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Determinants over graded-commutative algebras,
a categorical viewpoint

Tiffany CovoLo and Jean-Philippe MicHEL

Abstract. We investigate linear superalgebra to higher gradings and commutation factors,
given by arbitrary abelian groups and bicharacters. Our central tool is an extension, to
monoidal categories of modules, of the Nekludova—Scheunert faithful functor between the
categories of graded-commutative and supercommutative algebras. As a result we generalize
(super-)trace, determinant and Berezinian to graded matrices over graded-commutative
algebras. For instance, on homogeneous quaternionic matrices, we obtain a lift of the
Dieudonné determinant to the skew-field of quaternions.

Mathematics Subject Classification (2010). Primary: 15A15, 15B50, 16W50; Secondary:
15A66, 15B33, 16W55, 17B75, 18DI15.
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Introduction

Superalgebra theory, which relies on Z,-grading and Koszul sign rule, admits
many applications and turns out to be a non-trivial generalization of the non-
graded case, regarding e.g. linear superalgebra, with the notion of Berezinian, or
the classification of simple Lie superalgebras. Its success, both in mathematics
and physics, prompted from the outset mathematicians to look for generalizations.

Mirroring the superalgebras, were thence introduced first (Z,)" -graded ana-
logues [RWI1, RW2], originally called color algebras, and then more general
I"-graded versions, for an arbitrary abelian group I'. These latter were introduced
independently by Scheunert [Schl] in the Lie algebra case, and by Nekludova in
the commutative algebra case (see [Lei]). The “color” character of the notions
considered, is encoded in a pair (I',A) consisting of a grading group T and
a commutation factor (or bicharacter), i.e., a biadditive skew-symmetric map
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AT xT'— K*, valued in the multiplicative group of the base field K. Then, a
(I, A)-commutative algebra over K is an associative unital K -algebra, which is
I'-graded, i.e. A= ®yerAY and A* AP ¢ A*FP for all «,B €', and which
satisfies the commutation rule

ab = Aa, B) ba ,

for any homogeneous elements a € A%, b € AP

The attention to higher gradings is not just a mere question of generalization.
Besides the original motives of a possible application to particle physics along
the lines of the coupling of superalgebra and SUSY (see [RWI, Schl]), higher
gradings appear naturally in different branches of mathematics. In geometry, they
play a role in the theory of higher vector bundles [GR]. For instance, the algebra
of differential forms over a supermanifold happens to be a ((Z,)?, 1) -commutative
algebra. Moreover, many classical non-commutative algebras, such as the algebra
of quaternions [KN, Lyc, AMI, AM2, MOI] or the algebra of square matrices
over C [BSZ], can be regarded as (I', A)-commutative algebras for appropriate
choices of grading group I' and commutation factor A. Particularly interesting
examples are the Clifford algebras [AM2]. Indeed, they are the only simple (I', 1) -
commutative algebras, with I' finitely generated and A : ' x I' — {£1} [MOZ2].
Moreover, the quaternion algebra is one of them, H ~ CI(0, 2).

We are interested in graded linear algebra over a graded commutative algebra.
While a basic topic, this is the starting point for many developments. Thus, a well-
suited notion of tensor product lies at the heart of a putative quaternionic algebraic
geometry [Joy], while Moore determinant plays a central role in quaternionic
analysis [Ale]. In the general graded-commutative setting, the color Lie algebra
of traceless elements, with respect to a graded trace, is basic in the derivation
based differential calculus [GMW]. Our aim is precisely to generalize trace,
determinant and Berezinian to matrices with entries in a graded commutative
algebra. For quaternionic matrices, this is an historical and tough problem,
pursued by eminent mathematicians including Cayley, Moore and Dieudonné.
We mention the Dieudonné determinant, which is the unique group morphism
Ddet : GL(n, H) — H*/[H™, H*] ~ R} , satisfying some normalization condition.

The notion of graded trace, for matrices with entries in a graded commutative
algebra A, was introduced in [Sch2]. The introduction of graded determinant and
Berezinian was done slightly after in [KN]. These objects have been rediscovered
in [COP], where they received a unique characterization in terms of their
properties. In particular, the graded determinant is constructed by means of quasi-
determinants and UDL decomposition of matrices. Right after, a cohomological
interpretation of the graded Berezinian has been given in [Cov], in a spirit close
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to the construction in [KN]. The main motivations of the works [COP, Cov] was
to lay the ground for a geometry based on quaternions, or more generally on
Clifford algebras, and thus restrict to ((Z,)",A)-graded commutative algebras.
Note that, so far, the graded determinant is only defined for matrices of degree
zero, which is a strong restriction as we will see.

In the present paper, we follow another approach to the problem of defining
trace, determinant and Berezinian in the graded setting. We use their formulation
as natural transformations and the Nekludova—Scheunert functor between the cate-
gories of graded-commutative and supercommutative algebras. Its generalization to
monoidal categories of graded and supermodules allows us to pull-back the wanted
natural transformations to the graded setting. The morphisms properties of trace,
determinant and Berezinian are then preserved if restricted to categorical endo-
morphisms f € End4(M), of a free graded .A-module M = @, rM?. These are
A-linear maps f : M — M, which are homogeneous, f(M?) c MY*/ for all
y € T', and of degree f = 0.If M is finitely generated, the space of all .A-linear
maps, without assumption on degree, turns out to be equal to the space of internal
morphisms &End 4(M). We prove that graded determinant and Berezinian admit a
proper extension to all homogeneous endomorphisms and that the graded trace can
be extended to any .A-linear maps, while keeping their defining properties. Note
that, in the case of quaternionic matrices, this yields a lifting of the Dieudonné
determinant from the quotient space H*/[H*,H*] ~ RZ to homogeneous invert-
ible quaternions. Besides, contrary to the previous works [KN, COP, Cov], we
take full advantage of the well-developed theory of graded associative rings and
their graded modules (see, e.g., [NO]). In particular, we clarify the notion of rank
of a free graded A-module and establish isomorphisms between various matrix
algebras. This shows that the graded determinant of degree zero matrices, over
quaternion or Clifford algebras, boils down to the determinant of a real matrix,
after a change of basis.

We now detail the content of the paper and state the main theorems. The
three first sections are of introductory nature, with one new result (Theorem A).
Section 4 is dealing with the graded trace and constitutes a warm-up for the
main subject of the paper, that is graded determinant and Berezinian. The grading
group is always considered abelian and finitely generated.

In Section 1, we recall the basic notions of (I',A)-commutative algebra.
In particular, the commutation factor induces a splitting of the grading group
in two parts ' = 1"6 U FT, called even and odd, and then provides an
underlying Z,-grading ¢ : I' — Z,. This is the starting point of Nekludova—
Scheunert equivalence [Schl, Lei]. It is given by a family of invertible functors
I : (', A)-Alg — (I', A°)-Alg, where the modified commutation factor AS factors
through the underlying parity, ie., such that AS(x,B) = (—1)*@¢®) for all
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a,B € I'. Hence the NS-functors I. are valued in supercommutative algebras,
with extra ['-grading. These functors are parameterized by peculiar biadditive
maps ¢ : ' x I' = K*, called NS-multipliers. For later reference, the set of such
maps is denoted by G(1).

In Section 2, we introduce the closed symmetric monoidal category I'-Mod 4
of graded modules over a (I", A)-commutative algebra A4, following partly [NO]J.
We prove our first result: for every (I',A)-commutative algebra A4 and every
¢ € 6(4), there exists a functor

TS-: [-Mody — I'-Modg4,

which can be completed into a closed monoidal functor. Here, A = I(4) is a
supercommutative algebra. This yields in particular the following result, which
links the space of internal endomorphisms Enda(M) of a graded module M
to the space of internal endomorphisms Enda(I-(M)) of the corresponding
supermodule /. (M). This is the starting point of later developments.

Theorem A. Let M a graded module over a (T, A)-commutative algebra A.
Then, for any map ¢ € &(A), there exists an A°-module isomorphism

ne: Endy(M) — endA(Tg(M))
such that

— -1
(0.1) Ne(f og) =§(f,§) ne(f)ons(g).

for any pair of homogeneous endomorphisms f,g € End (M) of respective
degrees f,g e€T.

In Section 3, we report on free graded modules and graded matrices, using
[NO] and [COP] as references. In particular, the .A-module of m x n matrices
receives a ['-grading, induced by degrees p € I' and v € I'" associated
respectively to rows and columns of the matrices. This module is denoted by
M(p x v; A) or simply M(v; A) if w =v. If a free graded A-module M admits
a basis of homogeneous elements (e;) of degrees (v;) = v, then we have an
isomorphism of I'-algebras

End (M) ~ M(v; A) .

The statement of the previous section then rewrites in matrix form, the map 7.
becoming then an A°-modules isomorphism

Jo i M(v: A) = M(v: A).
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To complete our understanding of matrix algebras, we determine conditions on
degrees v, u € I'" such that M(v;.A) >~ M(u;.A). This is equivalent to find bases
of degrees v and p in the same free graded A-module. If A° is a local ring, we
prove that two such bases exist if and only if v € (I'4x)" + @ (up to permutation
of components). Here, T'4x denotes the set of degrees y € T" such that AY
contains at least one invertible element. This result is closely related to a classical
Theorem of Dade [Dad] (cf. Proposition 3.3).

In Section 4, we study the graded trace. By definition, this is a degree-
preserving A-linear map I'tr : End (M) — A, which is also a (I", A)-Lie algebra
morphism. The latter property means that

Ttr(f 0 g) = A(f. &)Ttr(go /) =0

for any pair of homogeneous endomorphisms f, g of respective degrees f'. gel.
Using the map 7. of Theorem A and the supertrace str: End4(M) — A, we
construct a graded trace and show it is essentially unique.

Theorem B. Let A be a (I', A)-commutative algebra, M be a free graded A-
module and ¢ € G(X). Up to multiplication by a scalar in A°, there exists a
unique graded trace I'tr : End 4(M) — A. One is given by the map stron, which
does not depend on ¢ € G(A).

In matrix form, the graded trace reads as I'tr = stroJ., and its evaluation on
a homogeneous matrix X = (ij),-,.,- e M*(v; A) gives

I'tr(X) = Z)L(v,-,x + v,-)Xil- :

As a result our graded trace on matrices coincides with the one introduced
in [Sch2] and is a generalization of those studied in [KN, COP, GMW].

As for the graded determinant and Berezinian, the situation is more involved.
For the sake of clarity, we first treat the case of purely-even algebras. These are
(T, A)-commutative algebras .4 with no odd elements, i.e., for which I' = I
In this case, each NS-functor /. sends A to a classical commutative algebra
A= I.(A), and we make use of the classical determinant dety over A.

In Section 5, we restrict to the subalgebra of 0O-degree matrices, denoted
by M%(v;.A), and to the subgroup of invertible matrices, denoted by GL°(v; A).
As already mentioned, the arrow function of the NS-functor Tg allows then to
pull-back the determinant to the graded side, while keeping its multiplicativity
property. Following [McD], we generalize the multiplicative characterization of
the classical determinant to the graded setting.
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Theorem C. Let v € I'", n € N. There exists a unique family of maps
Idet’, : GL°(v; A) — (49",
parameterized by objects A in (I, A)-Alg, such that

(Al) it defines a natural transformation

GLO(v;-)

S N

(I',A)-Alg I'det’ Grp

e Y

()"

(AIl) for any invertible a € A°,
FdetOA =d.

The natural transformation Tdet® is called the graded determinant and satisfies
(0.2) [det’ (X) = det4 (Jc (X)) ,
for all X € GL°(v; A) and all ¢ € G(}).

The axiom A1 implies that Fdetg‘ is a group morphism. Equation (0.2) allows
to extend I'det’ to all matrices in M°(v;.A), and then I'det®(X) is invertible
if and only if X is invertible. Our graded determinant coincides with the ones
defined in [KN, COP], and, as an advantage of our construction, we find an
explicit formula for I'det’(X). This is the same polynomial expression in the
entries of the matrix X that the classical determinant would be, but here the
order of the terms in each monomial is very important: only with respect to a
specific order does the formula retain such a nice form. This situation is analogous
to that of Moore’s determinant, defined for Hermitian quaternionic matrices (see,
e.g., [Asl]). In addition, if 4 admits invertible homogeneous elements of any
degree, we provide a transition matrix P, such that PXP~! is a matrix with
entries in the commutative algebra A° and Fdetgl(X ) = det 4o(PXP™1), for all
X € M%°(v; A). This recovers a result in [KN].

In Section 6, we investigate the natural extension of the graded determinant
I'det’ to arbitrary graded matrices, by defining maps in the same way



Determinants over graded-commutative algebras 367
[det. = detoJo : M(v; A) — A,

where ¢ € G(A). These functions share determinant-like properties and can be
characterized as follows.

