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Rational approximation and Lagrangian inclusions

Rasul Suarikov and Alexandre SukuoOV

Abstract. We show that any real compact surface S, except the sphere S2 and the projective
plane R P>, admits a pair of smooth complex-valued functions fi, f> with the property
that any continuous complex-valued function on § is a uniform limit of a sequence of

R;(f1, f>), where R;(zy,z») are rational functions on C?2,
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structure, plurisubharmonic function.

1. Introduction

This work concerns approximation of continuous functions on a compact real
surface by a special class of smooth functions. To illustrate this we consider
the one-dimensional example first. In the space of continuous complex-valued
functions on the unit circle S' € C let R C C°S!) be the subalgebra of
functions of the form R(e!?), where 6 € [0,2x] and R(z) is a rational function
on C with poles off S'. It follows from the Stone-Weierstrass theorem that
R is dense in C°(S!). Note that by the maximum principle the subspace of
polynomials in e’ is not dense in C°(S'). We consider the case of dimension
2. Our main result is the following

Theorem 1.1. Let S be a smooth compact real surface without boundary, and let
C%S) be the space of continuous complex-valued functions on S. There exists
a pair of smooth functions f; S — C, j = 1,2, such that for every function
F € C%S) there is a sequence {R,(z1,z2)} of rational functions on C? with
the following properties:

(i) For every n the denominator of the composition R,(f1, f2) does not vanish
on §.
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(ii) If S is not the unit sphere S? and is not the projective plane RP,, then
{R,(f1. f2)} converges to F in C°(S).

(iii) If S = S2, then there exists a rotation t of S? (depending on F) such
that {R,(f1, f2)} converges to the composition F ot in C°(5?).

(iv) If S = R P,, then there exists a smooth diffeomorphism t of R P, (depending
on F) such that {R,(f1. f2)} converges to the composition Fot in C°(RPy).

This result provides an affirmative answer to the question communicated to us
by Nemirovski. Note that the pair f;, f> is independent of F, and that rational
functions in Theorem 1.1 cannot be replaced by polynomials. To see this, suppose
that for a given surface S there exist continuous functions fi, /> such that any
continuous function on S can be approximated by polynomials in f; and f5.
Since CO9(S) separates points on S, the map f = (f1. f2): S — f(S) C C? is
a bijection, hence a homeomorphism. By assumption, any continuous function on
f(S) can be approximated by holomorphic polynomials, which forces f(S)
to be polynomially convex in C?. Recall that a compact set X C C? is
polynomially convex if for every point z € C?\ X there is a polynomial P such
that |P(z)| > supy,ex |P(w)|. However, no compact topological n-dimensional
submanifold of C” is polynomially convex, see [Sto, Cor. 2.3.5]), and this proves
the claim.

The functions f;, and f> in Theorem 1.1 will be given as the coordinate
components of a singular Lagrangian (with respect to the standard symplectic
form ws;) embedding of S into C2. For example, in the simplest case of the
torus S x S, we can take f; = €%, j = 1,2, thinking of 6; € [0,2n]
as a parametrization of each circle S'. For an arbitrary surface we employ in
Section 2 a result of Givental [Giv] (see also Audin [Aud]), who proved the
existence on S of a Lagrangian inclusion — a local Lagrangian embedding of §
into C? that can have, in addition to transverse double self-intersection points,
singularities that are called open Whitney umbrellas; furthermore, such a map is
a homeomorphism near every umbrella. Moreover, one can find such an inclusion
without self-intersection points, i.e., a topological embedding, with two exceptions,
the sphere S? and the projective plane R P,. These two surfaces do not admit
a singular Lagrangian embedding into C2, but can be included with transverse
double points, and so one needs more functions to generate C°(S).

