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Transversely holomorphic flows and contact circles
on spherical 3-manifolds

Hansjorg GEeiges and Jesus GonzaLO PEREz

Abstract. Motivated by the moduli theory of taut contact circles on spherical 3-manifolds,
we relate taut contact circles to transversely holomorphic flows. We give an elementary
survey of such 1-dimensional foliations from a topological viewpoint. We describe a
complex analogue of the classical Godbillon—Vey invariant, the so-called Bott invariant,
and a logarithmic monodromy of closed leaves. The Bott invariant allows us to formulate a
generalised Gaufl—Bonnet theorem. We compute these invariants for the Poincaré foliations
on the 3-sphere and derive rigidity statements, including a uniformisation theorem for
orbifolds. These results are then applied to the classification of taut contact circles.

Mathematics Subject Classification (2010). Primary: 53CI2; Secondary: 53D35, 57M50,
57R30, 58D27.

Keywords. Transversely holomorphic flow, moduli of taut contact circles, Godbillon—Vey
theory, Gau3—Bonnet theorem, Poincaré foliations.

1. Introduction

Transversely holomorphic flows on 3-manifolds have been classified by Brunel-
la [Bru] and Ghys [Ghy2]. The taut contact circles (Definition 2.3) studied by
us in a series of papers beginning with [GGI] are special instances of such
transversely holomorphic flows. Indeed, the classification in [Bru] of 3-manifolds
that admit a transversely holomorphic flow follows a route via the Enriques—
Kodaira classification of complex surfaces similar to the one taken in [GGI].

In [GG2] we indicated that the moduli theory of taut contact circles on
spherical 3-manifolds admits a nice reformulation in terms of an invariant for
transversely holomorphic flows, which, it turns out, is the basic incarnation of a
secondary characteristic class first constructed by Bott [Bot].

In order to develop this moduli theory in a way accessible to contact geometers,
we present in this paper a detailed survey of transversely holomorphic flows (or
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oriented 1-dimensional foliations) on 3-manifolds, notably on the 3-sphere S3.
For it is only on manifolds covered by S? that this moduli problem is linked in
an intriguing fashion with the common kernel foliation of the taut contact circle.

We describe the construction of the Bott class (Definition 3.1), a global
invariant for transversely holomorphic flows, as a direct complex analogue of
the Godbillon—Vey invariant [GV]. We also introduce a logarithmic monodromy
for closed leaves in such foliations (Definition 5.1), which can be interpreted as
a simple instance of the residue theory for transversely holomorphic foliations
developed by Heitsch [Hei]. We use the Bott invariant to formulate a generalised
Gaufl—Bonnet theorem (Theorem 3.3), from which we deduce the classical Gaul3—
Bonnet theorem in Corollary 3.5.

Motivated by the moduli problem for taut contact circles [GG2], we then turn
our attention to transversely holomorphic foliations on the 3-sphere S3; these
are the so-called Poincaré foliations of [Bru]. The Bott invariant turns out to be
the moduli parameter in each of two families of taut contact circles.

We give explicit models for the transversely holomorphic foliations on S* and
show this list to be exhaustive (Theorem 4.9) by appealing to the Poincaré-Dulac
normalisation theorem for Poincaré singularities. We compute the Bott invariant
of these foliations, and the logarithmic monodromy of their closed leaves.

Section 6 is devoted to a detailed study of the topology of transversely
holomorphic foliations on $3. With the aid of associated 2-dimensional foliations
we provide means to visualise these foliations. This includes an analysis of the
asymptotic behaviour of the non-compact leaves, and the Poincaré return map of
compact ones. The figures in Section 6 give an inkling of the rich geometry and
dynamics displayed by transversely holomorphic foliations.

The calculations of the invariants from Sections 4 and 5, together with some
information gained from the explicit descriptions of the Poincaré foliations in
Section 6, are then used to prove a number of rigidity results, for instance about
the uniqueness of the transverse holomorphic structure (Theorem 7.3). Within the
realm of taut contact circles, we show that the classification can be given in terms
of the common kernel foliation (Theorem 7.9). An application of these rigidity
results is a uniformisation theorem for orbifolds (Theorem 7.8), which has been
proved previously using the Ricci flow.

In the case where the transversely holomorphic foliation defines a Seifert
fibration, we determine the Seifert invariants explicitly (Proposition 6.2). In the
context of the rigidity results, we make an observation about Seifert fibrations of
S3 and lens spaces (Proposition 7.6) that may be of independent interest.

Much of what we say about transversely holomorphic flows on 3-manifolds,
except probably for the generalised Gaufi—Bonnet theorem and the explicit analysis
of the Poincaré foliations, can be found in some form in the specialist literature.
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We hope that our survey of the relevant material will not only make this paper self-
contained from a contact geometric perspective, but also serve as an introduction
to the beautiful theory of transversely holomorphic flows for a wider audience.

2. Transversely holomorphic flows and taut contact circles

In this section we describe some equivalent definitions of transversely
holomorphic flows on 3-manifolds and relate them to so-called taut contact
circles.

Let Y be a nowhere zero vector field on a closed, oriented 3-manifold M .
The flow (or the foliation) generated by Y is said to be transversely holomorphic
if there is a complex structure J on the 2-plane bundle 7M/(Y) invariant under
the flow of Y. This is equivalent to having a transverse conformal structure and
a transverse orientation.

We shall restrict attention to the case where the bundle 7M/(Y) is trivial. For
the study of transversely holomorphic flows on the 3-sphere this is no restriction.
Given any nowhere zero vector field Y with this triviality condition, one can find
a pair of pointwise linearly independent 1-forms w;,w, on M whose common
kernel kerw; M kerw, is spanned by Y, and such that w; A wp defines the
transverse orientation. We introduce the complex-valued 1-form w. := 0 + iwa,
and we write Ly for the Lie derivative with respect to Y .

Definition 2.1. (Cl) The pair (w;,w;) is said to define a transverse conformal
structure for the flow of Y if there is a real-valued function f on M such
that

Ly(w @ w1 + w2 @ w2) = f(w1 @ w1 + w2 @ w2).

(C2) The 1-form . is said to define a transverse holomorphic structure for
the flow of Y if there is a complex-valued function 2 on M such that
LYa)C — hwc .

(C3) The 1-form w. is formally integrable if w: A dw, = 0.

Condition (C2) is equivalent to our more ‘naive’ definition of a transverse
holomorphic structure above (in the case where 7M/(Y') is trivial). In the situation
of (C2), the flow of Y pulls back o, to a complex multiple of itself, cf. [Gei,
Lemma 1.5.8], and so the flow preserves the complex structure on TM/(Y)
defined by the dual basis to (w;,w;); the converse argument is similar.

Conditions (Cl) and (C2) do not depend on the specific choice of Y. This
means that ‘transversely conformal resp. holomorphic’ is really a property of
the line field (Y') or the foliation it defines. An alternative interpretation of this
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property, more common in foliation theory, is that the holonomy pseudogroup
of the foliation consists of biholomorphisms between open subsets of C. The
terminology ‘flow’ emphasizes the fact that these foliations come with a natural
orientation induced from the transverse and the ambient orientation.

Lemma 2.2. Conditions (Cl) to (C3) are equivalent. A further equivalent condition
AV

(C4) The pair (w1,w;) satisfies the identities
wi N da)1 = wyr N da)z,
w1 N da)2 = —wy N\ da)l.
Proof. The Cartan formula for the Lie derivative gives Lyw; =Y _1 dw;, hence

Lyw; annihilates Y. This implies the existence of smooth functions a;; such
that

Lyw, = ajjw + arpwa,
Lyws = aziwy + azw;.

We compute

Ly(w @ wi + w2 @ wz) = 2a1101 @ w1 + 2a2202 @ w2
+ (a12 +az)(w; ® wz + w; @ wy).

Hence, condition (Cl1) is equivalent to

2.1) { ayl = dna,

aiz = —da1.
The manifold M being 3-dimensional, two 3-forms on M are equal if and only
if they yield the same 2-form under the interior product with Y. This interior
product transforms the first equality in (C4) into the second equality in (2.1), and

the second into the first. Thus, (Cl) and (C4) are equivalent.
The system (2.1) translates into

Ly (w1 +iw2) = (a11 —iar)(w; + iw,).

This gives the equivalence between (Cl) and (C2).
The equivalence between (C3) and (C4) is trivial to check. O

Recall the following concept from [GGl]:

Definition 2.3. A raut contact circle on a 3-manifold is a pair of contact forms
(w1, w2) such that the 1-form Ajw; + A, is a contact form defining the same
volume form for all (A;,4,) € S' C R?.
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This is equivalent to condition (C4), with the additional contact requirement
w;j ANdw; # 0.