Theorem D. Let s : IT'xI' — K*. If s € G(A), then I'dets satisfies properties FIV
below. Conversely, if there exists, for all v € | J,en+ I'", a natural transformation

M(v;—)

RS

(T, A)-Alg A, Set

~_ r 7

(0 3) forget

satisfying properties 1-1V, then s € G(A) and A, = I'dets. The properties are
I. extension of Tdet’, i.e., Ay(X) = Tdet’(X) for all X € GLO(v; A);

Il. weak multiplicativity, i.e., As(XY) = As(X)-As(Y) for all X,Y € M(v; A)
such that either X or Y is homogeneous of degree 0;

III. additivity in the rows, i.e., As(Z) = As(X)+ As(Y) for all graded matrices

X1 yl Z1

x=| : [.y=| : |.z=] : | eMm:A

n

y z

whose rows satisfy, for a fixed index 1 <k <n,
(0.4) Z=x' =y, ifi £k and zF=xF4+vy*;
IV. heredity for diagonal matrices, i.e., for all c € Ar;,

D |
’A(E’,vn)c

where D € M(v"; A), with v/ = (v1,...,vy—1), is a diagonal matrix with
homogeneous entries and deg(As (D)) is the degree' of As; (D).

(0.5) As( )::s(E;cmg(As(D)))c-Aﬁ(D),

Despite the above characterization, the determinant-like functions I'det. are
not proper determinants: they are not multiplicative and do not characterize
invertibility of matrices in general. They depend both on the choices of NS-
multiplier ¢ € G(1) and of grading v on matrices. We illustrate these drawbacks

' By induction on the rank, A, (D) is homogeneous.
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on 2 x 2 quaternionic matrices. Note that any multiplicative determinant satisfies
properties I-II, and property IV is rather natural and satisfied, e.g., by Dieudonné
determinant. Hence, Theorem D puts severe restriction on the existence of
multiplicative and multiadditive determinants. On quaternionic matrices, as is
well-known, no such determinant exists [Dys, Asl]. Nevertheless, I'det define
proper determinants once restricted to homogeneous matrices. In particular,
on homogeneous quaternionic matrices, I'detc provide lifts of the Dieudonné
determinant to H . Note that restriction to homogeneous elements is also needed for
the recent extension of Dieudonné determinant to graded division algebras [HW].

Finally, in Section 7, we deal with the general case of a (I', A)-commutative
algebra A with odd elements. In this case, each NS-functor /. sends A to a
supercommutative algebra A := I.(A), and we use the classical Berezinian Ber
over A to define the graded Berezinian as I'Berc := BeroJ., with ¢ € &(4).
We get the following results.

P J—
Theorem E. Let r ,r. € N and v = (v ,v)) € I‘(-)O x T

(1) The maps TBerc : GL°(v; A) — (A)* do not depend on the choice of
¢ € G(\) and define a group morphism, denoted by T'Ber®.

(2) The maps T'Berc are well-defined on matrices X € GL*(v; A), x € ', and
given by

(0.6) TBerc(X) = ¢(x,x) ™1 (575 Tdet, (Xoo—Xo1 X7 X10)-Tdeto (X11) 71,

Xoo X
where ( (YOO 2(01 ) = X is the block-decomposition of X according to
10 <11

parity.

Note that ¢(0,0) = 1. The graded Berezinian I'Ber’ coincides with the
ones introduced formerly, and independently, in [KN] and [COP, Cov]. For a
characterization of I'Ber’, we refer to [COP]. The formula I'Ber, = BeroJ,,
defining the graded Berezinian, cannot be extended further to inhomogeneous
matrices. Indeed, the map J. does not preserves invertibility of inhomogeneous
matrices in general and the Berezinian is only defined over even invertible matrices.

For the sake of self-consistency of the paper, we present some basic notions
of category theory in an appendix.

Notation. In the whole paper, K is a field of characteristic zero (e.g., R or C)
and K* denotes its group of invertible elements. The grading group I' is an
abelian group, denoted by (I',+), with neutral element O. For simplicity, we
assume I' to be finitely generated. This latter is an essential hypothesis of the
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Nekludova—Scheunert theorem, the starting point of the developments described
in this paper. Nevertheless, most properties of commutation factors A (and hence
basic algebraic constructions such as (I', A)-commutative or (I, A)-Lie algebras,
graded modules, etc.) remain valid even if the abelian group I' is not finitely
generated (see [Schl], where also the case when the base field K is not of
characteristic 0 is discussed briefly).

1. Categories of graded commutative algebras

In this section, we review the basic notions of graded-commutative algebra
and present the Nekludova—Scheunert Theorem, following [Schl, Lei]. For general
notions on graded rings and algebras, we refer to [Bou, Dad, NOJ.

1.1. Definitions and examples. A T -algebra is an associative unital algebra A
over K, with the structure of a I'-graded vector space A = @qer A%, in which
the multiplication respects the grading,

(1.1) A% AP c AB | vyo BeT.

If A%. AP = A**F for all o, B € T', we say that A is strongly graded. The
elements in AY are called homogeneous elements of degree y. The T -algebra A
is called a crossed product if there exist invertible elements of each degree y € I'
(let us stress the fact that this definition is specific to this context; for the relation
with the more usual definition of crossed product involving a group action, see
Remark 1.13). It is a graded division algebra if all non-zero homogeneous elements
are invertible. Clearly, if a I'-algebra is a crossed product, then it is strongly
graded. The converse holds if 4% is a local ring [Dad]. Morphisms of T -algebras
are morphisms of algebras f : A — B that preserve the degree, f(AY) C BY,
for all y € I'. The kernel of such morphism is an homogeneous ideal of A, i.e.,
an ideal I such that

I=unA).

yel
The quotient of a T -algebra by a homogeneous ideal is again a I'-algebra. The
class of TI'-algebras (over a fixed field K) and corresponding morphisms form
the category I'-Alg.
Let A beamap A: I'xI" — K*. A (', X) -commutative algebra is a I"-algebra
in which the multiplication is A-commutative, namely

(1.2) a-b=A(d,b)b-a,
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for all homogeneous elements a,b € A of degrees a, b eT. Morphisms of
(I', A) -commutative algebras are morphisms of I"-algebras. The class of (I',A)-
commutative algebras (over a fixed field K) and corresponding morphisms form
a full subcategory (T',1)-Alg of I'-Alg.

Example 1.1. If A° is a unital associative and commutative algebra, then the
group algebra A°[I'] is a (I',1)-commutative algebra, with 1: ' x I’ — K the
constant map equal to 1 € K. This is a crossed product in general and a graded
division algebra if and only if A° is a field.

Example 1.2. Supercommutative algebras are (Z,, A*"P®")-commutative algebras,
with

A (x, y) = (= 1),

for all x,y € Z,. The category (Z,, A*"P*")-Alg is denoted for short by SAlg.

Example 1.3. Let n € N. The local commutative algebra

which generalizes dual numbers, receives a (Z;)"-grading by setting & =
(1,0,...,0), ... ,& = (0,...,0,1). This is a ((Z»)",A)-commutative algebra
with commutation factor

(1) A(x,y) == (D51,

where (—, —) denotes the standard scalar product of binary »n-vectors. This algebra
is not strongly graded if n > 1.

Example 1.4. Let p,q € N and n = p+q. The real Clifford algebra Cl(p,q) is
the real algebra with n generators (e;)i—1,. . satisfying the relations e;e; +
eje; = =£28;;, with plus for i < p and minus otherwise. Setting e; =
(1,0,...,0,1), ... ,& = (0,...,0,1,1), it turns into a ((Z»)"*', 1) -commutative
algebra with commutation factor of the form (1.3). For such a grading, the real
Clifford algebras are graded division algebras.

Example 1.5. The algebra of n xn matrices M(n; C) turns into a graded division
algebra with respect to the grading group I' = Z, xZ, and is graded commutative
for a commutation factor A : ' x I' — U, , with U, the group of n-th roots of
unity (see [BSZ)).
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1.2. Basic properties. Consider the category (I',1)-Alg of (I', 1)-commutative
algebras. Clearly, the unit of any object A of this category, denoted by 14 or
simply 1, is necessarily of degree 0. The commutation relation (1.2), together
with the associativity of the multiplication, implies that the commutation factor
A on I satisfies the three following conditions (see [Schl]):

CD Alx, Ay, x) =1,
(C2) AMx+y,z) =Ax,2)A(y,2),
(C3) Alz,x +y) = Az, x)A(z,y),

for all x,y,z € I'. Conversely, for any commutation factor A, there exists a
(T, A)-commutative algebra. An easy consequence of the conditions (2) and (3)
is that

A0, x) =A(x,0) =1,

hence A% C Z(A), the center of A .

Remark 1.6. For the readers who are comfortable with the language of category
theory, let us mention an alternative definition of (I', A)-commutative algebras. It
is well known that, for an abelian group I" and a commutation factor A on it,
the category I'-Vect of I'-graded vector spaces (over a fixed field K) admits a
structure of symmetric monoidal category, with the symmetry given by

Vg W 2 WegV
1w = A@W)w v

for any homogeneous element (recall that by definition v @ w = ¥ + W ), see,
e.g., [DM, Sch2]. The above properties (CI1-3) of the commutation factor A ensure
that the coherence conditions (the inverse and the associativity coherence laws,
respectively) of the symmetric monoidal structure hold.

A (T, A)-commutative algebra can then be defined as a commutative monoid
in the symmetric monoidal category I'-Vect, with the symmetry s; given above.

Let us go back to the basic properties of a commutation factor. Condition (C1)
implies ()L(x,x))2 = 1, for all x € I'. Thus, an homogeneous element either
commute or anti-commute with itself, revealing an underlying Z, -grading. More
precisely, the commutation factor induces a homomorphism of additive groups

gbAI r — Zz,
defined by

0 if A(x,x) = +1

bale) = {1 i A, %) = —1
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which gives a splitting of the grading group into an “even” and an “odd” part,
(1.4) F=T,ULl with T :=¢;'(0) and T, :=:=¢;"(1).

The map ¢; hence provides a Z,-grading on every (I, A)-commutative algebra
A, also called parity and denoted by y := ¢,(y) € Z, . Homogeneous elements
of A are named even or odd depending on the parity of their degree. Notice
that odd elements of A are nilpotent. Hence, if A is strongly graded, we have
I; = @. The group morphism ¢, induces a regrading functor

(1.5) ®,: (T,A)-Alg — Z,-Alg,
equal to the identity on arrows and such that ®;(A) is the algebra A with
Z, -grading
(@2(A), = Byer, A7 and (@A), = Byer, A -
The Z,-graded algebra @;(A) is supercommutative if and only if A can be

factorized through the parity, as stated below. Using the notation of Example 1.2,
we have

Proposition 1.7. [Lei] Let A a commutation factor over T'. Then, the two
following statements are equivalent:

(i) for all x,y €T, A(x,y) = AP () (x), da () :
(ii) the functor ®, takes values in SAlg.

1.3. Change of commutation factor. Let ¢ : ' x I' — K* be a map. One can
twist the multiplication of a (I', 1) -commutative algebra A = (A4,-) by the map ¢
in the following way:

(1.6) axb:=c(d@,b)a-b.

The resulting graded algebra A := (A, x) is an associative deformation of A if
and only if ¢ satisfies the cocycle condition

cx,y +2)s(y,2) = g(x,y)s(x + y,2),

for all x,y,z € I'. If in addition ¢(0,0) = 1, then A° = A° as algebras and ¢
is called multiplier (see [Schl]). Note that biadditive maps are multipliers.

If ¢ is a multiplier, the deformed algebra A4 is a (I', AS)-commutative algebra,
the commutation factor AS : ' x I' — K* being given by

A8 (a,b) = Aa,b)s(a.b)(s(b.a)) " .

Several multipliers can lead to the same change of commutation factor. More
precisely,
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Lemma 1.8. [Schl] Let ¢, ¢’ be two multipliers on T. Then, AS = A if
and only if there exists a biadditive symmetric map b : T x I' — K* such that
¢'(x,y) =c¢(x,y)b(x,y) for all x,y €T.

For a classification of multipliers and commutation factors, we refer to [GMW].

1.4. The Nekludova—-Scheunert Theorem. Let ¢ be a multiplier on I'. In
general, the (I',A)-commutative algebra A = (A,-) is not isomorphic to the
(I, AS) -commutative algebra A := (A, x) obtained by change of commutation
factor. The link between these two types of algebra is encompassed by a functor,
defined below.