Although no embedding of § into C? is polynomially convex, we prove in
Section 3 that there exists a Lagrangian inclusion of S into C? such that its
image is rationally convex. A compact set X in C” is called rationally convex if
for every point z € C"\ X there exists a complex algebraic hypersurface passing
through z and avoiding X . This is used in the proof of Theorem 1.1 which is
given in Section 4.
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That rational convexity is closely connected with the property of being La-
grangian became apparent from the work of Duval [Duv]. Duval and Sibony [DS]
showed that a compact n-dimensional submanifold of C” is rationally convex
whenever it is Lagrangian with respect to some Kihler form. It was further
proved by Gayet [Gay] that an immersed Lagrangian submanifold in C” with
transverse double self-intersections is also rationally convex. This was generalized
to certain nontransverse self-intersections by Duval and Gayet [DG]. Interaction
between Lagrangian geometry and rational convexity was recently explored by
Cieliebak-Eliashberg [CE] and Nemirovski-Siegel [NS] using topological methods.

2. Lagrangian embeddings and inclusions

A nondegenerate closed 2-form @ on C? is called a symplectic form. By
Darboux’s theorem every symplectic form is locally equivalent to the standard
form

g = %(a’z ANdZ+dwAdD) =ddC ¢g, da = |zI2 + ||,

where (z,w), z = x +iy, w = u + iv, are complex coordinates in C?, and
d¢ = i(0—09). If a symplectic form w is of bidegree (1,1) and strictly positive, it
is called a Kdhler form. A smooth function ¢ is called strictly plurisubharmonic
it dd°¢ ¢ is strictly positive definite. It is called a potential of w if dd“¢ = w.
A real n-dimensional submanifold § € C” is called Lagrangian with respect to
w if w|s =0.

It follows from Arnold [Arnl] that a compact Lagrangian submanifold of
C" has zero Euler characteristic. On the other hand, according to the result of
Givental [Giv], any compact surface admits a Lagrangian inclusion into C? (we
use the terminology introduced in Arnold [Arn2]), i.e., a smooth map ¢: § — C?
which is a local Lagrangian embedding (i.e., (*ws; = 0) except a finite set
of singular points that are either transverse double self-intersections (or simply
double points) or the so-called open Whitney umbrellas. The standard open
Whitney umbrella is the map

213
(1) 7R3 (1) > (15,5 0%s) e RE

(x,u,y,v)°

Images of the standard open Whitney umbrella under complex affine maps that
preserve the symplectic form wg will also be called standard umbrellas. Finally,
open Whitney umbrellas are defined as images of the standard umbrella under
a local symplectomorphism, i.e., a local diffeomorphism that preserves the form
wg. If S is orientable then each inclusion satisfies the following topological
identity
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(2) —x8)+2-d—m=0,
and if S is nonorientable, then

3) ¥(S)+2-d—m=0 mod 4.

Here yx(S) is the Euler characteristic of S, d is the number of double points,
and m is the number of umbrella points.

In the orientable case, a double point should be counted taking into account
its index, which comes from some orientation on S and the standard orientation
on C2. In fact, according to the result of Audin [Aud], any combination of
numbers x(S), d, and m, for which formula (2) is valid, can be realized in a
Lagrangian inclusion. In particular, if y(S) < 0, then we may choose d = 0,
and m = —y(S). This means that any orientable surface, except the sphere S$2,
admits a singular Lagrangian embedding (i.e., inclusion without double points),
while the Whitney sphere W|g2 : §2 — C?2, where

(4) W:R3> (t,s,7) = (t +itt,s +ist),

is a Lagrangian immersion of $2 with one double point.

In the nonorientable case formula (3) is valid mod 4 according to [Aud].
Givental [Giv] showed that if x(S) < —2, then in fact we may take d = 0,
that is, all such surfaces admit a singular Lagrangian embedding into C2. He
also gave an explicit construction of a Lagrangian inclusion of R P, with two
double points and one umbrella. Recently Nemirovski and Siegel [NS] gave all
possibilities for the number of umbrella points that may appear in a singular
Lagrangian embedding of an arbitrary compact surface §. These are given by

(i) m =—yx(S) and y # 2, if § is orientable;

(i) (x(S),m) # (1,1) or (0,0), and m € {4 —3y, =3y, =3y —4,....x+4—
4| x/4 + 1]}, if S is nonorientable.

In particular, all nonorientable surfaces except R P, admit a singular Lagrangian
embedding, while Givental’s inclusion of RP, into C? with two double points
and one umbrella has the simplest possible combination of singularities.