In [GGI] it was shown that a taut contact circle on a 3-manifold M gives
rise to a complex structure on M x S'. Via the classification of complex surfaces
we arrived at a complete list of closed 3-manifolds admitting taut contact circles:

Theorem 2.4. A closed, connected 3-manifold M admits a taut contact circle
if and only if M is diffeomorphic to a left-quotient of one of the following Lie
groups:

(i) SU(2), the universal cover of SO(3),
(ii) Ea, the universal cover of the euclidean group,
(iii) §f2, the universal cover of PSLsR,

that is, the universal covers of the groups of orientation-preserving isometries of
the 2-dimensional geometries. El

In [GG2] we developed a deformation theory for taut contact circles, and we
determined the corresponding Teichmiiller and moduli spaces. Some topological
aspects of these moduli spaces were treated in [GG3]. For a comprehensive survey
on contact circles see [GG4].

One of the aims of this paper will be to apply results from the theory of
transversely holomorphic flows, which will be surveyed below, in the special setting
of taut contact circles. This will include a classification of taut contact circles
on S* in terms of the dynamics of its common kernel foliation. A dynamical
characterisation of the general contact circle property was given in [GP]. The
present paper contains, amongst other things, all the results announced in [GG2]
as to appear under the title ‘“Transversely conformal flows on 3-manifolds’.

The class (i) in Theorem 2.4 contains only the five torus bundles over S'!
with periodic monodromy. In class (iii), the common kernel foliation is always
given by the unique Seifert fibration on the manifold in question. So from the
viewpoint of transversely holomorphic flows, only class (i) can be expected to
give rise to a rich theory. In the discussion of explicit models, we shall restrict
attention to transversely holomorphic foliations on S3, but most of what we say
extends in a natural way to the left-quotients.

We end this section with two simple examples illustrating the relation between
transversely holomorphic flows and taut contact circles, and the issue of the
triviality of TM/(Y). Observe that any Seifert fibration admits a transverse
holomorphic structure, given by lifting a holomorphic structure from the quotient
orbifold.
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Examples 2.5. (1) The Seifert fibration given by a non-trivial circle bundle
over the 2-torus defines a transversely holomorphic flow with a trivial
complementary plane bundle, so it can be described by a formally integrable
complex 1-form e.. However, the total space is of geometric type Nil® and
does not appear in the list of Theorem 2.4, so there is no choice of w,
corresponding to a taut contact circle.

(2) The obvious Seifert fibration of S! x $? has a non-trivial complementary
plane bundle, so it defines a transversely holomorphic flow that cannot be
defined by a formally integrable complex 1-form.

3. Godbillon-Vey theory and the Bott invariant

Our aim in this section is to describe an invariant of transversely holomorphic
flows coming from formally integrable complex 1-forms. The construction is
modelled on the classical Godbillon—Vey invariant [GV] for codimension 1
foliations, which we review briefly. This so-called Bott invariant for transversely
holomorphic flows will then be used to prove a generalised Gaul—Bonnet theorem
for such flows.

3.1. The classical Godbillon-Vey invariant. Let N be a manifold of dimension
at least 3, and @ a nowhere zero 1-form defining an integrable hyperplane field
ker w, so that the integral manifolds of this hyperplane field constitute a smooth,
coorientable codimension 1 foliation. By the Frobenius integrability theorem, this
is equivalent to requiring w A dew = 0. Computing in a local coframe extending
w, and then using a partition of unity argument, one finds a 1-form « on N
such that do = o A w. Then

O=d?w=derw—-—ardo=derw—araAw=deAo.
Arguing as before, we find a 1-form g such that doe = B A @. This implies
dla Ade) =darndae =B ArwABAw =0,
so the 3-form o A de defines a de Rham cohomology class
[@ A da] € Hi (N).

This class depends only on the foliation, not on the choice of @ or «; in particular,
the coorientation of the foliation implicit in a choice of @ plays no role:
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(i) Given any other I-form &’ with dw = &’ A w, we have (¢ —a) Aw =0,
hence o' —a = fw for some smooth function f on N. We then compute

o' Add' = (@ + fo)A(da+df Aw+ fdw)
=aANde —df Adw
=a Anda —d(f dw).

(ii) If o is replaced by @ = gw for some smooth nowhere zero function g
on N, we compute

do =dg Aw + gdw
=dgrhw+garw
= (g 'dg+a) na,

so we may take @ := g~ 'dg + «. Then
andd = (g l'dg +a) Ad(g7ldg + @) = a Ada —d(g7 dg A @).

For a nice survey on the Godbillon—Vey invariant and its history see [Ghyl].

3.2. Godbillon-Vey theory for transversely holomorphic flows. We now mimic
this construction for transversely holomorphic flows on a closed, connected,
oriented 3-manifold M, with the plane bundle complementary to the flow being
trivial. By Section 2, any such flow determines a formally integrable complex
1-form . (with pointwise linearly independent real and imaginary part), unique
up to multiplication by a nowhere zero, smooth complex-valued function.

The formal integrability of . gives us a complex 1-form «. such that

dw. = o A we.

Computations analogous to (i) and (ii) above, with f and g complex-valued,
show that the cohomology class [oe A doc] € Hj, (M) ® C = C is independent
of choices. We interpret this class as a complex number:

Definition 3.1. We call the complex number

f ac A dag
M

the Bott invariant of the transversely holomorphic flow defined by the formally
integrable 1-form w.
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Remark 3.2. In the monograph by Pittie [Pit], this invariant is called the complex
Godbillon—Vey class, as one might have expected from the construction we
described. However, we follow Asuke [Asu2, Definition 1.1.5] by naming it after
Bott. As explained on page 3 of Asuke’s monograph, both for historical reasons
and in order to distinguish it from a different complex generalisation of the
Godbillon—Vey invariant, the attribution to Bott is the preferred one.

This invariant makes one of its first appearances on pages 74-76 of Bott’s
lectures [Bot] on characteristic classes and foliations. Its original construction (in
greater generality) was based on Bott’s vanishing theorem for Pontrjagin classes
of normal bundles to integrable subbundles and Haefliger’s theory of classifying
spaces for foliations, cf. [Pit]. The simple construction in terms of complex-valued
differential forms was inspired by the work of Godbillon and Vey.

Bott’s lectures also contain the computation of the invariant for a certain
family of transversely holomorphic foliations on S, see Proposition 4.4 below.

By the comment after Definition 2.3, the Bott number is in particular an
invariant of taut contact circles. Observe that if the formally integrable complex
1-form w. stems from a taut contact circle, then so does the 1-form ,oei‘ga)C for
any smooth, nowhere zero real-valued function p on M, and any constant angle
6. The corresponding contact circles are precisely those related to each other by
pointwise scaling and global rotation; these form what in [GGl, GG2] we called
the homothety class of a contact circle. The computation in Section 3.1 (ii) shows
that the Bott number is an invariant of the homothety class.

3.3. A generalised GauB-Bonnet theorem. In this section we discuss an
instance where the Bott invariant depends only on the 1-dimensional foliation
defined by the transversely holomorphic flow, but not on the specific transverse
holomorphic structure. We shall deduce the Gauf—Bonnet theorem for surfaces
from this result.

Theorem 3.3. Let w. be a formally integrable complex 1-form on M for which
there exists a pure imaginary 1-form io such that

dw: = ia A w;.

Then any other formally integrable complex 1-form defining the same 1-
dimensional foliation has the same Bott invariant.
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Remark 3.4. The condition on the existence of the 1-form ix is equivalent to
w1 /\dwz = O:wz/\da)l.

As a condition on @ this can be written as Im (w; A dw.) = 0. In the context of
taut contact circles, this is what we called a Cartan structure, cf. [GGl, GG2].

In general, the real and imaginary part of a formally integrable complex 1-
form w. define a transverse orientation on the 1-dimensional common kernel
foliation. The complex conjugate @w. defines the opposite transverse orientation,
and the corresponding Bott invariants are complex conjugates of each other. In
the situation of Theorem 3.3, the Bott invariant is a real number, so the choice
of coorientation is irrelevant.

Proof of Theorem 3.3. A simple pointwise calculation shows that, up to scaling
by a nowhere zero complex-valued function, any 1-form defining the same 1-
dimensional foliation and coorientation can be written as

W, = ¢ + Pw
with some complex-valued function ¢ satisfying |¢| < 1. Then
dw. = i A we + (d¢p — ipa) A @¢.
The requirement that o/ be formally integrable gives

0 = w, A dw]
= (wc + pwe) A (o A we + (dgp —iga) A @)
= Qigpa — do) A we A we.

This implies the existence of complex-valued functions a,b such that
Then dw/ can be rewritten as

dw) = ia A (0 + ¢@c) + (d¢p — 2iga) A @
= ix A W, — awe A @

= (¢ + awe) A w,,
which means that we may take
a, = io + aw,.