Proposition 1.9. [Lei] Let ¢ : ' x I' = K* be a multiplier. There exists an
isomorphism of categories

Ic : (IA)-Alg — (I,A%)-Alg
(1.7) A=(A4,)) » A= (A4,%)

equal to the identity on morphisms.

The proof is obvious, the inverse functor is given by [Is with

-1
§(x,y) = (s(x,») .
Definition 1.10. The NS-multipliers are the multipliers contained in the set

SA):={c:TxT > K|S = AP o (¢, x ¢;)} .

According to Scheunert [Schl], for any commutation factor A the set of NS-
multipliers &G(A) is non-empty, i.e., there exists a multiplier ¢ such that AS
factorizes through the parity. This uses the fact that I'" is a finitely generated
abelian group. By Lemma 1.8, &(A) is parameterized by symmetric biadditive
maps from ' x I' to K*. It turns out that all ¢ € &(X) are biadditive [Schl].
This result, combined with Propositions 1.7 and 1.9, yields the following Theorem,
due to Nekludova [Lei, p. 280]. Scheunert has proved a similar theorem, in the
Lie algebra setting [Schl].

Theorem 1.11 (The Nekludova—Scheunert Theorem). Let A be a commutation
factor on T'. There exists a biadditive map ¢ such that the functor ®;< (defined
in (1.5)) takes values in SAlg, and the composite

(I A)-Alg — (I, AS)-Alg —— SAlg
I P,

is a faithful functor.
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If ¢ is a NS-multiplier, the functors /. satisfy automatically Theorem 1.11
and we call them NS-functors.

The T -algebras which are crossed product are characterized in [NO]. This
specifies as follows for (I', A)-commutative algebras.

Corollary 1.12. An algebra A is (I, A)-commutative and a crossed product if
and only if A~ I;l(AO[F]) for some ¢ € &(A).

Proof. Let A be a (T, A)-commutative algebra. Since odd elements are nilpotent,
A is a crossed product implies I" = I';. For such I', the NS-functor /., with
¢ € 6(A), takes values in the category (I',1)-Alg of commutative I'-graded
algebras. Moreover, it clearly sends crossed products to crossed products. Thence,
from the crossed product A°[T"], we get a (T, 1)-commutative algebra I.(A°[T'])
which is also a crossed product. Conversely, if A is (I, A)-commutative and a
crossed product, it is easy to prove that /_'(A) is isomorphic to A°[T'], and the
result follows. O

Remark 1.13. By definition, the algebra 7_'(A°[T']) is the A”-module generated
by the group elements (ey)qer , With product law egeg = g(a, f)eq4pg for all
a, p € T'. This algebra is usually denoted by A° x. I and called crossed product
of A by T relatively to ¢ (or simply crossed product with a cocycle).

We provide now some examples of NS-functors.

Example 1.14. The algebra of differential forms € over a smooth supermanifold
is a Z, x Z,-algebra, where the Z, x Z,-degree of a homogeneous differential
form « is provided by

o = (a lal),

with @ the “super” degree and |«| the cohomological degree modulo 2. There
exist two conventions for the commutation relation of homogeneous differential
forms [DM],
anB=(—1)@+elBlg Ao Deligne sign rule,
a AP = (=1)@tleDB+HBEDE A o | Bernstein—Leites sign rule.
They correspond to two distinct commutation factors on Z, x Z,, which are

related by a NS-functor /. (see [DM, p. 64]), with NS-multiplier given by
(@, B) = (=¥l Moreover, the morphism

gbZZzXZzBa I—>5L’+|O{|€ZZ

induces a parity on €2, which turns  into a supercommutative algebra for the
Bernstein—Leites sign rule.
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Example 1.15. Consider the algebra of quaternions H ~ CI(0,2), with multipli-
cation law

i k
i —1 k — ]
i = "= i
k 44 —3 i

(1.8)

Setting 1, . K € (Z,)? as follows,
T:=0,1,1), j:=(,01, k:=(1,10)),
the algebra H turns into a real ((Z,)3,A)-commutative algebra with commutation

factor A(x,y) 1= (=1)®¥) = (—1)¥171+x2¥2+X3¥3  where x = (x1, X2, x3) and

¥y = (1,52, ¥3) € (Z2)>.
The NS-multiplier ¢(x, y) := (—1)*¥102+y3)+%253 vyijelds the following twisted
multiplication:

* i j k
i #1 —K —j
i & | a1 | —f
k —j — i +1

Another choice of NS-multiplier, e.g., ¢(x, y) 1= (=1)¥1¥3+x201+32%73)  Jeads to
a different product:

* i j k
i —1 -]

k + i
k —j i —1

9

Since the two above tables are symmetric, both products “x ” are classically
commutative.

Example 1.16. According to Example 1.4, the Clifford algebra Cl(p,q) is a
((Z2)"*1, 1) -commutative algebra (n = p + ¢), with A(—,—) = (==~
Choosing as multiplier the biadditive map

clx,y) = (—I)Zf<j XiVj
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we obtain the new commutation factor A5 =1, and the algebra I. (Cl(p,q)) is
then commutative.

2. Categories of graded modules

From now on, A denotes a (I', A) -commutative algebra. We prove an analogue
of Nekludova—Scheunert Theorem for the monoidal category of graded .A-modules.
For graded modules over I'-algebras we refer to [NO], as for basic notions of
category theory, we refer to the appendix based on [MacL, Hov, Kel].

2.1. Definitions. A left (resp. right) graded A-module M is a I'-graded vector
space over K, M = @gerM B endowed with a compatible 4-module structure,
A*MB ¢ MetB (resp. MPA* c M*B) for all @, eT. As Aisa (T,A)-
commutative algebra, a left graded .4-module structure on M also defines a right
graded .4-module structure on M, e.g., by setting

(2.1) m-a=A(m,a)a-m,

for any a € A, m e M . A graded A-module is a graded module over A with
compatible left and right structures, in the sense of (2.1).

A morphism of graded A-modules is a map £ : M — N which is A-linear
and of degree 0,

Com +m'a) = L(m) + Lma and  {£(m) =,

for all homogeneous m,m’ € M and a € A. Notice that “.4-linear”, here and
thereafter, means right A-linear, as it is of common use in superalgebra theory.
We denote the set of such morphisms by Hom4(M, N). Graded .A-modules and
corresponding morphisms form a category denoted I'-Mod 4.

Example 2.1. If A is a supercommutative algebra (see Example 1.2), the graded
A-modules are usually called supermodules (see, e.g., [DM]). Accordingly, the
category (Zp)-Mod 4 is denoted by SMod, .

2.2. Closed symmetric monoidal structure. The tensor product of graded
bimodules over a I"-algebra and the internal Hom functor (see [NO]) particularizes
in I'-Mod 4 as follows.

2.2.1. Tensor product. Let M,N be two graded .A-modules. Their tensor
product is defined as the quotient K-module

M®sN:=(M®xN)/;
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where [ = span{ma @ n —m ® an |m € M,n € N,a € A}. The I'-grading

(2.2) MeiNY =D, ,_ {Zm ®n ’ meM%ne Nﬁ}

together with the following A-module structures,
a(m®@n) := (am) @ n and (m®n)a:=m® (na) ,

turns M ® 4 N into a graded A-module. The tensor product ® 4 endows the
category I'-Mod 4 with a monoidal structure. The isomorphism

,BM‘NZ M®AN — N®_AM
men +— A(mn)n®m

defines a braiding, which satisfies 8, ,, 08, v =id,g ,y thanks to the properties

of the commutation factor A. Hence, the category I'-Mod4 is a symmetric
monoidal category.

Remark 2.2. If A and B are two (I, A)-commutative algebras over KK, their
tensor product A ®k B is I'-graded according to (2.2). The natural product

(a1 @ bi)(az ® by) = /\(ZJT, ay ) (araz) @ (bi1by)

turns A ®k B into a (I", A) -commutative algebra.

2.2.2. Internal Hom. A monoidal category is closed if the binary operation &
defining the monoidal structure admits an adjoint operation, the so-called internal
‘Hom functor. By definition, this latter satisfies the natural isomorphism

Hom(N ® M, P) ~ Hom (N, Hom(M, P)),

for all objects M, N and P . The next result is an easy adaptation of the ungraded
case and appears, e.g., in [NO, Prop. 2.4.9].

Proposition 2.3. The category T'-Mods of graded A-modules is a closed
symmetric monoidal category. The internal Hom is given by

Hom (M, N) := @yer Homy (M, N)
where, for each y € T,
Hom"\(M,N):={f:M — N| [ is A-linear and f(M*) C N forall @« e T} .
The A-module structure of Hom (M, N) reads as
(afYm):=a- f(m) and (fa)(m):= A(a,m)f(m)-a,

where f is a morphism and m € M, a € A are homogeneous.
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By abuse of notation, we will refer to elements in Homu(M,N) as
graded morphisms and to elements in the subsets Hom’,(M,N) as homoge-
neous morphisms or more precisely as morphisms of degree y . Elements in
Hom% (M, N) = Hom4(M, N) will be called either morphisms or morphisms of
degree 0.

2.3. An extension of the Nekludova—Scheunert Theorem. Assume ¢ € G(A)
is a NS-multiplier, so that the Nekludova—Scheunert Theorem applies. The
isomorphism of categories /., defined in (1.7), yields an analogous isomorphism
between categories of graded modules,

I/;: I'-Mod 4
M
Hom (M,N)> f

F-MOdA
M
S € Homy(M,N) .

IR

Here, M := E(M) is the I'-graded vector space M endowed with the A-
module structure

(2.3) axm:=c¢(a,m)a-m, Vae A VmeM .

Moreover, the regrading functor ®,< : (I', A5)-Alg — SAlg induces analogously
a regrading functor on graded modules

(2.4) ® ;¢ : T-Mody — SMod4

for all (T", AS)-commutative algebra A. Hence, we get a faithful functor

—~~ o~

Is ® <
I'-Mod 4 — I'-Mod 4 —— SMod 4 .

To investigate the properties of the above functors with respect to the symmetric
monoidal structures on I'-Mod4, I'-Mody and SMod,, we need further notions
of category theory.

2.3.1. Closed monoidal functors. In this section, we use notation from the Ap-
pendix. For example, monoidal categories are written as quintuple: (C, ®, I, a,r.1)
refers to a monoidal category C with tensor product ®, identity object I and
structural maps (o, r, /).

Definition 2.4. A lax monoidal functor between two monoidal categories
C,®,1,a,r,1) and O, ®,I',a',7',1") is a triple (F,u,t) which consists of

(i) a functor F :C— D,

(ii) a morphism u : I’ — F(I) in D,
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(iii) a natural morphism 7, i.e., a family of morphisms in D natural in
X,Y € Ob(Q),
ey | FIX)RFY) = F(X®Y),

such that the following diagrams commute.

/
F(X).F(Y).F(Z)

(FORFM))RF(Z) » FOOR (FNRF(2))

Ty y X idF(Z) idF(X) X1y,
FIX®Y)RF(Z) FIX)RF(Y ® Z)
Txgy.z yvyez
Fayy,

F(xor) ez) F(X® (Y ©2))

I , F;T(X)
I'R F(X) —— F(X)
UK id, Fly iy, U s
FORF(X) —— FI®X) FORFD) —— FX 1)
I,X X,1

A lax monoidal functor is called a monoidal functor if u and all 7,, , are
isomorphisms.

Definition 2.5. A (lax) monoidal functor between symmetric monoidal categories
(Fou,7): (C,®,I,a,rl,B) — O, x,.I'a, 1", B)

is called symmetric if it commutes with the braidings, i.e., if the following diagram
commutes.

!

FOOR F(Y) —2" o p(yym F(X)
TX,Y TY‘X
FIX®Y) = s F(Y @ X)

X.Y



380 T. Covoro and J.-Ph. MicHEL

Given a (lax) monoidal functor (F,u,t) between two closed monoidal
categories, one can construct a natural transformation n via the internal Homp
adjunction as follows (we omit indices of natural transformations):

Homp (F(’Homc(X, Y))= F(X). F(Y))

~ Homyp (F(’Homc(X, Y)), Homp(F(X), F(Y)))
(2.5) Flev)otr <

where

ev: Homc(X,Y)® X - ¥

is the evaluation map. The triple (F,u,n) is a lax closed functor between the
closed categories (C, Homc,Ic) and (D, Homp, [p) (see [EK] for the definition). It
is a closed functor if moreover 7 is an isomorphism. Note that, even if u and
T are isomorphisms, n may not be one.