Suppose now that ¢ : § — C? is a Lagrangian inclusion with umbrella
points pi,..., pm. Then, in a neighbourhood U; of every p;, there exists a
symplectomorphism ¢; : Uy — U; from a neighbourhood of the origin in C?
that maps the standard umbrella (1) to «(S) N U;. Any symplectomorphism ¢ is
locally Hamiltonian. This means that in a (simply connected) neighbourhood U
there exists a smooth function /4 : U — R, called the Hamiltonian, such that the
vector field V},, uniquely defined by the equation

() 1(Vy) wge = dh,
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gives the flow ¢" on U with the property that cpf = ¢. Here i(Vy) is
the contraction operator. Conversely, a smooth function 47 : C? — R with
compact support defines uniquely a vector field V, that satisfies (5). The flow
of V), generates a one parameter family of symplectomorphisms of C?2. These
symplectomorphisms are the identity outside the support of 4.

Let L; be the linear translation in C? sending p; to the origin, and let /; be
the Hamiltonian of the symplectic maps L' o ¢; " defined in a neighbourhood
U; of pj. Let h be a smooth function on C? that agrees with /; in U; and
vanishes outside a small neighbourhood U; of U;. Then the diffeomorphism &
defined by the flow gb{’ is a symplectomorphism of C? which is the identity map
outside (7]-. By construction, ® o is a standard open Whitney umbrella near p;.
Repeating this procedure for all umbrella points gives a new Lagrangian inclusion
(denoted again by ¢) with only standard umbrellas. Thus we obtain the following
version of Givental’s theorem.

Proposition 2.1. Let S be a compact real surface without boundary. There exists
a Lagrangian inclusion t : S — C? such that all its open Whitney umbrella
points are standard. Furthermore, if S # S? or RP,, then S admits a singular
Lagrangian embedding with only standard umbrellas and without double points.

3. Rational convexity of Lagrangian inclusions

Here we prove the following

Proposition 3.1. Let S be a compact real surface without boundary and let
t: 8+~ (C? wy) be a Lagrangian inclusion given by Proposition 2.1. Then ((S)
is rationally convex in C?.

Proposition 3.1 was already proved by the authors [SS3] in the special case
of a Lagrangian inclusion with a single umbrella. We include here a detailed
presentation for convenience of the reader.

We will identify S and ¢(S) as a slight abuse of notation. The ball of radius
¢ centred at a point p is denoted by B(p, ¢), and the standard Euclidean distance
between a point p € C" and a set ¥ C C" is denoted by dist(p,Y). Our
approach is a modification of the method of Duval-Sibony and Gayet. The main
tool here is the following result.
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Lemma 3.2 ([DS], [Gay]). Let ¢ be a plurisubharmonic C°°-smooth function
on C", and let h be a C®-smooth function on C". Let X = {|h| = e?} be
compact. Suppose that

(M) |l <e?;

(2) 9h = O(dist(-, §)57);

(3) |h| = e® with order at least 1 on S;

(4) For any point p € X at least one of the following conditions holds: (i) h
is holomorphic in a neighbourhood of p, or (ii) p is a smooth point of S,
and ¢ is strictly plurisubharmonic at p.

Then X is rationally convex.

We remark that if follows from the proof of the lemma in [Gay] that in fact,
we may assume that ¢ is merely continuous at points where /4 is holomorphic.

The proof of Proposition 3.1 consists of finding the functions ¢ and 7/ that
satisfy Lemma 3.2 with X = S. This will be achieved in three steps: we first
construct a closed (1,1)-form « that vanishes near singular points of S and
such that w|s = 0. The form ® is a modification of the standard symplectic
form wg in C? near singular points of S. Near self-intersection points this is
done in the paper of Gayet [Gay], and so we will deal with the umbrella points.
Secondly, from @ and its potential ¢ we construct the required function /. In
the last step we replace ¢ with a function ¢ + p, for a suitable p, so that the
pair {¢ + p, h} satisfies all the conditions of Lemma 3.2.

