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Excellence of function fields of conics

Alexander Merkurjev and Jean-Pierre Tignol

Abstract. For every generalized quadratic form or hermitian form over a division algebra,

the anisotropic kernel of the form obtained by scalar extension to the function field of a

smooth projective conic is defined over the field of constants. Pie proof does not require

any hypothesis on the characteristic.
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One important aspect in the study of quadratic forms over fields is to determine

their behavior under scalar extension. A quadratic form q that is anisotropic
(i.e., without nontrivial zeros) over a field F may become isotropic over a

field extension L of F; the extended form qi then has a Witt decomposition

qL qo J- mH involving an anisotropic quadratic form qo and a certain number

m > 1 of hyperbolic planes, see [EKM, Pi. 8.5]. Pie form q0 is uniquely
determined up to isometry; it is called the anisotropic kernel of qL • Some field
extensions have a useful property, first pointed out by Elman-Lam-Wadsworth

[ELW, §2]: the extension L/F is said to be excellent if for every quadratic form

q over F the anisotropic kernel of qL is defined over F. If F is a number field,

it is shown in [ELW, Pi. 2.13] that every finite extension L/F that contains a

Galois extension of F of even degree is excellent.

Excellent extensions of arbitrary fields are much more scarce. Of course,
extensions over which every anisotropic form remains anisotropic are excellent;
this applies in particular to extensions of odd degree and to purely transcendental

extensions, see [EKM, §29]. At the other extreme, the algebraic closure of a field
is an excellent extension because it carries (up to isometry) a single nonzero

anisotropic quadratic form, which is the 1 -dimensional form x2, defined over
the prime subfield. A more interesting example is given by separable quadratic
extensions, which are excellent in the following strong sense: if q is an anisotropic
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quadratic form over a field F, the anisotropic kernel of the extended form c/l
over a separable quadratic extension L/F is q'L for some subform q' of q, see

[EKM, Cor. 22.12]. By contrast, many types of extensions have been shown to
be non-excellent: see Sivatski [Sivl], [Siv2], [Siv3], [Siv4]. It is therefore quite
remarkable that function fields of smooth projective conics do have the excellence

property (although not in the strong sense). This was first noticed by Arason [Ara],
As it relies on Knebusch's Habilitationschrift [Kne] on symmetric bilinear forms,
Arason's proof requires1 the hypothesis that char F ^ 2.

Three other proofs of the excellence property of function fields of smooth

conics have been published; they are due to Rost [Ros, Corollary], Parimala-
Sridharan-Suresh [CTS, Lemma 3.1], [PSS, Proposition 2.1], and Pfister [Pfi,

Prop. 4]. Pfister's proof is based on the study of quadratic lattices over the ring
of an affine open set of the conic, while Rost's proof uses ingenious manipulations
of quadratic forms that are isotropic over the function field. The proof by Parimala-
Sridharan-Suresh relies, like Arason's, on vector bundles over the conic, but it
uses the Riemann-Roch theorem instead of Grothendieck's classification of vector
bundles over the projective line [Gro]. This idea was also used in an unpublished

proof due to Van Geel [VG],
In all the proofs mentioned above, the characteristic of the base field is assumed

to be different from 2, although Rost's arguments can be modified to cover the

characteristic 2 case, as was shown by Hoffmann-Laghribi [HL, Cor. 5.7], One

remarkable feature of the Parimala-Sridharan-Suresh proof in [PSS] is that it

applies not just to quadratic forms, but also to hermitian forms over division
algebras (of characteristic different from 2).

Our goal in this paper is to prove the excellence of function fields of smooth2

projective conics in arbitrary characteristic for hermitian forms and generalized

quadratic forms over division algebras. Our proof is close in spirit to Arason's

original proof: the idea is to show that the anisotropic kernel of a hermitian or
generalized quadratic form extended to L is the generic fiber of a nondegenerate
hermitian or generalized quadratic form on a vector bundle over the conic. We

then use the classification of these vector bundles to conclude that the anisotropic
kernel is extended from F. Our approach is completely free of any assumption
on the characteristic of the base field. Therefore, the case of generalized quadratic
forms requires a separate, more delicate treatment.

'Arason's proof can readily be extended to symmetric bilinear forms in characteristic 2, but this
case is uninteresting because anisotropic bilinear forms in characteristic 2 remain anisotropic over the
function field of a smooth projective conic by [Lag, Cor. 3.3].

2 In characteristic different from 2, function fields of singular (irreducible) conics are purely
transcendental extensions of a quadratic extension of the base field, hence they are excellent extensions
of the base field. Laghribi communicated to us an example showing that function fields of singular
conics may fail to be excellent for quadratic forms in characteristic 2.



Excellence of function fields of conics 423

To simplify the discussion, we only consider hermitian forms with respect
to involutions on division algebras that leave the center fixed (involutions of the

first kind). This is sufficient to treat generalized quadratic forms, and the reader

should have no difficulty in verifying that slight modifications of our arguments
are sufficient to extend our results to the case of involutions of the second kind.
Another restriction is to quadratic forms that are nonsingular (which means that

their polar form is nonsingular; see the definition in §1.4). Thus, the connected

component of the automorphism groups of the forms we consider are the simple
linear algebraic groups of adjoint type C or D, or of type B if the characteristic is

different from 2. If the characteristic is 2, the automorphism groups of hermitian
forms may be of type C or may not be semisimple, depending on the type of the

involution. Note that simple linear algebraic groups of type B are defined from

quadratic forms over fields, and for these forms the excellence property of function
fields of smooth conics in characteristic 2 is proved in Hoffmann-Laghribi [HL].

The excellence property can also be approached from the viewpoint of linear

algebraic groups: the anisotropic kernel of a semisimple linear algebraic group
is the derived subgroup of the centralizer of a maximal split torus. If G is

the special orthogonal group of a generalized quadratic form q, the anisotropic
kernel of G is the special orthogonal group of the kernel of q. Thus, from
Theorem 3.4 below, it follows that for every simple linear algebraic group G of
type D defined over a field F, the anisotropic kernel of G over the function
field of a smooth conic over F is defined over F. This result actually holds for
all semisimple linear algebraic groups, as was shown by Harder [Har, Satz 3.5].3

Conversely, because the orthogonal group determines the quadratic form up to a

scalar factor, Harder's result for groups of type D yields an alternative way to
derive our Theorem 3.4 from Proposition 3.1.

The paper is organized as follows: In §1 we revisit the notion of quadratic
form as defined by Tits in [Tit]. Our goal is to rephrase Tits's definition in terms

of modules over central simple algebras instead of vector spaces over division
algebras. We thus obtain a notion that is better behaved under scalar extension.

Hermitian forms and generalized quadratic forms on vector bundles over a conic

are discussed in §2, and the proof of the excellence result is given in §3. To

make our exposition as elementary as possible, we thoroughly discuss in an

appendix the classification of vector bundles over smooth projective conics,
using a representation of these bundles as triples consisting of their generic fiber,
their stalk at a closed point oo, and their section over the complement of oo.
Thus, we give an elementary proof of Grothendieck's classification theorem, and

3 We are indebted to Chernousov for pointing out this reference.



424 A. Merkurjev and J.-P. Tignol

correct Arason's misleading statement4 suggesting that vector bundles over a conic

decompose into line bundles.

We use the following notation throughout: for every linear endomorphism r
such that t2 Id, we let

Sym(r) ker(Id —t) and Alt(r) im(Id— r).

Thus, Alt(r) c Sym(—r) always, and Alt(r) Sym(—r) in characteristic different
from 2.

1. Quadratic forms

1.1. The definition. Let A be a central simple algebra over an arbitrary field

F, and let a be an F-linear involution on A, i.e., an F-linear map a: A -> A

such that a2 — Id and a (ab) — a(b)a(a) for all a, b e A. Let M be a finitely
generated right A-module. The dual module M* Hom^(M, A) has a left A-
module structure given by (af)(x) af(x) for a 6 A, / M*, and x 6 M.
Let a M * be the right A-module defined by

°M* {af I / 6 M*}

with the operations

af+ag a(f + g) and °f-a=°(o(a)f)
for a e A and /, g e M*. Identifying af with the map x ct(/(x)), we

may also consider °M* as the A-module of additive maps g: M -+ A such

that g(xa) cr(a)g(x) for x e M and a e A, i.e., aM* is the A-module of
a -semilinear maps from M to A.

Let B(M) be the F-space of sesquilinear forms M x M —» A. Mapping

°f ® g to the sesquilinear form (x,y) i-> o(f(x))g(y) defines a canonical

isomorphism
aM* ®A M* B(M).

Let sw: B(M) B(M) be the F-linear map taking a form b to the form sw(F)
defined by

sw (b)(x,y) a{b(y,x)).

Thus, sw(ff/ ® g) ag <g) / for /, g e M*.