Remark 2.6. In the language of Remark 1.6, given a NS-multiplier ¢ one easily
define a symmetric monoidal functor between the symmetric monoidal categories
of graded vector spaces

(Id,idg, ) : (I'-Vect, ®k,K,s3) — (I'-Vect, ®k, K, 5 super)
by setting
tww)=¢c(V, W)vQuw.
In other words, this corresponds to a change of symmetry (see [DM]). As one
can check by direct verification, the above symmetric monoidal functor induces
a functor between the categories of commutative monoids over I'-Vect with the

two different symmetries s; and sjsuwer. This recovers Proposition 1.9 and gives
another way to prove the Nekludova—Scheunert Theorem.

2.3.2. NS-functors on modules. Obviously, from the regrading functor D e
defined in (2.4), we obtain a symmetric monoidal functor,

(® js,id,id) : T-Mod 4 — SMod ,

which induces via (2.5) a closed functor (@ j<,id, id) .
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Theorem 2.7. Let A be a (I, A)-commutative algebra, ¢ € G(X) and A = 1-(A)
the associated 1" -graded supercommutative algebra. For every u € Aut4(A), there
exists a natural transformation t, such that

(II;,u, 1) : I'-Mod 4 — I'-Mod 4

is a symmetric monoidal functor, which induces a closed functor (E,u,n).
By composition with the regrading monoidal functor (® ,s,id,id), we get a
symmetric monoidal functor

—~

(®2c0 70, @ ac(), Bye(r)) : T-Hods — SMods

e~

which induces a closed functor (6,1g o/, D e (u), a;,w(??))-
Proof. 'The map u : A — A being an A-module morphism, it is completely
characterized by u(1), its value on the unit element 1 € A. By construction, u(1)
is necessarily of degree 0 and invertible. For any pair M, N of .A-modules, we
set
T: MRN — M®N
mRn > cm,n)u(l)"! « (m®n)

where M = 7; (M) . This family of morphisms of graded .A-modules is natural
both in M and N and (/. ,u,t) is easily checked to be a symmetric monoidal
functor. The induced natural transformation n (see (2.5)) is then given by

n: Homy(M,N) — Hom 4 (M, N)
f = () me s(fmyu()! * f(m))

which is clearly invertible.
The remaining statement follows from the rule of composition of monoidal
and closed functors (see [EK]). U]

We are now ready to prove our first main theorem, stated in the Introduction.

Proof of Theorem A. As a consequence of Theorem 2.7 and its proof, we have
a closed functor (/. ,id,n.), with A-module isomorphisms

I; (Endag(M)) — End 4 (1(M))

2.6 Is -
=9 s s (1e(f): m > o(fim) £m))

where f and m are homogeneous. Note that we have End 4 (M) = 7; (End 4(M))
as algebras and as I'-graded A°-modules, but they admit distinct A- and A-
module structures (see (2.3)). A direct computation shows that Equation (0.1)
holds and Theorem A follows. O]
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3. Free graded modules and graded matrices

Throughout this section, A is a (I', A)-commutative algebra over K. We focus
on free graded modules, investigate the notion of rank and transfer the NS-functors
I to algebras of graded matrices.

3.1. Free graded structures. We define and build free graded modules and free
graded algebras. The latter are constructed from graded tensor algebras.

3.1.1. Free graded modules. Let S = L, crSY be a I'-graded set. We denote
by (S)k the I'-graded vector space generated by S over K.

The free graded A-module generated by S is the tensor product (S)4 =
A ®x (S)k , with A-module structure given by a - (b ® m) = (ab) ® m, for all
a,be A and m € (S)k . The I'-grading of (S)4 is defined by

(5)4)" = P A*ex ((5)x)" .
a+p=y
forall y € I'. A free graded A-module M is a graded .A-module freely generated
by a subset S C UyerM?Y, called a basis of M (cf. [NO] for the notions of free,
injective and projective graded modules over I'-algebras). This means that M is
isomorphic to A ®x (S)k , and an element m € M decomposes in a given basis

(ei)ier as follows,
m= Zei -m' = Zni -e,
il il

where the map i > m' has finite support. Right and left components are linked
via the relation (2.1) between left and right .4-module structures. By convention,
we only consider right components, that is M ~ (S)k ®x A. Note that m ¢ M
is_homogeneous of degree y if and only if its components m' are of degree
mt =y—7¢; forall i el.

Lemma 3.1. Let M be a free graded A-module with basis S, and ¢ a NS-
multiplier. The image of M under the NS-functor I is a free graded I.(A)-
module with the same basis S .

Proof. By construction, I : A = (4,) — A = (A,x) changes the product,
axb:= g(E’,E)a b, and 7; M - TE(M) changes the graded .4-module
structure into the graded A-module structure a «» m := ¢(a, m)a-m . The
decomposition of an element m € M in a basis (e;);e; varies accordingly:

Iy = Zei .mt = Ze,— * (s(75, mim')
iel iel

so that (e;);er is also a basis of the module f;(M) . U]



Determinants over graded-commutative algebras 383

3.1.2. Tensor algebras. In this paragraph, we follow [Schl, Sch2]. The tensor
algebra of a graded A-module M is an A-module and an algebra,

TM) =M =AoM&MUM)SMIUMRIUM) & ...,
keN

with multiplication given by the tensor product over A . The algebra T(M) is
more precisely a (N x I')-algebra with the following gradings:

e the N-grading, called weight, given by the number of factors in M ;

e the I'-grading, called degree, induced by the I'-grading of the module M

(see (2.2)).

The graded symmetric algebra on M is the A-module and (I", 1) -commutative

algebra
\/ M :=T(M)/T .

where 7 is the homogeneous ideal of T(M) generated by the I'-graded
commutators

v,wlp =v@4w—-AV, W)w®sv, v.,wEM.
Analogously, the graded exterior algebra on M is the A-module and T -algebra

AM:=TM)/ 7.

where J is the homogeneous ideal of T(M) generated by the I'-graded anti-
commutators

VRAWAHAD, W) w v, v,wEM.

3.1.3. Free graded algebras. Let S = L,crS” be a I'-graded set and A be a
commutation factor over the grading group I'.

We view K as a (I', A)-commutative algebra concentrated in degree 0 so
that definitions of the previous section apply to the I'-graded K -vector space
(S)k . The free T -algebra generated by S is the tensor algebra T((S)k) . The
free (', A)-commutative algebra generated by S is the graded symmetric algebra

G.1) K[S]:=\/(S)k .

which is the algebra of polynomials in the graded variables (X;);cys.
We denote by (S)k the vector space (S)x with reversed grading

(EK)V ={S)g)”, forall yerl.

If (I',A) is such that I, = @, we define the algebra of Laurent polynomials in
graded variables X; € S by
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(3:2) K(S, 57 = (VS ©x \/ k) / 7

where 7 is the ideal generated by the elements (X; ® X;)—1, for i =1,...,r.
According to Remark 2.2, the space K[S,S™!], is a (I, A)-commutative algebra,
which is a crossed product.

3.2. Basis of free graded modules. Let (¢;);=;,.., be a basis of a free and
finitely generated graded .A-module M . The rank of (e;) is n € N, the degree
of (e;) is the n-vector

vi=(T1,...,Tp) e,

which depends on the order of the basis. The sequence (ry)yer € NIT!, where
ry=Mei | Ti=p.i=1....n},

is called the I'-rank of (e;). Obviously, we have } . r, = n. Two bases have
same [ -rank if and only if they have the same degree up to permutation.
The underlying Z,-grading of I (see (1.4)), induces a Z,-rank, also called

superrank,
(s 1) = E ry . E ry | -
01 yel'%) yef‘T

The rank and superrank are invariants of the graded module M .

Proposition 3.2. Let M be a free and finitely generated graded A-module. Any
two bases of M have the same rank and superrank, henceforth defining the rank
and superrank of M .

Proof. Let M be a free graded A-module with two bases (e;) and (eJ’.). Denote
by ¢ € &(A) a NS-multiplier. By Lemma 3.1, (¢;) and (e}) are then bases of the
graded /.(A)-module TE(M ) , with unchanged superranks. Since 7;(M ) is a
supermodule over the supercommutative algebra /. (A), the superrank of all the
bases of 7;(M) are equal (see, e.g., [Var, p. 114]). Hence, (¢;) and (e}) have
the same superrank. L]

For the I'-rank, the situation is more involved and depends on the algebra
A . A Theorem of Dade [Dad] yields the following result.

Proposition 3.3. Let M and N be two free and finitely generated graded A-
modules, with A a strongly graded algebra. Then, M and N are isomorphic if
and only if they have same rank.
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Equivalently, if A is strongly graded, a free graded .A-module of rank n € N
admits bases of any degree v € I'". As the grading group of a strongly graded
algebra satisfies I'; = &, rank and superrank are equal for its graded modules.
Set

Tax :={y e T | A N A* £ 2},

where A* is the subgroup of invertible elements. If the algebra A is strongly
graded and A° is a local ring, then A is a crossed product (see [Dad]) and
Iy< = I'. In general, T'4x is a subgroup of T'" and T4x N I‘T = @, as odd
elements of A are nilpotent. Admissible degrees and I'-ranks of bases of M
can be determined by studying the translation action of (I'49" on I'?. To our
knowledge, the point (ii) in the following proposition is new.

Proposition 3.4. Let M be a free graded A-module of rank n, admitting a basis
of degree p € I'".

(i) For all v € (T'y9"™ + ., there exists a basis (f;) of M of degree v;

(ii) Up to reordering its elements, the degree v of any basis of M satisfies
ve (I"+wp, if A% is a local ring.

In order to prove this, we need a definition and a lemma.
A maximal homogeneous ideal is a proper homogeneous ideal / such that
any other homogeneous ideal containing 7/ is equal to A.

Lemma 3.5. Let ¢ € &(A), and A be a (T, AS)-commutative algebra with A°
a local ring. If I is a maximal homogeneous ideal of A and IV =1 NAY, then
we get AY\ IV =AY NA* forall yeT.

Proof of Lemma 3.5. Let I be a maximal homogeneous ideal of A. As [ is
homogeneous, the algebra A/; is I'-graded and (A/7)" = A”/yv . Assume that
a € AY\IY . The ideal (a)+ I is homogeneous, hence (a)+ 7 = A by maximality
of 7. This means there exists b = ) - by € A such that ba+1 =1+1.
Projecting onto the 0-degree part, we get 1 — (h_,)a € 1°. Since A° is a local
ring, 1 — (h—,)a is also contained in the maximal ideal of A% and then a is
invertible in A . This means A \ IV ¢ A N A and the converse inclusion is
obvious. Moreover, as a is invertible in A, a 4+ I is invertible in A/I . ]

Proof of Proposition 3.4. (i) Let (e;) be a basis of M of degree p € I'" and
p' = () € (Fx9". We can choose elements a; € A% N A* and set f; = e;a;
for every i = 1,...,n. Then, (f;) form a basis of M of degree v =pu + u’.

(ii) Let (e;) and (f;) be two bases of M of degrees w,v € I'" respectively.
Let ¢ € &(A) . According to Lemma 3.1, the module M := I. (M) is a free
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graded module over the (I',A%)-commutative algebra A := I.(A), with same
bases (e¢;) and (f;) .

Let I be a maximal homogeneous ideal of A . Then, the quotient M /; s is a
graded (_/_l/ ])—module. Furthermore, the bases (e;) and (f;) of M induce bases
(le;]) and ([fi]) of M/ py , with unchanged degrees. We have [fi] = }_; ai;[ei]
with at least one non-vanishing coefficient. Up to reordering, we can suppose
aii € (A/7) \ {0}. Since a;; is homogeneous, of degree @;; = 7;‘ -7,
there is an invertible element of same degree in A4, by Lemma 3.5. This means
7 i —@; € ;= . As homogeneous invertible elements of A and A coincide, we
get v € (I'49" + pw, up to reordering entries of v. U

As a direct consequence of (i) in Proposition 3.4, we get the following result.

Corollary 3.6. Let A be a (I',A)-commutative algebra whose even part is a
crossed product, i.e., U ax = T . Then, two free graded A-modules are isomorphic
if and only if they have same superrank.

Note that Clifford algebras (Example 1.4) satisfy the condition I'4x = I}, so
that their free graded modules are characterized by the rank. For the algebras
introduced in Example 1.3, which generalize the dual numbers, the situation is
opposite: T'yx = {0} and all bases of a free graded module have same I'-rank.
Over such an algebra, two free graded modules are isomorphic if and only if
they have the same I -rank.

3.3. Graded matrix algebras. In this paragraph, we introduce graded matrices
over (I',A)-commutative algebras, partly following [KN, COP]. See also [NO,
HW] for graded matrices over I'-algebras, without commutativity assumption.
Let mn e N and p € ', v € T'". The space M(u x v; A) of u xv graded
matrices is the K-vector space of m x n matrices, over the (I, A)-commutative
algebra A, endowed with the I'-grading:

Mg x v:.A) = M (n x v: A)

yell

where, for every y € ',
MY (e x w3 A) = {X = (X'))i; | XTy e ATt}

The elements of MY (u x v; A) are called homogeneous matrices of degree y, or
simply y-degree matrices.