Step 1: The form . Our modification of the form ws; and its potential is
an inductive procedure on the umbrella points. Let py,..., p, be the umbrella
points on S, p; = (x;,u;,y;,v;). By the assumption in Theorem 3.1, after a
translation of p; to the origin, the surface S is parametrized near p; by the
mapping 7 given by (1). Let L; : (z,w) — (z,w) — p; be the translation of p;
to the origin, so that 7; = L7' o parametrizes S near p;.

For a function f we have d°f = —f,dx + fydy — fudu + fydv. Using
this we have 7*d¢¢pq = —2t%sdt — %t3ds. Consider the pluriharmonic function

2 2 . . .
&1 = 5 —%. Then n*d°fy = n*d°¢s. The function ¢ — §1 is strictly

plurisubharmonic and satisfies

(6) 7 d(¢s — £1) = 0.

Let ¢1 = (¢sr—C1)oL. Since L; are C-linear, they commute with €. Therefore,
d¢p.|S = 0 near p; and dd®¢p; = ws;. Let r : RT — R™T be a smooth increasing
convex function such that r(r) =0 when ¢ <e; and r(t) =¢—c when 1 > &,
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for some suitably chosen ¢ > 0 and 0 < &; < g;. We choose &, > 0 so small
that the set {¢; < 2} does not contain any singular points of § except p;. Let

(7) b1 =ro¢, o =dd(¢).

Then 7*w; = 0 by (6). Therefore, the surface S remains Lagrangian with respect
to the form w; . This gives us the required modification of wg near p;. Note that
our construction gives two neighbourhoods U; € U| of p;, which can be chosen
arbitrarily small, so that w;|y, =0 and w; = wg in (CZ\UI’. On the other hand,
the potential ¢, is a global modification of ¢, but it remains plurisubharmonic
on C2.

Consider now the modification of g51 and w; near p,. Up to an additive
constant the potential qB; for w; near p, agrees with (¢5; —1)oL;. We construct
¢, in the form

¢ = (p1— L) o L+ C,

with a suitable choice of a function {, and a constant C. The condition
myd¢, = 0 is equivalent to

JT*dc((Cbsf —{1)o Ly — é'z) =
This can be achieved by choosing
§2 = —2x1% — 2y1y —v1v — 3uqu.

Then d°¢p,|S = 0 near p,. Further, ¢»(p2) = 0 by a suitable choice of the
constant C, and dd®¢, = w;. Now take 432 =r o¢,, where r is as above, and
set w, = dd®¢,. This gives the required modification near p,.

This procedure can be repeated for all other p;, j = 2,...,m. Note that at each
step the modification of the function ¢;_; is obtained by adding linear terms in
(x,u,y,v) precomposed with a translation. This ensures that the form w; remains
unchanged in the complement of some small neighbourhood U} of the point p; .
For the same reason, the function ¢; remains globally plurisubharmonic, which
is, in fact, strictly plurisubharmonic outside the union of the neighbourhoods U j’
We repeat this procedure m times for all umbrella points to obtain the function
¢ and the form @.

Denote by pm+1,..., py the double points of S. Then [Gay, Prop. 1] gives
further modification of the form & and its potential ¢ near the double points.
Combining everything together yields the following result.
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Lemma 3.3. Given & > 0 sufficiently small, there exists a (1,1)-form @ and
0 <& <& such that

(i) als =0;
G) 6= on cz\(uf’:l[&(pj,a)).
(iii) @ vanishes on B(p;.e), j=1,...,N.

Furthermore, there exists a smooth function ¢ on C? such that dd°¢p = &.
The function ¢ is plurisubharmonic on C?, and strictly plurisubharmonic on

C2\ ( Uj-vzl B(p;.¢)).

Step 2: The function #. Let (:S — C? be a Lagrangian inclusion, and ¢ be
the potential of the form @ given by Lemma 3.3. For simplicity we drop tilde
from the notation. We recall the construction in [DS] and [Gay] of a smooth
function h on C2 such that || |g =e? and 9h(z) = O(dist(z, 5)°).