4 "Now the proof of the first sentence of [Kne, Theorem 13.2.2] (and the result of [Gro] which is
cited there) only depends on the projective line being a complete regular irreducible curve of genus
zero" [Ara],
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Definition 1.1. Recall from [KMRT, (2.5)] that the involution a is said to be

orthogonal (resp. symplectic) if its scalar extension to any splitting field of A

is the adjoint involution of a bilinear form that is symmetric and not alternating
(resp. that is alternating). The space of (generalized) quadratic forms on M is

the factor space

Q(M) B(M)/ Alt(esw),

where s 1 if a is orthogonal and e — 1 if a is symplectic. For 8 — ±1,
the space of 5-hermitian forms on M is

HS(M) Sym(Ssw) c B(M).

To relate this definition of quadratic form to the one given by Tits in [Tit],
note that B(M) is a free right module of rank 1 over EndaM, for the scalar

multiplication defined as follows: for b e B(M) and (p e End^ M,

(b <p)(x, y) — b(x, cp(y)) for x, y e M.

The pair (B(M), e sw) is a space of bilinear forms for EndaM in the sense of
[Tit, 2.1]. With this choice of space of bilinear forms, the elements of Q(M) as

defined above are exactly the quadratic forms defined in [Tit, 2.2].
By definition, the vector spaces HE(M) and Q(M) fit into the exact sequence

0 H8(M) -* B(M) Id~£SW) B(M) -> Q(M) -> 0.

Since (Id+ssw) o (Id-esw) 0, there is a canonical "hermitianization" map

ß: Q(M) -»

which associates to each quadratic form q b + Alt(esw) the £-hermitian form

ß(q) b + ssw(è).

Thus, by definition the form ß(q) actually lies in Alt(—£sw) C HE(M).

1.2. Relation with submodules. For every submodule N c M, the following
exact sequence splits:

(1.1) 0 N -» M M/N -> 0.

It yields by duality the split exact sequence

0 -> (M/N)* -> M* -> N* -* 0,

which allows us to identify (M/N)* with the submodule of linear forms in M*
that vanish on N. We thus obtain a canonical split injective map
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B(M/N) °{M/N)* ®A (M/N)* °M* M* B(M)

and a canonical split surjective map

B(M) aM* ®A M* -> aN* ®A N* B(N).

These canonical maps commute with Id —8 sw for 8 ± 1, hence they induce
canonical maps

Hg(M/N) Hg(M), Hg(M) -> Hg(N) for 8 ±1.

and

Q(M/N) —> Q(M), Q(M)^Q(N).

Remark 1.2. For a fixed splitting of the exact sequence (1.1), the corresponding
splittings of the injection B(M/N) -> B(M) and the surjection B(M) B(N)
also commute with Id—esw, hence the map Q(M/N) —> Q(M) is split injective
and Q(M) Q(N) is split surjective.

Proposition 1.3. The canonical embedding B(M/N) B(M) identifies B(M/N)
with the space of sesquilinear forms b 6 B(M) such that b(x,y) b{y,x) — 0

for all x M and y e N.

Proof It is clear from the definition that the sesquilinear forms in the image
of B(M/N) vanish in aM* N* and in aN* M*, hence they satisfy the

stated property.
For the converse, we use the canonical isomorphism

(1.2) aM* ®AM* =WomA{MaM*)

mapping a f®g to the homomorphism x h* af -g(x). This isomorphism identifies
each sesquilinear form b e B{M) with the homomorphism b : M —» °M*
mapping x e M to b(»,x). If b(x,y) b(y,x) 0 for x e M and y e N,
then the image of b lies in a(M/N)* and its kernel contains N. Therefore,
b induces a homomorphism M/N -> a(M/N)*, and b is the image of the

corresponding sesquilinear form in B(M/N).

1.3. Sublagrangian reduction of hermitian forms. Let 8 — ±1. For h e

Hg(M) and N C M any A -submodule, we define the orthogonal NL of N by

N1- — {x e M I h(x, y) — 0 for all y e N}.
The submodule N is said to be a sublagrangian, or a totally isotropic submodule

of M, if N c N1- or, equivalently, if h lies in the kernel of the restriction

map Hg(M) —> Hg(N). The form h is said to be isotropic if M contains a

nonzero sublagrangian. It is said to be nonsingular if the corresponding map
h : M —>CTM* under the isomorphism (1.2) is bijective.
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Proposition 1.4. Let h e Hg(M) and let N c M be a sublagrangian.
There is a unique form ho e Hg^N^/N) that maps under the canonical map
Hg(NJ-/N) Hg(N-1) to the restriction of h to N1-. The form ho is nonsingular

if h is nonsingular; it is anisotropic if N is a maximal sublagrangian.

Proof. The existence of ho readily follows from Proposition 1.3. The form h0 is

unique because the map B(N±/N) -» B(NJ-) is injective.

Now, assume h is nonsingular. Since h carries N1- to a(M/N)*, there is

a commutative diagram with exact rows:

N-
v

'(M/N)*

^ M

f
aM*

M/N1

TN*

The map f is injective by definition of N-1, and h is bijective because h is

nonsingular, hence cp is an isomorphism. By duality, <p yields an isomorphism
a(p*\ M/N -> a(NL)*. Composing (p with the inclusion a(M/N)* C °M* and

a(p* with the canonical map M -» M/N, we obtain maps cp', q>" that fit into
the following diagram with exact rows, where i is the inclusion:

0 ^ N M ^ 0

i f °i*
\ ' \'

0 *• N1- —°M* ^°N* ^0

Since h is bijective, the Snake Lemma yields an isomorphism "(N^/N)*
N^/N. Computation shows that the inverse of this isomorphism, viewed in

B/N^/N), is sw(/z0) Sh0. Therefore, h0 is nonsingular.

If L C N^/N is a sublagrangian for ho, then the inverse image L' C N1- of
L under the canonical map N1- -> N^/N is a sublagrangian for h. Therefore,

h0 is anisotropic if IV is a maximal sublagrangian.

When N is a maximal sublagrangian, the anisotropic 5-hermitian form h0

is called an anisotropic kernel of h. As for quadratic forms (see Proposition 1.6

below), the anisotropic kernel of a <5-hermitian form is uniquely determined up
to isometry.
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1.4. Sublagrangian reduction of quadratic forms. We say that a quadratic form

q e Q(M) is nonsingular if its hermitianized form ß(q) is nonsingular.5 The form

q is said to be isotropic if there exists a nonzero submodule N c M such that

q lies in the kernel of the restriction map Q(M) —» Q(N) ; the submodule N is

then said to be totally isotropic for q. Clearly, every totally isotropic submodule

N for q is also totally isotropic for the hermitianized form ß(q), hence it lies

in its orthogonal N1- for ß(q).

Proposition 1.5. Let q e Q{M) and let N C M be a totally isotropic submodule.

There is a unique form qo e Q(N /N) that maps under the canonical map
QiN^/N) —> QiN1-) to the restriction of q to NL. The form qo is nonsingular

if q is nonsingular; it is anisotropic if N is a maximal totally isotropic submodule.

Proof. Let b e B(M) be a sesquilinear form such that q b + Alt(£sw). Since

N is totally isotropic for q, there is a form c e B(M) such that

(1.3) b(x,y) c{x,y) — eo(c(y,x)) for all x, yeN.
Because N^/N is a projective module, there is a homomorphism k : N1- —> N
that splits the inclusion N N. Define a sesquilinear form b\ e B(NL) by

b\(x, y) b(x, 7t(y)) — c(n(x), n{yf) for x, yeN'1.

For x e N and y e N1, we have

(1.4) b(x,y) -bx{x,y) + eo(bx{y,x)) b(x,y) - b(x,n(y)) + c(tt(x), tt(j))
+ £<j(b{y, n(x)) - c(it(y), tt(x))).

Since n(x) x, (1.3) yields

b(x,7t(y)) c(7t(x),ir(y)) - so(c(7t(y), tt(x))),

hence three terms cancel on the right side of (1.4), and we have

(1.5) b(x,y)-bi(x,y) + Eo(bi(y,x)) b(x,y) + Eo(b{y,x)) ß(q)(x,y) 0.

Similarly, for x e IV and yeN1- we have

b(y,x) —so(b{x,y))

hence (1.5) yields

b(y,x) — b\{y,x) + eo(bx(x,y)) 0.

5 In [Tit], Tits defines non-degenerate quadratic forms by a less stringent condition.
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Therefore, letting b\N± denote the restriction of b to Nx, we may apply

Proposition 1.3 to get a sesquilinear form b0 e BiN^/N) that maps to

b\N± — (Id—esw)(Z>i) in B(NL). Then the quadratic form q0 — bo + Alt(ssw) e

QiN^-fN) maps to q\N± in QÇN-1). Uniqueness of the form q0 is clear since

the map Q(N^~ /N) -» Q(NL) is injective (see Remark 1.2).