Let p e N and = € I'?. The product of m x n matrices with n x p matrices
defines a product
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M(e x v A) x M(v x ; A) — M(p x ; A)

which is compatible with the I'-grading, i.e., M%*(u x v: A) - MP(v x ;. 4) C
MEHB (u x ; A) . Tt turns the space M(v;.A) := M(v x v; A) into a T -algebra.
Moreover, M(v;.4) admits graded .4-module structures. We choose the following
one, defined for all « € ' by
A x M(v; A) — M(v:.A)
Ala,vy)a
(3.3) (a.X) —» a-X = X.
Ao, vy)a
From the point of view of category theory, we can see M(v;—) as the functor

M(v;—): (I',1)-Alg — I'-Alg

which assigns to each graded algebra A the graded algebra of v-square graded
matrices, and to each I'-algebra homomorphism f : A — B the map

M(f): M¥:A) — M(v; B)
(x), = (raip), .

The group of invertible v-square graded matrices is denoted by GL(v;.4), and
analogously, we have the functor

(3.4)

(3.5) GL(v;—): (I',A)-Alg — Grp .

The subset of invertible homogeneous matrices of degree y is denoted by
GLY(v;A). Similarly to the ungraded case, one gets

Proposition 3.7. Let M, N be two free graded A-modules with bases (e;)
and (e}) of degrees pw € I'" and v € I'" respectively. Graded morphisms can
be represented by graded matrices via the following isomorphism of I -graded
K -vector spaces,

Homa(M,N) = M(v x p;.A)
/ = ()i

where Fij are determined by f(e;) =) ;e - Fij Af M =N and (e;) = (e),
then (3.6) is an isomorphism of 1" -algebras and graded A-modules, namely
End (M) ~ M(v; A) .

(3.6)

It is necessary to write matrix coefficients on the right of the basis vectors
to get a morphism of algebra. This leads to an atypical matrix representation for
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diagonal endomorphisms, but which fits with the .4-module structure defined in
(3.3). Namely, the endomorphism [, specified by f(e;) = a;e; with a; € Ar“;f,
reads in matrix form as
A(@y,er)a
=

A(&Jm?ﬂ) Un

Remark 3.8. In the notation of Proposition 3.7, the free modules N and M*
are isomorphic to (e},....e,)k ®k A and A ®xk (e],....e,)k respectively,
with (e]) the dual basis of (e;). Since the space of internal morphisms satisfies
Hom 4(M,N) ~ N®M™*, it is isomorphic to {e],...,e,; )k QKR ASK (e}, ..., er K -
This explains the formula relating f € Homu(M,N) with the corresponding
matrix F € M(v x u;A), as well as the .A-module structure defined in
Equation (3.3).

3.4. Change of basis. Let M be a free graded .A-module of rank n, with bases
(e;) to (e;) of degree m € I'" and v € I'" respectively. A basis transformation
matrix from (e;) to (e;) is a graded matrix P e MO(v x w; A) with inverse
P71 € M%u x v; A). The graded matrices F € M(u;A) and F’ € M(v;A)
representing the same graded endomorphism f € End (M) are, as usual, linked
through the equality
F=p-LFp,

This provides the isomorphism of I'-algebra, M(u;.A) >~ M(v; A) .

We use now particular change of basis to get graded matrices of specific
forms.

3.4.1. Permutation of basis and block graded matrices. Assume I is of finite
order N. We choose an ordering on I", i.e., a bijective map

{1,...,N} — T
U = Yy.

By permuting the elements of a basis (e;), of degree v € I'" and I'-rank
r = (y,)u=1,..n » We obtain a basis (elf) with ordered degree pm € I'". This
means U; < i1 if i =1,...,n— 1. In this new basis, a homogeneous graded
matrix X € M*(u;.A) is a block matrix

X11 | AN

(3.7 X=| ... |...| ... |

XN .| Xyn
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where each block is a matrix of the form Ay, € M(ry, xry,;.A), with entries in
A*~vutvv  This representation of the algebra of graded matrices is the one used
in [COP, Cov], where it is referred to as M(r; .A) .

3.4.2. Rescaling of basis and classical matrices. Assume that the graded algebra
A contains an invertible element t, € A% of each even degree «. Then, one can
change the degree of a matrix through rescaling matrices

to,

tan

with oq,...,0, € Fﬁ. This leads to the following result.

Proposition 3.9. Assume T =< = T}

and (r,,r;) € N2, For all v and p in

I‘ﬁ% X F-er, we have an isomorphism of 1 -algebras
M A) >~ M(v; A) .

I—
. 0 Lt . . J
If more specifically p € I';°, the O-degree matrices over A identify to the usual
matrices over the commutative algebra A°, namely, we have an isomorphism of
I"-algebras

(3.8) MO (s A) = M(r 5 A”)

Proof. Let M be a free graded A-module with a basis of degree u € I’(_:ﬁ X F;T.
By Proposition 3.7, we have M(u;A) ~ End (M) . In view of Corollary 3.6,
for all v € Fgﬁ X FTrT, there exists a basis of M of degree v. Applying again
Proposition 3.7, we deduce

M(v; A) >~ EndA(M) ~ M(u; A) .

As a direct consequence, if p € Fg‘_’ we have M(u:; A) >~ M(0; A), with
0 = (0,...,0) € I''s. By definition of the degree of a graded matrix, this leads
to (3.8). ]

The second part of the Proposition 3.9 is well-known. This is a consequence
of a Theorem of Dade [Dad], which holds for matrix algebras over any strongly
graded T -algebra.



390 T. Covoro and J.-Ph. MIicHEL

3.5. Natural isomorphisms on graded matrices. Let ¢ € G(4) and M be a
free graded .4-module of rank n, with basis (¢;) of degree v € I'". We denote
by A= I.(A) the I'-graded supercommutative algebra given by the NS-functor
I . Theorem A, together with the isomorphism (3.6), yields an isomorphism of
I-graded A°-modules

Joa: M(v; A — M A

(3-9) X = Jea(X)

which explicitly reads, on a homogeneous matrix X of degree x, as
(3.92) (Je.a(X)), ; == (x.v)g (v, x —vi +v)) 7' X1,

for all i,j € {1,2,...,n}. The inverse of J. 4 is of the same form, namely
(Jng)ﬁ1 = Js.a» with §(x,y) := ¢(x,y)”! for all x,y € I'". From Theorem A,
we deduce the following

Proposition 3.10. The map J. 4 defined in (3.9) has the following properties:

(1) for any homogeneous matrices X,Y € M(v; A), of degree respectively x and

Y,
Jo(XY) =¢(x, )" T (X)Jc(Y)

(2) for any graded matrices X,Y € M(v; A), with either X or Y homogeneous
of degree 0,
Jo(XY) = Jo(X)Jc(Y)

(3) for any homogeneous invertible matrix X € GL*(v;.A), Jo(X) is invertible
and
=, | =
Je(X™) = g(x,—x) (e (X))

The family of maps J. 4, parameterized by A € Ob((I',1)-Alg), is a natural
isomorphism

(I', A)-Alg

M (v:lc ()

where the functor M (v; /c(—)) is the composition of the functor M (v:—) (recall
(3.4)) with the NS-functor /. . The restriction of J. 4 to O-degree invertible
matrices has further properties.
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Proposition 3.11. Let ¢ € G(A) and v € T". The family of maps
(3.10) Jen: GLO(v: A) = GLO(v: A) |
parameterized by A € Ob((I',A)-Alg), defines a natural isomorphism

GLO (v; —)
(I, A)-Alg H Je Grp

S Y A

GLY (v: 1c(—)) .

Proof. By Proposition 3.10, the map (3.10) is a group isomorphism. The naturality
of J 4 follows from the diagram of groups

GLO(v; A) SLJ) > GLO(v:; B)

Jg,AJ{ l.]g,g

GLO(v: A) > GL°(v: B)
' GL (1 (/) b

which is commutative for all (T", A)-commutative algebras A, B and any T -algebra
morphism f: A4 — B. O

4. Graded trace

Throughout this section, A is a (I", A)-commutative algebra over K and M is
a free graded A-module of finite rank. We use the closed monoidal NS-functors to
pull-back the supertrace to graded endomorphisms of M . This yields the graded
trace introduced in [Sch2] and extends the one introduced in [COP]. We prove
its characterization (Theorem B) and provide a matrix formula for it.
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4.1. Definitions. A Lie color algebra, or more precisely a (I',A)-Lie algebra
(see, e.g., [Schl]), is a I'-graded K -vector space, £ = EB)/EF LY, endowed with

a bracket [—,—], which satisfies the following properties, for all homogeneous
a,b,ecel,
e A-skew symmetry: [a,b] = —/l( a, b )[b,a] ;

e Graded Jacobi identity:  [a,[b.c]] = [[a,b].c] + A( @, b ) [b,]a,c]] .

A morphism of (I', A)-Lie algebras is a degree-preserving K-linear map f : £ —
L' which satisfies f([a,b]) = [f(a), f(b)], for every a,b € L.

Examples of (I',A)-Lie algebras are I'-algebras, e.g. the algebras A or
End (M), endowed with the T'-graded commutator

[a,b]; :=ab—A(T. D )ba .

Note that Lie superalgebras are (Z,, A'P*")-Lie algebras. By definition, a graded
trace is a degree-preserving A-linear map I'tr: End (M) — A, which is also a
(T, A)-Lie algebra morphism.

4.2. Proof of Theorem B. Let ¢ € G(A) and I. be the corresponding NS-
functor. We use the notation A = I.(A), A* = A" and M = I. (M) . In
view of Theorem A, the linear isomorphism 7. : Enda(M) — End 4 (M) satisfies

ne([f.gla) =¢ (7 ; E’)_l [ (f), ng ()] asuper ,

for any pair f,g of homogeneous endomorphisms. Hence, a graded trace
t: Ends(M) — A induces a Lie superalgebra morphism, to(n.)"! : End (M) —
A . As well-known (see, e.g., [COP, Theorem 1]), such a morphism is a multiple
of the supertrace str by an even element in AO Since a graded trace respects
the I'-degree, the map ¢ is then equal to I'tr up to multiplication by an element
of A°.

4.3. Graded trace on matrices. Let n €¢ N and M be a free graded .A-module
of rank n with a basis (e;) of degree v € I'"". Through the isomorphism (3.6), the
graded trace I'tr = strorn. automatically defines an A-linear (I',A)-Lie algebra
morphism

I'tr: M(v; A) — A.

With the notation of Section 3.5, we have I'tr = stroJ. . Hence, for a homogeneous
matrix X = (X';);; € M*(v; A), we find that

Ttr(X) =Y " A(vi.x +v) XY |
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By linearity, the graded trace of an inhomogeneous matrix is the sum of the
graded traces of its homogeneous components. The above formula shows that I'tr
does not depend on the NS-multiplier ¢ chosen for its construction.

Remark 4.1. According to Remark 3.8, the algebra M(v;.A) is isomorphic
to {er,...,en)k ®k A QK (e},...,e})x. The composition of the symmetry
(e1,...,en)Kk QKA >~ ARk (e1,...,e,)x and the standard trace (eq,...,en)K ®K
(ef,....ey)k — K yields then the graded trace.

In the categorical language, the graded trace I'tr defines a natural transfor-
mation

M(v; —)

RN

(I, A)-Alg I'tr (T',A)-LieAlg

e, F

Lie(—)

where (I, A)-LieAlg is the category of (I, A)-Lie algebras and the functor Lie
associates to each (I',1)-commutative algebra A = (A4,-) the corresponding
abelian (I', A)-Lie algebra (A, [-,*]y).

5. Graded determinant of (-degree matrices

Throughout this section, A is a (I', ) -commutative algebra over K. Moreover,
we restrict ourselves to the purely even case, i.e., I' = I'; . The NS-functors allow
us to pull-back the determinant to 0O-degree invertible matrices over A . This
yields the graded determinant introduced in [KN] and extends the one introduced
in [COP]. We prove its characterization (Theorem C), provide a new formula for
it (Theorem 5.4) and establish some of its properties.

5.1. Proof of Theorem C. We first prove existence of the graded determinant
I'det” and then its uniqueness. We end with a remark.
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5.1.1. Existence. We define the natural transformation I'det’ as the vertical
composition (see Appendix A.3.1)

6LO (v:1c ()

(I, A)-Alg Grp

CASUN

|

(°)”

where J¢ is the natural isomorphism introduced in Proposition 3.11 and det;_(-)
denotes the natural transformation obtained by whiskering (see Appendix A.3.3)
as follows:

GLOw; I (-)

d€‘[1§(_)
/\
(5, )ALy — T | g G
IS \_/f
()"

((ASYN

Here, (I;, 1) -Alg denotes the category of commutative algebras which are I -
graded.

