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Excellence of function fields of conics

Alexander MErRkURJEV and Jean-Pierre TigNoOL

Abstract. For every generalized quadratic form or hermitian form over a division algebra,
the anisotropic kernel of the form obtained by scalar extension to the function field of a
smooth projective conic is defined over the field of constants. The proof does not require
any hypothesis on the characteristic.
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One important aspect in the study of quadratic forms over fields is to determine
their behavior under scalar extension. A quadratic form ¢ that is anisotropic
(i.e., without nontrivial zeros) over a field F may become isotropic over a
field extension L of F; the extended form ¢; then has a Witt decomposition
qr = qo L mH involving an anisotropic quadratic form ¢¢ and a certain number
m > 1 of hyperbolic planes, see [EKM, Th. 8.5]. The form ¢¢ is uniquely
determined up to isometry; it is called the anisotropic kernel of ¢; . Some field
extensions have a useful property, first pointed out by Elman-Lam-—Wadsworth
[ELW, §2]: the extension L/F is said to be excellent if for every quadratic form
q over F the anisotropic kernel of ¢ is defined over F.If F is a number field,
it is shown in [ELW, Th. 2.13] that every finite extension L/F that contains a
Galois extension of F of even degree is excellent.

Excellent extensions of arbitrary fields are much more scarce. Of course,
extensions over which every anisotropic form remains anisotropic are excellent;
this applies in particular to extensions of odd degree and to purely transcendental
extensions, see [EKM, §29]. At the other extreme, the algebraic closure of a field
is an excellent extension because it carries (up to isometry) a single nonzero
anisotropic quadratic form, which is the 1-dimensional form x2, defined over
the prime subfield. A more interesting example is given by separable quadratic
extensions, which are excellent in the following strong sense: if g is an anisotropic
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quadratic form over a field F, the anisotropic kernel of the extended form ¢z,
over a separable quadratic extension L/F is g; for some subform q' of g, see
[EKM, Cor. 22.12]. By contrast, many types of extensions have been shown to
be non-excellent: see Sivatski [Sivl], [Siv2], [Siv3], [Siv4]. It is therefore quite
remarkable that function fields of smooth projective conics do have the excellence
property (although not in the strong sense). This was first noticed by Arason [Ara].
As it relies on Knebusch’s Habilitationschrift [Kne] on symmetric bilinear forms,
Arason’s proof requires! the hypothesis that char F # 2.

Three other proofs of the excellence property of function fields of smooth
conics have been published; they are due to Rost [Ros, Corollary], Parimala—
Sridharan—Suresh [CTS, Lemma 3.1], [PSS, Proposition 2.1], and Pfister [Pfi,
Prop. 4]. Pfister’s proof is based on the study of quadratic lattices over the ring
of an affine open set of the conic, while Rost’s proof uses ingenious manipulations
of quadratic forms that are isotropic over the function field. The proof by Parimala—
Sridharan—Suresh relies, like Arason’s, on vector bundles over the conic, but it
uses the Riemann—Roch theorem instead of Grothendieck’s classification of vector
bundles over the projective line [Gro]. This idea was also used in an unpublished
proof due to Van Geel [VG].

In all the proofs mentioned above, the characteristic of the base field is assumed
to be different from 2, although Rost’s arguments can be modified to cover the
characteristic 2 case, as was shown by Hoffmann—Laghribi [HL, Cor. 5.7]. One
remarkable feature of the Parimala—Sridharan—Suresh proof in [PSS] is that it
applies not just to quadratic forms, but also to hermitian forms over division
algebras (of characteristic different from 2).

Our goal in this paper is to prove the excellence of function fields of smooth?
projective conics in arbitrary characteristic for hermitian forms and generalized
quadratic forms over division algebras. Our proof is close in spirit to Arason’s
original proof: the idea is to show that the anisotropic kernel of a hermitian or
generalized quadratic form extended to L is the generic fiber of a nondegenerate
hermitian or generalized quadratic form on a vector bundle over the conic. We
then use the classification of these vector bundles to conclude that the anisotropic
kernel is extended from F. Our approach is completely free of any assumption
on the characteristic of the base field. Therefore, the case of generalized quadratic
forms requires a separate, more delicate treatment.

I Arason’s proof can readily be extended to symmetric bilinear forms in characteristic 2, but this
case is uninteresting because anisotropic bilinear forms in characteristic 2 remain anisotropic over the
function field of a smooth projective conic by [Lag, Cor. 3.3].

2In characteristic different from 2, function fields of singular (irreducible) conics are purely
transcendental extensions of a quadratic extension of the base field, hence they are excellent extensions
of the base field. Laghribi communicated to us an example showing that function fields of singular
conics may fail to be excellent for quadratic forms in characteristic 2.
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To simplify the discussion, we only consider hermitian forms with respect
to involutions on division algebras that leave the center fixed (involutions of the
first kind). 'This is sufficient to treat generalized quadratic forms, and the reader
should have no difficulty in verifying that slight modifications of our arguments
are sufficient to extend our results to the case of involutions of the second kind.
Another restriction is to quadratic forms that are nonsingular (which means that
their polar form is nonsingular; see the definition in §1.4). Thus, the connected
component of the automorphism groups of the forms we consider are the simple
linear algebraic groups of adjoint type C or D, or of type B if the characteristic is
different from 2. If the characteristic is 2, the automorphism groups of hermitian
forms may be of type C or may not be semisimple, depending on the type of the
involution. Note that simple linear algebraic groups of type B are defined from
quadratic forms over fields, and for these forms the excellence property of function
fields of smooth conics in characteristic 2 is proved in Hoffmann-Laghribi [HL].

The excellence property can also be approached from the viewpoint of linear
algebraic groups: the anisotropic kernel of a semisimple linear algebraic group
is the derived subgroup of the centralizer of a maximal split torus. If G is
the special orthogonal group of a generalized quadratic form ¢, the anisotropic
kernel of G is the special orthogonal group of the kernel of ¢. Thus, from
Theorem 3.4 below, it follows that for every simple linear algebraic group G of
type D defined over a field F, the anisotropic kernel of G over the function
field of a smooth conic over F is defined over F. This result actually holds for
all semisimple linear algebraic groups, as was shown by Harder [Har, Satz 3.5].3
Conversely, because the orthogonal group determines the quadratic form up to a
scalar factor, Harder’s result for groups of type D yields an alternative way to
derive our Theorem 3.4 from Proposition 3.1.

The paper is organized as follows: In §1 we revisit the notion of quadratic
form as defined by Tits in [Tit]. Our goal is to rephrase Tits’s definition in terms
of modules over central simple algebras instead of vector spaces over division
algebras. We thus obtain a notion that is better behaved under scalar extension.
Hermitian forms and generalized quadratic forms on vector bundles over a conic
are discussed in §2, and the proof of the excellence result is given in §3. To
make our exposition as elementary as possible, we thoroughly discuss in an
appendix the classification of vector bundles over smooth projective conics, us-
ing a representation of these bundles as triples consisting of their generic fiber,
their stalk at a closed point oo, and their section over the complement of oo.
Thus, we give an elementary proof of Grothendieck’s classification theorem, and

3We are indebted to Chernousov for pointing out this reference.
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correct Arason’s misleading statement* suggesting that vector bundles over a conic
decompose into line bundles.

We use the following notation throughout: for every linear endomorphism t
such that 72 = 1d, we let

Sym(t) = ker(Id—7) and Alt(r) = im(Id —7).

Thus, Alt(r) C Sym(—rt) always, and Alt(r) = Sym(—z) in characteristic different
from 2.

1. Quadratic forms

1.1. The definition. Let A be a central simple algebra over an arbitrary field
F, and let o be an F -linear involution on A, i.e., an F-linear map o: A — A
such that 02 = Id and o(ab) = o(b)o(a) for all a, b € A. Let M be a finitely
generated right A-module. The dual module M* = Homy4(M, A) has a left A-
module structure given by (af)(x) =af(x) for a € A, f e M*, and x € M.
Let “M™ be the right A-module defined by

CM*={"f|feM")
with the operations

f+%%=°(f+g and °f.a="(0(a)f)

for a € A and f, g € M*. Identifying ¢ f with the map x — o(f(x)), we
may also consider “M™* as the A-module of additive maps g: M — A such
that g(xa) = o(a)g(x) for x e M and a € A, ie.,, “M* is the A-module of
o -semilinear maps from M to A.

Let B(M) be the F-space of sesquilinear forms M x M — A. Mapping
7f ® g to the sesquilinear form (x,y) — o(f(x))g(y) defines a canonical
isomorphism

‘TM*®4 M* = B(M).

Let sw: B(M) — B(M) be the F -linear map taking a form b to the form sw(b)
defined by

sw(b)(x.y) = o (b(y.x)).
Thus, sw(® f ®g)=9¢® f for f, ge M*.