Since N is totally isotropic for the hermitianized form ß(q) e HS(M),
Proposition 1.4 yields an e-hermitian form ß(q)0 e H^N^/N) that maps to

ß(q)Ijv-l under the canonical map HS(N-L/N) -> He(N±). Since ß(q)Ijyi.
ß(q\N-L), we have ß(q)0 ß(qo). If q is nonsingular, then by definition ß(q) is

nonsingular. Then ß(q)o is nonsingular by Proposition 1.4, hence qo is nonsingular.

If L c Nl/N is a totally isotropic submodule for q0, then the inverse image
L' c N1- of L under the canonical map N1- —> N±/N is totally isotropic for q.
Therefore, q0 is anisotropic if IV is a maximal totally isotropic submodule.

When IV is a maximal totally isotropic submodule of M, the quadratic form

<7o is called an anisotropic kernel of q. (Compare the definition of anisotropic
kernel of a (5-hermitian form at the end of §1.3.) The following result shows

that, up to isometry, the anisotropic kernel does not depend on the choice of the

maximal totally isotropic submodule:

Proposition 1.6. All the maximal totally isotropic submodules of M (for a given

quadratic form q are isomorphic. If the form is nonsingular; then for any two

isomorphic totally isotropic submodules N, N' c M there is an isometry <p of
(M,q) such that <p(N) N'.

Proof. See Tits [Tit, Prop. 1 and 2],

2. Quadratic forms on A -module bundles over a conic

Throughout this section, C is a smooth projective conic over an arbitrary
field F, which we view as the Severi-Brauer variety of a quaternion F-algebra
Q. We assume C has no rational point, which amounts to saying that 0 is a

division algebra.

2.1. Vector bundles over C. We recall from Roberts [Rob, §2] or Biswas-
Nagaraj [BN]6 the description of vector bundles over C. (See the appendix
for an elementary approach to vector bundles over C.) Let K be a separable

quadratic extension of F that splits Q. Let Ck C x Spec K be the conic over
K obtained by base change, and let / : Ck C be the projection. Since Ck

6 We are grateful to Van Geel for pointing out this reference.
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has a rational point, we have Ck — By a theorem of Grothendieck, every
vector bundle on Ck is a direct sum of vector bundles Op i (n) of rank 1 (see

Theorem A.6). The vector bundle /*(0Pi («)) is isomorphic to Oc(n) © Oc(n)
if n is even; it is an indecomposable vector bundle of rank 2 and degree 2n if
n is odd [Rob, Theorem 1] (see Corollary A.14). Letting

2c(2«) /*(öpi (nj) for n odd,

it follows that every vector bundle over C decomposes in a unique way (up to

isomorphism) as a direct sum of vector bundles of the type Oc(n) with n even
and 2c (2n) with n odd (see Theorem A.18 or [BN, Theorem 4.1]). Moreover,

we have

(2.1) End(2c (2/2)) ~ Q for all odd n.

(See (A.18).) Using the property that /* o/*(£) ~ £ © £ for every vector bundle

£ over C, and that f* o /*(£') ~ £' © £' for every vector bundle £' over

(see Proposition A.12), it is easy to see that

(2.2) 2c (2n) ®2c(2m) ~ Oc(n + m)®4 for all odd n, m, and

(2.3) lc(2n) ® Oc(m) ~ Xc(2{n + m)) for all n odd and m even.

For each vector bundle £ over C we write £w — Hom(£,Oc) for
the dual vector bundle. Since for n even Oc(n)w is a vector bundle of
rank 1 and degree —n, we have Cc(«)v — Oc(—ri) for n even. Similarly,

2c (2;7.)v ~ 2c (—277) for n odd (see Corollary A.22).

2.2. A -module bundles. Let A be a central simple algebra over F, and let £

be a vector bundle over C A structure of right (resp. left) A -module bundle on £

is defined by a fixed F -algebra homomorphism Aop -+ End£ (resp. A End£).
Morphisms of A-module bundles are morphisms of vector bundles that preserve
the action of A, hence for every A -module bundle £ the F -algebra End^ £

of A-module bundle endomorphisms is a subalgebra of the finite-dimensional

F -algebra End£ of vector bundle endomorphisms. Therefore dim^End^f is

finite, and by the same argument as for vector bundles we have a Krull-Schmidt
theorem for A-module bundles: every A-module bundle over C decomposes

into a direct sum of indecomposable A-module bundles, and this decomposition
is unique up to isomorphism. In this subsection, we obtain information on the

indecomposable A-module bundles. We discuss only right A-module bundles;
the case of left A-module bundles is similar.

For every vector bundle £ over C and every right A-module M of finite

type, the tensor product over F yields a right A -module bundle £ ® p M with

(2.4) Enda(£ ®f M) (End£) (End^ M).
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Proposition 2.1. Let £ be a right A-module bundle over C, and let £" be the

vector bundle over C obtained from £ by forgetting the A -module structure.
Then £ is a direct summand of £^ A.

Proof Recall from |KMRT, (3.5)] that A 0^ A contains a "Goldman element"

g ffai 0 bi characterized by the following property, where Trd^ denotes the

reduced trace of A :

The element g satisfies (a 0 1) • g — g (1 0 a) for all a e A; see [KMRT,
(3.6)]. Let u e A be such that Trd^u) 1, hence ffaiubi 1. Since u 0 1

commutes with 1 0 a for all a e A, the element

Let R be an arbitrary commutative F -algebra, and let Q be a right R 0 /• A-
module. Let also 0" be the R -module obtained from Q by forgetting the

A -module structure. Because of (2.5), the map Q —> ^ ^ defined by

x h-> J2(xaiu) ® b{ is an R <s>f A -module homomorphism. Since Jfatubi 1,

this homomorphism is injective and split by the multiplication map A -» Q

This applies in particular to the module of sections of £ over any affine open
set in C and to the stalk of £ at any point of C, and shows that S is a direct
summand of

Corollary 2.2. If £ is an indecomposable A-module bundle, then all the

indecomposable vector bundle summands in £" are isomorphic.

Proof. Let £" 1\ ® • © Ir be the decomposition of f" into indecomposable
vector bundles. Then £" 0 A (1\ 0 A) © • • • © (Ir ® A) is a decomposition of
£^ 0 A into A-module bundles. Since £ is an indecomposable direct summand

of £"04, it must be isomorphic to a direct summand of one of the J; 0 A.
But (1i 0 4)" ~ lfd, where d — dim 4, hence £" ~ I®m for some m.

If all the indecomposable direct summands in £" are isomorphic to I, we say
the indecomposable 4-module bundle £ is of type I. Given the classification of
indecomposable vector bundles over C in §2.1, we may consider indecomposable
4-module bundles of type Oc(n) for all even n, and of type Zc(2n) for all
odd n. They are the indecomposable 4 -module bundles in the decomposition of

^2aixbi — Trd^(x) for all x e A.

also satisfies (a 0 1) • g' g' (1 0 a), hence

(2.5) for all a e 4.
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Oc(n) A and 2c (2«) A respectively. Since A is a direct sum of simple
A-modules, they also are the indecomposable summands in Oc(n) ®f M and

lc{2n) <8>f M for any simple A-module M.

Proposition 2.3. Let M be a simple A-module.

(i) For n even, Oc («) ®f M is the unique indecomposable A -module bundle

of type Oc{n) up to isomorphism.

(ii) For n odd, there is a unique indecomposable A -module bundle £ of type
Xc(2n) up to isomorphism. This A-module bundle satisfies

2ind(A)
Ic (2n) 8>F M ~ £m where I

ind(<2 f)
Note that ind(<2 ®f A) may take the value 2ind(A), ind(d) or 2ind(d),

hence 1 1, 2 or 4.

Proof, (i) By (2.4) we have

End^OcC") 4/) (Endöc(n)) ®f (End^ M) — End/i M.

Since M is simple, Enda M is a division algebra, hence Oc(n) M is

indecomposable.

(ii) By (2.4) and (2.1) we have

End,4(Ic(2n) M) — (EndXc(2;2)) <S>f (End^ M) — Q (8>F (End/i M).

This algebra is simple; it is isomorphic to MfiD) for D a division algebra,
hence lc{2n) <g>f M decomposes into a direct sum of i isomorphic A-module
bundles.

2.3. Quadratic and Hermitian forms. We keep the same notation as in the

preceding subsections, and assume A carries an F-linear involution a (i.e., an

involution of the first kind). For every right A -module bundle £ over C, we
define the dual bundle

£* 7-Lomoc®A(£,Oc A).

The bundle £* has a natural structure of left A-module bundle. Twisting the

action of A by a, we may also consider the right A -module bundle °£*, and

define the vector bundle

B{£) =a£* ®a £*
As in §1, there is a switch map sw: B(£) -> B{£). The kernel and cokernel of
Id ± sw define vector bundles over C For 8 ± 1, we let
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Hg (£) ker(Id —8 sw).