By construction, [det® satisfies the first axiom of Theorem C and reads as
(0.2). The second axiom of Theorem C follows then from the explicit expression
of Jc given in (3.9a).
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5.1.2. Uniqueness. We need a preliminary result, which generalizes a Theorem
of McDonald [McD].

Lemma 5.1. If (A4).aer,i)-a1g is a family of maps
Ay GLO(w: A) — (A%

satisfying axiom ar of Theorem C, then there exists t € Z and ¢ € {£1} such
that

(5.1) Au(X) = e (Tdet®, (X))" .

for all X € GL%(v; A), with Tdet® as in (0.2).

Proof. We generalize the proof in [McD].
According to (3.1), we denote the (I',A)-commutative algebra of graded
polynomials, with homogeneous indeterminates X' ; of degrees

—

X’j =v;j—y, foralli,j=1,...,n,

by K[Xij li,j =1,...n]. Thus, X := (Xij)i,_,- is a formal v x v graded matrix
of degree 0.
From (0.2) and (3.9a), it follows that I'det’(X) is an element of K[Xij |i,

j =1,...n], and by localizing this algebra at the powers of TI'det’(X), we get
the (I', A)-commutative algebra

|
Tv):=K Xl.Xl,....X"n‘—].
@) [ s Idet®(X)

For every object A € Ob ((I", 1)-Alg) , we define the map

04 G A) —  Hom(T(v), A)

@i (a: Xt r—>aij) :

This is an isomorphism of groups, which is natural in A . Indeed, for every I'-
algebra morphism f € Hom(A, B), the following diagram of groups commutes:

GL
GLO(v; A) ) » GLO(v; B)

H(V)AJZ ZJVH(V)B

Hom(T'(v), A) 7 » Hom (T'(v), B)
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This means that the covariant functor GL°(v;—) is represented by the (T,A)-
commutative algebra 7'(v). In particular, the functor ((—)°)”, which is equal to
GLO(p;—) for p = 0 €T, is represented by 7(1) = K [Y, 3], with indeterminate
Y of degree 0. We deduce the following bijection

Nat (GLO(v;—), ((—)O)X) = Nat(Hom(T(v), ), Hom(T (1), —))
A - k:=0(1)oAof()!
where Nat(—, —) denotes the set of natural transformations between two functors.
On the other hand, thanks to the Yoneda Lemma, there exists a bijection
Nat (Hom(T(v), Yy, Hom(T'(1), —)) = Hom (T (1), T(v))
k ={kq| A€ (T,1)-Alg} o X .
This correspondence goes as follows: any natural transformation « defines a I'-

algebra morphism x := k7 (idr(v)) and conversely, given an algebra morphism
» , a natural transformation is completely defined by

ka(f):= fox,

for all f € Hom(7'(v),.A) and all object A € Ob ((I‘,A)—Alg) .

Since 7'(1) = K[Y, 3], an algebra morphism x € Hom (T(1),T(v)) is
characterized by »(Y), which is necessarily an invertible element of 7'(v). By
construction, the only possibilities are

#(Y) = + (Tdet® (X)),

with ¢ € 7 . Hence, via the two above bijections, we finally obtain that any
natural transformation A : GL°(v; —) = ((—)°)” satisfies (5.1). O

Let A be a natural transformation satisfying axioms a1 and am of Theorem
C. The preceding lemma forces A to satisfy (5.1), and axiom am yields then
A = Tdet’. This concludes the proof of Theorem C.

Remark 5.2. The graded determinant introduced in [KN] satisfies axioms a1 and
an of Theorem C. Hence it coincides with T'det’.

5.2. Explicit formula. Let n € N, S, be the group of permutations of {I,...,n}
and o € S, . The decomposition of the permutation ¢ into disjoint cycles can
be written in terms of an auxiliary permutation & € S, as follows,

(52) o= (6(1)8(2) ...8(1‘1))(8(1'1 + )G +2)

...E(ig))--- (a(im_l + 1) 0 (im—1 + 2) ---ﬁ(im)) ,
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with i; < ... <i,, = n . This means

{0(8(k))=8(k+1) if k& it . im)

5.3
. 0(G@;) =0(G;—1+1) for j=1,...,m

with iy = 0 by convention. Such a permutation & is called an ordering associated
to o.

Example 5.3. The permutation

0_12
~\ 4 5

can be written in cycle notation as

3 4 5
213)685

o= (14)(253) or o = (532)(14).

The corresponding orderings are respectively
~ [ 2 3 4 5 and,\_12345
7T\ 4 2 5 3 T s 321 4/

Using the above notion of ordering, we derive a formula for the graded
determinant I'det’, extended to Mo(v;A) via its defining equation (0.2).

Theorem 5.4. Let v € I'". The graded determinant of a 0-degree matrix
X == (Xij-) e M%(v; A) is given by the following formula

4)  Tdet®(X) = X°W .x°@ .xo®
(5.4) et (X) UGXS: sgnie) o(Tm) Xo(a(2)) X"(“(”))’

where the right-hand side does not depend on the chosen orderings & associated
to each o € S,,.

Proof. Let ¢ € ©(A), and define (Xij) = J.(X) . By Theorem C, the graded
determinant satisfies FdetOA(X ) = dets(X). Since the product “x” in A is
commutative, we obtain

0 _ o (1) 7 (2) CRG)
Tel )= Z sgulo)d o(o ) »X o(o@) oo X o(cm)’

o€ S,
for any ordering & associated to o.
o *X?;(z) *'--*Xg(r) . The
O'(U(l)) - 0(0(2)) - U(U(f))
permutation o admits a decomposition into disjoint cycles as in (5.2), therefore

Let us now consider one monomial X
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n il i2

x°® = [TTx"UL x°UL |
= o(0) JDI— oGn) | [ < oo |

j=1 Jj=i1+1

n

()
| Il X C%)

J=im—1+1
with [] denoting the product with respect to “x ™.
Since Jo(X) is a matrix of degree 0O, the degree of its entries is given by

() _ e
X 0(?(,')) o 1)cr(a (i)) UU(
are then of degree 0 and we deduce

deg i - In view of (5.3), the m products above

n i1 in

o) _ () _ ()
x50 = (X560 || 1L X0

j=1 j=1 j=i1+1
- a(j)
a(j
Il X (5(n)

J=im—1+1

Using X'; = ¢(vi,v; —vj) X'; (see (3.9a)) and the definition of “x 7, we get

PG (X’o‘(m) *__.*X?(n))

T oG+ \T oG+ = o
:g(vA P — P ) (V’\ P — U )_1 X?(j)
G+ Yo T Veu+n ) S \Yeuy Ve T Ve TG4

(%G L x%0
= o(j+2) ~ o)’

for any index 1 < j < i;. By induction, we then obtain

=) 22 ai1)
= o(?(l)) e a(E(z)) i exFk a(?f(il))
_ yo() yo@ | yol)
o o(’&(u) Xa(?;(z)) Xa(?(il))'

The same holds for the monomials built from the other cycles of o. The claim
follows. ]

Remark 5.5. The use of specific orderings associated to permutations also appears
in the Moore determinant, defined for Hermitian quaternionic matrices (see,
e.g., [Asl]).
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5.3. Graded determinant on endomorphisms. Let M be a free graded A-
module of finite rank. The graded determinant carry over to endomorphisms.

Proposition 5.6. Let (e;) be a basis of M of degree v. Then, the composite

0 ~ 0 Fde[o 0
Endy(M) — MP(v; A) — A

does not depend on the choice of basis of M and thus defines the graded
determinant on 0-degree endomorphisms of M. It satisfies

Tdet®( f) = det(?;(f)) ,
for all ¢ € &(A), where 7; is the NS-functor associated to c¢.

Proof. By definition of J. and of the classical determinant, the following diagram
commutes:

0 Is 0 det 0 0
M A) ———— (A ———— A=A

12 12 /
det

End (M) ———— End(M)
I. =

This means that [det’(f) = det (7;( f)), for f € &nd%(M) . Hence, Tdet’(f)
is independent of the chosen basis. 0

5.4. Properties. Most of the classical properties of the determinant over com-
mutative rings still hold true for Idet’. We provide some of them, see also [KN].

Proposition 5.7. Let M be a free graded A-module of rank n, admitting bases
of degrees w,v € I'".

(1) u € End®(M) is bijective if and only if Tdet®(u) is invertible in A°;
(2) Tdet®(P~1XP) = Idet®(X) for all X € M°(v; A) and all invertible
PeM(vxp; A

(3) Idet® is A°-multilinear with respect to rows and columns.

Proof. (1) Invertibility of 0O-degree elements is preserved by the arrow functor
I . Hence, the statement follows from the analogous result over commutative
algebras.

(2) This is a direct consequence of Proposition 5.6.

(3) This follows from the explicit formula (5.4) of the graded determinant.  [J
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The permutation of the rows of a graded matrix X € M%(v; A) by o € S,
produces a matrix P,-X € M%(u xv; A), where P, = (830)),-,]- and [@; = ve() -
In general, the matrix P, - X is not homogeneous as a matrix in M(v;.4) . We
circumvent this difficulty below, by modifying the permutation matrices.

Let us consider the auxiliary algebra B := A ®k K[S, S™!]; (see (3.2)), with
S a finite generating set of I'. Then, we can choose invertible homogeneous
elements t, € B*NBY forall yel.

Lemma 5.8. The following map is a group morphism,
S, — GL°%v;B)
o ] -1
o +— P(o):= ( ;(j) E tvj)z',

i
which satisfies Tdet”(P(0)) = sgn(o).
Proof. The statements follow from direct computations. O

From this lemma and multiplicativity of TIdet’, we deduce the effect of
permutation of rows or columns on Tdet’.

Proposition 5.9. Let v € I'" and X € M°(v; A). We have for every o € S, ,

[deth(P(0) - X) = Tdety(X - P(0)) = sgn(o) Idet’ (X) .

5.5. Graded determinant in particular bases. Assume I' is of finite order
N . According to Section 3.4.1, one can order a degree u € I'", so that graded
matrices in M°(u;.A) are in block form (3.7). The graded determinant I'det’
coincides with the one introduced in [COP] on such matrices.

Proposition 5.10. Let pw € I'" be an ordered degree. The graded determinant
Idet® has the following properties:

(1) for any block-diagonal matrix D = (Dyy)y=1....n € GL%(n; A),
Dll N
Idet” = [ [ det(Dua) :
u=1
Dnn

(2) for any upper or lower block-unitriangular matrix

Il % | % I

* or x| -. ,

I x| % |1
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we have
Idet®(7) = 1;

3) if peN and A is a ((Zz)p, (—1)(_’_>)-commutative algebra, the morphism
Tdet’,, from GL%(u:A) to (A%, coincides with the graded determinant
introduced in [COP] .

Proof. (1) If D = (Dyy)u=1...Nn is a block-diagonal matrix of degree O,
then we deduce from the definition (3.9a) of J., that J.(D) is also block
diagonal and (J¢(D)), = Duyy, for all u = 1,...,N . Hence, the formula
Tdet’(X) = det (/< (X)) implies the result.

(2) Similarly, if 7 is a block unitriangular matrix of degree 0, then J.(7T) is
also one and we get I'det®(T) =1.

(3) In [COP], the authors introduce a notion of graded determinant over
((Z2)?, (—1){+>7) -commutative algebras .A. This graded determinant is the unique
group morphism from GL%(u;.A) to (A%)* which satisfies the properties (1)
and (2) above. Hence, it coincides with I‘detg1 on GL(u; A) . ]

Assume that the graded algebra A is a crossed product, i.e., it admits invertible
elements ty € A% for each degree «. In this case, Proposition 3.9 provides an
algebra isomorphism, M%(v; A) ~ M(n; A%) , via the change of basis X +— PXP !
with

tvn

Then, Proposition 5.7 leads to the graded determinant in this particular basis.

Proposition 5.11. If A is a crossed product, then, for all X € M°(v; A), we have

[det’(X) = det(PXP™!) .

6. A family of determinant-like functions on graded matrices

As in the previous section, all the considered pairs (I', A) are such that I' = Fﬁ.