+“Now the proof of the first sentence of [Kne, Theorem 13.2.2] (and the result of [Gro] which is
cited there) only depends on the projective line being a complete regular irreducible curve of genus
zero” [Aral.
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Definition 1.1. Recall from [KMRT, (2.5)] that the involution ¢ is said to be
orthogonal (resp. symplectic) if its scalar extension to any splitting field of A4
is the adjoint involution of a bilinear form that is symmetric and not alternating
(resp. that is alternating). The space of (generalized) quadratic forms on M is
the factor space

Q(M) = B(M)/ Alt(e sw),

where ¢ = 1 if o is orthogonal and ¢ = —1 if o is symplectic. For § = +1,
the space of §-hermitian forms on M is

Hs(M) = Sym(d sw) C B(M).

To relate this definition of quadratic form to the one given by Tits in [Tit],
note that B(M) is a free right module of rank 1 over End4 M, for the scalar
multiplication defined as follows: for b € B(M) and ¢ € Endg M ,

(b-@)(x,y) =b(x,0(y)) for x, ye M.

The pair (B(M),esw) is a space of bilinear forms for Endg M , in the sense of
[Tit, 2.1]. With this choice of space of bilinear forms, the elements of Q(M) as
defined above are exactly the quadratic forms defined in [Tit, 2.2].

By definition, the vector spaces H.(M) and Q(M) fit into the exact sequence

Id —e sw

0— HM)— B(M) —— B(M) — Q(M) — 0.
Since (Id +e&sw) o (Id —esw) = 0, there is a canonical “hermitianization” map
B: QM) — He(M),
which associates to each quadratic form g = b + Alt(e sw) the e-hermitian form
Bq) = b+ esw(b).

Thus, by definition the form B(g) actually lies in Alt(—esw) C H.(M).

1.2. Relation with submodules. For every submodule N C M, the following
exact sequence splits:

(1.1) 0O>N-—>M-—>M/N — 0.
It yields by duality the split exact sequence
0— (M/N > M*— N*—=0,

which allows us to identify (M/N)* with the submodule of linear forms in M*
that vanish on N. We thus obtain a canonical split injective map
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B(M/N)="(M/N)* ®4 (M/N)* - "M* ®4 M* = B(M)
and a canonical split surjective map
BIM)="M*"®@4 M* -°N*®4 N* = B(N).

These canonical maps commute with Id—§sw for § = £1, hence they induce
canonical maps

Hs(M/N) — Hs(M),  Hs(M) — Hs(N)  for § = +1,

and

QM/N) — Q(M), QM) — Q(N).

Remark 1.2. For a fixed splitting of the exact sequence (1.1), the corresponding
splittings of the injection B(M/N) — B(M) and the surjection B(M) — B(N)
also commute with Id —e sw, hence the map Q(M/N) — Q(M) is split injective
and Q(M) — Q(N) is split surjective.

Proposition 1.3. The canonical embedding B(M/N) — B(M) identifies B(M/N)
with the space of sesquilinear forms b € B(M) such that b(x,y) = b(y,x) =0
for all xe M and y € N.

Proof. 1t is clear from the definition that the sesquilinear forms in the image
of B(M/N) vanish in “M* ®4 N* and in °N* ®4 M*, hence they satisfy the
stated property.

For the converse, we use the canonical isomorphism

(1.2) M* @4 M* = Homy(M, M*)

mapping ¢ f ®g to the homomorphism x +— ¢ f-g(x). This isomorphism identifies
each sesquilinear form » € B(M) with the homomorphism b:M — M*
mapping x € M to b(e,x). If b(x,y) = b(y,x) =0 for x e M and y € N,
then the image of b lies in 9(M/N)* and its kernel contains N . Therefore,
b induces a homomorphism M/N — 9(M/N)*, and b is the image of the
corresponding sesquilinear form in B(M/N). L]

1.3. Sublagrangian reduction of hermitian forms. Let § = +1. For h €
Hg(M) and N C M any A-submodule, we define the orthogonal N+ of N by

Nt ={xeM|h(x,y)=0forall ye N}

The submodule N is said to be a sublagrangian, or a totally isotropic submodule
of M, if N c Nt or equivalently, if 4 lies in the kernel of the restriction
map Hsg(M) — Hg(N). The form /h is said to be isotropic if M contains a
nonzero sublagrangian. It is said to be nomnsingular if the corresponding map
h M —°M* under the isomorphism (1.2) is bijective.
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Proposition 1.4. Let h € Hg(M) and let N C M be a sublagrangian.
There is a unique form ho € Hs(N+/N) that maps under the canonical map
Hs(NL/N) — Hs(NL) to the restriction of h to N*. The form hy is nonsingular
if h is nonsingular; it is anisotropic if N is a maximal sublagrangian.

Proof. The existence of ho readily follows from Proposition 1.3. The form /g is
unique because the map B(N1/N) — B(N*) is injective.

Now, assume / is nonsingular. Since # carries N+ to °(M/N)*, there is
a commutative diagram with exact rows:

0—— Nt M M/N+t ——-0

.

O%G(M/N)*HGM*%-UN*%—()

The map ¢ is injective by definition of N+, and hois bijective because & is
nonsingular, hence ¢ is an isomorphism. By duality, ¢ yields an isomorphism
Tp*: M/N — °(N+)*. Composing ¢ with the inclusion °(M/N)* C “M* and
9* with the canonical map M — M/N, we obtain maps ¢’, ¢” that fit into
the following diagram with exact rows, where i is the inclusion:

J(N_L)* 0

A

0—s=NLt—Eoopyr onN .0

Since K is bijective, the Snake Lemma yields an isomorphism ¢ (N-L/N)* =
N+/N. Computation shows that the inverse of this isomorphism, viewed in
B(NL/N), is sw(hg) = 8hg. Therefore, hy is nonsingular.

If L c Nt/N is a sublagrangian for g, then the inverse image L’ C N+ of
L under the canonical map N+ — N1/N is a sublagrangian for 4. Therefore,
ho is anisotropic if N is a maximal sublagrangian. O

When N is a maximal sublagrangian, the anisotropic &-hermitian form /g
is called an anisotropic kernel of h. As for quadratic forms (see Proposition 1.6
below), the anisotropic kernel of a §-hermitian form is uniquely determined up
to isometry.
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1.4. Sublagrangian reduction of quadratic forms. We say that a quadratic form
q € Q(M) is nonsingular if its hermitianized form f(g) is nonsingular.® The form
q is said to be isotropic if there exists a nonzero submodule N C M such that
q lies in the kernel of the restriction map Q(M) — Q(N); the submodule N is
then said to be fotally isotropic for g. Clearly, every totally isotropic submodule
N for ¢ is also totally isotropic for the hermitianized form B(g), hence it lies
in its orthogonal Nt for B(q).

Proposition 1.5. Let g € OQ(M) and let N C M be a totally isotropic submodule.
There is a unique form gy € Q(N+/N) that maps under the canonical map
Q(NL/N) — Q(N?1) to the restriction of q to Nt. The form qqo is nonsingular
if q is nonsingular; it is anisotropic if N is a maximal totally isotropic submodule.

Proof. Let b € B(M) be a sesquilinear form such that ¢ = b + Alt(ssw). Since
N is totally isotropic for ¢, there is a form ¢ € B(M) such that

(1.3) blx, ¥ = ¢, 9) —ea(c(y,x)) for all x, ye N.

Because N1/N is a projective module, there is a homomorphism 7: Nt — N
that splits the inclusion N <> N-1. Define a sesquilinear form b, € B(N+) by

bi(x,y) = b(x,:r(y)) — C(JT(X), 7(y)) for x, ye N*.

For x e N and y € N1, we have

(14) b(x,y) = bi(x,y) + 0 (b1(y, %)) = b(x,y) —b(x. 7(»)) + ¢((x), 7(»))
+ 20 (b(y, (x)) = e(r (), 7(x)).

Since m(x) = x, (1.3) yields
b(x. 7(y) = c(m(x). 7(»)) — 0 (c(x(y). 7(x)).
hence three terms cancel on the right side of (1.4), and we have
(1.5) b(x.y)=b1(x,y) +20 (b1(y.x)) = b(x, ) +£0(b(y. X)) = f(@)(x,y) = 0.
Similarly, for x € N and y € N1 we have
b(y,x) = —eo(b(x,))
hence (1.5) yields

b(y,x) = b1 (y,x) + g0 (b1 (x, y)) = 0.

SIn [Tit], Tits defines non-degenerate quadratic forms by a less stringent condition.
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Therefore, letting b|y. denote the restriction of b to N, we may apply
Proposition 1.3 to get a sesquilinear form by € B(N+/N) that maps to
b|yr — (Id—esw)(hy) in B(N*1). Then the quadratic form go = by + Alt(esw) €
Q(N1/N) maps to ¢g|yr in Q(N+). Uniqueness of the form go is clear since
the map Q(N+/N) — Q(N+) is injective (see Remark 1.2).

