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A survey of <7-holonomic functions
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Abstract. We give a survey of basic facts of -holonomic functions of one or several

variables, following Zeilberger and Sabbah. We provide detailed proofs and examples.
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1. Introduction

In his seminal paper [Zei] Zeilberger introduced the class of holonomic
functions (in several discrete or continuous variables), and proved that it is closed

under several operations (including sum and product). Zeilberger's main theorem

asserts that combinatorial identities of multivariable binomial sums can be proven
automatically, by exhibiting a certificate of a recursion for such sums, and by
checking a finite number of initial conditions. Such a recursion is guaranteed

within the class of holonomic functions, and an effective certificate can be

computed by Zeilberger's telescoping methods [Zei, WZ]. Numerous examples of
this philosophy were given in the book [PWZ],

Holonomic sequences of one variable are those that satisfy a linear recursion

with polynomial coefficients. Holonomic sequences of two (or more variables)
also satisfy a linear recursion with polynomial coefficients with respect to each

variable, but they usually satisfy additional linear recursions that form a maximally
overdetermined system. The precise definition of holonomic functions requires a

theory of dimension (developed using homological algebra) and a key Bernstein

inequality.

Extending Wilf-Zeilberger's class of holonomic functions to the class of q-
holonomic functions is by no means obvious, and was achieved by Sabbah [Sab],
Sabbah's article was written using the language of homological algebra.
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The distance between Zeilberger's and Sabbah's papers is rather large: the

two papers were written for different audiences and were read by largely disjoint
audiences. The purpose of our paper is to provide a bridge between Zeilberger's
and Sabbah's paper, and in particular to translate Sabbah's article into the class of
multivariate functions. En route, we decided to give a self-contained survey (with
detailed proofs and examples) of basic properties of q -holonomic functions of one

or several variables. We claim no originality of the results presented here, except

perhaps of a proof that multisums of g-holonomic functions are ^-holonomic,
in all remaining variables (Theorem 5.3). This last property is crucial for q-
holonomic functions that arise naturally in quantum topology. In fact, quantum
knot invariants, such as the colored Jones polynomial of a knot or link (colored
by irreducible representations of a simple Lie algebra), and the HOMFLY-PT

polynomial of a link, colored by partitions with a fixed number of rows are

multisums of q -proper hypergeometric functions [GL, GLL], Therefore, they are

g-holonomic functions.

We should point out a difference in how recurrence relations are viewed in

quantum topology versus in combinatorics. In the former, minimal order recurrence
relations often have geometric meaning, and in the case of the Jones or HOMFLY-
PT polynomial of a knot, is conjectured to be a deformation of the character

variety of the link complement [Gar2, Lê2, Lei, LT, LZ], In the latter, recurrence
relations are used as a convenient way to automatically prove combinatorial
identities.

Aside from the geometric interpretation of a recurrence for the colored Jones

polynomial of a knot, and for the natural problem of computing or guessing
such recursions, we should point out that such recursions can also be used

to numerically compute several terms of the asymptotics of the colored Jones

polynomial at complex roots of unity, a fascinating story that connects quantum
topology to hyperbolic geometry and number theory. For a sample of computations,
the reader may consult [Garl, GK1, GK2, GZ].

2. q -holonomic functions of one variable

Throughout the paper Z, N and Q denotes the sets of integers, non-negative

integers, and rational numbers respectively. We will fix a field k of characteristic

zero, and a variable q transcendental over k. Let R k(<?) denote the field of
rational functions on a variable q with coefficients in k..

2.1. Recurrence relations. One of the best-known sequences of natural numbers

is the Fibonacci sequence F(n) for n e N that satisfies the recurrence relation
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Fin + 2) - F(n + 1) - F(n) 0, F(0) 0, F(l) 1

Similarly, one can consider a q -version of the Fibonacci sequence /(n) for n e N
that satisfies the recurrence relation

/(« + 2) - fin + 1) - qf(n) 0, /(0) 1, /(1) 2.

In that case, fin) e Z[q] is a sequence of polynomials in q with integer
coefficients.

A q -holonomic sequence is one that satisfies a nonzero linear recurrence with
coefficients that are polynomials in q and qn. More precisely, we say that a

function / : N -» V, where V is an R-vector space, is q -holonomic if there

exists d 6 N and ajiu,v) e k[u,u] for j — 0 ,d with ad such that for
all natural numbers n we have

(1) adiqn,q)fin + d) H f a0(q", q)f{n) 0.

2.2. Operator form of recurrence relations. We can convert the above definition

in operator form as follows. Let V an R-vector space. Let Si>+(K) denote

the set of functions / : N —V, and consider the operators L and M that act

on Si,+(L) by

(2) (L/)(«) fin + 1), (M/)(«) qn fin).

It is easy to see that L and M satisfy the q-commutation relation LM ^ML.
The algebra

W+ := R(M, L}/(LM — <yML)

is called the quantum plane. Equation (1) can be written in the form

d

Pf o, P ^2aj(M, q)\-j e W+
j=o

Given any / 6 5ii+(l/), the set

Ann+(/) {P e W+ \ Pf 0}

is a left ideal of W+, and the corresponding submodule AT/+ W+/ of
Sjj+(L) generated by / is cyclic and isomorphic to W+/Ann+(/). In other

words, MfrI- c 5q+(L) consists of all functions obtained by applying a recurrence

operator P e W+ to /. Then, we have the following.

Definition 2.1. / e Sij+(l/) is ^-holonomic if Ann+(/) ^ {0}.
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Before we proceed further, let us give some elementary examples of q-
holonomic functions.