Let A be a (I', A) -commutative algebra, n € N, v € ' and ¢ a NS-multiplier.
Using the NS-functor /. and the induced isomorphisms J. of TI'-graded A°-
modules, we extend the graded determinant to all graded matrices via the formula
Idet. := detoJ.. Hence, the maps I'det. are natural transformations defined as
the following vertical composition
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(T, \)-Alg Set

M(1;1s ())=1s ()

M(1;—)=forget

As Tdet®, the natural transformations ['det. can be equivalently defined on
endomorphisms, via the formula I'det. := deton. , with n. defined in (2.6). In
the case of a free graded module admitting bases of degrees v, € I'", this
yields the following equality

[det. (P~ XP) = I'det. (X) ,
for all X € M(v;.4) and all invertible P € M%(v x p; A) .

6.1. Proof of Theorem D. The proof is in three steps.

Step 1. We prove that Idet. satisfies the properties I-IV, using its defining
formula I'det, = detoJ. .

Property I is obvious.

Property II follows from Proposition 3.10.

Assume the matrices X, Y, Z satisfy (0.4). Using their homogeneous decom-
position and the definition of J. (see (3.9a)), we see that the rows of matrices
Jo(X),Jc(Y), Jo(Z) again satisfy the relation (0.4). Property III is then deduced
from multi-additivity of the determinant.

Property IV follows from the definitions of J. and of “x ™ (see (1.6)), namely

D | _ Je(D)
Fdetg( ‘A(E,vn)c)_det( c)

|
|
= ¢ * det (Jg(D))
= ¢ (7 deg (Tdets (D)) ) ¢ - Tdety (D) .
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Step 2. Let us consider a map s : I' x I' — K*. Assume there exists a natural
transformation A, as in Theorem D. We prove that s € G(A), or equivalently,
that s satisfies the two following equations

(6.1) ACx, y)sCx, y)s(y,x) ™' =1,
(6.2) s(x +y.2)s(x. y) = s(x,y + 2)5(y.2) ,

for all x,y,z € I". To that end, we work over the algebra B = A® K[S,S™!];
(see (3.2)), with S a finite generating set of I', and use the 0-degree matrix
permutations P (o) € GL°(v; B), defined in Lemma 5.8.

We first prove (6.1). Let v € I'? and a,b € B be two homogeneous invertible
elements. Then, using the transposition o = (12), we get

A@ vi)a B A(b,vy) b
( A, v2) b ) - P(“)( A@, v2)a )P(")‘

From Properties I, II and Lemma 5.8, we deduce that

Ald,vi)a B A(Z,vl)b
As( A(E, v2) b ) N /_\.5( Ald,vz)a ) )

Applying IV to the left and right hand side of the above equation, we obtain
s(b,@)ba=s(a, bH)MT,b)ba,

by A-commutativity. Since @ and b are invertible, this implies (6.1).
We now prove (6.2). Let v € T3 and D € M(v; B) be a diagonal matrix with

homogeneous invertible entries D"i = A(a;,vi)a; € B% , for i = 1,2,3. Using
the permutation o = (123), we define
Aldr,v1) az
D' = Plo ) DP{a) = Aas, v2)az
Al@y, vs)a;

Reasoning as above, we obtain that A (D’) = A4(D). Furthermore, by means
of TV, we can compute explicitly both A (D’) and A;(D). Using moreover the
equality (6.1), we get

As(D") = s(@1, a5 +a5)s(as.a2) ayazas
= 5(d1,d3 +d2)s(ds, a2)A(d1,ds +dz) azaza,
=s(as +az.a1)s(as,az) asaza ,
and similarly,
AE(D) = 5(53, F&Jz -+ 51)5(’52, 51)a3a2a1 P

Since aj,ap,as are invertible, we finally obtain (6.2). In conclusion, we have
s€B6(A).
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Step 3. Let us consider a map s € G(4) . Assume that A, is as in Theorem D. We
prove that A, is equal to I'det; . For that, we show that A, is uniquely determined
by Properties I-1V, first over algebras of the form B = A ®x K[S, S™']; , with
S a finite generating set of I, and then over all (I', A)-commutative algebras.

(@) Let neN*, vel” and X € M(v;B) . The rows of X can be decomposed
into homogeneous parts,

1 1,01
X Zalel" X

x" Za,lel" X
Applying Property III inductively to such a decomposition, we obtain that

x],(X]
Ag(X) = Z Ag(X*), where X%:=

ael” Xn O

Hence, X% is the matrix whose k-th row is the ay -degree component of the & -th
row of X . Let us now consider an arbitrary map & : {1,2,...,n} — {1,2,...,n}
and denote by X“%(£) the matrix whose entries are given by

(X*®)'; = (X 1607) -

where § is the Kronecker delta. Thanks to Property III, we then have for any
multi-index « € T,

As(X*) = A (X)) .
3

If the map £ is not bijective, the matrix X%(£) presents a whole row of zeros,
and then A (X%(¢)) =0 by Property III. As a consequence, we get

(6.3) As(X)= Y D A(X%(0)) .

el gesy,

Let P(o) € GL%w;B) be the permutation matrix associated to o € S,, as
introduced in Lemma 5.8. By definition of X%(o) we have

X%() = P(0)-D(a,0),

where D(a,0) is a diagonal matrix with homogeneous entries. By Lemma 5.8
and Properties I and II, we end up with

(6.4) As(X)= )" > sgn(o) As(D(e,0)) .

sl ges,
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By induction, Property IV fixes the values of A (D(«,0)), and the uniqueness
of the above map A, follows.

(b) Let A be an arbitrary (I', A)-commutative algebra, S a finite generating set
of ', and t : A — B = A®k K[S,S5 1], the canonical embedding. Since A,
is a natural transformation, we have

((As(X)) = Ag(GLW(X)) |

for all X € M(v;.A). The right-hand side of the equation is fixed by point (a)
above and ¢ is injective, hence the map A; : M(v; A) - A is unique and
A = I'det; . This concludes the proof of Theorem D.

6.2. I'det. on homogeneous graded matrices. The restriction of Idetc to
homogeneous matrices has additional properties, which turns it into a proper
determinant.

First of all, by construction, I'det preserves homogeneity. Indeed, for any
y eI and any v € ', we have

[dete (MY (v; A)) C A",

To go further, we need the following preliminary results.

Proposition 6.1. Let ¢ € G(A) and v € T'".

(1) For any couple of homogeneous matrices X,Y € M(v; A), of degrees x and
y respectively, we have

[det  (XY) = ¢(x, )" Y Idet, (X) - [det(Y) .

(2) For any invertible homogeneous matrix X € GL*(v;A), Tdetc(X) is
invertible in A,

et (X 1) = ¢(x, x)"@~V (et (X)) " .

(3) For any homogeneous element a € A and homogeneous matrix X €
M*(v; A), we have

nn—I1)

Tdet.(a-X)=c(@.a@) = <(@,x)"® V" . Idet (X) .

In particular, if X =1 is the identity matrix, this reduces to T'detc(a-1) =
nn—1)

(@, )" an
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Proof. The first result follows from the formula I'det. = detoJ. and from the
second point of Proposition 3.10.

The second result is a consequence of the first one.

The third result relies on the first point and on the computation of I'det.(a-I) .
Using displays (3.3) and (3.92) we get

a

I'detc(a - T) = det =a*xdadx...*xd

nn—1)
= Hg(c?,?z) a-a-...ra=c¢(a,a) 7 a".

i<j
OJ

The next two propositions show that I'det. satisfies the two fundamental
properties of a determinant on homogeneous matrices.

Proposition 6.2. Let ¢ € 6(A), v € I'" and X € M*(v; A) . The homogeneous
matrix X s invertible if and only if T'det.(X) is invertible in A.

Proof. By Proposition 3.10, a homogeneous matrix X is invertible if and only if
Jo(X) is invertible. Since I'detc(X) = det(J-(X)), the proposition follows from
the analogous result over commutative algebras. U

We introduce the set of homogeneous invertible matrices

hGL(v; A) == | ) 6LY(v; A) .

yel

Since multiplication of two homogeneous matrices gives a homogeneous matrix,
hGL(v;.A) is a group. In particular, Uyer (A* N .AY) is a group. Recall that K
is the ground field of A.

Proposition 6.3. For all ¢ € G(A), there exists a finitely generated subgroup
U < K* such that

Idet; : hGL(v;A) — U A NAY) /¢y
yel

is a group morphism for all v € () T'™. Moreover, U can be chosen as the
neN*

subgroup of K* generated by {c(x,y)*|x,y € T'}.



Determinants over graded-commutative algebras 407

Proof. Let U be the subgroup of K* generated by {¢c(x,y)?|x,y € S} in K*,
with S a finite generating set of I". The group U is finitely generated and contains
{c(x,y)?|x,y € '}, since ¢ is biadditive. Hence we have c(x,y)"® D e U,
for all x,y € I', n € N*, and the result follows from point (1) in Proposition
6.1. (]

If T' is a finite group, U can be chosen as a finite group of roots of unity
in K*.

If ¢ takes values in {%1}, the preceding results simplify. In particular, one
can take U = {1} and then obtain group morphisms

[det. : hGL(v; A) — [J (A*NAY).

yel

Besides, the statement (3) in Proposition 6.1 reduces then to

nn—1)

(6.5) Tdete(a-X) =c(@.a)" 2 a" - Tdet(X) .

If A admits homogeneous elements of each degree, then X € M*(v;.A) can be
written as X = a- X, , with a € A* and X, € M(v: A) . The above equation can
then be used as an ansatz to generalize I'det® to homogeneous matrices. If n = 0, 1
mod 4 , this ansatz simplifies into the naive one I'det(a-X,) = a” Idet®(X,), used
in [COP], which does not depend on ¢. But, if n = 2,3 mod 4, such a naive
ansatz is not coherent with multiplication by scalars (see [COP]) and one should
use (6.5).

Remark 6.4. Assume A is a graded division ring and a graded commutative

algebra, and write A;: = |J (AN .AY). The construction of a Dieudonné
yel
determinant in [HW] specifies then as a group morphism

hGL(v; A) — A} /[AF, AF],

where [AX, AX] is generated by the products aba~'b~! = A(a, b) of homogeneous
elements. By Proposition 6.3, such a morphism is provided by any graded
determinant I'det. .

6.3. I'det. on quaternionic matrices: The good, the bad and the ugly. Recall
that the quaternion algebra is the real algebra H = {x+iy+jz+kt|x,y,z,t € R}
with multiplication law given in table (1.8). According to Example 1.15, H is
a purely even (I',A)-commutative algebra, with I' = {0, 1.7, ]2} < (Z3)? and
A = (=)&), the grading being given by

T:=0,11), 7:=0,0,1), and X :=(1,1,0).
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The graded H-modules structures on H” are in bijection with subspaces V' C H"
of real dimension 7, the grading being

H' =VaiVejVeklV,

where, e.g., (]H[”)T =i

Let X € M(n; H) be a quaternionic matrix, representing an endomorphism of
H” in the basis (e¢;). For every v € I'", there exists a grading V C H" such
that the basis vectors e; are homogeneous and (e¢;) has degree v. Such a choice
of grading turns X into a graded matrix, X € M(v;H). This allows us to apply
our determinant-like functions to quaternionic matrices.

6.3.1. The good: Homogeneous matrices. The Dieudonné determinant over H
is the unique group morphism

Ddet : GL(I’I;H) — RX/{:I:]}’

which satisfies

Ddet —a-{£1},

a

for all @ € R* (see [Die]). In particular, this determinant defines a group morphism
on GL(v;H) which is independent of v € I'". We use the following quotient
map

T:R*GIR*PjR*PkR* > (R*BiR* djR™ GBKRX)/{:I:I,:EL:EJ',:I:I{} .
the last group being isomorphic to R*/ (£1) -

Proposition 6.5. For all ¢ € G(A) and all v € T'", the following diagram of
groups commiites

['det,
hGL(v; H) R*@®iR* @jR* @ kRX
T
Ddet

R*/ 141
(6.6) t=l}

Proof. Let Xo € GL°(w;H). According to Proposition 5.1, there exists
P € M°(0 x v; H) such that PXoP~! € M(n;:R) and I'det’(X,) = det(PXoP ™).
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By multiplicativity of the Dieudonné determinant, we get Ddet(Xo) =
Ddet(PXoP ). Since Ddet is equal to the classical determinant (modulo the
sign) on real matrices, the diagram (6.6) commutes if restricted to the subgroup
GL(v; H) < hGL(v; H) .

If XeGL (v;H), then X =i-Xo with Xy € GL°(v; H) . By Proposition 6.1,
we have .

Ideto (X) =¢(i, 1) 2 i"-Tdeto(Xo) ,

~ ~ nn-—1)

and ¢(i,i) 2z i" e {£l,+£1i,+j, £k} . Besides, it is known that
Ddet(X) = Ddet(i-1)Ddet(Xy) = Ddet(X)) .