Let S be a deformation retract of S. Note that it exists because near an
umbrella point the surface S is the graph of a continuous vector-function. Let
Vies K = lass0:1 BE the bagis n HI(S,Z) >~ H(S,Z) supported on S. Using de
Rham’s theorem one can find closed forms B; on S such that fyu Br = é,r, and
such that B vanish in the balls B(p;,¢) as in Lemma 3.3 around the singularities

of S. Further, there exist smooth functions v with compact support in S such
that v vanish on S U (UM B(p;,¢)), and for k =1,...,1,

(8) d e = " P

Indeed, for each k, we set ¢p = A(z,w)r; + B(z,w)ra, where ri(z,w) and
r1(z,w) are local defining functions of § and A, B are some unknown functions.
Plugging this expression into (8) gives a linear system for the restrictions of A
and B to S that can be solved. A suitable extension of this solution with support
in § gives the result. Note that near singular points the extension is identically
Zero.

For A; > 0 the function ¢+Zj-:1 Ax Y agrees with ¢ on S. For sufficiently
small Ay it is strictly plurisubharmonic outside the balls B(p;,¢) and globally
plurisubharmonic since the functions v vanish in B(pj, ¢). Further, there exists
a choice of A and M > 0 such that for the function

) $=M(¢+iwj)
=

the form (*d¢¢ is closed on S and has periods which are multiples of 2.
Then there exists a C®-smooth function u : S — R/27xZ that vanishes on
the intersection of S with B(p;,e), j = 1,...,N, and such that *d¢g =dp.
By [HW], there exists a function /# defined on C? such that
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hls = e®TH|g

and 9h(z) = O(dist(z, S)®). It follows that dS—log |h| vanishes to order 1 on S.
Note that 4 is constant near singular points of S. Finally, the function % can be
suitably extended to C? preserving the inequality given by (1) in Lemma 3.2.

Step 3: The function ¢. A closed subset K in C” is called locally polynomially
convex near a point p € K if for every sufficiently small ¢ > 0 the intersection
K NB(p,e) is polynomially convex in C”. Again, for simplicity of notation we
denote by ¢ the function (9) constructed in Step 2. It does not yet satisfy the
conditions of Lemma 3.2 because there are still some smooth points on S where
the function h is not holomorphic and ¢ is not strictly plurisubharmonic. For
this we will replace ¢ by a function ® = ¢+ c-p, where the function p will be
constructed using local polynomial convexity of S, and ¢ > 0 will be a suitable
constant.
We recall our result from [SS1, SS2].

Lemma 3.4. Let S be a Lagrangian inclusion in C?, and let po....,pN
be its singular points. Suppose that S is locally polynomially convex near
every singular point. Then there exists a neighbourhood Q of S in C?
and a continuous non-negative plurisubharmonic function p on Q such that
SNQ ={p e Q:p(p) = 0}. Furthermore, for every § > 0 one can choose
p = (dist(z,S))? on Q\ UszllB(pj,S); in particular, it is smooth and strictly
plurisubharmonic there.

The standard open Whitney umbrella is locally polynomially convex by [SS1],
and S is locally polynomially convex near transverse double self-intersection
points by [SS2]. For the proof of the lemma we refer the reader to [SS2].

To complete the construction of the function ¢, we choose the function p in
Lemma 3.4 with § > 0 so small that the balls B(p,,§) are contained in balls
B(pj.€'/2) given by Lemma 3.3. Note that p is defined only in a neighbourhood
Q of S, but we can extend it as a smooth function with compact support in C2.
Consider now the function

p=¢+c-p
We choose the constant ¢ > 0 so small that the function ¢ remains to be
plurisubharmonic on C?. At the same time, since ¢ > 0 and p is strictly
plurisubharmonic on § outside small neighbourhoods of singular points, we
conclude that the function ¢ is strictly plurisubharmonic outside the balls B(p;,d).
It also follows that X = {|h| = e?} = S. The pair ¢ and h now satisfies all the
conditions of Lemma 3.2. This completes the proof of Proposition 3.1.
For the proof of Theorem 1.1 we will also need the following result.
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Corollary 3.5. Suppose that « : S — C? is a Lagrangian inclusion of a compact
surface. Then ((S) admits a Stein neighbourhood basis.

Indeed, one can take neighbourhoods of ((S) of the form {p < &} where p
is a function given by Lemma 3.4 and ¢ > 0 is small enough.