Example 2.2. (a) The function /(«) (-1)" is g-holonomic since it satisfies

the recurrence relation

/(n + 1) + /(n) 0, n e N

(b) The functions f(n) — qn g(n) qn and h(n) ^"("-0/2 are q -holonomic
since they satisfy the recurrence relations

f(n + 1) - qf(n) 0, g(n + 1) - q2n+1 g(n) 0,

h(n + 1) — q"h(n) 0, ne N

3
However, the function n qn is not ^-holonomic. Indeed, if it satisfied a

recurrence relation, divide it by h(n) and reach a contradiction.

(c) The delta function

[ 1 if n — 0

[o otherwise,

is q -holonomic since it satisfies the recurrence relation

8(n)

(1 - q")8(n) 0, ne N

(d) The quantum factorial function given by (q;q)n EIjUiO ~ Çk) for n e N
is q -holonomic, since it satisfies the recurrence relation

(3) {q\q)n+i - (1 -qn+1)(q;q)n 0, ne N.

(e) The inverse quantum factorial function given by n —> 1 /(q;q)n for n e N
is g-holonomic, since it satisfies the recurrence relation

(!-?"+1)^ r"V 0-
(q\q)n+1 (q,q)n

(f) Suppose k Q(x). Define the q-Pochhammer symbol (x; q)n, for ne N,
by

n

(x;q)n no ~xcik !)-
k=l

Then the function n (x;q)n is q-holonomic over k, since it satisfies the

recurrence relation

O; q)n+1 + (xqn - l)(x; q)„ 0.
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2.3. Extension to functions defined on the integers. For technical reasons that
have to do with specialization and linear substitution, it is useful to extend the

definition of g-holonomic functions to ones defined on the set of integers. Note
that in the setting of Section 2.2 where the domain of the function / is N, M

is invertible, but L is not.

When the domain is Z, the definitions of the previous section extend almost

naturally, but with some important twists that we will highlight. Let Si(F) denote

the set of functions / : Z -> V. The operators L and M still act on Si (V) via (2),

only that now they are invertible and generate the quantum Weyl algebra

W := R{M±1,L±1)/(LM-ryML).

Given / e Si(F), we can define

(4) Ann(/) {P e W \Pf 0}

and the corresponding cyclic module Mf := W/ C S| (L).

Definition 2.3. / e Si (V) is g-holonomic if Ann(/) ^ {0}.

Remark 2.4. An important property of c/-holonomic functions is that a q-
holonomic / (with domain N or Z) is completely determined by a non-trivial
recurrence relation and a finite set of values: observe that the leading and trailing
coefficients of the recurrence relation, being polynomials in q and q" are nonzero
for all but finitely many n. For such n, we can compute f(n ± 1) from previous
values. It follows that / is uniquely determined by its restriction on a finite set.

It is natural to ask what happens to a g-holonomic function defined on N
when we extend it by zero to a function on Z. It is instructive to look at part
(d) of Example 2.2. Consider the extension of {q\q)„ to the integers defined by

{q\q)n 0 for n < 0. The recurrence relation (3) cannot be solved backwards
when n — 1. Moreover, the recurrence relation (3) does not hold for n — 1

for any value of {q\q)~i- On the other hand, if we multiply (3) by 1 — qn+1

(which vanishes exactly when n — 1), then we have a valid recurrence relation

(1 -qn+l){q\q)n+i - (1 - qn+])2(q; q)n =0, n 6 Z

This observation generalizes easily to a proof of the following.

Lemma 2.5. (a) If f e 5i(F) is q-holonomic and g e 5'ij+(F) is its restriction
to the natural numbers, then g is q-holonomic.

(b) Conversely, if g e 5i!+(E) is q-holonomic and f e Si(F) is the 0 extension

of g {i.e., /(«) g{n) for n e N, /(«) 0 for n < 0), then f is q-
holonomic.
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Proof, (a) Suppose Pf — 0, where P e W. Then M°LbPf — 0 for all a, b Z.
For big enough integers a.b we have Q MaLbP e W+ and Qg 0.

This shows g is g-holonomic.

(b) Suppose Qg 0 where 0 ^ <2 6 W+ and Q has degree d in L. Then

Pf 0, where P — (j]f=1(l — gJM)^ Q. Hence, / is g-holonomic.

For stronger statements concerning more general types of extension, see

Propositions 5.6 and 5.7.

Example 2.6. (a) The discrete Heaviside function

(5) H(n)
1 if n > 0

0 otherwise

is g-holonomic since it is the 0 extension of a constant function on

Alternatively, it satisfies the recurrence relation

(1 - q )H{n + 1) - (1 - q )H(n) 0, ne Z

(b) The 0 extensions of all the functions in Example 2.2 are g-holonomic. In
particular, the delta function

8 : Z Z, S(n)

is g-holonomic.

11 if n 0

0 otherwise,

3. q -holonomic functions of several variables

3.1. Functions of several variables and the quantum Weyl algebra. In this

section, we extend our discussion to functions of r variables. One might think
that a q -holonomic function of several variables is one that satisfies a recurrence
relation with respect to each variable, when all others are fixed. Although this is

not far from true, this is not always true. Instead, a q -holonomic function needs

to satisfy additional recurrence relations to create a maximally overdetermined

system of equations. Let us explain this now.
For a natural number r, let 5V(F) be the set of all functions / : Zr -» V

and 5rj+(L) the subset of functions with domain Nr. For i 1 ,...,r consider
the operators L;- and which act on functions / e Sr(V) by

(6)

(7)
(L;/)Oi,...,«r) f(ni,...,ni + 1 ,...,nr)

(M ,/)(«!,..., «r) qn> f{ni,...,nr).
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It is clear that L,-, My are invertible operators that satisfy the g-commutation
relations

(8a) M ; My MyM,-

(8b) L, Ly LjU

(8c) L,My qS'J MyL/

for all i,j 1 r. Here 8ij 1 when i j and zero otherwise.
The r-dimensional quantum Weyl algebra Wr is the R-algebra generated by

Lf*,..., L^1, M^1,..., M^1 subject to the relations (8a)-(8c). Then Wr W®r
and is a Noetherian domain.