Since N is totally isotropic for the hermitianized form B(g) € Hg.(M),
Proposition 1.4 yields an e-hermitian form B(g)o € He(N1/N) that maps to
B(q)|y+ under the canonical map H,(N+/N) — H(N1). Since B(q)|yL =
B(glyL), we have B(q)o = B(qo). If g is nonsingular, then by definition f(g) is
nonsingular. Then 8(g)o is nonsingular by Proposition 1.4, hence ¢¢ is nonsingular.

If L C Nt/N is a totally isotropic submodule for g, then the inverse image
L’ ¢ N+t of L under the canonical map N+ — N+/N is totally isotropic for g .
Therefore, g( is anisotropic if N is a maximal totally isotropic submodule. L[]

When N is a maximal totally isotropic submodule of M, the quadratic form
qo is called an anisotropic kernel of g. (Compare the definition of anisotropic
kernel of a §-hermitian form at the end of §1.3.) The following result shows
that, up to isometry, the anisotropic kernel does not depend on the choice of the
maximal totally isotropic submodule:

Proposition 1.6. All the maximal totally isotropic submodules of M (for a given
quadratic form q) are isomorphic. If the form is nonsingular, then for any two
isomorphic totally isotropic submodules N, N' C M there is an isometry ¢ of
(M, q) such that ¢(N) = N'.

Proof. See Tits [Tit, Prop. 1 and 2]. L

2. Quadratic forms on A -module bundles over a conic

Throughout this section, C is a smooth projective conic over an arbitrary
field F', which we view as the Severi—Brauer variety of a quaternion F -algebra
Q. We assume C has no rational point, which amounts to saying that Q is a
division algebra.

2.1. Vector bundles over C. We recall from Roberts [Rob, §2] or Biswas—
Nagaraj [BN]¢ the description of vector bundles over C. (See the appendix
for an elementary approach to vector bundles over C.) Let K be a separable
quadratic extension of F that splits Q. Let Cx = C x Spec K be the conic over
K obtained by base change, and let f: Cx — C be the projection. Since Cg

6 We are grateful to Van Geel for pointing out this reference.
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has a rational point, we have Cx ~ Pg. By a theorem of Grothendieck, every
vector bundle on Cg is a direct sum of vector bundles OP}(' (n) of rank 1 (see
Theorem A.6). The vector bundle fi (OP}< (n)) is isomorphic to Oc¢(n) & Oc¢ (n)
if n is even; it is an indecomposable vector bundle of rank 2 and degree 2n if
n is odd [Rob, Theorem 1] (see Corollary A.14). Letting

Te(2n) = fs ((’)P}( (n)) for n odd,

it follows that every vector bundle over C decomposes in a unique way (up to
isomorphism) as a direct sum of vector bundles of the type Oc¢(n) with n even
and Z¢c(2n) with n odd (see Theorem A.18 or [BN, Theorem 4.1]). Moreover,
we have

(2.1) End(Zc (2n)) ~ Q for all odd n.

(See (A.18).) Using the property that fio f*(£) >~ £EPE for every vector bundle
& over C, and that f* o fi () ~ & @ & for every vector bundle & over Pj
(see Proposition A.12), it is easy to see that

(2.2) Tc(2n) ® Ic(2m) ~ Oc(n + m)®* for all odd n, m, and
(2.3) Zc(2n) @ Oc(m) =~ Ic (2(n + m)) for all » odd and m even.

For each vector bundle & over C we write & = Hom(E,O¢) for
the dual vector bundle. Since for n even Oc¢(n)Y is a vector bundle of
rank 1 and degree —n, we have Oc¢(n)Y =~ Oc¢(—n) for n even. Similarly,
Zc(2n)Y ~ Te(—2n) for n odd (see Corollary A.22).

2.2. A-module bundles. Let A be a central simple algebra over F, and let &
be a vector bundle over C . A structure of right (resp. left) A-module bundle on £
is defined by a fixed F -algebra homomorphism A°° — End £ (resp. A — End¢&).
Morphisms of A-module bundles are morphisms of vector bundles that preserve
the action of A, hence for every A-module bundle £ the F -algebra Endyg &
of A-module bundle endomorphisms is a subalgebra of the finite-dimensional
F -algebra End & of vector bundle endomorphisms. Therefore dimp Endy € is
finite, and by the same argument as for vector bundles we have a Krull-Schmidt
theorem for A-module bundles: every A-module bundle over C decomposes
into a direct sum of indecomposable A-module bundles, and this decomposition
is unique up to isomorphism. In this subsection, we obtain information on the
indecomposable A-module bundles. We discuss only right A-module bundles;
the case of left A-module bundles is similar.

For every vector bundle £ over C and every right A-module M of finite
type, the tensor product over F yields a right A-module bundle £ ® r M with

(2.4) End(€ ®F M) = (End &) ®  (Endy M).
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Proposition 2.1. Let € be a right A-module bundle over C, and let EY be the
vector bundle over C obtained from & by forgetting the A-module structure.
Then £ is a direct summand of £ ®F A.

Proof. Recall from [KMRT, (3.5)] that A ® r A contains a “Goldman element”
g =Y a; ® b; characterized by the following property, where Trd4 denotes the
reduced trace of A:

Y ajxb; =Trds(x)  for all x € 4.

The element g satisfies (¢ ® 1)-g = g- (1 ® a) for all a € A; see [KMRT,
(3.0)]. Let u € A be such that Trdg(u) = 1, hence > a;ub; = 1. Since u ® 1
commutes with 1 ® a for all a € A, the element

g=g w®l)=>) aqu®b,
also satisfies (¢ ® 1)-g" =g’ - (1 ® a), hence
(2.5) Y aaqu®b =Y au®ba  forall acA,

Let R be an arbitrary commutative F -algebra, and let Q be a right R ®F A-
module. Let also Q" be the R-module obtained from Q by forgetting the
A-module structure. Because of (2.5), the map O — Q! ®f A defined by
X Y (xaju) ® b; is an R ® p A-module homomorphism. Since Y a;ub; =1,
this homomorphism is injective and split by the multiplication map Q'®rA — Q.
This applies in particular to the module of sections of £ over any affine open
set in C and to the stalk of £ at any point of C, and shows that £ is a direct
summand of £'@p A. L]

Corollary 2.2. If £ is an indecomposable A-module bundle, then all the
indecomposable vector bundle summands in E' are isomorphic.

Proof. Let ' =7, @---® T, be the decomposition of £' into indecomposable
vector bundles. Then £'® A = (Z; ® A) @ --- ® (Z, ® A) is a decomposition of
E"® A into A-module bundles. Since £ is an indecomposable direct summand
of 8 ® A, it must be isomorphic to a direct summand of one of the Z; ® A.
But (Z; ® A)f ~ Iied, where d = dim A, hence &' ~ Ime for some m. O

If all the indecomposable direct summands in £ are isomorphic to Z, we say
the indecomposable A-module bundle £ is of type Z. Given the classification of
indecomposable vector bundles over C in §2.1, we may consider indecomposable
A-module bundles of type Oc(n) for all even n, and of type Z¢(2n) for all
odd n. They are the indecomposable A-module bundles in the decomposition of
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Oc(n) ®r A and Z¢c(2n) ® p A respectively. Since A is a direct sum of simple
A-modules, they also are the indecomposable summands in O¢(n) ® p M and
TZc(2n) @ M for any simple A-module M .

Proposition 2.3. Let M be a simple A-module.
(i) For n even, Oc(n) @ M is the unique indecomposable A-module bundle
of type Oc(n) up to isomorphism.
(ii) For n odd, there is a unique indecomposable A-module bundle &£ of type
Zc(2n) up to isomorphism. This A-module bundle satisfies
2ind(A)

Te(2n) @p M ~ £9¢ where { = —————~
c(2n) ®F nd(0 @7 A)

Note that ind(Q ® r A) may take the value 2ind(A4), ind(A4) or %ind(A),
hence £ =1, 2 or 4.

Proof. (i) By (2.4) we have
End4(Oc(n) @ M) = (End Oc¢ (n)) ®r (Endgy M) = Endg M.

Since M is simple, End4 M is a division algebra, hence Oc(n) ® p M is
indecomposable.

(ii) By (2.4) and (2.1) we have
Ends(Zc (2n) ® r M) = (EndZ¢ (2n)) ® r (Endg M) >~ Q ® p (Endg M).

This algebra is simple; it is isomorphic to My(D) for D a division algebra,
hence Z¢(2n) ® p M decomposes into a direct sum of ¢ isomorphic A-module
bundles. u

2.3. Quadratic and Hermitian forms. We keep the same notation as in the
preceding subsections, and assume A carries an F -linear involution o (i.e., an
involution of the first kind). For every right A-module bundle £ over C, we
define the dual bundle

E* =Homo-04(E,Oc ®F A).

The bundle £* has a natural structure of left A-module bundle. Twisting the
action of A by o, we may also consider the right A-module bundle ?£*, and
define the vector bundle

B(E)="£" B4 E".