Analogous results hold for X e GLT(v; H) and X € GLT"'(v;]HI) . 'This concludes
the proof. U

6.3.2. The bad: Non-uniqueness of I'det.. Let X € M(n,H) be a quaternionic
matrix representing an endomorphism of H” in a basis (¢;) . Once the basis (e;)
receives a degree v € I'", the matrix X becomes a graded matrix X € M(v; H) .
The value of T'detc(X) depends both on ¢ € &(4) and v € I'". By Lemma
1.8, the multipliers ¢ € &(}) are characterized by the values of ¢(i,1), ¢(i,])
and g(T, T) , which can be either 1 or —1. Hence, for each of the 4" possible
degrees v € I'", there are 8 determinant-like functions I'detc on M(v;H) .

6.3.3. The ugly: I'det. on inhomogeneous matrices. We compute the values
of I'det.(X) for a quaternionic matrix X € M(2,H) . This shows that, indeed,
the value of Tdet.(X), and even its vanishing, strongly depend on both choices:
of multiplier ¢ € &(A) and of degree v € I'* of the basis.

First, we work with the invertible matrix

X::(; Jl)eGL(zzH),

| i
with inverse X! = % ( i lJ ) The matrix X is a homogeneous graded
matrix of GL(v;H) if and only if the chosen degree v € I'? is of the form
v =(vy,vi + j), with vy € I'. For such a degree, the matrix X is of degree
0 and, for all ¢ € &(4), we get

Idet. (X) = Tdet’(X) = 2.

However, for a different v, the result is completely different. For instance, if
v = (0,0) , we then obtain J.(X) = X and
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Tdete(X) =1—j*j=1+4¢(.j).

which means that
2 HeglliDp=1.:

Each case occurs for half of the choices of ¢ € G(A) .

Tdet (X) = {

Second, we work with a rank one matrix

(1] .
Y._(_j 1)eM(z,H),

whose kernel is given by H - (1,j). Again, the matrix Y is homogeneous of
degree 0 as a graded matrix in M(v;H) if and only if v = (vy,v; + j) for
some v; € ['. We get then

Tdet  (Y) = Tdet’(Y) = 0,
for all ¢ € &(1) . However, if v = (0,0), we then obtain

2 if ) =1,

et (Y) =1-¢(.j) = 0 ifci)=1

As a conclusion, the non-uniqueness of the functions Idet. prevents them to
characterize invertible matrices.

7. Graded Berezinian

In this section, we go back to the general case of a (I, ) -commutative algebra
A, for T' a finitely generate abelian group with non-zero odd part I . Applying
a Nekludova—Scheunert functor /. to A, we obtain a supercommutative algebra
A.

For matrices with supercommutative entries, the notion of determinant is
replaced by the Berezinian, which is a supergroup morphism

Ber: GLﬁ((n,m);A) - A*,

with (n,m) € N[Z,] . The supergroup GLG((n,m): A) of even invertible superma-
trices is often written as GL(n|m;.A) . Pulling back the Berezinian to the graded
case, we obtain the notion of graded Berezinian.
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- o
7.1. Preliminaries. Let v = (v;,v) € I;° x Ty', where (r,r) € N?. We
introduce the group of even homogeneous invertible matrices

hGL(v; A) 1= U GLY (v; A) .

yel})

Assume J. is the map (3.9), associated to a NS-multiplier ¢ € G(4). The
composites

6Ly (v A) —— BLUrlri ) —— (A" — s (4)"

Ber
g g

define a family of maps parameterized by ¢ € G(1),
IBerg : hGL(v;A) — (A)".

Considering the last arrow, labeled with Jg_ 1 is a matter of taste as this is the

identity map. This only changes the algebra structure and makes clear that the

product and inverse involved in Formula (0.6) are taken in A and not in A.
Any matrix X € hGL;(v;.A) reads as

Xoo Xo1
A = ,
( X0 X )
where, in particular, Xyy € hGLO(vﬁ; Aa) and X, € hGLﬁ(vT;A(_)). The For-
mula (0.6), giving the graded Berezinian of X, involves the graded determinant

of X;;. We define it just as for matrices of even degree v, via the formula
I'det. = detoJ, .

Remark 7.1. Let # € ' and nw := («w,...,m) € I'1. The identity map
Tz @ M(v;;A) — M(v; + ;. A) is a morphism of I'-algebra and of graded
A-module. From the Formula (3.9a), defining J., we deduce that I'det. (X1) =
A(x, ) 1Tdete (T (X11)) for all 7 € T.

7.2. Proof of Theorem E. According to Proposition (3.11), the map J. restricts
to GL%(v: A) as a group morphism. Hence, the map

I'Ber’ := Bero J, : GL(v; A) — (A)*

defines a group morphism. The independence of T'Ber’ in ¢ € &(1) follows
from the Formula (0.6) and the equality I'det. = I'det’ on 0-degree matrices.

It remains to prove Formula (0.6). Let us consider a homogeneous matrix
X € GL*((v;,v;): A) of arbitrary even degree x € I'; . Decomposing X in block
matrices with respect to parity, it reads as a supermatrix,
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; Koo | Xo1
X = (X g jmtonm = .
( J)I,J Lyciusmt ( Xio | X1t )

Since moding out by the ideal AT of odd elements preserves invertibility, we
deduce that the block X}; is invertible. This allows for an UDL decomposition
of X, with respect to the parity block subdivision,

X = UDL — I ] X01X1—11 Xoo —X01XHIX10 ‘ I |
|1 EX Xolxo | 1)

By construction, we also see that the three graded matrices in the decomposition
are homogeneous: the block triangular matrices U and L are of degree 0,
whereas the diagonal matrix D is of the same degree as the original matrix X .
Thanks to the properties of J., we then have

Je(X) = Jo(U)J(D)Js(L)

which is again a UDL decomposition. Hence, applying the Berezinian, we finally
obtain

(7.1) Ber (J< (X)) = Ber (/o (D)),

since the Berezinian is multiplicative and equal to 1 on a block unitriangular
matrices. Let us recall that the Berezinian of a block diagonal invertible
supermatrix is equal to

Ber( Yoo ) = det(YVpo) det(V11) L .
Vi1

Hence, using (7.1), the properties of J. and the equality (Jo)™! = Js with
§(x,y) :=c(x,y)7 !, for all x,y €T, we get

Ber(X) = J-' (Ber (/¢ (X))
= J! (det (J¢ (Xoo — Xo1 X' X1g)) * det (Jg(ﬂm))_1 )
= 6, =1, x) I (det (U (Xoo — Xor X7 Xio)) )
7 (det (Je (i) ™)
= ¢(rsx, —r; x)g(—r; x, —r; x) Tdets (Xoo — Xo1 X[} X1o) - Tdetg (X11) 7",

which recovers Formula (0.6).

A. Basic notions of category theory

In this section we recall basic notions of category theory used in the paper.
The main references are [MacL], [Hov] and [Kel].
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A.l. Categories. A locally small (respectively small) category C consists of

e a class (respectively a set) of objects Ob(C) ;

e for every pair of objects X,Y € Ob(C), a set of morphisms Hom¢(X,Y) (if
no confusion is possible the subscript is usually dropped);

e for any triple X,Y,Z € Ob(C), a composition of morphisms
o: Hom(Y, Z) x Hom(X,Y) — Hom(X, Z)

which satisfy the following axioms

Associativity For any given morphisms f € Hom(Z, W), g € Hom(Y,Z) and
h € Hom(X,Y) , the equality f o(goh) = (f og)oh holds.

Identity For every X € Ob(C), there exists a morphism id, € Hom(X, X) such
that, for any morphisms f € Hom(X, Z) and g € Hom(Y, X) , the following
equalities hold

foid, =f and id,og=g.

All the categories encountered in this paper are concrete categories, i.e., the
objects are sets with additional structure, and morphisms are functions. This
translates into the existence of a forgetful functor to the category of sets, denoted
by “’forget”.

A.2. Functors. A functor F : C— D between categories consist of

e an object function F : Ob(C) — Ob(D),

e for each pair X.Y € Ob(C), an arrow function F : Homc(X,Y) —
Homp (F(X), F(Y)) ,

such that F(idy) = id,, for all X € Ob(C), and, when the composition is
meaningful, F(f o g)= F(f)o F(g).

The composite of two functors F : B — C and G : A — B is a functor
FoG: A— C given by usual composition of the corresponding object functions
and arrow functions. Composition of functors is associative.

A particular example of functor is the identity functor Ic : C — C which
assigns to every object, respectively to every morphism of C, itself. It acts as
the identity element for the composition of functors.

A functor F : A — B is said invertible if there exists a second functor
G : B— A such that

FoG=Ig and GoF =1,.



414 T. Covoro and J.-Ph. MicHEL

A.3. Natural transformations. If a functor is intuitively a morphism in the
category of (small/locally small) categories, a natural transformation is a morphism
between functors.

More precisely, if F and G are two functors between the same categories C
and D, a natural transformation n between the functors F and G is represented
by the diagram

(A.1) G
and 7 consists of a family of maps
nX : F(X) - G(X) )

which is natural in X € Ob(C). This means that, for every morphism & €
Homc(X, Y) , the following diagram commutes:

F(h)
F(X) > F(Y)
Ny J/ jvny
G(X) G » G(Y)

There are two ways of composing natural transformation: “vertically” or “hori-
zontally”.

A.3.1. Vertical composition of transformations. Given two natural transforma-
tions

their vertical composition is the natural transformation
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S ¥

H

defined component-wise by (6 en), =6, on, , X € Ob(C).

Vertical composition is the law of composition of the functor category D¢ (also
denoted by Fun(C,D)), whose objects are functors between C and D and whose
arrows are the natural transformations between such functors. For every functor
F, the identity map Id, is the natural transformation defined component-wise
by Id. , =id

F(X)

A.3.2. Horizontal composition of transformations. Given two natural transfor-
mations

their horizontal composition is the natural transformation

F'oF
A ﬂn’on C

S F

G' oG

defined component-wise by (' o n), = ném o F'(ny) = G'(ny) o 77;(;() , for all
X € Ob(4) .

A.3.3. Whiskering. The horizontal composition allows to define the composition
of a natural transformation with a functor, also called whiskering. Given a natural
transformation as in (A.l) and a functor H : B — C, their composite
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AR N

Clearly, one can do the same for right composition of n with a functor
H!=»TD—=%A.

=
)
=

/H\ o

A.4. Adjoint functors. A functor F : C — D is the left-adjoint of a functor
G : D — C (or equivalently G is the right-adjoint of F) if there exists a bijection
between the hom-sets,

Homyp (F(X),U) ~ Home (X, G(U))
which is natural in both X € Ob(C) and U € Ob(D). This means that
Homp (F(X),—) = Homc (X, G(=)) and Homy (F(-),U) = Homc (—, G(U))

are natural transformations (for X and U fixed respectively).

A.5. Closed monoidal categories. A monoidal category is a (locally small)
category C endowed with a bifunctor ® , a unit object I, and three natural
isomorphisms

(associator or

= (X ®Y -~
a=ay,  (XBY)QZ—-XRTZ) associativity constraint)

l=1,:1®@X > X
r:rX:X®]I:>X
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such that Iy =r; : I — I, and they satisfy the following coherence laws:

XRY)®(ZW)

V Oy y.zew

(X®Y)QZ)®W X®(Y®(ZeW))

Oy y z ‘M\’ idy ®ay z w

(X® ¥ ®2) ®W—>X®((Y®Z)®W)

XY®ZW
Oy 1,y
XY y X QI QY)
Iy ®N AQ’ZY
XY

A monoidal category is called braided if it is endowed with a natural isomorphism
B=PB;5: X@Y >Y®X,

(usually called commutativity constraint or simply braiding) satisfying the follow-
ing coherence laws:

B
Xerez) 4 vez)eX

y

?52
N
N

X®Y)®Z Y®(Z®X)
ﬁxy& Aﬁxz
(Y®X)®Z—a————> Y@ (XQ®7Z2)

Y.X.Z
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ﬁH,X
I®X » X @1

If the braiding also satisfies

lBY.X oByy = idX@Y )

for all X,Y € Ob(Q), then (C,®,I,w,l,r, B) is a symmetric monoidal category.
A monoidal category (C,®,[,a,l,r) is a right (resp. left) closed monoidal
category if there exists a bifunctor

%méight(_s _) : COP xC—C (I'eSp. }lomlceft(_v _) : COp xC—C ) ’

such that for every X € Ob(C) , the functor Hom/'® ht(X,—) (resp. Homlcef ‘(- X))
is the right adjoint of the functor —® X (resp. of the functor X ® —). A closed
monoidal category is a left and right closed monoidal category.

Note that if a closed monoidal category is symmetric, the right and left Hom
are naturally isomorphic thanks to the braiding. Hence, we identify them and
designate the internal Hom by Hom(—,—) .
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