Given / e Sr(F), the annihilator Ann(/), which is a left Wr -ideal, is

defined as in Equation (4). The corresponding cyclic module Mf, defined by

Mf Wrf C Sr(F), is isomorphic to Wr/Ann(/).
Informally, / is g-holonomic if Mf c 5r(F) is as small as possible, in a

certain measure of complexity. In particular, Ann(/) must contain recurrence
relations with respect to each variable (when all other variables are fixed),
but this is not sufficient in general.

3.2. The case of ¥/r,+. In this and the remaining sections follow closely the

work of Sabbah [Sab]. Let Wr;+ be the subalgebra of Wr generated by non-
negative powers of My, Ly. Our aim is to define the dimension of a finitely
generated Wr,+-module, to recall the Bernstein inequality (due to Sabbah), and

to define g-holonomic Wr>+ -modules.

For a (ai,... ,ar) e IS let |cr| Y?j=\ aj an<^

M" MJ7 la Y\ L? '

7=1 7=1

Consider the increasing filtration T on Wri+ given by

(9) SkWn+

— {R-span of all monomials MaL^ with a, ß e Nr and |a| + \ß\ < k).
Let M be a finitely generated Wr>+-module. The filtration T on Wri+ induces

an increasing filtration on M, defined by TkM — Wrj+ • J where J is a

finite set of generators of M as a Wr>+ -module. It is easy to see that J-kM is

independent of J, and depends only on the Wrj+ -module M Note that 7ytWrj+,
and consequently TkM, are finitely generated R-modules for all k e N. An analog
of Hilbert's theorem for this non-commutative setting holds: the R-dimension of
JjfcM is a polynomial in k, for big enough k. The degree of this polynomial is

called the dimension of M, and is denoted by d(M).
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In [Sab, Theorem 1.5.3] Sabbah proved that d(M) — 2r — codim(M), where

(10) codim(M) min{y e N | Ext^ (M, Wr>+) ^ 0}.

He also proved that d(M) > r if M is non-zero and does not have monomial
torsion. Here a monomial torsion is a monomial P in Wr,+ such that Px — 0

for a certain non-zero x e M. It is easy to see that M embeds in the Wr -module

Wr ®wr + M if and only if M has no monomial torsion. Of course if M — 0

then d(M) 0.

Definition 3.1. (a) A Wrj+-module M is g-holonomic if M is finitely gener¬

ated, does not have monomial torsion, and d(M) < r.
(b) An element / e M, where M is a Wr;+ -module not necessarily finitely

generated, is g-holonomic over Wr;+ if Wr,+• f is a g-holonomic Wri+-
module.

3.3. The case of W,.. Let M be a non-zero finitely generated left Wr -module.

Following [Sab, Section 2.1], the codimension and dimension of M are defined

in terms of homological algebra by an analog of (10):

(11) codim(M) := min{y e N | Ext^(M, Wr) ^ 0},

dim(M) 2r — codim(M).

The key Bernstein inequality (proved by Sabbah [Sab, Thm.2.1.1] in the g-case)
asserts that if M ^ 0 is a finitely generated Wr -module, then dim(M) > r. For

M 0 let dim(M) 0.

Definition 3.2. (a) A Wr -module M is q -holonomic if M is finitely generated
and dim (At) < r.

(b) An element f e M, where M is a Wr -module not necessarily finitely
generated, is q -holonomic over Wr if Wr • / is a q -holonomic Wr -module.

Thus a non-zero finitely generated Wr -module is q -holonomic if and only if
it is minimal in the complexity measured by the dimension.

Next we compare q -holonomic modules over Wr versus over Wrj+. To do

so, we use the following proposition of Sabbah [Sab, Cor.2.1.5].

Proposition 3.3. Suppose N is a Wr!+ -module and M Wr <8>wr,+ N.

(a) If N is q -holonomic over Wr,+ then M is q-holonomic over Wr.

(b) Suppose M is q -holonomic over Wr then there is a Wr,+ -submodule

N' C N such that N' is q-holonomic over Wr_+ and M — Wr <8>wr>+ N'
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Actually, part (b) of the above proposition is contained in the proof of [Sab,

Cor.2.1.5].

Proposition 3.4. Suppose f e M, where M is a Wr -module. Then f is q-
holonomic over Wr if and only if it is q -holonomic over Wr,+.

Proof We can assume that / ^ 0 and that M Wr • /. Let N — Wri+ • / C M.
Then N is a Wr,+ -submodule of M without monomial torsion and M
Wr <S>wr+ N. Proposition 3.3 implies that if / is g-holonomic over Wr>+, then

/ is q -holonomic over Wr.
We now prove the converse. Assume that M is g-holonomic over Wr. By

Proposition 3.3, there is a Wr,+ -submodule N' C N such that d(N') r and

M Wr ®wr + N'. Since Wrj+ is Noetherian, we can assume N' is Wr;+-
spanned by pif...,Pkf, where pi e Wr>+.

Claim 1. Suppose a,b are elements of a Wr>+-module and a,b are g-holonomic
over Wr,+ Then a + b is q -holonomic over Wr,+

Proof of Claim 1. Since T^ia + b) c lFk(a) + J~k(.b), we have

dimR(jjt(fl + b)) < dimR(Fk(a)) + dimR(j"fc(A)) 0(iir),
which shows that d(Wr,+(a + b)) < r, and hence a + b is g-holonomic over

Wr,+

Claim 2. Suppose a e M is q -holonomic over Wr>+, then pa is g-holonomic
over Wr;+ for any p e Wr.