With this choice we have
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dac = —iOt /\ac = _aé /\5(:.

The argument in Section 3.1 (i), applied to the formally integrable 1-form @,
then shows that the difference

(o) A d(ier) — ) A der

is exact. ]

Corollary 3.5 (GauB—Bonnet). Let ¥ be a closed surface with a Riemannian
metric of Gauf3 curvature K. The value of the integral fz K dA only depends
on X, not on the choice of metric.

Proof. Let m: M — % be the unit tangent bundle of X. Let us first assume that
Y is orientable. On M we then have the standard Liouville-Cartan pair wq, w;,
cf. [GGI, p. 149], [GG2, Section 3], and a connection 1-form «. These satisfy
the structure equations of a Cartan structure:

do) = vy A
dw, = a A wy

do = (7" K)w; A w3.

The complex 1-form . := w; + iw, is then formally integrable, with do, =
i Aw.. When we change the metric or orientation on X, we can interpret this as
keeping the fibration M — X, but changing the transverse holomorphic structure
on it. By Theorem 3.3, the total Gauf} curvature

1 1
deA:—f(Jr*K)wl/\a)zf\oz:— a A da
by 2 M 2 M
is, up to a factor —1/2x, the Bott invariant determined solely by the fibration.

If ¥ is not orientable, we apply the preceding discussion to an orientable
double cover of X. U

4. Transversely holomorphic foliations on $3

We now turn our attention to transversely holomorphic foliations on the 3-
sphere S3. We shall introduce two families of such foliations, and in Theorem 4.9
we show that this is a complete list. We also compute the Bott invariant of these
foliations.
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4.1. Poincaré foliations — the parametric family. In this section we study
transversely holomorphic foliations on S$3 induced from a formally integrable
complex 1-form on C? given by

4.1) we = azydzy — Bfzadzg

for a pair (o, ) of complex numbers in the so-called Poincaré domain. A finite
set of points in the complex plane is said to be in the Poincaré domain [Arn] if
their convex hull does not contain the origin. For a pair («, 8) this simply means
that o, #0 and o/B € R™.

The reason for this restriction is provided by the following lemma, which is
implicit in [Bru]. In a wider context, this is studied in [IS].

Lemma 4.1. The real and imaginary parts of w. as in (4.1) induce pointwise
linearly independent 1-forms on S*® C C2, and hence define a transversely
holomorphic flow there, if and only if («a,B) is in the Poincaré domain.

Proof. Clearly both « and S have to be non-zero, otherwise the 1-form w.
vanishes along one of the Hopf circles S x {0} or {0} x S! c §3 c C2.

Write w;, w, for the real and imaginary part of «z; dzp;—pz, dz;, respectively.
The condition for w;,w, to induce pointwise linearly independent 1-forms on S3
is that the plane field D := kerw; Nkerw, on C?\ {(0,0)} be transverse to S°>.

The plane field D is in fact the complex line field spanned by the holomorphic
vector field X := wz10;, + Pz20:,. So we need to ensure that the real and
imaginary part of X are not simultaneously tangent to S3. This translates into

0# X(|z11> + |22?) = |21 + Blz2|

at all points (z,z,) € S, which is equivalent to («.fB) being in the Poincaré
domain. ]

By scaling w. with a constant in C*, we may restrict attention to Poincaré
pairs of the form («,pB) = (a,1 —a) with a # 0,1 and (1 —a)/a ¢ R™. This
means

a € P:=(C\R)U]0,1].

Remark 4.2. We claim that, as shown in [GGl],
w® = w‘f + la)g =dazy de — (l — a)Zz dZ]

defines a taut contact circle on S if and only if 0 < Re(a) < 1, which describes
a proper subset of P. Indeed, with X := az1d;, + (1 —a)z20,,, and using the
fact that w“ is formally integrable, one finds

2a)f AN da)f — Re(Ea A\ da)a) = (X + Y)_, (dzqy Adzy Adzy Adzy).
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So the contact circle condition is that X + X be transverse to S3. From
(X + X)(Jz1* + |22*) = 2Re(@)|z1]? + 2(1 — Re(a))|z2|?

the claim follows.

Even for a general a € P, the pair (of,®5) will satisfy the contact circle
condition near at least one of the Hopf circles, since Re(a) and 1 — Re(a)
never vanish simultaneously. This observation will be relevant in the proof of
Theorem 7.3.

Definition 4.3. The 1-dimensional foliations 74 on S* defined by the w? with
a € P are said to constitute the parametric family of Poincaré foliations.

We shall say more about this terminology in Section 4.2. The symbol F¢ is
meant to denote an oriented and cooriented foliation: the coorientation is the one
defined by w“, the orientation is the one which together with this coorientation
gives the standard orientation of S3. No specific transverse holomorphic structure
is meant to be implied by the symbol F“. One of our main objectives will be
to investigate to what extent the foliation F¢ alone determines the transverse
holomorphic structure or the homothety class of the contact circle, see Theorem 7.3
and Remark 7.4.

The map (z1, z2) — (—z2,z1) defines an orientation-preserving diffeomorphism
of §3 and pulls back w? to @w'™%. So (F% 0% and (F!™% w!™?) are
diffeomorphic as transversely holomorphic foliations. The set

M:={aeC: 0<Re(a) <1}/(a~1—a)

constitutes the non-discrete part of the moduli space of taut contact circles on S3,
see [GGl, GG2].

The existence of a diffeomorphism between the transversely holomorphic flows
defined by w? and w!'™¢ is reflected in the following computation of their Bott
invariant.

Proposition 4.4. For a € P, the Bott invariant of w?® equals

—4x?
a(l—a)
Proof. On C2\ {(0,0)} we have dw? = a? A w? with
1 1

1
" G — iy i Vs
: 121|2+|22|2(a“ S

Zs dzz).

On TS3 we compute
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1
a® Ada? = m(—fl dzy Adzy Adzy +Z2dza AdZy Adzy)
—4 _ -
— m(zlagl -+ 22872)_| (dX} /\dyl /\dXz /\dyz).

The real part of Z;0z, equals (x10x, + y10,,)/2; the imaginary part (x;0,, —
y1dx,)/2 is tangent to S3. It follows that on T'S® we have

2
-2
o’ Ada? = m—_a);(xjaxj + yjdy;) J (dx; Adyy Adxa Adya),
which integrates to
-2 —4x?
— vol(§83) = —. O
a(l—a)vo (57) a(l —a)

Remark 4.5. In [Asu2], the 1-form «. in the construction of the Bott invariant
is defined via the equation do = 2mia: A @. With this normalising factor 2ri,
the Bott invariant of w® takes the value 1/a(1 —a). The definition without this
factor, which is also the one in [Pit, p. 8], is notationally more convenient for
the computations in Section 2.

The map
P — C\R;
a +— a(l—a)

is a double branched covering, branched at the point @ = 1/2. This can best be
seen by writing a = % + b; then a(l —a) = %— h?. This map descends to a
bijection
Pla@a~1—a) — C\Ry
[a] —  a(l —a).

Hence, with Proposition 4.4 we deduce:

Corollary 4.6. Up to orientation-preserving diffeomorphism, a Poincaré foliation
F with the transverse holomorphic structure given by w® is determined, within
the class of all pairs (F?,w%), by its Bott invariant. (]

This means that we may regard C \ Ry as the moduli space of Poincaré
foliations (F%,w?) in the parametric family. In particular, the image of M under
the map [a] — a(1 —a), which is the convex open set {x +iy € C: x > y?},
can be thought of as (one component of) the moduli space of taut contact circles
on S3, see [GG2].
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Remark 4.7. The «? used in the proof of Proposition 4.4 is the most convenient
one for computing the Bott invariant. However, it may be replaced by

1
alz1|?> + (1 — a)|zz)?

(El dZI + 72 de).

For a €]0, 1], that is, for @ in the real part of P (or M), the restriction of this
1-form to 7S* is pure imaginary, since

Z1dzy +Zpdzp + 21 dZy + 22dZp = 2(x; dxy + y1dyr + x2dxz + yadys).
So for these w® Theorem 3.3 applies. Alternatively, one may check that

Im (w® A dw?) =0 for a €]0, 1[.

4.2. Poincaré foliations — the discrete family. In [GGI] it was shown that the
moduli space of homothety classes of taut contact circles on S* is given by the
disjoint union of M and the countable family defined by

wp :=nzy1dzp —zpdzy + 20 dzp, neN:={1,2,3,...}.

Write F, for the oriented and cooriented 1-dimensional foliation on S3 defined
by w,.

Definition 4.8. We say the F,, n € N, make up the discrete family of Poincaré
foliations on S3.