4. Rational approximation on surfaces

The classical Oka-Weil theorem (see, e.g., [Sto]) states that any holomorphic
function in a neighbourhood of a rationally convex compact set X C C” can be
approximated uniformly on X by rational functions with poles off X . Rational
functions can be replaced by holomorphic polynomials if X is polynomially
convex. We will need the following approximation result, which is due to O’Farrel—
Preskenis—Walsch [FPW] (see also Stout [Sto]):

Let X be a compact holomorphically convex set in C", and let X, be a
closed subset of X for which X \ Xo is a totally real subset of the manifold
C"\ Xy. A function f € C(X) can be approximated uniformly on X by functions
holomorphic on an neighbourhood of X if and only if f|x, can be approximated
uniformly on X by functions holomorphic on an neighbourhood of X .

Recall that a set X is called a fotally real set of a manifold M if there
is a neighbourhood U of X in M on which is defined a nonnegative strictly
plurisubharmonic function ¢ of class C? such that X = {p € U : ¢(p) = 0}.
The following result can be found in Stout [Sto, Thm 6.2.9]:

A compact connected subset X of a Stein manifold M is holomorphically convex
if and only if there is a sequence §2; of domains in M with Q; D Qi, when
Jj <k, and with ﬂj Q2 = X such that if for each j, (fzj,projj) is the envelope
of holomorphy of Q;, then ﬂj proj; (2;) = X.

Suppose now that X = ((S) is a Lagrangian inclusion given by Proposition 2.1;
it is rationally convex by Proposition 3.1. Let X, be the set of singular points
of X, ie., the set of double points and Whitney umbrellas. Then X \ X
is a smooth totally real submanifold, and so for each point p € X \ X
there exists a neighbourhood in which the square of the distance to X is a
strictly plurisubharmonic function. From these neighbourhoods we can construct
a neighbourhood U O X \ Xy with a nonnegative strictly plurisubharmonic
function on it that vanishes on X \ Xo. This shows that X \ X, is a totally real
set in C2?\ Xp.

The set X is finite, hence it satisfies the assumption of the O’Farrel-Preskenis—
Walsch theorem. By Lemma 3.5, X C C? admits a Stein neighbourhood basis
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{Q;};. Bach Q; is Stein, therefore, Q; = Q;, and it follows from above that X is
holomorphically convex. Thus, all conditions in the result of O’Farrel-Preskenis—
Walsch, stated above, are satisfied, and we conclude that any continuous function
on X can be approximated by holomorphic functions in a neighbourhood of
X, hence by rational functions as seen by the Oka—Weil theorem. Combining
everything together gives the following.

Proposition 4.1. If « : S — C? is a Lagrangian inclusion with standard umbrellas,
then any continuous function on ((S) can be approximated uniformly on ((S) by
rational functions with poles off ((S).

With this the main result is easily verified.

Proof of Theorem 1.1. (i and ii) By Proposition 2.1, there exists a singular La-
grangian embedding f = (fi, f2) : S — C? with standard umbrellas as the
only singularities. The required statements now follow from Proposition 4.1.

(iii) Formula (4) gives an immersion of the sphere S? into C? with one double
point, but this does not give the approximation result because the coordinate
functions attain the same value at the double point. However, by the Borsuk—
Ulam theorem (see, e.g., [Hat]), any continuous function F : S 2 5 R2 has
at least two antipodal points p and g on S2 where it attains the same value.
Hence, it can be approximated by rational functions but only after we apply
a rotation of S? that sends p and g to the north and south poles of $2,
which are the preimages of the double point.

(iv) A similar story holds for R P,, for which one needs two double points. Let
f = (f1, f2) : RP, — C? be the Lagrangian inclusion with two double
points and one standard umbrella. By the Whitney approximation theorem
it suffices to approximate any smooth function F : RP, — C. Since R P,
cannot be diffeomorphic to any subset of C, a generic point in the image
of F will have at least two pre-images. Applying a diffeomorphism ¢
of RP, we may assume that there exist points pj,q; € RP, such that
(For)(pj) = (For)(g). j =12, and fj(px) = fj(qx). j.k = 1.2. Then
by Proposition 4.1, F ot can be approximated by rational combinations of
f] and fz. L]
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