Proof of Claim 2. Let 9Jt/ C "Wr,+ be the set of all monomials MaL^ with
total degree < /. There is a monomial m such that mp e Wr>+. Choose

/ such that m e SDf and mp 6 J7/. Then for all positive integers N,
TnP C Emern, m_ljrv+/ • Hence

dimR^jvOa)) < ^2 0((N + If) 0{nr),

which proves that pa is g-holonomic over Wr;+.
Let us return to the proof of the proposition. Since d(N') r, each of

p\f...,Pkf is g-holonomic over Wri+. Because M — Wr ®wr + N', there

are si,..., sk 6 Wr such that / Ef=i siPi f Claims 1 and 2 show that / is

q -holonomic over Wr!+.

Remark 3.5. When r 1, the above definition of q -holonomicity is equivalent
to the one given in Section 2.3.
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4. Properties of #-holonomic modules

The class of g-holonomic Wr-modules is closed under several natural

operations. We will collect these operations here, and refer to Sabbah's paper for

complete proofs. Below q -holonomic means q -holonomic over Wr.

4.1. Sub-quotients and extensions. By [Sab, Cor 2.1.6], we have the following.

Proposition 4.1. (a) Submodules and quotient modules of q -holonomic modules

are q -holonomic.

(b) Extensions of q-holonomic modules by q-holonomic modules are q-
holonomic.

4.2. Push-forward. Recall that M° M"1 M"r for a (oq,..., ar) e 1/.
Suppose A is an rxs matrix with integer entries. Let M (Mi, Mr) and

M' (Mj,..., M(). There is an R-linear map

where r,- : R[M,:tl] —> R[M,=I= 1
] is the R-algebra map given by qs'-j Mj.

In [Sab, Prop.2.3.3] Sabbah proves:

Proposition 4.2. If M is a q -holonomic Wr -module and A is an s x r matrix
with integer entries, then (Ta)*(M) is a q-holonomic Ws-module.

4.3. Symplectic automorphism. Next we discuss a symplectic automorphism

group of the quantum Weyl algebra. Suppose A, B, C, D are r xr matrices with

integer entries and

R[M±1] R[M,=bl], Ma i-> (MV7"

where ^4^ is the transpose of A. If M is a Wr-module, define

R[M,=bl] ®R[M±i] M

which is a Ws -module via the following action:

M-(P (gi m) — (M';P) (g m, L-(P (g> m) r;(P) (g) L^1,1 Lfr''m

Define an R-linear map fx ' Wr -> Wr by

^(MœL^) MAalBßMCalDß

Then fx is an R-algebra automorphism if and only if X is a symplectic matrix.
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Suppose X is symplectic and M is a Wr-module. Then fx induces another

Wr -module structure on M, where the new action u (j>x x e M for u e Wr and

x e M is defined by
U -fa x (px(u) - x

This new Wr -module is denoted by (fx)*(M).

Proposition 4.3. M is q -holonomic if and only if is q-holonomic.

Proof This follows easily from the fact that the ext groups of {fx)* {XI) are

isomorphic to those of M, and the fact that codimension and dimension can be

defined using the ext groups alone; see Equation (11).

In particular, when

' 0 A
(12) X -I 0,

then (fx)*(M) is called the Mellin transform of M, and is denoted by StJl(Af),

following [Sab, Sec.2.3], In particular,

Corollary 4.4. If M is a q-holonomic Wr -module, so is 9

Another interesting case is when

where A e GL(r, Z).

4.4. Tensor product. Suppose M.M' are Wr -modules. One defines their box

product M K M' and their convoluted box product MMM', which are Wr-
modules, as follows. As an R[mA> • • •. M A]-module,

M Kl M M M

and the Wr-module structure is given by

(13) M,'(x <g) x') — M;(x) (g) x' x g) M, (x'), L, (x <g> x') L, (x) <g> Lfx').

Similarly, as RfLf1» A1] -module,

MÈM' -M®r[l±,
and the Wr-module structure is given by

(14) L,- (x (g> x') L; (x) (gi x' x (gi L, (x'), M,- (x (g x') M, (x) g M,- (x').
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Proposition 4.5. Suppose M, M' are q-holonomic Wr -modules. Then both

M MM' and MÉM' are q-holonomic.

Proof. The case of M IE! M' is a special case of [Sab, Proposition 2.4.1], while
the case of M MM' follows from the case of the box product via the Mellin
transform, since

MMM' M'1 (SJÎ(M) Kl ÜJl(M')).

4.5. q -holonomic modules are cyclic. An interesting property of q -holonomic

Wr-modules M is that they are cyclic, i.e., are isomorphic to Wr/7 for some

left ideal I of Wr. This is proven in [Sab, Cor.2.1.6],

5. Properties of q -holonomic functions

5.1. Fourier transform. The idea of the Fourier transform #(/) of a function

/ e SV(F) is the following: the Fourier transform is simply the generating series

(15) G?/)(z) f(n)z",
nsZr

where n (ni,...,nr) and z" YYj=izjJ More formally, let Sr(F) denote

the set whose elements are the expressions of the right hand side of (15). Then

Sr(F) is an R-module equipped with an action of Wr defined by

(M ig)(z) g(z1,...,zi-1,qzi,zi+1,...,zr), (Lig)(z) zf1 g(z)

for g(z) e Sr(F). The Wr -module structure on Sr(F) and Sr(F) is chosen so

that the following holds.

Lemma 5.1. (a) The map $ : Sr(V) Sr(F) given by Equation (15) is an

isomorphism of Wr -modules.

(b) / e Sr(V) is q-holonomic if and only if its Fourier transform £(/) is.

(c) The relation of the Fourier and Mellin transform are as follows. If f e Sr{V),
then

MUf)

Now, suppose that F is a commutative R-algebra. Then SV(F) is a Wr-algebra.
Flence Sr(V), via [J, inherits a product, known as the Hadamard product ©,
given by
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/O) Y Y S(n)z", f(z)®g(z) Y f(n)g(n)z"
neZr neZr neZr

Of course $ is an isomorphism of algebras. Note that the action of Wr on the

product of two functions are given by

16) My (fg) Mj(f)g f My (g), Ly (/g) Ly (/) Ly (g).