A larger part of the following theorem is due to Brunella [Bru] and
Ghys [Ghy2], but they do not describe the explicit models. A list of these
models is also contained in [IS, Theorem 2.1].

Theorem 4.9. The 7, a € P, and the F,,, n € N, exhaust all foliations on S3
admitting a transverse holomorphic structure.

Proof. According to [Bru, Ghy2], any foliation on S* admitting a transverse
holomorphic structure is a Poincaré foliation, i.e., it is a foliation — on a small
sphere around the origin (0,0) € C? — induced by a holomorphic vector field with
a singularity at (0,0) whose linearisation at the origin has a pair of eigenvalues
in the Poincaré domain.

According to the Poincaré—Dulac theorem [Arn, p. 190], [CMV], such a
singularity is biholomorphic to a polynomial normal form, where the non-
linear terms come from resonances. For a singularity in CK this means the
following. Write A = (Aq,..., Ar) for the eigenvalues of the linearisation. A
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resonance is a multi-index m = (my,...,my) € Né‘ of non-negative integers with
my + --- 4+ my > 2, for which there is a j € {1,...,k} such that

(A.m)—A; = 0.

Any such resonance then gives rise to a monomial term cm jz]"

the polynomial normal form.

m -
Z; Szj in

In complex dimension two, by rescaling we may assume that A; = a and
Ay =1 —a, with a € P. The resonance condition for A; then becomes

amy + (1 —a)ym, = a.

With my,m, € Ny this implies ¢ € P N R =]0, 1[, and further m; = 0 and
my = a/(1 —a). So the resonance condition is n :=a/(1 —a) € {2,3,...}. The
resonance condition for A, leads to (1 —a)/a € {2,3,...}, which we can ignore
by symmetry.

So the only resonant term is

259, for =nei2,3,...}.

This condition on a rules out the case of a double eigenvalue a = 1/2 in the
linearised singularity, so the corresponding normal form is

n
(z1 4+ czy)dzy —

7o dz;.
1 +n 1+112 !

By rescaling and pull-back under the map (z1.z3) > (cnzy,zz) for ¢ # 0, we
obtain the w,, n > 2, introduced above.

In the non-resonant case, we obtain w?, a € P, if the linearisation is
diagonalisable, and w; if it is not. U

Our computation of the Bott invariant of the w, depends crucially on the
moduli theory of taut contact circles.

Proposition 4.10. The Bott invariant of w, equals

1 2
JT2 —(n b ) &
n

—d

Proof. In [GGl, §6] we discussed the following ‘jump’ homotopy, which mirrors
a phenomenon in the moduli theory of Hopf surfaces discovered by Kodaira and
Spencer [KS]. For given n € N, consider the family

a),’} :=nzydzp —zpdzy + Az dza, A €0, 1].
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For A €]0, 1] these complex 1-forms all define the same taut contact circle, up
to homothety and diffeomorphism. For A = 0 we obtain the taut contact circle

homothetic to
n 1
Z1 d22 —
n—+1

Cl)n/(n+]) = Z9 dZ]
from the parametric family.

Although the equivalence class of the taut contact circle jumps at A = 0, the
Bott invariant will depend continuously on A for all A € [0, 1] and hence, being
constant on 0, 1], will be identically equal to that of @®/+1), O

5. Logarithmic monodromy

In order to describe the geometry of a transversely holomorphic foliation, we
study the logarithmic monodromy along a closed leaf, which is a complex number
associated with such a leaf. It is best to explain the concept in a concrete case.

Thus, consider a Poincaré foliation F¢, with transversely holomorphic structure
given by w?, and with the corresponding orientation of the leaves. For any a € P,
the two Hopf circles S' x {0} and {0} x §' constitute closed leaves of F¢.

Either of these Hopf circles, just like any other knot in S3, comes with a
preferred trivialisation (up to homotopy) of its normal bundle, namely, the surface
framing defined by a Seifert surface of the knot. The transverse holomorphic
structure J then determines an oriented conformal framing: take any vector field
Z along the knot which is tangent to the Seifert surface, and declare that the
rotate of Z through an angle 7/2 be equal to JZ. For the Hopf circle S x {0},
such a Seifert surface is given by the disc

{re®, V1-r2): r€[0,1], 8 eR} C S°.

This corresponds to the oriented conformal framing given by the oriented basis
(0x,,dy,) of tangent vector fields along the Hopf circle, or by the type (1,0)
complex tangent vector 9, .

Such a framing allows us to identify a neighbourhood of an oriented closed
leaf y with a neighbourhood of S! x {0} in S' x C. The oriented foliation
then determines a family of germs of holomorphic maps ¢;: (C,0) — (C,0)
by writing the intersection point of the leaf through (1,z) with the transversal
{e"} x C as (", ¢ (2)).

We can then make a continuous choice of logarithm log ¢;(0) with log ¢,(0) =
log1 = 0. A different identification of y with S! and a homotopy of the framing
will change the map ¢, by conjugation and homotopy rel {0, 27}, so the following
quantity associated with a closed leaf is independent of choices.
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Definition 5.1. The logarithmic monodromy of the closed leaf y is logg5 (0).

Remark 5.2. Our notion of logarithmic monodromy may be interpreted as a
simple instance of the residue theory developed by Heitsch [Hei]; see also [Asu2,
Chapter 5] and [Asul, Example 6.1], for instance.

Notice that although we need a transverse holomorphic structure to define
the logarithmic monodromy of a closed leaf, the value of this monodromy is
completely determined by the oriented and cooriented foliation:

Lemma 5.3. The logarithmic monodromy is independent of the choice of transverse
holomorphic structure inducing a given transverse orientation.

Proof. Let one transverse holomorphic structure be given by the formally
integrable 1-form w.. Then, as in the proof of Theorem 3.3, we observe that any
other 1-form defining the same cooriented foliation can be scaled to

W, = w: + pw,

with |¢| < L. If we choose an o, such that do. = o¢c A ¢, the condition for )
to be formally integrable becomes

(pac — pa. —dg) A w. Aw. = 0.

This condition is linear in ¢, so it follows that w. + Agw., A € [0, 1], defines a
homotopy of transverse holomorphic structures.

Thus, changing the transverse holomorphic structure once again amounts to
changing the map ¢; by conjugation and homotopy rel {0,2x}. U

If we change the orientation of the foliation, the logarithmic monodromy
changes its sign; changing the coorientation amounts to taking the complex
conjugate of the logarithmic monodromy.

Proposition 5.4. For a € P, the logarithmic monodromy of S! x {0} in F® is
2mi(1 —a)/a, that of {0} x S is 2wia/(1 —a).

Proof. By the proof of Lemma 4.1, the complex 1-form «“ defines a plane field
on C2\{(0,0)} transverse to S*. Therefore, for the computation of the logarithmic
monodromy of S! x {0} we may replace S® by S! x C, which has the same
tangent spaces along that Hopf circle. Moreover, the trivialisation S x C of the
normal bundle accords with the transverse holomorphic structure and trivialisation
defined by 0., .
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The complex 1-form induced by w® on S!' x C can be written as
ae'® dz — (1 — a)ie'?z db.
So the induced flow is given by the vector field

1l —a

89 + izaz,

and the flow lines are parametrised by
[ —> (eit,zeit(lga)/a).

The claimed logarithmic monodromy follows. For {0} x S! the computation is
analogous. ]

The following two examples are consistent with the computation in this
proposition.

Examples 5.5. (1) The orientation-preserving diffeomorphism of S3 given by
(z1,22) = (—z2.21) sends (F?, w?) to (F'™%, w!™%) and exchanges the two
closed leaves.

(2) 'The orientation-preserving diffeomorphism of § 3 given by (z1,22) = (Z1.22)
pulls back @? to @?. So this diffeomorphism sends F¢ to F¢ with reversed
orientation and coorientation, and it maps each Hopf circle to itself. This
is consistent with the proposition, since the negative complex conjugate of
2wi(l —a)/a is 2ni(l —a)/a.

We now turn to the discrete family. The Hopf circle S! x {0} is a closed leaf
of each of the foliations F, (in fact, the only one, see Proposition 6.4).

Proposition 5.6. For n € N, the logarithmic monodromy of S' x {0} in Fy
equals 2mi/n.

Proof. As in the preceding proof, we replace S* by S! x C, where the complex
1 -form induced by w, can be written as

ne'® dz —ie'z do + z" dz.
The common kernel flow near S! x {0} is given by the vector field
iz
n+ e ifzn

It follows that the logarithmic monodromy is the same as for the flow

09 + 9, = 09 + — 3, + O(z2).
n

f —> (e", Ze”/”). O

Remark 5.7. This is consistent with 2wi/n being the logarithmic monodromy of
S x {0} in F*@+D and the limit argument in the proof of Proposition 4.10.
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6. Topology of the flows

In this section we give explicit descriptions of the Poincaré foliations.
Specifically, we determine the closed leaves and the limiting behaviour of the
non-closed ones.