As in §1, there is a switch map sw: B(£) — B(£). The kernel and cokernel of
Id &= sw define vector bundles over C. For § = &1, we let
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Hs(E) = ker(Id —6 sw).
Letting ¢ = 1 if o is orthogonal and ¢ = —1 if ¢ is symplectic, we also define

Q(&) = coker(Id —e sw).

Definition 2.4. A sesquilinear form on the right A-module bundle £ is a global
section of B(£). Likewise, a §-hermitian form (resp. a quadratic form) on £ is
a global section of Hg(E) (resp. Q(£)). We write

B(&) =T (B(&). Hs(€)=T(Hs(£))., Q&) =T(Q®))

for the F-vector spaces of sesquilinear, §-hermitian, and quadratic forms
respectively.

Proposition 2.5. (i) If € is an indecomposable A-module bundle of type Oc¢ (n)
with n even, n > 0, or of type Zc(2n) with n odd, n > 0, then for § = £1

B(&) = Hs(&) = (&) ={0}.
(i) If £E=0c(0)®F M for some right A-module M, then for § = +1
B(&) = B(M), Hs(&) = Hs (M), Q&) = O(M).

Proof. (i) It suffices to prove B(E) = {0}. If £ >~ Oc(n) ®F M for some simple
A-module M, then £* ~ Oc(n)Y ® p M™*, hence

B(E) ~ Oc(n)” @r Oc(n)” @F “M* @4 M™ =~ Oc(—2n) ®F B(M).

Since T'(O¢(—2n)) = {0} for n >0 (see (A.10)), it follows that B(E) = {0}.
If £ is of type Z¢(2n) with n odd, then by Proposition 2.3 we have

Tc(2n) @ M ~ E®¢  with £ =1, 2 or 4,

hence
B(Zc(2n) ®@F M) ~ B(£)®%.

Therefore, it suffices to prove B(Zc(2n) ® p M) = {0} for n odd, n > 0. As in
the previous case we have

B(Ic(zn) RF M) o~ IC(Zn)V XRF Ic(zl’l)v KRF TM* XA M*
~ Tc(—2n) ®F Lc(—2n) ®F B(M).

By (2.2) it follows that

B(Zc(2n) @ M) ~ Oc(—2n)%* @ B(M).
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Since F(OC (—Zn)) = {0} for n > 0 (see (A.10)), case (i) of the proposition is
proved.

(i) For € = Oc(0) ® r M we have
B(E) = 0c(0)Y ® Oc(0) ®F “M* ®4 M* = Oc(0) @ B(M).

Since T'(O¢(0)) = F, it follows that B(£) = B(M), hence also Hs() = Hs(M)
and Q&) =0(M). O

The property in (ii) is expressed by saying that sesquilinear, hermitian, and
quadratic forms on O¢(0) ® M are extended from A.

We define the degree of an A-module bundle £ as the degree of the underlying
vector bundle &Y.

Theorem 2.6. Let & be a right A-module bundle with deg& = 0. If € carries
a hermitian or quadratic form that is anisotropic on the generic fiber then
E=0c(0)® N for some right A-module N .

Proof. Consider the decomposition of £ into a direct sum of indecomposable
A-module bundles. If any of the direct summand is of type Oc¢(n) or Z¢(2n)
with n > 0, then Proposition 2.5(i) shows that the restriction of any hermitian
or quadratic form on £ to this summand must be 0. Therefore, if £ carries an
anisotropic hermitian or quadratic form, then all the summands must be of type
Oc(n) with n <0 or Z¢(2n) with n < 0. But the degree of the indecomposable
A-module bundles of type Oc¢(n) or Zc(2n) with n < 0 is strictly negative.
Since deg & = 0, all the summands are of type O¢(0), hence by Proposition 2.3(i)
they are isomorphic to O¢c(0) ® r M for M a simple right A-module. Therefore,

E=(Oc()@M)® - ®(Oc(0) ® My) = Oc(0) @ (M @ -+ & Mp).

O

Corollary 2.7. If a right A-module bundle £ with degEé = 0 carries an
anisotropic hermitian or quadratic form, then this form is extended from A.

Proof. 'This readily follows from Proposition 2.5(ii) and Theorem 2.6. U]

We complete this section by discussing one case where the condition deg& = 0
is necessarily satisfied.

As for modules (see (1.2)), each §-hermitian form 4 € Hg(E) on a right
A-module bundle £ yields a morphism of A-module bundles

h:E I8
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Definition 2.8. The hermitian form & on & is said to be nonsingular if the
morphism /4 is an isomorphism.

Proposition 2.9. If a right A-module bundle £ carries a nonsingular & -hermitian
form, then deg& = 0.

Proof. We claim that deg?&* = —deg&; therefore degf =0 when £ ~?&*. It
suffices to prove the claim for £ an indecomposable A-module bundle, or indeed
by Proposition 2.3, for £ of the form Oc¢c(n)®r M with n even or Zc 2n)®@r M
with n odd. We have

“(Ocn)®F M) = Oc(n)” ®F "M* = Oc(—n) ®F *M*

and
“(Zc(2n) ®F M)* = Ic(2n)v QFM* ~ TIc(—2n) ®F TM*.

The claim follows. ]

3. Excellence

We use the same notation as in the preceding sections, and let L denote the
function field of the smooth projective conic C over the arbitrary field F. In this
section, we prove that L is excellent for quadratic forms and hermitian forms on
right A-modules.

3.1. Hermitian forms. Let § = 41, and let & be a §-hermitian form on a
finitely generated right A-module M . Extending scalars to L, we obtain a
central simple L-algebra A;, = L ®F A, a right Ay -module M; = L ®fr M,
and a §-hermitian form /iy on My . Scalar extension also yields the right A4-
module bundle M¢ = Oc(0) ® 7 M over C, with the §-hermitian form h¢
extended from #.

For any Ay -submodule N € M, we let N denote the intersection of the
constant sheaf N on C with M. This is a vector bundle with stack

Np=Nn(Op & M) at each point P of C.

Following the elementary approach to vector bundles developed in the appendix,
the A-module bundle A is defined as follows: choose a closed point oo = Spec K
on C for some separable quadratic extension K of F, let U = C \ {co}, and
define N = (N, Ny, Noo) where

Noy=NNOQu @Fr M) and No =N N(Ox @ M).
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The orthogonal of Ny in Oy ®fr M for the form extended from /4 is
N+ N (Oy ®F M), and likewise the orthogonal of Ny in Oy ®fF M s
N+ N (Og ®F M), hence the orthogonal N+ of N in Mc is the A-module
bundle

Nt =(NENEN(Op ®F M), Nt N (O ®F M)).

From here on, we assume N C N1, hence N’ C N+ and we may consider the
quotient A-module bundle N-/A/. It carries a §-hermitian form /o obtained by
sublagrangian reduction, see Proposition 1.4.

For the excellence proof, the following result is key:

Proposition 3.1. If h is nonsingular, then the form hy on N+/N is nonsingular.
The proof uses the following lemma:

Lemma 3.2. Let R be an F -algebra that is a Dedekind ring. Every finitely
generated right (R®Q r A)-module that is torsion-free as an R-module is projective.

Proof. Let Q be a finitely generated right (R ® p A)-module, and let Q% be
the R-module obtained from Q by forgetting the A-module structure. Recall
from the proof of Proposition 2.1 that Q is a direct summand of QY®p 4. The
R-module Q! is projective because it is finitely generated and torsion-free, hence
0% ®r A is a projective (R ® p A)-module. The lemma follows. ]

Proof of Proposition 3.1. Assume h is nonsingular. Proposition 1.4 shows that
the form hg is nonsingular on the generic fiber N+/N of N1/N. We show
that it is nonsingular on the stalk at each closed point of C.

Fix some closed point P of C,and let Mp = Op®FrM and Ap = OpRrA.
The right Ap-module Mp/Np is finitely generated and torsion-free as an Op -
module, hence it is projective by Lemma 3.2, and the following exact sequence
splits:

0—Np > Mp—> Mp/Np —0.

Lemma 3.2 also applies to show Nz /Np and Mp/Np are projective Ap-
modules. On the other hand, the map hp= d®h : Mp — T M} is bijective
because & is nonsingular. Substituting Mp for M and Np for N in the proof
of Proposition 1.4, we see that the arguments in that proof establish that the
induced map Ny /Np — 7(Np/Np)* is bijective. O

The excellence of L for hermitian forms readily follows:

Theorem 3.3. Let h be a nonsingular §-hermitian form (§ = £1) on a finitely
generated right A-module. The anisotropic kernel of hy is extended from A.
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Proof. We apply the discussion above with N C M; a maximal sublagrangian.
The induced §-hermitian form /sy on N+/N is anisotropic by Proposition 1.4,
and it is the generic fiber of a nonsingular §-hermitian form on the A-module
bundle Nt /N by Proposition 3.1. Proposition 2.9 yields deg(N+/N) = 0, hence
Corollary 2.7 shows that /o is extended from A. ]

3.2. Quadratic forms. We use the same notation as in §3.1: M is a finitely
generated right A-module and M¢c = O¢c(0)®f M is the right A-module bundle
obtained from M by scalar extension, with generic fiber My . We now consider
a nonsingular quadratic form ¢ on M, and the extended quadratic form g¢c¢
on Mc, with generic fiber gqr. Let N C Mp be a maximal totally isotropic
subspace for ¢; . This subspace is totally isotropic (but maybe not a maximal
sublagrangian) for the hermitianized form B(gr), hence it lies in its orthogonal
N+ for B(qr). By Proposition 1.5, g, induces a nonsingular quadratic form ¢
on Nt/N, which is the anisotropic kernel of g . To prove that L is excellent,
we need to show that g is extended from A.