The R-subspace of 5r(F) consisting of all power series with finite support
is isomorphic to the group ring R[Zr] and has a natural product defined by

multiplication of power series in z, that corresponds to a convolution product
on the subset of 5V(F) consisting of functions with finite support. Unfortunately,
multiplication of power series in z cannot be extended to the whole 5r(U).
However, this convolution product can be extended to bigger subspaces as

follows. For an integer k with 0 < k < r, let Sr^(V) denote the set of
functions / : Zr Zk x Zr~k —> V such that for each n e Zk, the support of
/(«,•) : Zr~k -> V is a finite subset of Zr~k. Let S^(F) denote the set of
functions / : Zr Zk x Zr~k —> V that vanish outside J x Zr~k for some finite
subset J c Zk J in general depends on /).

For / e Sr^(V) and g e 5^(F) one can define the convolution /*g e 5r(F)
by

(/ * g)(n) Y _ m) •

meZr

The right hand side is well-defined since there are only a finite number of nonzero

terms. The convolution is transformed into the product of power series by
the Fourier transform: for / e S^fF) and g e S^(F) we have:

(17) Hf * g) Hf)Hg)

Note that

(18) My(/ *g) My(/) * My(g), Ly(/ * g) Ly(/) * g / * Ly(g)

5.2. Closure properties. In this section we summarize the closure properties of
the class of g-holonomic functions. These closure properties were known in the

classical case (non g-case, see [Zei]) and we are treating the g-case. Theorem

5.2 below and Theorem 5.3 in the next section were known as folklore, but to
the best of our knowledge, there were no proofs given in the literature. The main

goal of this survey is to give proofs to these fundamental results.
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Theorem 5.2. The class of q -holonomic functions are closed under the following
operations.

(a) Addition: Suppose fg Sr(V) are q -holonomic. Then f + g is q-
holonomic.

(b) Multiplication: Suppose f g £ Sr(V) are q-holonomic. Then fg is q-
holonomic.

(b') Convolution: Suppose f e Srf(V) and g e S^l(V) are q-holonomic. Ilten

f * g is q -holonomic.

(c) Affine substitution: Suppose f e Sr(V) is q-holonomic, A is an rxs matrix
with integer entries, and be Zs. Then g e Ss(V) defined by

g(n) f(An + b)

is q-holonomic.

(d) Restriction: Suppose f e Sr(V) is q-holonomic and a £ Z. Then g e

SV_i(K) defined by

g(m,...,nr-i) f(ni,...,nr-i,a)
is q -holonomic.

(e) Extension: Suppose f e Sr(V) is q-holonomic. Then h e Sr+\(V) defined
by

h(ji\,... ,«r+i) f(ni,...,nr)
is q -holonomic.

(f) Reseating q: Suppose f e Sr(V) is q-holonomic where V — k(q) bo

is a k(q)-vector space. Fix a nonzero integer c and let o : k(g) —> k(^e)
be the field isomorphism given by o(q) qc, W k(gc) bo and

g aof eSr(lF). If f is q-holonomic, then g is q-holonomic.

Proof, (a) Recall that Mf — Wrf, which is a Wr-module. The map

Mf®Mg-+ Sr(V),

given by x®yh->x + y is Wr-linear and its image contains Mf+g. Thus, Mf+g
is a subquotient of Mf © Mg. By Proposition 4.1, M/+g is q -holonomic.

(b) From (13) and (16) one sees that the map

MfMMg Sr(K),

given by x ® y h-> xy is Wr -linear and its image contains M/g. Thus, M/g is

a subquotient of Mf IE Mg. By Proposition 4.1, Mfg is q -holonomic.
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(b') From (14) and (18) one sees that the map

MfÛMg Sr(F),

given byx0yi->;t*yis Wr-linear and its image contains M/*g By Proposition
4.1, Mf*g is g-holonomic.

(c) For b e Is and h e 5^(F) let h' := Lbh. We have h'{n) — h(n + b). Then

Mh> Wsh! (WsLb)h Wsh Mh

Thus, h is g-holonomic if and only if h' is. Hence, we can assume that b — 0

in proving (c).
Consider the linear map Is -» 17, n (ni,...,ns) -> An n'

(n\,..., n'r). Then g(n) f{An). Observe that qn'i qAn»i+-Ais"s ^

Ml M^!l Moreover,

(Lßg)(n) g(n + ß) f(An + Aß) ((L,')Aß f)(An).
It follows that the R-linear map \j/ : (r/i)*(5'r(F)) -> 5^(F), where (7)i)*(5r(F))
is the push-forward of SV(F) (see Section 4.2), given by

(19) 0 h) Ma(h o A)

is a -module homomorphism. Since

(20) Malßg f(Ma ® (l')Aßf),
and the set of all MaLßg R-spans Ws g, it follows that Wsg is a submodule

of i/f(Wrf). Since / is g-holonomic, Propositions 4.2 and 4.1 imply that Wsg
is a submodule of the <7-holonomic module i/r(Wrf), hence is g-holonomic.

(d) and (e) are a special cases of (c).