Letting s 1 if a is orthogonal and s — 1 if o is symplectic, we also define

Q(£) coker(Id—esw).

Definition 2.4. A sesquilinear form on the right A -module bundle £ is a global
section of £>(£). Likewise, a 8 -hermitian form (resp. a quadratic form) on £ is

a global section of Hg(£) (resp. Q(£)). We write

B(£) r(B(£)), /*«(£) r(^(£)), ß(£) r(Q(£))

for the F-vector spaces of sesquilinear, 8 -hermitian, and quadratic forms

respectively.

Proposition 2.5. (i) If £ is an indecomposable A-module bundle of type Oc(n)
with n even, n > 0, or of type Xc(2n) with n odd, n > 0, then for 8 — ±1

B(£) HS(£) Q(£) {0}.

(i) If £ öc (0) M for some right A -module M, then for 8 — ± 1

B(£) B(M), HS(£) HS(M), Q(£) Q(M).

Proof (i) It suffices to prove B{£) — {0}. If £ ~ Oc(n) <S>f M for some simple
A -module M, then £* ~ öc(«)v ®f M*, hence

£>(£) ~ Oc(n)v OcinY ®F aM* <g>^ M* ~ Oc(~2n) ®F B(M).

Since T(Oc{—2n)) {0} for n > 0 (see (A. 10)), it follows that B(£) {0}.
If £ is of type lc(2n) with n odd, then by Proposition 2.3 we have

lc(2n) ®f M ~ £e<? with I 1, 2 or 4,

hence

B(lc(2n) ®p M)~ B{£)®t2.

Therefore, it suffices to prove B(lc(2n) ®p M) {0} for n odd, n >0. As in
the previous case we have

B(Xc(2n) ®f M)~ lC(2n)v ®F Tc(2n)v ®F aM* ®A M*

— Ic(—2n) ®f Zc{—2n) ®p B(M).

By (2.2) it follows that

Bilc{2n) ®F M) ~ 0c(—2«)®4 ®f B(M).
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Since T(Oc{—2nf) — {0} for n > 0 (see (A. 10)), case (i) of the proposition is

proved.

(ii) For £ Oc (0)0f M we have

B{£) Oc(0)v 0 Oc(0)v 0F aM* <gu M* Oc(0) 0F B(M).

Since r(C>c(0)) F, it follows that B{£) B(M), hence also Hg(£) Hs(M)
and Q(£) Q(M).

The property in (ii) is expressed by saying that sesquilinear, hermitian, and

quadratic forms on Oc (0) 0 M are extended from A.
We define the degree of an A -module bundle £ as the degree of the underlying

vector bundle £^.

Theorem 2.6. Let £ be a right A-module bundle with deg£ 0. If £ carries

a hermitian or quadratic form that is anisotropic on the generic fiber then

£ Oc (0) 0 N for some right A -module N.

Proof. Consider the decomposition of £ into a direct sum of indecomposable
A-module bundles. If any of the direct summand is of type Oc(n) or Xc(2n)
with n > 0, then Proposition 2.5(i) shows that the restriction of any hermitian

or quadratic form on £ to this summand must be 0. Therefore, if £ carries an

anisotropic hermitian or quadratic form, then all the summands must be of type
Oc(n) with n < 0 or Ic{2n) with n < 0. But the degree of the indecomposable
A-module bundles of type Oc{n) or lc(2n) with n < 0 is strictly negative.
Since deg£ 0, all the summands are of type öc(0), hence by Proposition 2.3(i)
they are isomorphic to Oc (0 M for M a simple right A -module. Therefore,

£ ~ (Oc(0) 0 Mj) © ® (Oc(0) 0 Mn) Oc(0) 0 {Mx ® ••• © Mn).

Corollary 2.7. If a right A-module bundle £ with deg<? 0 carries an

anisotropic hermitian or quadratic form, then this form is extended from A.

Proof This readily follows from Proposition 2.5(ii) and Theorem 2.6.

We complete this section by discussing one case where the condition deg £ — 0

is necessarily satisfied.

As for modules (see (1.2)), each 8 -hermitian form h e Hg(£) on a right
A -module bundle £ yields a morphism of A-module bundles
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Definition 2.8. The hermitian form h on £ is said to be nonsingular if the

morphism h is an isomorphism.

Proposition 2.9. Ifa right A-module bundle £ carries a nonsingular 8-hermitian

form, then deg£ 0.

Proof. We claim that dega£* — deg£; therefore deg£ 0 when £ ~ a£*. It
suffices to prove the claim for £ an indecomposable A -module bundle, or indeed

by Proposition 2.3, for £ of the form öc(n)®F M with n even or Ic(2h)®f M
with n odd. We have

a(Oc(n) ®F M)* öc(n)v ®F a M* ~ öc(~n) ®F aM*

and

CT(Ic(2«) ®p M)* Jc(2«)v ®f aM* ~ lc(~2n) ®F aM*.

The claim follows.

3. Excellence

We use the same notation as in the preceding sections, and let L denote the

function field of the smooth projective conic C over the arbitrary field F. In this

section, we prove that L is excellent for quadratic forms and hermitian forms on

right A-modules.

3.1. Hermitian forms. Let 8 ± 1, and let h be a 8 -hermitian form on a

finitely generated right A -module M. Extending scalars to L, we obtain a

central simple L-algebra Al L ®p A, a right Al -module Ml L ®p M,
and a 8-hermitian form Iîl on Ml- Scalar extension also yields the right A-
module bundle Mc Oc{0) <8)p M over C, with the S-hermitian form he
extended from h.

For any Al -submodule N c Ml we let J\T denote the intersection of the

constant sheaf JV on C with Mc • This is a vector bundle with stack

J\fp — N n (Op ®f M) at each point P of C

Following the elementary approach to vector bundles developed in the appendix,
the A -module bundle J\f is defined as follows: choose a closed point oo Spec K
on C for some separable quadratic extension K of F, let U C \ {oo}, and

define TV (N, Njj Nof) where

Nu N P\ (Ou ®f and N00 N (T (000 ®f M).
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The orthogonal of Nu in Ou M for the form extended from h is
N-1 n {Ou ®f M), and likewise the orthogonal of N00 in Oœ <g>p M is

Nl n (Coo ®f M), hence the orthogonal TV1 of Af in Mc is the A-module
bundle

Af1- (Nx, N1- n {Ou ®F M), Nx n (Coo ®F Mj).
From here on, we assume N c N hence Af C Af1- and we may consider the

quotient A-module bundle Af±/Af. It carries a <5-hermitian form ho obtained by
sublagrangian reduction, see Proposition 1.4.

For the excellence proof, the following result is key:

Proposition 3.1. If h is nonsingular, then the form ho on Af±/Af is nonsingular.

The proof uses the following lemma:

Lemma 3.2. Let R be an F -algebra that is a Dedekind ring. Every finitely
generated right (R® p A)-module that is torsion-free as an R -module is projective.

Proof. Let Q be a finitely generated right (R <S>f A)-module, and let be

the R -module obtained from Q by forgetting the A-module structure. Recall

from the proof of Proposition 2.1 that Q is a direct summand of Q} A. The

R-module is projective because it is finitely generated and torsion-free, hence

A is a projective {R A)-module. The lemma follows.

Proof of Proposition 3.1. Assume h is nonsingular. Proposition 1.4 shows that
the form h0 is nonsingular on the generic fiber N^/N of Af±/Af. We show

that it is nonsingular on the stalk at each closed point of C.
Fix some closed point P of C, and \etA4p=Op®pM and Ap Op<S>F A.

The right Ap-module Mp/Afp is finitely generated and torsion-free as an Op-
module, hence it is projective by Lemma 3.2, and the following exact sequence

splits:
0 —> Afp —> A4 p —> A4 p /Afp —> 0.

Lemma 3.2 also applies to show Afp /Afp and A4p/Afp are projective Ap-
modules. On the other hand, the map h p h \ A4p aA4*p is bijective
because h is nonsingular. Substituting A4p for M and Afp for N in the proof
of Proposition 1.4, we see that the arguments in that proof establish that the

induced map Afp /Afp -> a(Afp /Afp)* is bijective.

The excellence of L for hermitian forms readily follows:

Theorem 3.3. Let h be a nonsingular S -hermitian form (8 — ±1) on a finitely
generated right A -module. The anisotropic kernel of Ap is extended from A.
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Proof. We apply the discussion above with N c Ml a maximal sublagrangian.
The induced 5-hermitian form h0 on N^/N is anisotropic by Proposition 1.4,

and it is the generic fiber of a nonsingular S -hermitian form on the .4-module

bundle Af±/Af by Proposition 3.1. Proposition 2.9 yields deg(7V"x/A0 0, hence

Corollary 2.7 shows that ho is extended from A.