The proof follows the same pattern as for Theorem 3.3. We consider the
A-module bundles N, N+, and N1/N as in §3.1. As observed in the proof
of Proposition 3.1, for each closed point P of C the Ap-modules Mp/Np,
Mp [Nz, and Nﬁ'//\/‘p are projective. Substituting Mp for M and Np for
N in the proof of Proposition 1.5, we see that the form g¢o is the generic fiber
of a nonsingular quadratic form on Nz /Np. We have deg(N1t/N) = 0 by
Proposition 2.9, and since ¢, is anisotropic on N1/N it is extended from A by
Corollary 2.7. We have thus proved:

Theorem 3.4. Let q be a nonsingular quadratic form on a finitely generated
right A-module. The anisotropic kernel of qr is extended from A.

Appendix: Vector bundles over conics

We give in this appendix an elementary proof of the classification of vector
bundles over conics used in §2. The elementary character of our approach is
based on the representation of vector bundles over conics or over the projective
line as triples consisting of the generic fiber, the module of sections over an affine
open set, and the stalks at the complement, which consists in one or two closed
points; see §A.2 and §A.3.

A.l. Matrices. Let K be an arbitrary field and let ¥ be an indeterminate on
K. Let wy and we be respectively the u-adic and the u~!-adic valuations on
the field K(u) (with value group Z). Consider the following subrings of K(u):
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Oy = K[u,u™'], Os = {x € K(u) | wo(x) >0 and weo(x) > 0}.

The following theorem is equivalent to Grothendieck’s classification of vector
bundles over the projective line [Gro], as we will see in §A.2. (See [HM]
for an elementary proof of another statement on matrices that is equivalent to
Grothendieck’s theorem.)

Theorem A.l. For every matrix g € GL, (K(u)) there exist matrices p € GL,(Og)
and q € GL,(Oy) such that

pgq = diag((u - l)k‘,...,(u - l)k") for some kyi, ..., k, € Z.

Proof. 'The case n =1 is easy: using unique factorization in K[u], we may factor
every element in K(u)* as g = p-(u— 1)¥-u® where wo(p) = weo(p) = 0,
hence p € OF. The rest of the proof is by induction on n. In view of the n =1
case, it suffices to show that we may find p € GL,(Og), ¢ € GL,(Oy) such
that p-g-q is diagonal. Since Oy is a principal ideal domain, we may find a
matrix ¢; € GL,(Oy) such that

a 0 .« 0

891 =
81
*

where a; is the gcd of the entries in the first row of g. By induction, we may
assume the theorem holds for g; and thus find p, € GL,(Os), ¢» € GL,(Oy)
such that

ag 0 0 --- 0

bz an 0 0

pagqiga = | b3 0 az -0

b, 0 0 - a,
for some a,, ..., a, € K(u)* and some by, ..., b, € K(u). To complete the
proof, it now suffices to apply (n — 1) times the following lemma: O

Lemma A.2. Let a, b, ¢ € K(u) with a, ¢ # 0. There exists p € GL,(Og),
q € GL,(Oy) such that the matrix

-aO.
rel, )4

is diagonal.
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The proof uses the following approximation property:

Proposition A.3. For every [ € K(u)*, there exists A € Oy such that
wo(f —A) >0 and weo(f —A) > 0.

Proof. We first show, by descending induction on wg(f), that there exists
Ao € Oy such that wo(f — Ag) = 0: if we(f) = 0 we may take Ao = 0.
Otherwise, let f = ab™'u® where a, b € F[u] are not divisible by u. For
w=a(0)b(0) 'u* € Oy we have

wo(f —p) >a =wo(f),

hence induction yields po € Oy such that wo((f — p) — o) > 0, and we may
take Ag = n+ po.
Fix Ao € Op such that wo(f —A0) = 0. If weo(f — Ag) > 0 we are done.

Otherwise, let
a,u™ +---+ay

— o s

S A= ¥ b
with a,, ..., ag, by, ..., bo € K, ay, by, # 0, so that wee(f —Ag) =m—n <0.
Let w1 = apb,'u"™ € F[u]. We have

Woo((f —A0) — 1) > m —n = woo(f — Ap).
Again, arguing by induction on we(f — Ao), we may find p, € Flu] such that

Woo((f — Ao) — p12) > 0.

Note that wg(p2) > 0 since o € Flu]. Therefore,

wo((f — o) — p2) = min(wo(f — Ao), wo(u2)) = 0,

so we may choose A = Ag + 3. O

Proof of Lemma A.2. For f € K(u)*, let w(f) = wo(f) + weo(f). Note that
w is not a valuation, but it is multiplicative and w(u) = 0. We shall argue by
induction on w(a) —w(c) € Z; but first note that by multiplying (£ ) on the
right by (§,%) for o = we(a) — we(c), we may assume wo(a) = wo(c). By

Proposition A.3, there exists A € Oy such that
wobc™' —1) >0  and  weo(bc™!—1) > 0.

We then have wo(b—Ac) > wo(c) = wo(a) and weo(h—Ac) > W (). Multiplying
(49) on the right by (1, 9) yields

()6 )
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Thus, we may substitute b — Ac for b and thus assume
(A.D) wo(b) = wo(c) =wo(a)  and  Woo(h) > Woo(c).

If Weo(h) > weo(a), then a~'h € Og and the lemma follows from the equation

1 0 a 0 a 0
i) (—a“lb 1).(19 c) B (0 c)'

We now start our induction on w(a) — w(c). If w(a) —w(c) < 0, then since
wo(a) = wo(c) we have ws(a) < weo(c). By (A.1) it follows that weo(h) >
Weo(a) and we are done by (A.2). If w(a) —w(c) > 0 but we(h) = wela),
we may also conclude by (A.2). For the rest of the proof, we may thus assume
Woo (@) > Weo(b) > weo(c). If wo(h) > wo(a), then in view of the equation

1 0 a 0 _ a 0
11 b ¢c|] \Na+b ¢
we may substitute a + b for b. In that case, we have

wo(a + b) = min(we(a), wo(h)) = wo(a)

and
Weo(a + b) = min(Woo(a), Weo (b)) = weo (D).

Thus, in all cases we may assume
wo(b) = wo(a) = we(c) and Woo (@) > Weo (D) > Weo(C).

Then ab~! € Og. Consider
1 —ab™l fa 0) (0 1) _ —ab™1lc 0
0 1 b ¢ 1 0/ c bl

w(—ab~le) —wb) = w(a) + w(c) —2w(h) = Woo(a) + Woo(€) — 2Wos (h).

We have

Since weo(h) > Weo(c) we have
Woo (@) + Woo(€) — 2Weo () < Weo(a) — Weo(C).

But w(a) — w(c) = wee(@) — Weo(c), hence w(—ab~lc) —w(b) < w(a) — w(c).
By induction, the lemma holds for (=@27'¢ 0} hence also for (§?2). O
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A.2. Vector bundles over ]P’II( . We use the same notation as in §A.l.

Definition A.4. A vector bundle over Py is a triple £ = (E, Ey, Eg) consisting
of a finite-dimensional K(u)-vector space FE, a finitely generated Oy -module
Ey C E, and a finitely generated Og-module Eg C E such that

E = EV ®OV K(u) - ES ®OS K(H).

The rank of £ is tk& = dim E. The intersection Ey N Eg is a K -vector space,
which is called the space of global sections of £. We use the notation

['(€) = Ey N Eg.

Since Oy and Og are principal ideal domains, the Oy - and Og-modules Ey
and Eg are free. Their rank is the rank n of £. Let (¢;)7_, (resp. (fi)!_,) be
a base of the Op-module Ey (resp. the Og-module Eg). Each of these bases
is a K(u)-base of E., hence we may find a matrix g = (g,-j);.fj.=1 € GL, (K(u))

such that
n

(A.3) ej:nggij for j =1, ..., n.
i=1

The degree deg& is defined as
deg& = wp(detg) + weo(detg) € Z.

To see that this integer does not depend on the choice of bases, observe that a
change of bases substitutes for the matrix g a matrix g’ of the form g’ = pgg for
some p € GL,(Os) and ¢ € GL,(Oy). We have det p € Og, hence wo(det p) =
Woo(det p) = 0. Likewise, detg € 0% = K*®u?, so wy(detg) + woo(detg) = 0,
and it follows that wq(det g2) + weo(det g) = wo(detg’) + woo(det g7).