(f) Observe that

a(a(q)LaMßf) o(a(q)LaMß)g

where

cr(a(q)LaMß) a(qc)LaMcß

Assume that / is g-holonomic with respect to Wr. Using Proposition 3.4, it
follows that that / is g-holonomic with respect to Wr,+ and it suffices to
show that g is q -holonomic with respect to Wr>+. Recall the good filtration
Tk on Wr;+/ from Equation (9). It follows that 7kg is the span of
LaUßof for |a| + \ß\ < k. Equivalently, it is the span of MyLaMc^ cr/ where

gi e {0,1 |c|-1} for i 1,..., r and |y| + |a[+ c|/S| <k. Since W\7Wcßof
MYcr(LaMß f), and |a| + \ß\ 7 k and the number of y is 0(1), and the

dimension of the extension k(g)/k(gc) is finite, it follows that the dimension of
the span of 7kg is at most the dimension of the span of Jjt/, times a constant

which is independent of k. Hence, g is q -holonomic with respect to Wr,+.
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5.3. Multisums. In this section we prove that multisums of g-holonomic
functions are g-holonomic. This important closure property of g-holonomic
functions (even in the case of multisums of g-proper hypergeometric functions)
is not proven in the literature, since the paper of Wilf-Zeilberger [WZ] predated
Sabbah's paper [Sab] that provided the definition of g-holonomic functions.
On the other hand, quantum knot invariants (such as the colored Jones and

the colored HOMLFY polynomials) are multisums of q -proper hypergeometric
functions [GL, GLL], and hence g-holonomic. It is understood that a modification
of the proof in the classical (i.e., q 1 case ought to work in the q -holonomic

case. At any rate, we give a detailed proof, which was a main motivation to write
this survey article on q -holonomic functions.

Recall that S,%i(L) the set of all functions / : 7Lr V such that for every

(«1,...,nr-i) eZr_1, /(«i,... ,nr) 0 for all but a finite number of nr.

Theorem 5.3. (a) Suppose f e Sr^{V) is q-holonomic. Then, g e Sr-i(V),
defined by

g(nu...,nr-i) ^2 f(ni,...,nr),
nrZ

is q-holonomic.

(b) Suppose f 6 Sr(V) is q-holonomic. Then h e Sr+i(L) defined by

b

(21) h(tii,... ,nr-i,a,b) — ^ /(»i, n2,. nr)
nr=a

is q-holonomic.

Proof, (a) Let v e S)!1] (V) be defined by

,11 f) ~ 8n j ;o • • ^nr — i ,0

Lemma 6.1 and Theorem 5.2 show that v is g-holonomic. Hence g' f*v
is g-holonomic. Note that g' is constant on the last variable, and

g'(n1,...,nr) g{nr,... ,nr-i)

In particular, g(«i,..., nr-t) ^(«i, • ,«r-i, 0). By Theorem 5.2(d), g is

q -holonomic.

(b) follows from (a) using the identity

h(ni,...,nr-i,a, b) g(n\,..., nr)H{nr — a)H(b — nr)

where H(n) is the Heaviside function (5).
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5.4. Extending from Nr to V. Here is an extension of Lemma 2.5 to several

variables.

Proposition 5.4. (a) If f e Sr(V) is q-holonomic and g e S,t+(V) is its

restriction to Nr, then g is q-holonomic.

(b) Conversely, if g e Sr!+(L) is q-holonomic and f e Sr(K) is the extension

of g to IS by zero {i.e., f{n) g(n) for n /(n) 0 otherwise),
then g is q-holonomic.

Proof, (a) For h e Sr(L), let Res(/z) 6 Sr,+ (V) denote the restriction of h

to Nr c IS. If P e Wr>+, observe that Res(P/) Pg, and consequently,
Res ÇFkf) Skg It follows that if / e 5r(F) is q -holonomic and g — Res(/),
then g is q -holonomic.

(b) Let I Ann(g) c Wr>+ and / Wr7 be its extension in Wr. We have the

following short exact sequence of Wr-modules

(22) 0 -> / • / ^ Wr / ^ (Wr ./)/(/•/)-> 0.

We claim that:

(1) (Wr • /)/(/ /) is q -holonomic over Wr.

(2) I f is q -holonomic over Wr.

If that holds, Proposition 4.1 concludes the proof.
To prove (1), note that (Wr /)/(/ • /) is a quotient of Wr/7 Wr ®w,. +

(Wr,+/I). By Propositions 3.3 and 4.1, (Wr • /)/(/• /) is ^-holonomic over

Wr.
To prove (2), suppose I is generated by p\,..., pk It suffices to prove that

each pj f is q -holonomic over Wr. We prove this by induction on r. For r 1,

it is clear. Suppose it holds for r — 1. There is a finite set J C Z such that the

support of pjf is in U0<fc<r-i(Zfe x J xZr~l~k). Without loss of generality we

can assume that J consists of one element. In that case, the induction hypothesis
concludes that pj f is g-holonomic.

Corollary 5.5. Theorems 5.2 {where in part (c) we assume A : LP —> Nr and
b eNs) and 5.3 hold for q-holonomic functions over Wr,+

5.5. Modifying and patching q -holonomic functions. In this section we discuss

how a modification of a g-holonomic function by another one is g-holonomic,
and that the patching of g-holonomic functions on orthants is a q-holonomic
function.
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Proposition 5.6. Suppose V is an R-vector space and f e Sr(V), g e Sr-\(V)
are q-holonomic.

(a) If f e 5V(K) differs from f on a finite set, then f is q-holonomic.

(b) Suppose a e Z. If f / except on the hyperplane 17~x x {a}, where

f'(n,a)—g(n), then f is q-holonomic.

Similar statements holds for the case when the domains of /, g are respectively

Proof, (a) In this case, f — f is a finite linear combination of delta functions,
which is (/-holonomic by Theorem 5.2 and the q -holonomicity of the one-
variable delta function. By Theorem 5.2, /' is g-holonomic.

(b) The function g e Sr(V), defined by g(nlt... ,nT) g(n\,... ,«r-i) is

g-holonomic by Theorem 5.2. We have

/' (1 - S(nr - a))f + S(nr - a)g

By Theorem 5.2, /' is g-holonomic.