3.2. Quadratic forms. We use the same notation as in §3.1: M is a finitely
generated right .4-module and Mc Oc(0)®f M is the right A -module bundle
obtained from M by scalar extension, with generic fiber Ml We now consider

a nonsingular quadratic form q on M, and the extended quadratic form qc
on Mc, with generic fiber qL • Let N c Ml be a maximal totally isotropic
subspace for qL This subspace is totally isotropic (but maybe not a maximal

sublagrangian) for the hermitianized form ß(qL), hence it lies in its orthogonal
N1- for ß(t2l). By Proposition 1.5, qL induces a nonsingular quadratic form qo

on N1- /N, which is the anisotropic kernel of qL To prove that L is excellent,

we need to show that q0 is extended from A.
The proof follows the same pattern as for Theorem 3.3. We consider the

,4-module bundles Af, AT1, and Afx/Af as in §3.1. As observed in the proof
of Proposition 3.1, for each closed point P of C the Ap -modules Mp/Afp,
Mp/Afp and Afp /Afp are projective. Substituting Mp for M and Afp for
N in the proof of Proposition 1.5, we see that the form qo is the generic fiber
of a nonsingular quadratic form on Afp /Afp. We have degiAf^/Af) 0 by

Proposition 2.9, and since qo is anisotropic on N^/N it is extended from A by

Corollary 2.7. We have thus proved:

Theorem 3.4. Let q be a nonsingular quadratic form on a finitely generated

right A-module. 77?e anisotropic kernel of qL is extended from A.

Appendix: Vector bundles over conics

We give in this appendix an elementary proof of the classification of vector
bundles over conics used in §2. The elementary character of our approach is

based on the representation of vector bundles over conics or over the projective
line as triples consisting of the generic fiber, the module of sections over an affine

open set, and the stalks at the complement, which consists in one or two closed

points; see §A.2 and §A.3.

A.l. Matrices. Let K be an arbitrary field and let u be an indeterminate on

K. Let wo and be respectively the w-adic and the w_1-adic valuations on
the field K(u) (with value group Z). Consider the following subrings of K(u):
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Oy K[u,u ], ös {x K(u) I wo(x) > 0 and wœ(x) > 0}.

The following theorem is equivalent to Grothendieck's classification of vector
bundles over the projective line [Gro], as we will see in §A.2. (See [HM]
for an elementary proof of another statement on matrices that is equivalent to

Grothendieck's theorem.)

Theorem A.l. For every matrix g e GLn(K{u)) there exist matrices p e GLn(Os)
and q e GL„(CV) such that

pgq diag((w — 1) ,(u — 1) ") for some k\, kn e Z.

Proof. The case n — 1 is easy: using unique factorization in K[u\, we may factor

every element in K(u)x as g — p (u — \)k ua where w0(p) Woo(p) 0,
hence p e 0$. The rest of the proof is by induction on n. In view of the n — 1

case, it suffices to show that we may find p e GL„(ös), q e GL„(CV) such

that p g q is diagonal. Since Oy is a principal ideal domain, we may find a

matrix q\ e GL„(CV) such that

m i

a i
*

0

g l

V

o\

where a\ is the gcd of the entries in the first row of g. By induction, we may
assume the theorem holds for gi and thus find p2 e GLn{ös), qi e GL„(CV)
such that

(ax 0 0 ••• 0\
b2 fl2 0

P2gqiq2
t>3 o a3

\bn 0 0 • • • an j
for some a2, an e K(u)x and some b2, bn e K(u). To complete the

proof, it now suffices to apply (n - 1) times the following lemma:

Lemma A.2. Let a, b, c e K(u) with a, c f 0. There exists p e GL2(0s),
q e GL2(öy) such that the matrix

P
fa 01

i b c :

is diagonal.
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The proof uses the following approximation property:

Proposition A.3. For every f e K(u)x, there exists A e Oy such that

Wo(f — A) > 0 and it>oo(/ — A) > 0.

Proof. We first show, by descending induction on iu0(/), that there exists

A0 g Oy such that w0(f — A0) > 0: if w0(f) > 0 we may take A0 0.
Otherwise, let / ab~lua where a, b e F[u\ are not divisible by u. For

p a(0)è(0)_1wœ G Oy we have

wo(/ ~ P) >a w0(f),

hence induction yields p0 g CV such that tx>o((/ — p) — po) > 0, and we may
take Ao — P T Po •

Fix A0 G Oy such that u>o(f — A0) > 0. If Woo(/ — A0) > 0 we are done.

Otherwise, let

f ^ _
anun H tap

0
bmum H h b0

with an, a0, bm, b0 £ K, an, bm ^ 0, so that u>oo(/-Ao) m-n < 0.

Let /xi anbflxun~m e F[u], We have

u>oo((/-A0)-/zi) >m~n Woo(f — A0).

Again, arguing by induction on utoo(/ — A0), we may find /z2 F[m] such that

Woo((/ - A0) - p2) > 0.

Note that w0(p2) > 0 since /U2 e F[u]. Therefore,

wo((/ - A0) - p2) > min(iü0(/ - A0), w0(p2)) > 0,

so we may choose A A0 + p2.

Proof of Lemma A.2. For / e K(u)x, let u;(/) iuo(/) + Woo(/)- Note that

in is not a valuation, but it is multiplicative and w(u) 0. We shall argue by
induction on w{a) — w(c) e Z; but first note that by multiplying (£ on the

right by (J„a) for a wo(a) — w0(c), we may assume tuo(a) w0(c). By
Proposition A.3, there exists A e Oy such that

woÇbc^1 — A) > 0 and Woo{bc~l — A) > 0.

We then have wo(b—Xc) > u>o(c) u>o(a) and Woofb—Xc) > Woo(c). Multiplying
(fee) on the right by ° yields
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Thus, we may substitute b — Xc for b and thus assume

(A.l) w0(b) > w0(c) — w0(a) and Woo(b) > Woo(c).

If ifoo (b) > Woo (a), then a~1b e Os and the lemma follows from the equation

(A.2)
1 01 la °\ _ ia 0

i~lb 1/ \b c I \ 0 c i

We now start our induction on iv(a) — w(c). If w(a) — w(c) < 0, then since

wo(a) w0(c) we have Woo(a) < Woo(c). By (A.l) it follows that wœ(b) >
wœ(a) and we are done by (A.2). If w(a) — w(c) > 0 but iuTO(è) > Woo(a),

we may also conclude by (A.2). For the rest of the proof, we may thus assume

Woo (a) > Woo(b) > wœ(c). If wo(b) > Wo(a), then in view of the equation

/1 0\ (a O) / a o\

yi 1J yè cJ ya + b cj

we may substitute a + b for b. In that case, we have

w0(a + b) min(iüo(a), wo(b)) wo (a)

and

Woo(a + b) min(iu0O(fl), Woo(b)) Woo(b).

Thus, in all cases we may assume

wq(b) w0(a) w0(c) and Woo(a) > Woo(b) > Woo(c).

Then ab~l e Os Consider

t\ —ab~l\ (a o\ /0 l\
_

(—ab~lc o\
1° 1 )\b c)'v °y V c b)'

We have

w{—ab~xc) — w(b) w(a) + w(c) — 2w(b) wœ(a) + Woo(c) — 2wœ(b).

Since Woo(b) > Woo(c) we have

Woo (a) + Woo(c) - 2woo(b) < Woo (a) ~ ^oo(c).

But w(a) — w(c) Woo(a) — Woo(c), hence w(—ab~lc) — w(b) < w(a) — w(c).
By induction, the lemma holds for hence also for (£ °).
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A.2. Vector bundles over P^. We use the same notation as in §A.l.

Definition A.4. A vector bundle over f,]K is a triple £ (E, Ey, Es) consisting
of a finite-dimensional K(u) -vector space E, a finitely generated Oy -module

Ey c E, and a finitely generated Os -module Es C E such that

E Ey ®ov K(u) Es ®os K(u).

The rank of £ is rk£ dim£. The intersection Ey n Es is a A-vector space,
which is called the space of global sections of £. We use the notation

T(5) Ey H Es.

Since Oy and Os are principal ideal domains, the Oy- and Os -modules Ey
and Es are free. Their rank is the rank n of £. Let (c;)"=1 (resp. (//)"=1) be

a base of the Oy -module Ey (resp. the Os -module Es). Each of these bases

is a A(w)-base of E, hence we may find a matrix g (gij)"J=1 £ GLn(K(u))
such that

n

(A.3) ej Y.fiSij for y 1, n.
(=i

The degree deg£ is defined as

deg£ iuo(detg) + Woo(detg) e Z.

To see that this integer does not depend on the choice of bases, observe that a

change of bases substitutes for the matrix g a matrix g' of the form g' pgq for
some p e GL„(Os) and q e GLn(Oy). We have det p e ö$, hence iu0(det p)
rundet p) 0. Likewise, detcy e Oy Kx ®wz, so w0(detq) + Wooldetg) 0,
and it follows that ix>o(detg) + w7oo(detg) lUo(detg') + u;00(detg').