A morphism of vector bundles (E,Ey,Es) — (E', E},.Eg) over ]P’Il< is a
K(u)-linear map ¢: E — E’ such that ¢(Ey) C E|, and ¢(Eg) C E.

Example A.5. Vector bundles of rank 1. Since Oy and Og are principal
ideal domains, every vector bundle of rank 1 is isomorphic to a triple & =
(K(u), fOy,g0g) for some f, g € K(u)*. Using unique factorization in K[u]
we may find p € OF, k, « € Z such that fg~' = p-(u—1)*-u®. Multiplication by
g 'p7Yu—1)"% is a K(u)-linear map ¢: K(u) — K(u) such that ¢(f) = u®
and ¢(g) = p~'(u— 1), Since u € OF, it follows that ¢(fOy) = Oy.
Likewise, since p € OF, we have ¢(g0s) = (u — 1)"%Og . Therefore, ¢ defines
an isomorphism & rd (K(u),Oy,(u—1)"*O0g). For n € Z, we write

Op). (1) = (K(u), Oy, (1 — 1)" Os).
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If g € K(u)* satisfies wo(g) + Weo(g) = —n, then g- (u — 1)y~ € OF,
hence the arguments above yield

(A4)  (Ku),Or,g0s) ~ (Ku), Oy, (u —1)"Os) = Op1 (—wo(g) — Weo(g))-

By definition of the degree,
deg (’)P}((n) = wo((u — 1)_”) + woo((u — 1)"”) = 1.

The vector space of global sections of Op L (n) is easily determined: by definition,
we have

F(OP}((H)) =0y Nu-—1)"Og
=1/ € Oy | wo(f) = wol(u —1)"), Woolf) = Woo((u — 1)")}.

Since wo(u —1) =0 and we(u — 1) = —1, we have

L(Op1 (m) = {f € K[u] | deg f = n},

hence
0 if n <0,

dimF(O]P,}((n)) a {1 +n ifn>0.

Theorem A.6 (Grothendieck). For every vector bundle & on PL, there exist
integers ki, ..., k, € Z such that

&= OP}((kl) G---D O]p}((kn)-

Proof. Let £ = (E,Ey, Eg) be of rank n. Let (e;)7_, (resp. (fi)7_,) be a base
of the Oy -module Ey (resp. the Og-module Eg), and let g = (gij)?’j=1 €
GL,(K(u)) be the change of base matrix as in (A.3). Slightly abusing the matrix
notation, for (A.3) we write simply

(A.5) (e1,---.en) = (f1,..., fn) - &
Theorem A.l yields matrices p € GL,(Os) and g € GL,(Oy) such that
(A6) pgg=diag((u—1)" ,...,w—1"F)  for some ki, ..., kn € Z.

Define f{, ..., f, and e, ..., e, by the equations

n

flovoin )= (Faeeo i fo) - p~ and (€f.....ef) = (er....en) 4.

Because p € GL,(Og), the sequence (f)’_, is a base of Eg. Likewise, (e])7_,
is a base of Ey, and from (A.5) and (A.6) we derive
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(e;, s ,6’;) — (-](‘1,7 ’fn,) dlag((u — ])_kl’ . .’(u = 1)_kn)_
Thus,

n n .
E:@el/‘K(L{), EV:®6;OV7 ES:@Q;(M—I)MOS.
i=1 i=1 i=1

These equations mean that the map E — K(u)®" that carries each vector to the
n-tuple of its coordinates in the base (e;)?_, defines an isomorphism of vector
bundles

£ Opy (k1) @ @ Opy (kn).
[

Corollary A.7. For every vector bundle £ on Py, the K -vector space of global
sections '(E) is finite-dimensional. More precisely, if & =~ OP}((kl) e B
Opk(kn) for some ky, ..., k, € Z, then

n n
dim[(€) = Y max(1+k;,0) and degé =Y ki

i=1 i=1

Proof. If € = & ® &, then T'(§) = T'(&) @ I'(&;) and degé = degé +
deg & . Since each F(OP}( (n)) is finite-dimensional and deg Op L (n) = n (see
Example A.5), the corollary follows. ]

From the formula for dimI'(£), it is easily seen by tensoring & with
OP}( (k) for various k € Z that the integers ki, ..., k, such that & =~
OP}( (k1)) ®--- @ Op L (k,) are uniquely determined up to permutation.

A.3. Vector bundles over conics. Let L be the function field of a smooth
projective conic C over a field F. Assume C has no rational point over F, and
let co be a point of degree 2 on C with residue field K separable over F. Let
Voo be the corresponding discrete valuation on L and O be its valuation ring.
Let also Oy C L be the affine ring of C \ {oc}, which is the intersection of all
the valuation rings of the F -valuations on L other than v .

Let Cx = C x Spec K be the conic over K obtained by base change, and let
f: Cx — C be the projection. Since Cg has a rational point, we have Cg =~ ]P’}c,
i.e., the composite field KL is a purely transcendental extension of K. We may
find u € KL such that KL = K(u) and the two valuations of K(u) extending
Voo are wo and Wee, the u-adic and u~!-adic valuations of K(u). Thus, using
the notation of §A.2,

Oy @r K=0py and Oy ®r K = Og.
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Remark A.8. A concrete description of the rings defined above can be obtained by
representing C as the Severi—Brauer variety of a quaternion division algebra Q.
Write V for the 3-dimensional subspace of trace 0 quaternions. Then g(v) := v?
is a quadratic form on V and the conic C is the quadric in the projective
plane P (V) given by the equation ¢ = 0. Every closed point of degree 2 on
C is determined by an equation ¢ = 0 for some nonzero linear form ¢ € V*.
If (r,s) is a base of ker¢ C V, then the equation (xr + ys)?> = 0 has the
solution x = —¢g(s), y =rs in F(rs), hence F(rs) is the residue field of the
corresponding point. Let oo be the closed point on C determined by a linear form
¢ such that F(rs) is a separable quadratic extension of F. Let also r € V' be a
nonzero vector orthogonal to kerg for the polar form b, of ¢. If ¢ € ker¢, then
bg(t,t) =0, hence char F = 2. Moreover, ¢ is a linear combination of r and s,
and the equations b, (t,r) = by(t,s) = 0 yield by (r,s) = 0. This is a contradiction
because then the minimal polynomial of rs, which is X2 —by(r,s)X +q(r)q(s),
is not separable. Therefore, in all cases the choice of co guarantees that (r,s,1)
is a base of V. Let (x,y,z) be the dual base of V*. Then the conic C is given
by the equation
(xr + ys + zt)? =0,

and oo is the point determined by the equation z = 0. Because ¢ is orthogonal
to r and s, the equation of the conic simplifies to

(xr + ys)?2 4+ 2212 = 0.
Let U = C \ {co}; then
Ov=F|=,2]cF(Z.2)=L.
4 z z
The equation of the conic shows that % is a root of a quadratic equation over F(%),
hence every element in L has a unique expression of the form f(Z) + Zg(3)

for some rational functions f, g with coefficients in F. If vy is the discrete
valuation of the local ring Oy, then

()= e(2) =1

More precisely, for f, g, h polynomials in one variable over F, with & # 0,

JE) -+ Egls)
Wik
h(3)
We claim that we may take for u the element Zrs + Zq(s). To see this, let ¢

denote the nontrivial L-automorphism of KL. For u = Zrs + Zq(s) we have
t(u) = Zsr + £q(s), and from the equation of the conic it follows that

(A7) u.t(u) = %(;2(}51‘ + ys5)? = —q(s)q(t) € F*.

) = degh — max(deg f, 1 + degg).
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This equation shows that for every valuation w of KL extending v, we have
w(u) = —w(t(u)). Moreover, from u = Zrs + Zg(s) and u —t(u) = Z(rs —sr)

it follows that
w(u) > mjn(voo(;), Uoo(%)) = —1

—1= vw(g) > min(w(u), w(t(w))).

and

Therefore, either w(u) = —w(1(w)) = 1,ie., w = wp, or w(u) = —w((u)) = -1,
ie, W= Wu-

The following result is folklore. (For proofs in characteristic different from 2,
see Pfister [Pfi, Prop. 1] and the references on [Pfi, p. 260]. Our arguments below
are close to those in Milgram—Ranicki [MR, Lemma 6.7].)

Lemma A.9. The ring Oy is a principal ideal domain.

Proof. Let I C Oy be an ideal. Since Oy = K[u,u"'] is a principal ideal
domain, we may find f € Op such that 1 ® K = fOyp. As I ®fr K is
preserved by ¢, we have fOy = «(f)Oy, hence «(f)f~' € O = K* ® ut.
Let a € K* and « € Z be such that

(A.8) (ANt = au®.
Since Ngp/r((f)f~') =1, it follows by (A.7) that
Ngr/r(au®) = Ngsp(a)(—gq(s)g(0))" = 1.