6.1. The parametric family. As observed earlier, each F“ contains the Hopf
circles S x {0} and {0} x S! as closed leaves. Depending on the value a € P,
these may be the only closed leaves, or all leaves may be closed:

Proposition 6.1. For a € C\ R, the Hopf circles are the only closed leaves of
Fe. Every other leaf is asymptotic to the two Hopf circles, one at either end.

For a €]0, 1], all leaves apart from the Hopf circles are curves of constant
slope a/(1 —a) on the Hopf tori {|z1| = const.}, regarded as boundary of a
tubular neighbourhood of the Hopf circle S x {0}.

Proof. In the complement of the Hopf link we can write

1—a

w* =azyzo d(log Zg — log 21).

So each leaf of 7% in this domain can be described by an equation

l1—a

log zo — logzy =1y +i6p

for some real constants [y, 6.

Write z; = rjeigi , j = 1,2, and use r; €]0, 1[, 8,6, as coordinates outside
the Hopf link. Define u,v € R by u +iv = (1 —a)/a. The leaves are then given
by equations as follows:

6.1} log /1 —rf—ulogry +v6, = Iy,

(92—1/{91 —U]ngl = 90.

Notice that the ambiguity in the definition of the complex logarithm is absorbed
into the constants.

For a € C\ R, and hence v # 0, these equations allow us to express 6y, 6,
as functions of r; €]0, 1[, and so they describe leaves asymptotic to the two Hopf
circles:

1
& = —(Zo + ulogr; —log 1—r2),
(6.2) v

I
= 90+510+—((u2+v2)1ogr1 —ulog 1—r2).
v v
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The precise asymptotic behaviour in dependence on the value of ¢ € C \ R will
be discussed below.
For a €]0, 1], so that v =0 and u = (1 —a)/a, equations (6.1) can be written

as
> l1—a
log\/1—ri— logr; = Iy,
(6.3)
l—a
6, — 01 = 6.
The first of these equations describes a Hopf torus {r;y = const.}. (It is

straightforward to check that for each « €]0, 1] the left-hand side of the first
equation defines a strictly monotone decreasing function in r; with image all
of R.) The second equation defines a curve of constant slope a/(1 —a) on that
torus. The foliation, including the Hopf link, can be described as the flow of the
Killing vector field adg, + (1 —a)dp, for the standard metric on S3. O]

The preceding proposition tells us that the leaves of F¢ are all closed if and
only if a €]0,1[NQ. If a = 1/2, the foliation defines the Hopf fibration of S3.
For other rational values of a, the foliation defines a Seifert fibration with one
or two singular fibres.

Proposition 6.2. Given a <]0,1[NQ, write a/(1 —a) = py1/p> with pi1, p2
coprime natural numbers. Choose integers qi,q5 such that

Pr P2
/ ! = 1’
—d7 42
and define integers my,m, by the requirement that q} = mjp; + q; with

0<g; <p;j, j =12
Then the foliation F¢ defines a Seifert fibration of S* with unnormalised
Seifert invariants

(g =0.(p1.41). (P2.93))
and normalised Seifert invariants
(g =0,b=my+ma2,(p1,q1), (p2.42)).

The quotient orbifold is S*(pi, p2).

Proof. We follow the recipe in [NR] for computing the Seifert invariants; for
easy reference we retain their notation. By equation (6.3) in the preceding proof,
the leaves of F¢ are the orbits of the S!-action on S3 given by

B(z1.22) = (P12, e'P202,).
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The singular orbits are the Hopf circles O; = S! x {0} and O, = {0} x S'.
Disjoint invariant tubular neighbourhoods of these two orbits are given by

Ty ={|z1> = 3/4} and T, = {|z2|*> > 3/4},

Set
My = 3\ Int(Ty U T>).

Then My — M,/S! is an S!-bundle over an annulus, and the quotient orbifold
S3/S81 is a 2-sphere with two cone points of order py, p,, respectively, given
by the multiplicity of the singular orbits.

Write w; for the meridian of 7;. We think of these two curves as a homology
class of curves on any Hopf torus. Take A; := o and A, := p; as the standard
longitudes. The non-singular orbits are in the class piA; 4+ p2A>. A homologically
dual curve is g¢jA1 — g5A>. This defines a section R C My of the S!-bundle
My — My/S!. Notice that the homological intersection of these two curves on
aT; is

(P2pt1 + p1A1) o (—qapi1 +qiA1) = 1.
It follows that the orientation of R compatible with the standard orientation of S3
and the orientation of the S'-orbits is the one for which the oriented boundary
curves of this section are

Ry = 611111 — qullz C daT,
and
Ry := —(q1A1 — g3A2) C 0T,

In the respective solid torus these curves are homologous to
6]’1 0O, CT; and q502 C Ts.

This yields the unnormalised Seifert invariants. The normalised Seifert invariants
follow from the equivalences described in [NR, Theorem 1.1]. 0]

Remark 6.3. For p; = p, = 1, the quotient orbifold S?(pj, p2) is simply the
2-sphere. If exactly one of the p; equals 1, we have a tear-drop. If both p; and
p> are greater than 1, the orbifold is a spindle. Thus, all possible tear-drops are
realised, but only spindles with coprime multiplicities at the cone points.

We now take a closer look at the asymptotic behaviour of the leaves of F¢
for a € C \ R, described by equations (6.2). Recall that u +iv = (1 —a)/a. If
we write a = x + iy, this gives

x — (x* +y%)

Y =
X2+ y2
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So the case u = 0 is equivalent to the condition x = x? + y2, which is the same
as |a — % = % Similarly, we have

1
u > 0 if and only if 4= < =
and

: : 1 1
u <0 if and only if |a —<| > =.
2] 2

The imaginary part of (1 —a)/a is

-y

which is always non-zero for a € C \ R.

We write F{,F5 for the 2-dimensional foliations on the complement of the
Hopf link defined by only the first or the second equation in (6.2), respectively.
Then F¢ = F{NJF5 . Notice that in F{ the angle 6, can take any value, while 6;
is determined by ri, so the leaves of Fi essentially look like tubes, potentially
multi-layered, around the Hopf circle Oy = S' x {0}. Similarly, the leaves of F4
look like tubes around the Hopf circle 0, = {0} x S*.

First case. u = 0. Here the limiting behaviour of 6;, 6, is described by

91 — l()/U
6, — —sign(v)oo

} for r1 N0

and

01 — sign(v) oo

5, —s 6 for ry /1.

So the leaves of F¢ approach a limiting angle in the direction transverse to the
respective Hopf circle, and they circle infinitely often in the direction parallel to
that Hopf circle.

The leaves of F{ are open cylinders asymptotic at one end to the Hopf circle
{ri = 0} = O,, with a well-defined tangent plane determined by the limiting
angle 6. Thus, near O, the foliation F{ looks like an open book near its
binding. At the other end, the cylinder sits like an ever thinner tube around the
Hopf circle {r; = 1} = O;, winding infinitely often along it.
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Second case. u > 0. Here 0; and 6, are monotone functions of r; with

8 —> —sign(v) oo
fi 0
6, — —sign(v)oco or 11
and
6y —> sign(v)oco
0, —> sign(v)oco forr 711

The cylindrical leaves of F{ tube towards O; as before, but now the other end
of each cylinder scrolls towards O, encircling it infinitely often.

Third case. u < 0. In this case we have

0 — sign(v) co

8, —s —sign@)eo [ 1 uP
and

0, — sign(v) co ]

6, —> —sign(v)oo ot 7. 1

One checks easily that the derivatives of 6; and #, with respect to r; both
change sign exactly once. The cylindrical leaves of F{ tube towards O; and
scroll towards O, as in the second case, but now they change the 6;-direction
once, making them look like sombreros, see Figure 1.

In all three cases, the cylindrical leaves of FJ show the analogous behaviour,
with the roles of the two Hopf circles interchanged.

6.2. The discrete family. For each n € N, the 1-form w, defined in Section 4.2
may be regarded as a holomorphic 1-form on C?. OQutside the origin, it defines
a foliation C, := kerw, by holomorphic curves, which we refer to as complex
leaves.

The complex line C x {0} is a leaf of C,, and it intersects S* in the closed
leaf S!x {0} of F,.On the complement C xC* of that complex line, the 1-form
w, can be written as &

P =2 T d(log - g)
From this description, which we shall use to analyse the topology of F, in the
complement
Sg =83\ (8 x (0})

of the Hopf circle S! x {0}, we see that each leaf of C, in C x C* is given by
an equation
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21
logzy — — =co
)

for some complex constant co. Observe that the solution set of this equation is
the image of the injective map

Cowr— ((w —Co)enw,ew),

so it is indeed connected. We shall see that the intersection of each complex leaf
with S? is also connected, and thus constitutes a leaf of F,.