A morphism of vector bundles (E, Ey, Es) —> {E',E'V,E'S) over IP^ is a

K(u) -linear map <p: E -* E' such that cp(Ey) C E'v and <p(Es) C E's.

Example A.5. Vector bundles of rank 1. Since Oy and Os are principal
ideal domains, every vector bundle of rank 1 is isomorphic to a triple £ —

(K(u), fOy, gOs) for some /, g e K(u)x Using unique factorization in K[u\
we may find p e 0$, k, a e Z such that fg~l p-(u—l)k-ua. Multiplication by
g~x p~x{u — l)~k is a K(u) -linear map <p: K(u) —> K(u) such that <p(f) — ua

and <p(g) p~x(u— l)_fc. Since u e Oy, it follows that <p(fOy) Oy.
Likewise, since p e 0$, we have <p(gOs) (u — 1 )~kOs- Therefore, cp defines

an isomorphism £ (K(u),Oy, (n — 1 )~kOs). For ne Z, we write

Opk(n) (K(u),Oy,(u-l)nOs).
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If g e K(u)x satisfies wo(g) + Woo(g) — ~n, then g (u — 1 )~nu~w°^ e ö$,
hence the arguments above yield

(A.4) (K(u), Ov,gOs) ~ (K(u), Ov, (u - 1)nOs) OP^(-w0(g) - w^g)).

By definition of the degree,

degOpl (n) w0((u - 1)~") + wœ((u - 1)""") n.

The vector space of global sections of öpi (n) is easily determined: by definition,

we have

r(Opi («)) 0Kn(u- 1 )nOs

{f eOy I w0(f) > w0((u - 1)"), Woo(/) > Woo((n - 1)")}-

Since wq{u — 1) 0 and Woo(w — 1) —1, we have

r(0Pi («)) {/ K[u] I deg f < n).
K

hence
{0 if n < 0,

dimr(Cpi («)) <

K \ 1 + n if n > 0.

Theorem A.6 (Grothendieck). For every vector bundle £ on P^, there exist

integers k\, kn e Z such that

£ — {ki) © • • • © Gp^ {kn).

Proof. Let £ — (E, Ey, Es) be of rank n. Let (e,)"=1 (resp. (./;)f=l be a base

of the Oy -module Ey (resp. the Os -module Es), and let g (gij)"j=1 e

GLn(K(u)) be the change of base matrix as in (A.3). Slightly abusing the matrix
notation, for (A.3) we write simply

(A.5) (ei,...,e„) (/i, g.

Theorem A.l yields matrices p e GL„(ös) and q e GLn(Oy) such that

(A.6) pgq diag((n - l)~fcl,...,(u— l)_fe") for some k\, kn e Z.

Define f[, /„' and e[, e'n by the equations

(/i >•>/„') (/i.-- •>/«)• P~l and {e\,...,e'f) (e1 ,...,en)-q.

Because p e GL„(£>s), the sequence (//)"= i is a base of Es - Likewise, (e-)"=i
is a base of Ey, and from (A.5) and (A.6) we derive
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(e[,..., e'n) (//, diag((u - l)-*1,..., (u - 1)-*»).

Thus,

n n n

E @e'iK(u), Ev ®e'iOv, Es 0 e\{u - l)k'Os.
i 1 i 1 i 1

These equations mean that the map E -> K(u)®n that carries each vector to the

ii -tuple of its coordinates in the base (e'i)"=] defines an isomorphism of vector
bundles

£ —> (& i © © Op(kn).

Corollary A.7. For every vector bundle £ on the K-vector space of global
sections T(£) is finite-dimensional. More precisely, if £ ~ Opi (k\) © ••• ©

öpi for some k\, kn e Z, t/zen
K

n n

dimF(£) ^max(l + £,-,0) and deg£ kj.
i l i l

Proof. If £ £\ © £25 then T(£) T(£i) ® T{£2) and deg£ &&g£\ +
deg£2- Since each T(0pi (n)) is finite-dimensional and degöpi (n) — n (see

K K
Example A.5), the corollary follows.

From the formula for dimT^), it is easily seen by tensoring £ with

Opi (k) for various k e Z that the integers k\, kn such that £ ~
Opi^kf) © ••• © Op^(kn) are uniquely determined up to permutation.

A.3. Vector bundles over conics. Let L be the function field of a smooth

projective conic C over a field F. Assume C has no rational point over F, and

let 00 be a point of degree 2 on C with residue field K separable over F. Let

Doo be the corresponding discrete valuation on L and Coo be its valuation ring.
Let also Ou C L be the affine ring of C \ {co}, which is the intersection of all
the valuation rings of the F -valuations on L other than v^.

Let Ck — C x Spec K be the conic over K obtained by base change, and let

/: Ck -> C be the projection. Since Ck has a rational point, we have Ck —

i.e., the composite field KL is a purely transcendental extension of K. We may
find u e KL such that KL K(u) and the two valuations of K{u) extending

Uoo are tt>o and Woo, the u-adic and w~1-adic valuations of K(u). Thus, using
the notation of §A.2,

Ou K Oy and öoo (g>p K Os-
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Remark A.8. A concrete description of the rings defined above can be obtained by

representing C as the Severi-Brauer variety of a quaternion division algebra Q.
Write V for the 3-dimensional subspace of trace 0 quaternions. Then q(v) := v2

is a quadratic form on V and the conic C is the quadric in the projective
plane P(L) given by the equation q 0. Every closed point of degree 2 on
C is determined by an equation <p — 0 for some nonzero linear form <p e V*.
If (r,s) is a base of ker^ c V, then the equation (.xr + ys)2 — 0 has the

solution x —q{s), y rs in F(rs), hence F(rs) is the residue field of the

corresponding point. Let oo be the closed point on C determined by a linear form

(p such that F(rs) is a separable quadratic extension of F. Let also t eV be a

nonzero vector orthogonal to ker <p for the polar form bq of q. If t e ker cp, then

bq(l,t) 0, hence char F 2. Moreover, ; is a linear combination of r and s,
and the equations bq(t,r) bq{t,s) 0 yield bq(r,s) 0. This is a contradiction
because then the minimal polynomial of rs, which is X2 —bq(r,s)X + q(r)q{s),
is not separable. Therefore, in all cases the choice of oo guarantees that (r, s,t)
is a base of V. Let (x,y,z) be the dual base of V*. Then the conic C is given
by the equation

(.xr + ys + zt)2 0,

and oo is the point determined by the equation z 0. Because t is orthogonal
to r and s, the equation of the conic simplifies to

{xr + ys)2 + z2t2 0.

C F(—, —) L.
\z z /

Let U C \ {oo}; then

rx y -

Ou F -L
Lz Z -

The equation of the conic shows that j is a root of a quadratic equation over F{ f),
hence every element in L has a unique expression of the form /(f) + jg(f)
for some rational functions /, g with coefficients in F. If Uqo is the discrete

valuation of the local ring Coo, then

-(f)-o-1-
More precisely, for /, g, h polynomials in one variable over F, with h ^ 0,

'/(f) + *g(f)-
Hf)

We claim that we may take for u the element frs + jq(s). To see this, let i
denote the nontrivial L-automorphism of KL. For u f rs + yq{s) we have

i(u) fsr + yq(s), and from the equation of the conic it follows that

(A.7) u i{u) ^—{xr + ys)2 — —q{s)q{t) e Fx.

//(f) + fg(§h ^ riiJA— h,A— deg h — max(deg /, 1 +degg).



Excellence of function fields of conics 445

This equation shows that for every valuation u> of KL extending Uoo we have

w(u) —w(l(u)). Moreover, from u jrs + ^q(s) and u — i(u) f (rs — sr)
it follows that

w(u) > min^oo^-j, -1

and

— 1 foo(—J > min(u;(M), iu(t(u))).

Therefore, either w(u) — —w(l(u)) 1, i.e., w w0, or w(u) — —w(l{u)) — —1,

i.e., w Woo

The following result is folklore. (For proofs in characteristic different from 2,

see Pfister [Pfi, Prop. 1] and the references on [Pfi, p. 260]. Our arguments below

are close to those in Milgram-Ranicki [MR, Lemma 6.7].)

Lemma A.9. The ring Ou is a principal ideal domain.

Proof. Let / c Ou be an ideal. Since Oy K[u,u~l] is a principal ideal

domain, we may find / e Oy such that I K fOy .As I K is

preserved by i, we have fOy i(f)öy, hence t(/)/_1 e Oy Kx ® uz.
Let a e Kx and a e Z be such that

(A.8) i(/)/_1 aua.