If o is odd, let « =28 —1 and a(—q(s)q(r))ﬁ =bh+crs with b, ¢ € F. Then
Ng/r(b+crs) = —q(s)q(t), hence

(cr + bg(s) 's)2 +¢2 =0.

Thus, the conic C has an F -rational point, a contradiction. Therefore, « is even.
Let « = 2B. Then from (A.7) and (A.8) we have

L@ £) - P )7 = a(—q()q(0)’ € K7

By Hilbert’s Theorem 90, we may find b € K* such that a(—q(s)q(r))ﬁ =
bu(h)~'. Then
L(buf £y =bub f e L.

Since buf e Oy, we have fOy = buf fOy, hence I = huf fOy . O
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Definition A.10. A vector bundle over C is a triple £ = (E, Ey, Ex) consisting
of a finite-dimensional L-vector space FE., a finitely generated Oy -module
Ey C E, and a finitely generated Oy -module E, C E such that

E=Ey®oy L=FEx®o. L.

The rank of £ is rk& = dim E . The intersection Ey N Eo is an F -vector space
called the space of global sections of £. We write

T(€) = Ey N Eq.

The degree of a vector bundle over C is defined as for vector bundles over P} :
Since Oy and O are principal ideal domains, the Oy - and O -modules Ey
and E. are free of rank rk&. Let (e;)7_, (resp. (fi)!_,) be a base of the
Oy -module Ey (resp. the Oy -module Eo ). Each of these bases is an L -base
of E, hence we may find a matrix g = (gl-j)?’j:1 € GL,,(L) such that

n
(A9) ej:Zfigij fOI‘jZI,...,n.
i=1

The degree degé& is defined as
deg & = 2uoo(detg) € Z.

To see that this integer does not depend on the choice of bases, observe that a
change of bases substitutes for the matrix g a matrix g’ of the form g’ = pgq
for some p € GL,(Ox) and ¢ € GL,(Oy). We have detp € OF, hence
Voo(det p) = 0. Likewise, detq € O}, hence v(detq) = 0 for every F -valuation
v of L other than ve,. Since the degree of every principal divisor is zero, it
follows that we also have ve(detg) = 0. Therefore, v (detg) = voo(detg’).

A morphism of vector bundles (E, Ey, Ex) — (E', Ey;. EL,) over C is an
L-linear map ¢: E — E’ such that ¢(Ey) C E; and ¢(Ew) C EL,. When
¢: E — E' is an inclusion map, the vector bundle £ = (E, Ey, Ex) is said
to be a subbundle of & = (E',Ey, E.). If moreover Ey = E N Ey and
Eew = E N EL,, then the triple (E'/E,E[/Evy.EL/Ec) is a vector bundle,
which we call the quotient bundle and denote by £'/£. In particular, for every
morphism ¢: &€ — £ we may consider a subbundle kergp of £ and, provided
that ¢(Ey) = ¢(E) N E, and ¢(Ex) = ¢(E) N E/,, a vector bundle cokerg,
which is a quotient of &’.

Example A.11. Vector bundles of rank 1. We use the representation of the conic
C in Remark A.8. The same arguments as in Example A.5 show that every vector
bundle of rank 1 over C is isomorphic to a triple (L,Oy.(3)"Os) for some
n € Z. The degree of this vector bundle is 2n; therefore we write

Oc(2n) = (L, Oy, (%)”Om).



Excellence of function fields of conics 447
Note that for any ¢ € L™ we have as in (A.4)

(L,0v,80c) = Oc(—2v0(g)).

For the vector space of global sections we have

[(Oc(2n)) = {f € Ov | voo(f) = 1}
= {f(§)+ %g(x) |deg f <n, degg En—l}.

z
Therefore,

if n >0,

, 2n +1
(A.10) dimI'(O¢ (2n)) =
0 if n <0.

We may extend scalars of every vector bundle over C to get a vector bundle
over IP’}C: for any vector bundle £ = (E, Ey, Ex) over C, we define

f*E)=(E®F K, Ey ®r K, Exo ®F K).

This f*(&) is a vector bundle over Pz of rank rk /*(£) =1k&. If K = F(a),
every vector in £ ® p K has a unique expression in the form x ® 1 + y ® «
with x, y € E. This vector is in Ey @ K (resp. Es ® p K) if and only if x,
y € Ey (resp. x, y € Ey), hence

(A.11) T(f*(E) =T &F K.

Since every Oy -base of Ey is an Oyp-base of Ey ® p K and every O -base
of Ex is an Og-base of E ®fr K, we can compute the degree of £ and
the degree of f*(£) with the same matrix g € GL,(L) (see (A.9)). We get
deg€& = 2voo(detg) and deg f*(£) = wo(detg) + weo(detg). Because wy and
Weo are the two valuations of K(u) extending v, it follows that

(A.12) deg f*(€) = deg&.

There is a construction in the opposite direction: every vector bundle & =
(E', Ey, ES) over ]P’}f yields a vector bundle f. (") over C by restriction of
scalars, i.e., by viewing E’ as a vector space over L, Ej, as a module over Oy,
and E§ as a module over Ou. Thus, 1k fi(£) = 21k &', and

T(f+(£)) =T(&") (viewed as an F -vector space).

For the next proposition, we let ¢ denote the nontrivial automorphism of
K(u) over L. For every K(u)-vector space E’, we let ‘E’ denote the twisted
K(u)-vector space defined by
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'‘E'={'x|x e E}
with the operations
xt+'y="(x+y) and  (x)A="(x(d)

for x, y € E' and A € K(u). For every Oy -module Ej, and every Og-module
E, the twisted modules ‘Ej, and ‘E§ are defined similarly. We may thus
associate a twisted vector bundle ‘€’ to every vector bundle & over Pj . Note
that ((u) € u™' F* (see (A.7)), hence ¢ interchanges the valuations wg and Wy .
Therefore, wo(t(8)) + Weo(t(8)) = wo(8) + weo (§) for every & € K(u)™. It follows
that deg'€’ = deg&’; in particular, LOP}( (n) =~ OP}{(n) for all n € Z, and
Grothendieck’s theorem (Theorem A.6) yields ‘£ ~ £’ for every vector bundle
g over Pg.

Proposition A.12. (i) For every vector bundle £ over C, we have
fffE)~EDE.
(i) For every vector bundle £ over IP’[1<, we have a canonical isomorphism
f*hREY=E ot
and an isomorphism f* [ (E) =& B E'.

Proof. (i) Let « € K be such that KX = F(x). For every L-vector space FE,
mapping x® 1+ y®« to (x,y) for x, y € E defines an L -linear isomorphism
EQ®r K> E @ E. We thus get an isomorphism f, f*() ~EDE.

(ii) For every K(u)-vector space E’, we identify E’' ® p K with E' ® ‘E’
by mapping x ® A to (xA,(‘x)A). We thus get a canonical isomorphism
[ (&) =& e O

Corollary A.13. For every vector bundle &' over Pg,
deg f+(£') = 2degé&’.
Proof. Proposition A.12(ii) and (A.12) yield

deg fx (&) = deg(&' ® £') = 2deg&’.
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Corollary A.14. For every n € Z we have
i) f*(Oc(2n)) ~ Opy (2n),
(i) f« (OPII{ (2n)) =~ Oc(2n) ® Oc (2n).

Moreover, f (OP,‘{ (2n + 1)) is an indecomposable vector bundle of rank 2 and
degree 4n + 2 over C.

Proof. From the definitions of O¢(2n) and f*, we have
F*(Oc(2n)) = (K(u), Oy, 1" Os).
By (A.4) it follows that
F*(Oc(2n)) ~ Oﬁ,la((—wo(t") — Weo(t")) = (’)P}( (2n).
This proves (i). Moreover, applying f« to each side, we get
fe(Op) 2m)) = fu f*(Oc 2m)).

and (ii) follows from Proposition A.12(i).

By definition, it is clear that f (O]P,}( (2n + 1)) is a vector bundle of rank 2.
Corollary A.13 shows that its degree is 4n + 2, and it only remains to show that
this vector bundle is indecomposable. Any nontrivial decomposition involves two
vector bundles of rank 1, and has therefore the form

f+(Op1 @1 + 1)) = Oc 2m1) @ Oc (2ms)

for some my, my € Z. By applying f* to each side and using (i) and
Proposition A.12(ii), we obtain

OP}{ Cn+1) @ OP}( 2n+1) = OP]1< (2m) & OP}((2m2).

This is a contradiction because the Grothendieck decomposition in Theorem A.6
is unique up to permutation of the summands. O

We write Zc (4n +2) = f (O]P,}( (2n+1)). In the rest of this section, our goal
is to prove that every vector bundle over C decomposes in a unique way in a
direct sum of vector bundles of the form Oc¢(2n) and Zc(4n + 2).

Proposition A.15. For every vector bundle £ over C, the space of global sections
['(E) is finite-dimensional.