Proposition 6.4. For each n € N, the Hopf circle S! x {0} is the only closed
leaf of F,. Every other leaf is asymptotic to this Hopf circle at both ends.
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Proof. We take n € N as given and suppress it from the notation whenever
appropriate. Let C = C U {co} be the Riemann sphere, and consider the Seifert
fibration

Z1
(ZI,ZZ) t ? Z—n,
2.

with fibres given by the orbits of the S!-action
0(z1,22) = (692, el%2,).

On C c € we use the coordinate z = x +iy. As before we write z; = r;jelf,
Since z; = (x+iy)z% for z # 0, 0on S§ = S\ 7, !(c0) the radius ry is defined
implicitly as a smooth function ,(x,y) (depending on #) by the equation

(6.5) (X243 +ri =1, rp>0.
Thus, Sg can be parametrised in terms of x,y,0, by
(z1,22) = ((x +iy) ri (x, ) e r,(x, y) eiez).

From (6.4) and with ¢y = ¢; + ico, we then see that the intersection of each
complex leaf with S3 is given by a system of equations

6.6) { x —logra(x,y) = —ci,
92—-y = (2.

Implicit differentiation of (6.5) gives

. 2n—1
0ra —Xr;

ax (x4 y2)r2n2 4 1

from which we derive with rJ <r, the estimate

8r2
ox | —

(6.7)

So the partial derivative with respect to x of the function (x, y) — x—logra(x, y)
lies in the interval [1/2,3/2], which means that the first equation in (6.6) implicitly
defines x as a smooth function of y € R (depending on n and c¢;). Hence, the
solution curve of (6.6) is parametrised by

R3y+r (x(»),y,0 =y +c2),

which verifies the claim made earlier that the intersection of a complex leaf with
S3 gives a single leaf of 7.
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For y — 00 we have

/ 2
1—r5 7
4+ == | — 00
n b
3 2
and hence r, — 0, which proves the proposition. [

Next, as for the parametric family, we describe the limiting behaviour of the
angle 6,(y) for y - +o0. From z; = (x + iy)rgei"e2 and (6.6) we have

01(y) = nlez + y) +arg(x(y) +iy).

The implicit definition of x(y) in (6.6) and the limiting behaviour r, — 0
for y — +oo entail that x(y) - —oco for y — +oco. (One may notice that
x(y) = x(—y), and by implicit differentiation one sees that the function y — x(y)
has a single local maximum at y = 0.) It follows that

[/2, 7] for y > 1,

arg(x(y) +1iy) € {[—7{/2*_”] for y « —1.

In fact, by a more careful analysis one can show that

1
x(y)+c1 + ;logly\ — 0,

and hence arg(x(y) +iy) — £n/2 for y — +oo. Our more rough estimate,
however, is sufficient to conclude that 6;(y) — +oco for y — +o00. Geometrically
this means that the Hopf circle S! x {0} is the «- and w-limit set of each leaf
in /.

In order to visualise the global topology of the foliation F,, we introduce an
auxiliary 2-dimensional foliation &, of S$3. The flow

Yo (21,22) — (ei'”zl,e”zz), t € R,

~

on S* is along the fibres of the Seifert fibration m,: S® — C. From
Uro, = el Dy, we see that the flow v, preserves the foliation F,. The
Hopf circle S' x {0} is mapped to itself by v,, but on the complement SJ the
flow is 2z -periodic and transverse to JF,, since

wn (12107, + 220,,) = 23T,

So each leaf of F, in S3 sweeps out a cylindrical surface. We write &, for the
singular 2-dimensional foliation of S3 made up of these surfaces and a single
1 -dimensional leaf S! x {0}. From Proposition 6.4 we deduce that the closure of
each 2-dimensional leaf of &, is the union of that leaf with S! x {0}.
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Observe that in terms of the coordinates (x,y,82) on S2, the flow v, is
simply given by
Ve (x,y,02) — (x,y,02 +1).

With the description of the leaves of F, in Sé’ given in (6.6), this tells us that
the leaves of &, in Sg are the inverse images under m, of the curves in C
determined by an equation

(6.8) x —logra(x,y) = —cy.

As ¢y varies in (6.6), we obtain the leaves of F, within a single leaf of &,.
The following proposition says that, up to a C!-diffeomorphism, the foliation
&n looks homogeneous.

Proposition 6.5. There is a C'-diffeomorphism 6 of S3, fixed along S' x {0}
and of class C* on 803, which sends &, to the 2-dimensional foliation of
S3 with a singular leaf S x {0}, and all 2-dimensional leaves of the form
n. '({x = const.}). In other words, 5(E,) is the preimage under w, of the
standard foliation of C with a singular point of Poincaré—Hopf index 2 at co.

Proof. We first construct a C!-diffeomorphism ¢ of C that brings the foliation
(&) given by (6.8) into standard form. Set

o(z) =x—logra(x,y)+iy for z=x+iy e C, a(c0) = oo.

From the estimate (6.7) and the comment following it we see that o maps C
diffeomorphically onto itself, and it obviously ‘linearises’ the foliation of C.
Notice that ¢(0) = 0.

To examine the differentiability of o near oo, we use the coordinate w on
€\ {0} = C* U {oo} given by w(z) =1/z for z € C* and w(co) = 0. From the
implicit definition of 75(z) = ra(x,y) in (6.5) we have

2
b S 1 — 3 1
2 bl

2|2
Feeding this estimate back into the defining equation, we obtain
1 — ’Zrz/n

2|2

1
2
<" < EEk

This gives us the growth estimate

1 1
logra(z) = —ElongI - O(|Z|"2/”) = ;10g|w| + 0(|w|2/”) for w — 0.

A straightforward calculation yields
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1

— =w+ -w?log|w| + O(lw**#) for w — 0,
n

o(z2)

and a similar estimate for the differential of o. This means that o is C' near
w = 0, and its differential admits |w|log|w| as a modulus of continuity.

Next we want to construct the diffeomorphism & of §3 as a lift of o, that
is, ¢ should satisfy the equation n, o6 = o o m,. For this construction we use
explicit coordinates on S and

82, =8>\, '(0) = S>\ ({0} x S1).
For S3, we use the parametrisation from the proof of Proposition 6.4:
do: CxS! — Sg
(z,€1%2) > (zrl(2)e%2, ry(2)el2),

with inverse diffeomorphism given by

do ' (z1,22) —> (Z—l = )

z; |22

For the parametrisation of S3., it is convenient to replace C by the open unit
disc D € C. We then define a diffeomorphism

boo: S'xD — o
€%,22) — (V1-—]z22[2ef, 2),
with inverse map

_ Z1
b (21,22) — (m,zz)-
1

We first construct the lift 6 near S! x {0}, i.e., near the point co (or w = 0) in
the base. From the growth estimate for logr, we have near w = 0 a well-defined
complex-valued function

p(w) 1=

Y1 —wlogra(z)

with argu close to zero, and this function admits |w|log|w| as modulus of
continuity. For points p € C near oo we have

1 _ w(p)
2(p) —logra(z(p) — 1—w(p)logra(z(p)’

w(o(p) =

hence
n

w(o(p)) = w(p) - m(w(p))
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By slight abuse of notation, we now suppress the parametrisations, i.e., we think
of 7p|g3 as a map S!xD — C, and of o as the germ of a map (D, 0) — (DD, 0).
Then

. zh . .
T (6191 ’ 22) — 2 e—191 - w(zz)ne—lel ,
v1-—|z2)?
where ¥ : D — C is the diffeomorphism

ST ED S
and _ _
0 0 mu (€1, 22) = Y(z2)"e O (u(y(z2)"e71%))".

Thus, in order to obtain a commutative diagram

SlsxD —2 5 51 %D

Tfnl lﬂn

C 7, C

with a map & defined near S' x {0} € S! x D, we can simply set
5, zp) = (e, Z,)
with
2= YT (Y (z2) - (Y (z2)"e ™).
Notice that & fixes S! x {0} pointwise. Given the continuity properties of u
near w = 0, and the fact that the diffeomorphism y goes like z; near z, =0,

we see that 6 is C! at z, = 0, with first derivative admitting |z»|log|z»| as
modulus of continuity; outside z; = 0 the local diffeomorphism & is smooth.

Remark 6.6. In fact one can show that ¢ (for a given n) has derivatives up
to order n, and the n'™ derivative admits |z5|log|z2| as modulus of continuity.
Since ¢ is a diffeomorphism, the regularity of Z, as a function of z, and 6,
is the same as that of (,0) — - u(¢"e™%). By a more careful growth estimate
for logry(z), one obtains the claimed result.