Since — L it follows by (A.7) that

NKL/L(aua) NK/F(a)(-q(s)q(t))a 1.

o

If a is odd, let a 2ß — 1 and a{—q{s)q(t)) b + cr.? with b, c e F. Then

Nk/fQ> + crs) —q(s)q(t), hence

(cr + bq(syls)2 + t2 0.

Tius, the conic C has an F -rational point, a contradiction. Therefore, a is even.

Let a — 2ß. Then from (A.7) and (A.8) we have

i(ußf) (M^/r1 a(-q{s)q{t))ß e Kx.

o

By Hilbert's Theorem 90, we may find b e Kx such that a[—q{s)q{t)) —

bi(b)~l. Then

i(buß f) buß f Lx.

Since buß e Oy, we have fOy buß fOy, hence I buß fOu.
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Definition A.10. A vector bundle over C is a triple £ (F, Eu, F^) consisting
of a finite-dimensional L-vector space E, a finitely generated öu -module

Eu C E, and a finitely generated -module Eœ c E such that

E Eu ®öxj E — Eqq E.

The rank of £ is rk£ dimF. The intersection Eu D F^ is an F-vector space
called the space of global sections of £. We write

r(£) Eu n Foo-

The degree of a vector bundle over C is defined as for vector bundles over P^- :

Since Ou and 0^ are principal ideal domains, the Ou - and (Too-modules Eu
and Foo are free of rank rk£. Let 0?;)"=1 (resp. (/i)"=1) be a base of the

öu -module Eu (resp. the Oœ -module Eœ). Each of these bases is an F-base
of F, hence we may find a matrix g (g//)f ,-=1 e GL„(F) such that

n

(A.9) ej for ; 1, m.

j=i
The degree deg£ is defined as

deg£ 2uoo(det g) g TL.

To see that this integer does not depend on the choice of bases, observe that a

change of bases substitutes for the matrix g a matrix g' of the form g' pgq
for some p g GL„(C00) and q g GLn(öu)- We have det p e hence

Uoo(det/>) 0. Likewise, det q g O^, hence u(detg) 0 for every F-valuation
d of I other than Voq. Since the degree of every principal divisor is zero, it
follows that we also have ^(detg) 0. Therefore, Uoo(detg) UooCdetg')-

A morphism of vector bundles (E, Eu, E^) (F', E'v, F^) over C is an

F-linear map (p: E -> E' such that g>(Eu) C E'v and ip(Eoo) c E'^. When

<p: E ^ E' is an inclusion map, the vector bundle £ (F, Eu, FM) is said

to be a subbundle of £' (E', E'v, E'^). If moreover Eu E f1 E'v and

Eoo F fl F^j, then the triple (F'/F, E'v/Eu, F^/Foo) is a vector bundle,
which we call the quotient bundle and denote by £'/£. In particular, for every
morphism cp\ £ -> £' we may consider a subbundle kenp of £ and, provided
that cp(Eu) <p(E) fl E'v and <p(Eac) <p(E) (T F^, a vector bundle coker^),
which is a quotient of £'.

Example A.ll. Vector bundles of rank 1. We use the representation of the conic
C in Remark A.8. The same arguments as in Example A.5 show that every vector
bundle of rank 1 over C is isomorphic to a triple (F, öu, (f)"öoo) for some

n G Z. The degree of this vector bundle is 2n ; therefore we write

Oc{2n) {L,Ou,(-)n000).
vzy
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Note that for any g e Lx we have as in (A.4)

(I^ÖUtgöoo) ~ Oci-lVooig)).

For the vector space of global sections we have

T(Oc(2n)) {f eOu | ««,(/)> n}

{f(~) + ~S{~) I deëf< », degg < n - l|.
Therefore,

(A. 10) dim r(öc(2«))
2n +1 if n > 0,

0 if n < 0.

We may extend scalars of every vector bundle over C to get a vector bundle

over P^: for any vector bundle £ (E, Eu, Eoo) over C, we define

/*(£) (E ®F K, Eu ®F K, Eoo ®p K).

This /*(£) is a vector bundle over P^ of rank rk/*(£) rk£. If K F (a),
every vector in E ®f K has a unique expression in the form x ® 1 + y ® a
with x, y e E. This vector is in Eu ®f K (resp. E^ ®p K) if and only if x,
y e Eu (resp. x, y e Eœ), hence

Since every Oy-base of Eu is an Oy-base of Eu ®f K and every Ooo-base

of Eoo is an O^-base of Ea0 ®f K, we can compute the degree of £ and

the degree of /*(£) with the same matrix g e GLn(L) (see (A.9)). We get

deg£ 2uoo(detg) and deg/*(£) wo(detg) + iUoo(detg). Because wq and

Woo are the two valuations of K(u) extending vit follows that

There is a construction in the opposite direction: every vector bundle £' —

(E', Ey, E's) over P^ yields a vector bundle /*(£') over C by restriction of
scalars, i.e., by viewing E' as a vector space over L, E'v as a module over Ou,
and E's as a module over Coo • Thus, rk /* (£') 2 rk £', and

(ATI) r(/*(£)) r(£) k.

(A. 12) deg /*(£) deg£.

T(/*(£')) r(£') (viewed as an F-vector space).

For the next proposition, we let l denote the nontrivial automorphism of
K(u) over L. For every K{u) -vector space E', we let lE' denote the twisted

K(u)-vector space defined by
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lE' {lx\x e E'}

with the operations

Lx+ ly— fx + y) and ('x)A ='(xi(A))

for x, y e E' and A e K(u). For every Oy -module E'v and every Os -module

E's, the twisted modules LE'V and lE's are defined similarly. We may thus

associate a twisted vector bundle L£' to every vector bundle £' over P^. Note

that t(u) e u~l Fx (see (A.7)), hence i interchanges the valuations w0 and Woo-

Therefore, w0(i(S)) + tUoo(i(<5)) w0(S) + Woo(S) for every S e K(u)x It follows
that deg'P' deg£'; in particular, lOpi (n) ~ Opi («) for all n e Z, and

K K
Grothendieck's theorem (Theorem A.6) yields l£ ~ £ for every vector bundle

£' over P^-.

Proposition A.12. (i) For every vector bundle £ over C, we have

f*f*(£)~£®£.

(ii) For every vector bundle £' over P^, we have a canonical isomorphism

f*f*(£')~£'®l£',

and an isomorphism /*/*(£') ~ £' © £'.

Proof, (i) Let a e K be such that K F(a). For every L-vector space E,
mapping x®l+y®0! to (x,y) for x, y e E defines an L-linear isomorphism
E K —>• E ® E. We thus get an isomorphism /*/*(£) ~ £ © £.

(ii) For every K(u)-vector space E', we identify E' K with E' ® lE'
by mapping x ® A to (xA,('x)A). We thus get a canonical isomorphism

/*/*(£') ~£'®l£'.

Corollary A.13. For every vector bundle £' over P^,

deg /*(£') 2deg £'.

Proof. Proposition A.12(ii) and (A.12) yield

deg /*(£') deg(P' © £') — 2degP'.
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Corollary A.14. For every ne Z we have

(i) f*(Oc(2n))~Ork(2n),
(ii) /*(Orj.(2n)) ~ Oc(2«) ® Oc(2/7).

Moreover, /*(Opi (2/7 + 1)) is an indecomposable vector bundle of rank 2 and

degree 4/7 + 2 over C.

Proof. From the definitions of Oc(2n) and /*, we have

f*(Oc(2n)) (K(u),Ov,tnOs).

By (A.4) it follows that

f*(Oc(2n)) ~ Op^(-«;o(f") - Woo(tn)) Op^(2/i).

This proves (i). Moreover, applying /* to each side, we get

f*(Orl(2n))~f.f*(Oc(2n)),
K

and (ii) follows from Proposition A.12(i).

By definition, it is clear that /*(öpi (2/7 + 1)) is a vector bundle of rank 2.

Corollary A.13 shows that its degree is 4/7+2, and it only remains to show that

this vector bundle is indecomposable. Any nontrivial decomposition involves two
vector bundles of rank 1, and has therefore the form

f*(OviK(2n + 1)) ~ öc(2/77!) ® Oc(2m2)

for some m\, m2 6 Z. By applying f* to each side and using (i) and

Proposition A.12(ii), we obtain

(Tpl (2/7 + 1) ® Op\ (277 + 1
— Op\ (2/77 i) ® öpl (2/772).

This is a contradiction because the Grothendieck decomposition in Theorem A.6
is unique up to permutation of the summands.

We write lc(4/7 +2) f*(öp\ (2n + 1)). In the rest of this section, our goal
is to prove that every vector bundle over C decomposes in a unique way in a

direct sum of vector bundles of the form Oc(2n) and lc(^n + 2).

Proposition A.15. For every vector bundle £ over C, the space ofglobal sections

F (£) is finite-dimensional.