Proof. 'This readily follows from (A.11) and Corollary A.7. U
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Corollary A.16. For every vector bundle & over C, the F -algebra End€& is
finite-dimensional. Moreover, the idempotents in End & split: every idempotent
e € End& yields a decomposition £ = Kere @ ime. If £ does not decompose
into a sum of nontrivial vector bundles, then End€& is a local ring (i.e., the
noninvertible elements form an ideal).

Proof. For € = (E,Ey, Ex), we have End€ = I'(End £) where
&End £ = (Endg E, Endp,, Ey, Endp_, Ex)-

Therefore, Proposition A.15 shows that the dimension of End € is finite. This
algebra is therefore right (and left) Artinian. If e € End £ is an idempotent, then
for every vector x € E we have x = (x — e(x)) + e(x), hence

E =kere @ ime, Ey = (Ey Nkere) ® (Ey Nime),
Bios = (Boa 1 kL €) & ( By DN 1i11E):

This shows that e splits. If £ is indecomposable, then End £ has no nontrivial
idempotents. It follows from Lam [Lam, Cor. (19.19)] that End€& is a local
ring. L]

The properties of End& established in Corollary A.16 allow us to use the
general approach to the Krull-Schmidt theorem in Bass [Bas, Ch. I, (3.6)] (see
also Lam [Lam, (19.21)]) to derive the following “Krull-Schmidt” result:

Corollary A.17. Every vector bundle over C decomposes into a sum of inde-
composable vector bundles, and the decomposition is unique up to isomorphism
and the order of summands.

Note that the existence of a decomposition into indecomposable vector bundles
is clear by induction on the rank.

Theorem A.18. Every vector bundle £ over C has a decomposition of the form
E~O0ck1)® - BOcRky)®Zc(4b1+2)B-- D Lc(4ly + 2)

for some ky, ..., kr, €1, ..., €y € Z. The sequences (k, ..., ky) and (L1, ..., 4y)
are uniquely determined by & up to permutation of the entries.

Proof. In view of Corollary A.17, it only remains to show that the vector bundles
Oc(2k) and Zc(4€ + 2) are the only indecomposable vector bundles over C
up to isomorphism. Suppose & is an indecomposable vector bundle over C.
Grothendieck’s theorem (Theorem A.6) yields integers ny, ..., np € Z such that
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FHEy OP}((nl) B D C’)P}((np).
Applying f. to each side, we get by Proposition A.12(i)
ERE~ f*(Op;((”l)) D d f*((’)P}((np)).

If n; is even, then f (OPIL (n1)) >~ Oc(n1) @ O¢(ny) by Corollary A.14, hence
=1 and €& ~ Oc(n;). If ny is odd, then f*((’)]p}( (n1)) is indecomposable by

Corollary A.14, hence we must have & ~ f*((’)n,}( (111)) =Tc(2ny) (and p =2,
and ny = np). O]

Example A.19. The tautological vector bundle. We use the representation of C
in Remark A.8. Let

Qc =0c(0) ®F Q@ = (0L, Qu, O0)

where O = LQr Q, Qu = Ou®F O, Qx = Oxx®F Q. Consider the element

X
e:=—r+Zs+reQL
Z Z

and the 2-dimensional right ideal £ = eQy. We define the bundle 7 =
(E7 EUsEOO) by

Ey=ENQy and Ey, =EN Q.

Lemma A.20. We have
(@) Ey =eQ -0y =erOy & esOy,
(b) Eui= eu‘)?;Q s Do = efr@oo (&) ef;t(’)oo.

Proof. We first note that
(A.13) e%r—l—e%s—l—etzezzo.

Since erOy + esOy C Ey, to prove (a) it suffices to show Ey C eQ -Opy and
eQ CerOy + esOy . We start with the second inclusion.
It follows from (A.13) that

(A.14) et = —e2r—eXs cerOy + esOy.
zZ Z

Write £ :=rs € Q. Note that £ ¢ F and (rF + sF){ = rF + sF. Multiplying
(A.14) by £ on the right, we then get

(A.15) etl = —e=rl —e>st € ertOy + estOy = erOy + esOy.
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Also t€ ¢ V: for if t£ € V then V£ = V, hence { lies in the orthogonal
of V' for the bilinear form Trdo(XY); it follows that ¢ € F, a contradiction.
Therefore, (r,s,t,t€) is a base of Q. The inclusion eQ C erOy + esOy follows
from (A.14) and (A.15).

We next show Ey C eQ-Op . Equations (A.14) and (A.15) show that eQy is
spanned by er and es, hence every element £ € Ey has the form & = erd +esu
for some A, pu € L. We show that the hypothesis & € Qpy implies A, u € Op.
Let — denote the quaternion conjugation. Since £ € Qy, we have £s—s& € Qp .
Computation yields

Es — sE = (ers —sre)d = (trs — srt)A.

By the choice of r we have b, (t,r) = b,y(t,s) = 0, hence ¢ anticommutes with
r and s, and therefore
Es —sE = (rs — sr)tA.

Since rs —sr # 0 and £s —sé € Qp, it follows that A € Op. Therefore,
esu = & —erd € Qu, hence ep € Qp. It follows that u € Oy, because
ep =rZu+ s%u + tpu. The proof of (a) is thus complete.

The proof of (b) is similar. Since e%rOoo —|—e%t(f)oo C E, it suffices to prove
Es € e%Q Oy and eQ C erOy + esOy . We again start with the second
inclusion.

It follows from (A.13) that

(A.16) es :—efr—eit €erOy + etOy.
¥ y
Write m :=rt € Q. Note that m ¢ F and (rF + tF)m = rF + tF . Multiplying

(A.16) by m on the right, we then get

(A.17) esm = —e%rm — e%tm €ermQOg +etimOq = erOg + et O
Also sm ¢ V since Vim # V. Therefore, (r,s,t,sm) is a base of Q. The inclusion
eQ CerOx + esOy follows from (A.16) and (A.17).

[t also follows from (A.16) and (A.17) that eQ; is spanned by e%r and
e%t, hence every element £ € E, has the form & = e%r/\ -+ e%t,u for some A,
i€ L. We show that £ € O implies A, p € Oy. Since ¢ anticommutes with
r and s, we have

£t —t& = (ert —tre)%)t = (sr —rs)th.

Because £7 —t& € Qu, it follows that A € Oy . Then £ — e%rl = e%m € O,
and it follows that p € Ox. O
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It follows from (A.16) that the change of base matrix between the bases
(er,es) and (e%r,e%t) is equal to

Therefore, deg7 = 2ve(3) = —2. Note also that I'(7) = {0} because
EyNEsw = ENQ and Q is a division algebra. Therefore, 7 is indecomposable
because if 7 ~ Oc(2m) & Oc(2p) for some m, p € Z then comparing the
degrees we see that m + p = —1. But then one of m, p must be nonnegative,

and then Oc(2m) or Oc¢(2p) has nonzero global sections. Thus, we must have
T = Tg—2).

Note that Q acts naturally on the bundle 7, i.e., 7 is a Q-module bundle,
so we have a canonical embedding Q° < End 7. In fact, since 7 =~ Z¢(-2)
we have by Corollary A.22 and (2.2)

End(T) >~ T@T" ~Ic(-2) ® Ic(2) ~ Oc(0)®*.
Therefore, dimEnd 7 = 4, hence
End7 ~ Q% ~ Q.
Since Z¢ (2n) = Zc(—2) ® Oc(n + 1) for all odd n (see (2.3)), we also have

(A.18) End(Zc (2n)) ~ Q for all odd n.

A.4. Duality. The dual of a vector bundle £ = (E, Ey, Ex) over C is the
vector bundle

gv = (HOIT]L(E, L), HOI‘I‘I@U (EU, OU), Hom@m(Eoo, Ooo))
Proposition A.21. deg&Y = —deg€.

Proof. Let (e;)!_, be an Oy -base of Ey and (f;)7_; be an O -base of Eu,
and let g = (gij); ;—; € GLn(L) be defined by the equations

n
ej:Zﬁgfj forjzl,...,n-
i=1

So, by definition, deg& = 2us(detg). The dual bases (ef)’_; and (f;")7_,
are bases of Homp,, (Ey,Oy) and Homp (Ex, O) respectively, and they are
related by
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n
e}‘:Zfi*gl’-j for J =15 couq #;
i=1
where the matrix g’ = (gj;)} ;_, is (g")7"'. Therefore, detg’ = (detg)~' and
degEY = —degé. O

Corollary A.22. If £ ~ Oc (2k1)®---®Oc 2k, )DLc (461 +2)B - BT (44, +2)
for some ki, ..., ky, L1, ..., &y € Z, then

EY = O0c(-2k)) ® - ®Oc(-2k;) ®Lc(—41 —2) & - ® Ic (—4lm — 2).

Proof. Oc¢(2k)" is a vector bundle of rank 1 and degree —2k, hence O¢ (2k)Y ~
Oc(—2k). Similarly, Z¢ (4€ +2)V is an indecomposable vector bundle of rank 2
and degree —4¢ — 2, hence Z¢ (40 +2)Y >~ Zc(—4L —2). O
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