Let N+ N and N_ {—n \ n e N} c Z. There is a canonical isomorphism
N_ —> N+ given by n i-> —n We have Z N+ U N_.

For e (fii,...,er) e {+,—Y define the s-orthant of 17 by

Ne NS1 x N£2 x • • • x N£r c 17

The canonical isomorphism N_ -> N induces a canonical isomorphism Ng Nr,
and a function / : N£ -> V is called g-holonomic if its pull-back as a function

on Nr is g-holonomic.

Proposition 5.7. A function f e Sr(V) is q-holonomic ifand only if its restriction

on each orthant is q-holonomic.

Proof. If f e Sr(V) is ^-holonomic, then its restriction to an orthant is the

restriction to Nr of A o f where A e GL(r, Z) is a linear transformation.

Part (c) of Theorem 5.2 together with Proposition 5.4 conclude that the restriction
of / to each orthant is g-holonomic.

Conversely, consider a function / and its restriction fe to the orthant Ne.

Proposition 5.4 implies that the extension ge of fe by zero is g-holonomic for
all e. Moreover, / — ge is a function supported on a finite union of coordinate

hyperplanes. By induction on r, (the case r — 1 follows from Proposition 5.6)

we may assume that this function is g-holonomic. Part (b) of Proposition 5.6

concludes the proof.
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6. Examples of <7-holonomic functions

Besides the g-holonomic functions of one variable given in Example 2.2

(with domain extended to Z via Lemma 2.5), we give here some basic examples
of g-holonomic functions. These examples can be used as building blocks in
the assembly of more g-holonomic functions using the closure properties of
Section 5.2.

Recall that for ne N,
n

(23) (*;*)„ HO-V"1).
j=i

Lemma 6.1. The delta function Z2 —> Q(q), given by (n,k) -> &n,k> ts q-
holonomic.

Proof. We have S,hk S(n — k). By Example 2.6 and Theorem 5.2, &nk is

q -holonomic.

For n. k e Z, let

G(n,k)

F{n,k)

F(n,k)

(qn:q~l)k, if k > 0

0 if k < 0

n.n-l ifk>0or;? ')k
(qk-,q~1)k o if k < 0

Note that

G(n,k)
{q\q)n

(q\q)k{q\q)n-k

is the <7-binomial coefficient [Lu] if n > k > 0. In quantum topology (related
to the colored HOMFLYPT polynomial [GLL]) we will also use the following
extended g-binomial defined for n.k e Z by

(24) H(n,k)

Let

(25)

1
H

1
_i

i i "i
(0

in;.!

K(n,k.l)

qJ-q

qe',n

if k < 0

if k > 0.
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Lemma 6.2. (a) Suppose k Q. Then, the functions F and G are q-
holonomic.

(b) Suppose k Q(jc). Then, the function H is q-holonomic.

(c) The function K is q -holonomic.

Proof (a) There are 4 orthants (i.e. quadrants) of Z2: N+;+,N_,+, N+,_,N__.
On the last two quadrants, F 0 and hence are q-holonomic.

On the quadrant N+>+ (corresponding to n,k > 0), F(n,k) is the product
of 2 functions

Both factors, considered as a function on Z2, are q-holonomic by Example 2.2

(with extension to Z by Lemma 2.5) and Theorem 5.2. Hence, by Theorem 5.2

and Proposition 5.4, F(n,k) is q-holonomic on N+;+.
Let us consider the quadrant N_,+ Denote m —n. Then (m,k) e N2, and

All factors, considered as a function on Z2, are q-holonomic by Example 2.2

(with extension to Z by Lemma 2.5) and Theorem 5.2. Hence, by Theorem 5.2

and Proposition 5.4, F(n,k) is q-holonomic on N_,+
Proposition 5.7 shows that F(n,k) is q-holonomic on Z2.

where the second factor, considered as a function on Z, is q-holonomic, G{n,k)
is q-holonomic.

(b) For the q -hypergeometric function H, we can give a proof as in the case of
F and G. Alternatively, we can also deduce it using the closure properties of
q-holonomic functions as follows. We have

F(n,k) (—1) q q
k km„—k(k—l)/2/„m+k—1. —1\

q w ,q )m+k-\( k. _uw ' q )k

Since

k

"[(xq»-2+1 -x~lq-n+i~l) (-l)kq-kn+®x-k(x2q2(n-k+1);q2)k

Using the Gauss binomial formula [KC, Chpt.5],

we have
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(26)
x\n

k
(-!)*(?-?_1)V(fc_1)

(q\q)k E(-dj Inj-ikj+j
j=0

r2f

The right hand side is a terminating sum of known q -holonomic functions. Hence

the extended ^-binomial coefficient is g-holonomic.
(c) Let x ql in Equation (26). The right hand side is a terminating sum of

known q -holonomic functions, hence K is q -holonomic.

Remark 6.3. The above proof uses the closure properties of the class of q-
holonomic functions. It is possible to give a proof using the very definition of
g-holonomic functions via the Hilbert dimension.

7. Finiteness properties of q -holonomic functions

In this section we discuss finiteness properties of q -holonomic functions.
For any subset C C {Li,..., Lr, Mi, M,-} let Wr>£ be the R-subalgebra of

Wr generated by elements in C. For i 1,r let £, {L;, Mi, Mr}. Any
non-zero element P e Wr,a has the form

k

P aj
7—0

where aj e R[M] := R[Mj, M,] and ak ^ 0. We call k the L,--degree of P
and cik the Li -leading coefficient of P.

Consider the following finiteness properties for a function f e Sr (V).

Definition 7.1. Suppose / e Sr(V).