Proof. This readily follows from (A. 11 and Corollary A.7.
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Corollary A.16. For every vector bundle £ over C, the F -algebra End £ is

finite-dimensional. Moreover, the idempotents in End£ split: every idempotent
e e End £ yields a decomposition £ ker e © im e. If £ does not decompose
into a sum of nontrivial vector bundles, then End£ is a local ring (i.e., the

noninvertible elements form an ideal).

Proof. For £ — (E, Eu, Eœ), we have End£ Y(£nd £) where

End £ — (EndL E, End0[/ Ev, End0oo E^).

Therefore, Proposition A.15 shows that the dimension of End£ is finite. This

algebra is therefore right (and left) Artinian. If e e End £ is an idempotent, then

for every vector x e E we have x (x — e(x)) + e(x), hence

E kere © ime, Eu (Eu n kere) © (Eu n ime),

Eoo (Eoo n kere) © (E^ n ime).

This shows that e splits. If £ is indecomposable, then Endf has no nontrivial
idempotents. It follows from Lam [Lam, Cor. (19.19)] that End £ is a local

ring.

The properties of End£ established in Corollary A.16 allow us to use the

general approach to the Krull-Schmidt theorem in Bass [Bas, Ch. I, (3.6)] (see

also Lam [Lam, (19.21)]) to derive the following "Krull-Schmidt" result:

Corollary A.17. Every vector bundle over C decomposes into a sum of
indecomposable vector bundles, and the decomposition is unique up to isomorphism
and the order of summands.

Note that the existence of a decomposition into indecomposable vector bundles

is clear by induction on the rank.

Theorem A.18. Every vector bundle £ over C has a decomposition of the form

£ ~ Oc (2fci)©•••© Oc (2kr) © Xc (4f i + 2) © • • • © Ic (Mm + 2)

for some k\, kr, i\, lm e Z. The sequences (k\,... ,kr) and (t\,... ,lm)
are uniquely determined by £ up to permutation of the entries.

Proof. In view of Corollary A.17, it only remains to show that the vector bundles

Cc(2/c) and Ic(4f + 2) are the only indecomposable vector bundles over C

up to isomorphism. Suppose £ is an indecomposable vector bundle over C.
Grothendieck's theorem (Theorem A.6) yields integers ni, np e Z such that
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f (^) — öpi («i) © • • • ® dpi (zip).
K K

Applying /* to each side, we get by Proposition A.12(i)

£ © £ ~ /*(e>pu («0) © ••• © /*(Op|(np)).

If «1 is even, then /*(0p^(«i)) ~ öc("i) ©öc("i) by Corollary A.14, hence

p 1 and 5 ~ öc(«i)- If "t is odd, then /*(0pi («0) is indecomposable by

Corollary A.14, hence we must have £ ~ /*(öpi («0) 2c (2« i) (and p — 2,
AT

and «2 wi)• CH

Example A.19. 77te tautological vector bundle. We use the representation of C

in Remark A.8. Let

Qc Oc(0) <8>f Q (ÔL. St/- Soo)

where Ql L®f Q, Qu Ou <8>f Q, Soo öco <8>f S • Consider the element

x y
e —r -\—s + t e Qu

z z

and the 2-dimensional right ideal E eQu. We define the bundle T
(E.Eu,Eoo) by

Eu E n St/ and £oo E n öoo-

Lemma A.20. We /rave

(a) Eu eQ • öu eröu © esöu,
(b) E00=efQ-ö00 =efr0oo©eftOoo.

Proo/! We first note that

(A.13) e—r + e—s+et — e2 — 0.
z z

Since eröu + esöy c Eu, to prove (a) it suffices to show Eu C eQ Ou and

eQ c erOu + esöu We start with the second inclusion.
It follows from (A. 13) that

(A.14) et —-e-r — e—s e eröu + esöu
z z

Write I := rs e Q. Note that I £ F and (rF + sF)i rF + sF. Multiplying
(A.14) by I on the right, we then get

(A. 15) eti —e-rl — e—sl e erlOu + eslöy eröu + esöu-
z z
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Also tl £ V : for if ti e V then VI — V, hence £ lies in the orthogonal
of V for the bilinear form Trdg(XT); it follows that I e F, a contradiction.

Therefore, (.r,s,t,tl) is a base of Q. The inclusion eQ c eröu +esöu follows
from (A. 14) and (A. 15).

We next show Eu c eQ-Ou Equations (A. 14) and (A. 15) show that eQ^ is

spanned by er and es, hence every element £ e Eu has the form £ erX + esfi
for some À, [i e L. We show that the hypothesis £ e Qu implies A, jre Ou-
Let ~~ denote the quaternion conjugation. Since £ Qu, we have tjs — slj e Qu-
Computation yields

£.s — s£ (ers — sre)X (trs — srt)X.

By the choice of t we have bq(t,r) bq(t,s) 0, hence t anticommutes with

r and 5, and therefore

£s — s£ (rs — sr)tX.

Since rs — sr ^ 0 and tjs — s£ e Qu, it follows that X e Ou- Therefore,

esfi £ — erX e Qu, hence efi e Qu- It follows that /x e Ou, because

e/j, rjii + Sjfj- + tV- "H16 proof of (a) is thus complete.
The proof of (b) is similar. Since e^rOoo + e^tOoo C Eit suffices to prove

Eoo C e^Q Oqo and eQ c erö^ + esOoo. We again start with the second

inclusion.
It follows from (A. 13) that

X z
(A.16) es =—e — r — e—t e erOoo + etOoo.

y y

Write m := rt Q. Note that m £ F and (rF + tF)m — rF + tF. Multiplying
(A.16) by m on the right, we then get

x z
(A. 17) esm —e—rm — e—tm e ermOoo + etmOoo erO^ + etöoo.

y y

Also sm V since Vm ^ V. Therefore, (;r,s,t,sm) is a base of Q. The inclusion

eQ C eröoo + esö^ follows from (A.16) and (A.17).
It also follows from (A.16) and (A.17) that eQu is spanned by e^r and

e^t, hence every element £ e E^ has the form £ e^rX + e^r/x for some A,

fi e L. We show that £ e Q^ implies A, /x e Oœ. Since t anticommutes with

r and s, we have

— z
%t —tf; (ert — tre)—X — (sr — rs)t A.

y

Because £? — ?£ e Qoo, it follows that A e ôœ. Then £ — e^rX e^tjx e <2oo,

and it follows that /x e Cqq.
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It follows from (A. 16) that the change of base matrix between the bases

(er, es) and (e^r,e^t) is equal to

Therefore, degT 2uoo(j) —2. Note also that F(T) {0} because

Eu n Eqq — E n Q and Q is a division algebra. Therefore, T is indecomposable
because if T — Oc(2m) ® Oc(2p) for some m, p e Z then comparing the

degrees we see that m + p — 1. But then one of m, p must be nonnegative,
and then Oc(2m) or Oc(2p) has nonzero global sections. Thus, we must have

T~ Xc(-2).

Note that Q acts naturally on the bundle T, i.e., T is a g-module bundle,
so we have a canonical embedding <2op EndT. In fact, since T ~ lc(—2)
we have by Corollary A.22 and (2.2)

£nd(T)~T®Ty ~ Ic(-2) ®2c(2) ~ Oc(O)04.

Therefore, dim EndT 4, hence

EndT ~ Qop ~ g.

Since lc(2n) Jc(—2) ® öc(« + 1) for all odd « (see (2.3)), we also have

(A. 18) End(lc(2n)) ~ Q for all odd n.

A.4. Duality. The dual of a vector bundle £ — (E. Eu, E^) over C is the

vector bundle

£v (HomL(£,L), Horn0u(Eu,Ou), Hom^^oo,O«)).

Proposition A.21. deg£v — degf.

Proof. Let (e,)"=1 be an Oy-base of Eu and fi)"=1 be an Coo-base of Eoo,

and let g (gij)"e GLn(L) be defined by the equations

n

('j - Yh fgiJ for y 1, /?.

;=i

So, by definition, deg£ 2uoo(detg). The dual bases (e*)"=1 and (f*)"=l
are bases of Hornov{Eu,Ou) and HomoOÛ(£'00,Cqq) respectively, and they are

related by
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n

ej=J2^*gij for j — \n1

where the matrix g' (gy)"y=1 is (g')_1 • Therefore, detg' (detg)-1 and

deg £v — deg £.

Corollary A.22. If £ ~ öc(2ki)®---©öc(2A:,-)®2c(4fi +2)®---®Ic(4fm+2)
for some k\, kr, l\, lmeh, then

£v ~ öc (—2/ci ffi • • • ® Oc (-2M ffi XC(-4^i - 2) ffi • • • ® 2c(-4£m - 2).

Proof. Oc(2k)v is a vector bundle of rank 1 and degree —2k, hence öc(2k)v ~
<Dc(—2k). Similarly, 2c (4f + 2)v is an indecomposable vector bundle of rank 2

and degree —4f — 2, hence 2c (4£ + 2)v ~ 2c (—41 — 2).
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