1[.

The following corollary improves on Corollary 4.6; we do not need to know
the transverse holomorphic structure to determine Fa. Recall that a Poincaré

foliation belongs to the parametric family if and only if it has at least two closed

leaves.

Corollary 7.5. From any cooriented Poincaré foliation F in the parametric
family (but without any a priori given transverse holomorphic structure) one can

recover the value a{ 1 —a) — and hence the class [a] e V/iß ~ 1 —a) — for which
there is an orientation-preserving diffeomorphism of S3 sending F to Fa as a

cooriented foliation.

Proof. We need to show that Fa determines a {I — a). If a e C \ R, then Fa
admits a unique transverse holomorphic structure, and the Bott invariant of this

structure gives us a(l— a) by Proposition 4.4. If a e]0,1[, then by Remark 4.7 we

are in the situation of Theorem 3.3. Thus, although there is a choice of transverse

holomorphic structures, they all yield the same Bott invariant as coa, and again

we recover a{ \ — a).

From this we now want to deduce the uniformisation result that the moduli

space of conformai structures on any orbifold S2(ki,k2), where k\,k2 e N
are not necessarily coprime, is a single point. This class of 2-dimensional
orbifolds contains all the bad ones, i.e., those not covered by a surface:

teardrops, where precisely one of the /c£- is equal to one, and asymmetric spindles,
where k\,k2 are different and both greater than 1. We begin with a topological
preparation.
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Proposition 7.6. Given any natural numbers k\,k2, there are coprime natural
numbers p\, p2 and a natural number m such that the Seifert fibration of S3 C C2

determined by the S1 -action

9(zi,z2) (e1^1 ez\, e.ip2ez2),

which has base orbifold S2(p\,p2), descends to a Seifert fibration of the left-

quotient
L(m,m — 1) S3/(zl,z2) ~ (e27ri/mZ!, e"2jri/mz2)

with base orbifold S2{k\,k2). For p\,p2 one may always take the pair of coprime
natural numbers with p\/p2 k\/k2, and m k\ + k2-

Proof In the described Seifert fibration of S3, the regular fibres have length 2jt,
and the multiple fibres through (1,0) and (0,1) have length 2rt/pi and 2n/p2,
respectively. The Zm -action on S3 commutes with the S ^action, so it sends

Seifert fibres to Seifert fibres and induces the structure of a Seifert fibration on

L(m, m — 1

The two multiple fibres in S3 are mapped into themselves by the Zm -action,
so the length of the corresponding fibres in L(m,m—1) is In/p\m and 2n/p2m,
respectively. The length of the regular Seifert fibres in L(m,m — 1) is given by
the minimal 9 e]0,27r] such that there are natural numbers

k e {1,2 m}, h e {0,1,..., px - 1}, l2 e {1,2,..., p2}

with

k
p\9 — 2n h 2jr/j,

(7.1) mk

p29 — —2n h 2nl2.
m

This implies (p\ + p2)6 2n{l\ + l2). Hence, the minimal 6 is 2n/{p\ + p2),
which can indeed be realised for a suitable k if m is a multiple of p\+ p2.

Now, given k\,k2, set m k\ + k2 and let pi,p2 be the coprime natural

numbers with k\/k2 — pi/p2. Then (7.1) is satisfied with 9 — 2n/{p\ + p2),

f 0, /2 1, and k k\. So the regular fibres in L(m,m — 1) have length

2n 2nk\ 2nk2

P\+P2 P\{kx+k2) p2(k\ -\- k2~)
'

compared to the length of the multiple fibres

2n 2n
—7t—TN' 7=1.2,

pjm Pj(ki+k2)
which means that the multiplicities are k\,k2.
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Remark 7.7. The choice of m k\ + k2 is not the smallest possible, in general.
For instance, if k\ p2 and k2 — p\P2 with p\,p2 coprime, one can take

m — p\, since the corresponding Zm-action freely permutes the regular fibres

in S3. See also the discussion in [GL].

In the following uniformisation theorem and its proof it is convenient to think
of a conformai structure on an orbifold as a transverse conformai structure on a

Seifert fibration over it, and of an orbifold diffeomorphism as a fibre-preserving
diffeomorphism of that Seifert manifold. This uniformisation theorem has been

proved previously by Zhu [Zhu], using the Ricci flow.

Theorem 7.8. For any natural numbers ki,k2, the conformai structure on the

orbifold S2(ki,k2) is unique up to orbifold diffeomorphism.

Proof Define the coprime natural numbers p\,p2 by the condition P\/p2
k\/k2. Consider the diagram

S3 » L(m,m — \)

i I
S2(pi,p2) » S2(k1,k2)

from the discussion in the preceding proposition. Choose a contact form a>\ on

L(m,m — 1) for which the Seifert fibration L(m,m — 1) —* S2(k\,k2) is Legendrian,
i.e., tangent to keraq For instance, the 1-form co" on S3 with a/(I—a) p\/P2
is such a contact form on the Seifert fibration S3 —r S2(px,p2), and being Zm-
invariant it descends to L(m,m — 1).

Given a conformai structure on S2(ki,k2), define a second 1-form oj2 on the

lens space L(m,m— 1) by stipulating that the 2-plane field kercu2 be tangent to

the fibres of L(m,m — 1) —» S2(ki,k2), and that a>i ® a>i + u>2 ® u>2 define the

transverse conformai structure; this a>2 is unique up to sign. Then u>c := co\ +\<x>2

is formally integrable. With co\ being a contact form, this implies that (co\ ,<u2)

is in fact a taut contact circle.

By the classification of taut contact circles in [GG1, Proposition 6.1], (ûji,cu2)
equals (co",co%) (regarded as taut contact circle on L(m,m — 1)) up to homothety
and diffeomorphism for a unique [a]. By Corollary 7.5, this must be the class [a]

determined by a/(\ — a) — p\/P2, that is, the one we chose above to define co\.
Thus, the given conformai structure on S2(ki,k2) is diffeomorphic to the one
determined by on L(m,m — 1).

For taut contact circles we have an even more succinct statement than

Corollary 7.5.
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Theorem 7.9. The homothety class of a taut contact circle on S3 (inducing the

standard orientation) is determined, up to orientation-preserving diffeomorphism,
by its cooriented common kernel foliation.

Proof. If the common kernel foliation has only one closed leaf, the taut contact
circle comes from the discrete family {con : n e N}. By Proposition 5.6, the

value of n can be recovered from the logarithmic monodromy of the closed leaf.

Alternatively, by Proposition 6.8, n can be read off as the number of petals in
the Leau-Fatou flower of the Poincaré return map.

If the common kernel foliation has more than one closed leaf, the taut contact

circle comes from the parametric family {ma : [a] e M). Corollary 7.5 tells us

how to recover [a] from the cooriented foliation.

Remark 7.10. In the case of the parametric family, we may appeal alternatively
to our topological considerations. The following cases cover all eventualities, but

they are not mutually exclusive.

(i) If the foliation defines a Seifert fibration with two singular fibres of
multiplicity p\, p2 (one or both of which may be equal to 1), we determine
the unordered pair

a 1 — a

I — a' a
from Proposition 6.2.

(ii) If the leaves foliate tori, that pair of numbers can be read off from the slope

of these foliations by Proposition 6.1.

(iii) If there are only two closed leaves, we recover that pair of numbers from
their logarithmic monodromy, using Proposition 5.4.

That pair of numbers determines o(l — a) via

a I — a 1

I
'

~7ï 7 _ 2'
1 — a a a{\ — a)
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