(a) We say that / is strongly Wr-finite (or that / satisfies the elimination
property) if for every subset C of {Mi, Mr. Li,..., Lr} with r+1 elements,

Ann(/) n Wr,£ + {0}.
(b) We say that / is Wr -finite if Ann(/) n ^ {0} for every i 1,..., r.
(c) We say that / is integrally Wr -finite if Arm(f) fl Wr,£; contains a non-zero

element whose Lt -leading coefficient is 1, for every i — 1 ,...,r.

Our notion of Wr-finiteness differs from the 3-finiteness in the Ore algebra

Q(q, M)(L) considered in Koutschan's thesis [Koul, Sec.2]. In particular, the Dirac
8-function 5„i0 is ^-holonomic and Wi-finite (as follows from Theorem 7.2

below) but not 3-finite [Koul, Sec.2.4],
The following summarizes the relations among the above flavors of finiteness.
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Theorem 7.2. Suppose f e Sr(V). One has the following implications among
properties of f :

integrally Wr -finite =>• q -holonomic =4- strongly Wr -finite =4- Wr -finite.

In other words,

(a) If f is integrally Wr -finite, then f is q-holonomic.

(b) If f is q -holonomic, then f is strongly Wr -finite.

(c) If f is strongly Wr -finite, then f is Wr -finite.

Proof, (c) is clear.

For (a), suppose for each i 1 r there is a non-zero pi e Ann(/) fl Wr;£;

with Li -leading coefficient 1 and Li -degree ki. Assume pi L. ' + ff ,'=q Lfaij
where aij e R[M i,..., Mr]. Recall that JFv C Wr>+ is the R-span of all monomials
MaL^ of total degree |a| + |/l| < N. Then, Fn f is in the R-span of MaL?f where

|«| + \ßI 5 A" and either ß — (ßi,..., ßr) satisfies ßi <ki for i 1 r. The

number of such monomials is 0(Nr). Consequently, the dimension of Wr;+/
is at most r, so / is g-holonomic with respect to Wr;+. By Proposition 3.4,

f is q -holonomic over Wr.
For (b), suppose £ is a subset of {M1,...,Mr,L1,...,Lr} with r +1 elements.

Note that d(Wr>c) r + 1. Suppose / is g-holonomic over Wr. By Proposition
3.4, / is g-holonomic over Wr>+ and hence J(Wr,+/Ann+(/)) < r. Here

Ann+(/) Ann(/) H Wr.+ It follows that Ann+(/) D Wr,c {0}, implying /
is strongly Wr-finite.

Remark 7.3. The converse to (c) of Theorem 7.2 does not hold. Indeed, if
R{u) 6 R(w) is a rational function in r-variables u (u\,... ,ur) and the

function

f:Sr{Q(q)), neZr » /(«) R(qn)

is well-defined, then it is Wr-finite. On the other hand, / rarely satisfies the

elimination property, hence it is not g-holonomic in general. Concretely, C.

Koutschan pointed out to us the following example:

(27) / : Z2 ^ Q(q), f(n,k) \qn +qk + 1

It is obvious that / is W2-finite. On the other hand, f(n,k) does not satisfy
the elimination property for {M„,Lfc,L„}, hence it is not q-holonomic. To show

this, assume the contrary. Then, there exists a nonzero operator

P 12Ci'j(Qn'^l'klJn
hJ
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(for a finite sum) where the c,-j are bivariate polynomials in q and qn. If P
annihilates /, this means:

Now observe that in no term can there be a cancellation, since the numerator

depends only on qn. Next observe that the denominators of all terms in the sum

are pairwise coprime. Hence the expression on the left-hand side is zero if and

only if all are zero. This gives a contradiction.

We end this section by discussing a finite description of q -holonomic functions,
which is the core of an algorithmic description of g-holonomic functions. For
holonomic functions of continuous variables, the next theorem is known as the

zero recognition problem, described in detail by Takayama [Tak, Sec.4],

Theorem 7.4. Suppose f e Sr V is q-holonomic. Then there exists a finite set

SC Zr such that f\s uniquely determines f. In other words, if g 5V(F)
such that Ann(/) Ann(g) and f\s g|s, then f — g.

Proof. We use induction on r. For r 1, this follows from Remark 2.4.

Suppose this holds for r — 1. Since / is strongly Wr -finite, it follows that

/ is annihilated by a nonzero element P — P(Mi, Li,..., Lr) e Wr. The L-

exponents of P is a finite subset of Nr. Recall the lexicographic total order

a (oq,... ,ar) < ß (ß\,...,ßT) in Nr (when a ^ ß) defined by the

existence of i0 such that at ßi for i < i0 and a,-0 < ßi0. Let La denote

the leading term of P in the lexicographic order. Its coefficient is p(q,qni)
which is nonzero for all but finitely many values of ?i \. It follows by a secondary
induction that the restriction of / on Nr is uniquely determined by its restriction
on U0<fe<r-i(Nfc x J x Nr_1_fe) for some finite subset / of N. Applying the

same proof to the remaining 2r — 1 orthants of Zr and enlarging J accordingly
(but keeping it finite), it follows that / is uniquely determined by its restriction

on U0<fe<r-i(Zfe x J x Zr~1~k) for some finite subset J of Z. Without loss of
generality, we can assume that J contains one element. Since /' is q -holonomic,
it follows by parts (c) and (d) of Theorem 5.2 that its restriction on Zk xJ xZr~1~k
is -holonomic too. The induction hypothesis concludes the proof.

8. Algorithmic aspects

From the very beginning, Zeilberger emphasized the algorithmic aspects of
his theory of holonomic functions, and a good place to start is the book
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A — B [PWZ], Algorithms and closure properties for the class of Wr -finite
functions (of one or several variables) were developed and implemented by
several authors that include Chyzak, Kauers, Salvy [CS, Kau] and especially
Koutschan [Kou2]. A core-part of those algorithms is elimination of q -commuting
variables. The definition of g-holonomic functions discussed in our paper is

amenable to such elimination, and we would encourage further implementations.
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