Next we wish to construct the lift & on Sg’, that is, over C C C in the base,
making sure that it coincides with the previous construction near co. Again we
work in coordinates, so we want to construct ¢ such that the diagram

CxS! — %, cxs!

JTHJ, J’Wn

C LN C
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commutes. From the definition of ¢, we see that in this diagram the vertical
map i, is simply the projection onto the first factor, so ¢ must be of the form

(6.9) 5(z.¢%) = (0(2),¢®)
for a suitable function 6, (z,02).
The composition

o0 ¢!
STx (D {0) 23 82,153 22 (C\ {0}) x §!

is given in the second factor by z; + z3/|zz|. It follows that near z = oo, the

function 6, must be given by argZ,. Since the diffeomorphism v preserves the

argument, this gives

02(z,02) = B + arg(u(Y(z2)"e™M)),

where (el%1,z,) = ¢ 0 ¢po(z,€%2), so we can write this as
62(2,62) = 62 + f(z.62).

Our previous definition of the lift & near z = co means that there f is given,
and it takes values close to zero. From the coordinate description of & in (6.9)
and with | f| small we see that & maps the S!-fibre over z diffeomorphically
with degree 1 onto the fibre over o(z), which necessitates df/df, > —1. This is
a convex condition, so the f given near z = co can be extended smoothly over
C subject to this condition. This completes the construction of the lift .  [J

According to this proposition the topology of the foliation &, is essentially
encoded in the Seifert fibration 7, .

An alternative and more intrinsic way to understand the topology of F, and
&, 1is to consider surfaces of section.

Proposition 6.7. For each n € N, the 2-disc {0, = const., r1 < 1} with boundary
the closed leaf S' x {0} is a global surface of section for the foliation JF.

Proof. We have
z1dzy +Z1dzy + 22dZ2 + Z2dzp = 2(x; dx; + ¥1dy1 + x2dxp + y2dys)

and
2y dZy — Ty dze = —2irs dé,.

The wedge product of these two 1-forms with w, A®, is a volume form on C?
multiplied by a factor

n|zi|*|z2* + |z2|* + |z2|* Re(z1753).

which is positive on S*\ (S! x {0}). This means that kerw, is transverse to the
disc {6, = const., r; < 1}. ]
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More interesting is the behaviour of 7, near the closed leaf S! x {0}, so we
now consider the discs {f#; = const.}. These discs are surfaces of section near
r» = 0, that is, near the closed leaf. For the concept of Leau—Fatou flower used
in the next proposition see [Mil, §10].

Proposition 6.8. The Poincaré return map of F, on the disc {61 = const., r, < 1}
near the central fixed point has a Leau—Fatou flower with n attracting petals.

Proof. Without loss of generality, we consider the disc A :={0; =0, rp < 1},
on which we take (rp,6,) as polar coordinates. The Seifert fibres of 1, are
transverse to A, hence so is the flow ,, which implies that the leaves of &,
are likewise transverse. From (6.8) we see that the intersection of &, with A is
given by curves of the form

n
I

——=—i(logrs —1)
Na —r%

for varying values of ¢;. These are shown in Figures 2 and 3 for n = 1 and
n = 3, respectively. The centre of A is the intersection point with the closed leaf
St x {0} of Fp.

cos(nb,) =

FiGure 2
The foliation A N &
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Ficure 3
The foliation A N &3

The return time for any point p € A under the flow ¥, is t = 2x/n, and we
have

2
Vo n(r2. 02) = (i‘z, 6, + 7)‘

Hence, in the picture for n = 1, each loop (without the central point) corresponds
to the intersection of A with a single leaf of &, ; in the case n = 3, each cylindrical
leaf R x S'of & cuts A in three open loops (corresponding to the R-factor)
obtained from one another by rotation through 27/3.

Each leaf of F,, is contained in a leaf of &, . As we saw earlier, the non-closed
leaves of F, have infinite variation in 6, -direction, and they approach S1 x {0}
in forward and backward time. Near the centre of A, where JF, is transverse
to A, each leaf of 7, meets n loops of ANE, in cyclic order, and in each loop
the intersection points move from one end to the other with time. In adjacent
loops, these intersection points move in opposite direction. This means that there
are open sectors of width 27/n where the intersection points approach the origin
along the central direction of the sector, so we have a Leau—Fatou flower with
n attracting petals in the terminology of [Mil, §10]; correspondingly, there are n
repelling petals. [
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Remark 6.9. The results in this section show that even the simple Poincaré
foliations on the 3-sphere give rise to interesting dynamical patterns. For a more
wide-ranging analysis of transversely holomorphic foliations of codimension 1
from a dynamical point of view see [Asu2, Chapter 6] and [GGS].

We end the discussion of the topology of the foliations F,, with the following
branched cover description.

Proposition 6.10. There is an n-fold branched cover S* — S3, branched along
S1 x {0}, that pulls back F, to F,.

Proof. We start with the branched covering
Pn’ c? — G2
(z1,22) +— (nz1,23).

This satisfies pjo; = nzg_la)n, so it maps the complex leaves of the foliation
C, to those of C;.
Define a diffeomorphic copy of S3 by

T = pp (8% = {(z1.22): 0P|z + |22 =1}

Then p, restricts to a branched covering X, — S*. We denote by F, the
1 -dimensional foliation of X, given by the intersection with C,; this foliation is
mapped by p, to Fi.

It remains to construct a diffeomorphism

D, (S, Fn) — (Zn, FL).
To this end, we consider the holomorphic vector field
(nzy +z3) 9z, + 220z,

tangent to the leaves of C,. Its complex flow, whose orbits are the leaves of C,,
is given by
\IJ,%(zl,zz) — (e”gzl + Q‘e"gzg,e;zz).

Given any smooth complex-valued function {(z;,z,), the map &, defined by
®,(z1,22) = \115(21’22)(21, Z5)

likewise preserves the leaves of C,; this can be seen by geometric reasoning or
with a direct computation showing ®*w, = e TDiGE122)q)

We would now like to choose ¢ as a real-valued function on S® such that
@i(p) (p) € X, for each p € S*. This leads to the implicit equation
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n2€2n§|21 s §Z§|2 A e2n§'|22|2n -1

for ¢. A straightforward computation shows that the derivative of the left-hand
side with respect to ¢ is everywhere positive. Moreover, the left-hand side goes
to zero for { — —oo, and to infinity for { — oo. So this implicit equation
defines a unique smooth real-valued function ¢ with the desired properties. The
map p — CD,%(")(p) then maps S? into X,, and since the inverse map can be
constructed by analogous means, it is a diffeomorphism. O

7. Rigidity results

In this section we discuss a number of cases where the common kernel foliation
determines the transverse holomorphic structure or the taut contact circle.

Lemma 7.1. Let w. = w; + iwy be a formally integrable complex 1-form.
Let Y be a vector field generating the common kernel foliation, and write
Lyw. = (f +ig)w. with real-valued functions f and g. Then w;,w, are
contact forms (and hence define a taut contact circle) precisely on the open set
where g # 0.

Proof. We compute
iY 1 (w1 Adwe) = —iw; A Ly e
= —iw; A (f +ig)wc
=(f +ig)w1 A wa.
Taking the imaginary part, we find
Y 1 (w1 Adwy) = gy A ws.
This means
w1 ANdw; = gdV,
where dV is the volume form defined by Y 1 dV = w1 A ws. U

We retain the definition of Y, g and dV for the next lemma and its proof,
as well as the theorem that follows.

Lemma 7.2. Let o, = w. + ¢w. with |¢p| < 1 be any other 1-form defining
the same cooriented 1-dimensional foliation as w.. The condition for ] to be
formally integrable is

Y = 2ige.
This condition implies Y|p|> = 0, i.e., |¢| is constant along the leaves of the
foliation.
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Proof. We compute

w. Ado, = (0 + ¢pw.) A (doe + dp A @ + ¢ do;)
=d¢ Awe A @ + p(we A doe + wc A dag)
= 2idp A wy A wy + 4¢pgdV
=2(iY¢ + 2¢g) dV,

from which the integrability condition follows.
From

Yigl* = (Y$)¢ + ¢ (Y §)
we deduce Y |¢|?> = 0 if the integrability condition holds. O

Theorem 7.3. Each of the foliations F*¢, a € C\ R, and F,, n € N, admits a
unique transverse holomorphic structure for the given coorientation.

Proof. In the notation of the two preceding lemmata, we need to show ¢ =0
if w. equals one of the w*, a € C\ R, or an w, (provided ¢ defines another
formally integrable 1-form).

By the results in Section 6, in these foliations all leaves (except for the second
Hopf circle {0} x S in F¢) are asymptotic in at least one direction to the Hopf
circle St x {0}. It follows that |¢p|, being constant along the leaves, must be
constant on 3.

If |¢| were non-zero, we could define a map

1 : £'53—>SICC.

2
still satisfying the integrability condition Y¢; = 2ig¢; from the foregoing lemma.
But the w, define contact circles, and so does w“ near at least one Hopf circle O
by Remark 4.2, so there we have g # 0. This implies that ¢1|p: S!' = 0 — §!
has non-zero degree, but it also extends as a map over the Seifert disc of O.
This contradiction shows that we must have ¢ = 0. ]

Remark 7.4. For the 7¢ with a €]0, 1[, the transverse holomorphic structure is
not unique:

— If a is rational, F¢ defines a Seifert fibration, and different holomorphic
structures on the quotient orbifold give us different transverse holomorphic
structures.

— If a is irrational, the leaves still lie on Hopf tori, and by changing the

metric structure in the direction orthogonal to the Hopf tori we obtain
different transverse conformal (and hence holomorphic) structures.
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We expand a bit on the second point. Outside the Hopf circles, the tangent
bundle of S? is trivialised by the orthonormal frame (with respect to the standard
metric)

891/7’1 = (xlayl *J’laxl)/"l
892/7’2 = (x23y2 - yla)f’_))/r2

r i
r28r1 - rlarz — r_Z (xlax; = ylay]) - ]_1 (XZaxz = y28y2)-
1 2

The third vector in this frame is invariant under the flow of dg, and dg,. Any
metric for which the first two vectors fields are orthonormal, and the third one
orthogonal with length a function of ry, defines a transverse conformal structure
for 74, a €]0,1].

The following corollary improves on Corollary 4.6; we do not need to know
the transverse holomorphic structure to determine F¢. Recall that a Poincaré
foliation belongs to the parametric family if and only if it has at least two closed
leaves.

Corollary 7.5. From any cooriented Poincaré foliation F in the parametric
Sfamily (but without any a priori given transverse holomorphic structure) one can
recover the value a(l1 —a) — and hence the class [a] € P/(a ~ 1 —a) — for which
there is an orientation-preserving diffeomorphism of S* sending F to F9 as a
cooriented foliation.

Proof. We need to show that F¢ determines a(l —a). If a € C \ R, then F¢
admits a unique transverse holomorphic structure, and the Bott invariant of this
structure gives us a(1—a) by Proposition 4.4. If a €]0, 1[, then by Remark 4.7 we
are in the situation of Theorem 3.3. Thus, although there is a choice of transverse
holomorphic structures, they all yield the same Bott invariant as ®?, and again
we recover a(l —a). ]

From this we now want to deduce the uniformisation result that the moduli
space of conformal structures on any orbifold S?(k;,k;), where ki,ky € N
are not necessarily coprime, is a single point. This class of 2-dimensional
orbifolds contains all the bad ones, i.e., those not covered by a surface: tear-
drops, where precisely one of the k; is equal to one, and asymmetric spindles,
where ki, k, are different and both greater than 1. We begin with a topological
preparation.
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Proposition 7.6. Given any natural numbers ki, ko, there are coprime natural
numbers py, p» and a natural number m such that the Seifert fibration of S* C C?
determined by the S'-action

(21, 22} = (8711, 67293,),

which has base orbifold S*(pi, p2), descends to a Seifert fibration of the left-
quotient
Lim,m—1) = 83/(z1,22) ~ (€2™/™zy, e 27/mz,)

with base orbifold S*(ky.k2). For py, pa one may always take the pair of coprime
natural numbers with py/p> = k1/ko, and m = ky + k,.

Proof. In the described Seifert fibration of §?3, the regular fibres have length 27,
and the multiple fibres through (1,0) and (0, 1) have length 2x/p; and 27/ ps,
respectively. The Z,,-action on S*® commutes with the S!-action, so it sends
Seifert fibres to Seifert fibres and induces the structure of a Seifert fibration on
Lim,m—1).

The two multiple fibres in S3 are mapped into themselves by the Z,,-action,
so the length of the corresponding fibres in L(m,m—1) is 2x/pym and 27/ pom,
respectively. The length of the regular Seifert fibres in L(m,m — 1) is given by
the minimal @ €]0,2x] such that there are natural numbers

kel{l2,..., m}, l1€{0,1,....p1—1}, L e€{l,2,..., p2}
with

k
p16 = 27— 4 2xl,

m

(7.1) f
P20 = 27— + 27l,.
m

This implies (p; + p2)0 = 2x(l; + [»). Hence, the minimal 6 is 2z /(p1 + p2),
which can indeed be realised for a suitable k if m is a multiple of p; + p>.
Now, given ky,kp, set m = ki + k, and let p;. p, be the coprime natural
numbers with k;/k, = py/p2. Then (7.1) is satisfied with 6 = 27/(p1 + p2),
[y =0, b =1, and k = k;. So the regular fibres in L(m,m — 1) have length
2r 2k, B 2ks
p1+p2 pitki+ka)  patkr +ka)’
compared to the length of the multiple fibres
2 2
pim  pilks +k2)’

which means that the multiplicities are kq, k>. O

ji=1.2,
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Remark 7.7. The choice of m = k| + k, is not the smallest possible, in general.
For instance, if k; = p? and k, = p;p, with py, p» coprime, one can take
m = pi, since the corresponding Z,,-action freely permutes the regular fibres
in S3. See also the discussion in [GL].

In the following uniformisation theorem and its proof it is convenient to think
of a conformal structure on an orbifold as a transverse conformal structure on a
Seifert fibration over it, and of an orbifold diffeomorphism as a fibre-preserving
diffeomorphism of that Seifert manifold. This uniformisation theorem has been
proved previously by Zhu [Zhu], using the Ricci flow.

Theorem 7.8. For any natural numbers ki, ks, the conformal structure on the
orbifold S*(ky.k,) is unique up to orbifold diffeomorphism.

Proof. Define the coprime natural numbers pj, po by the condition p,/p, =
ki/k,. Consider the diagram

54 — L(im,m—1)

! !

S%(p1, p2) ——  S%(k1.k2)

from the discussion in the preceding proposition. Choose a contact form w; on
L(m,m—1) for which the Seifert fibration L(m,m—1) — S?(kq, k) is Legendrian,
i.e., tangent to ker w; . For instance, the 1-form w9 on S3 with a/(1—a) = p1/p2
is such a contact form on the Seifert fibration S® — S2(py, p2), and being Z,, -
invariant it descends to L(m,m —1).

Given a conformal structure on S2(kq, k), define a second 1-form @, on the
lens space L(m,m —1) by stipulating that the 2-plane field kerw, be tangent to
the fibres of L(m,m — 1) — S?(k;,k2), and that w1 ® w; + w2 ® w, define the
transverse conformal structure; this w, is unique up to sign. Then w; := w; +iw;
is formally integrable. With w; being a contact form, this implies that (w1, w>)
is in fact a taut contact circle.

By the classification of taut contact circles in [GGI, Proposition 6.1], (@, ®5)
equals (of,®5) (regarded as taut contact circle on L(m,m —1)) up to homothety
and diffeomorphism for a unique [«]. By Corollary 7.5, this must be the class [a]
determined by a/(1 —a) = p1/p2, that is, the one we chose above to define w; .
Thus, the given conformal structure on S2(k;.k,) is diffeomorphic to the one
determined by (w{.w§) on L(m.m —1). ]

For taut contact circles we have an even more succinct statement than
Corollary 7.5.
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Theorem 7.9. The homothety class of a taut contact circle on S* (inducing the
standard orientation) is determined, up to orientation-preserving diffeomorphism,
by its cooriented common kernel foliation.

Proof. If the common kernel foliation has only one closed leaf, the taut contact
circle comes from the discrete family {w,: n € N}. By Proposition 5.6, the
value of n can be recovered from the logarithmic monodromy of the closed leaf.
Alternatively, by Proposition 6.8, n can be read off as the number of petals in
the Leau—Fatou flower of the Poincaré return map.

If the common kernel foliation has more than one closed leaf, the taut contact
circle comes from the parametric family {w“: [a] € M}. Corollary 7.5 tells us
how to recover [a] from the cooriented foliation. 0

Remark 7.10. In the case of the parametric family, we may appeal alternatively
to our topological considerations. The following cases cover all eventualities, but
they are not mutually exclusive.

(i) If the foliation defines a Seifert fibration with two singular fibres of
multiplicity pi, p» (one or both of which may be equal to 1), we determine

the unordered pair
a 1—a

l—a a
from Proposition 6.2.
(i) If the leaves foliate tori, that pair of numbers can be read off from the slope
of these foliations by Proposition 6.1.
(iii) If there are only two closed leaves, we recover that pair of numbers from
their logarithmic monodromy, using Proposition 5.4.
That pair of numbers determines a(l —a) via
a l —a 1

l1—a a _a(l—a)_
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