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A note on semi-conjugacy for circle actions

Michelle BucHer, Roberto Frigerio and Tobias HARTNICK

Abstract. We define a notion of semi-conjugacy between orientation-preserving actions of
a group on the circle, which for fixed point free actions coincides with a classical definition
of Ghys. We then show that two circle actions are semi-conjugate if and only if they
have the same bounded Euler class. This clarifies some existing confusion present in the
literature.
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1. Introduction

A fundamental problem in one-dimensional dynamics is the classification of
group actions on the circle. More precisely, denote by Homeo™ (S!) the group of
orientation-preserving homeomorphisms of the circle. Given a group I', we will
refer to a homomorphism p : I' — Homeo™ (S!) as a circle action. One would
like to associate to every circle action of I' a family of invariants which classify
the action up to a suitable equivalence relation, ideally up to conjugacy. For the
case of a single transformation acting minimally on the circle, this problem was
solved by Poincaré around the end of the 19th century, using his theory of rotation
number [Poil, Poi2].

In [Ghyl, Ghy2] Etienne Ghys introduced and studied a far reaching gener-
alization of the rotation number, the bounded Euler class of a circle action. For
minimal actions, i.e. actions for which every orbit is dense, he thereby achieved
a complete classification result:

Theorem 1.1 ([Ghy2, Theorem 6.5]). Let py.ps : I' — Homeo™ (S1) be minimal
circle actions. Then p; and p, are conjugate if and only if they have the same
bounded Euler class.
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The bounded Euler class is thus a complete conjugacy-invariant for minimal
actions. For non-minimal actions, this result is not true. Instead, non-minimal
actions sharing the same bounded Euler class only satisfy a weaker equivalence
relation. In [Ghyl] Ghys introduced the notion of semi-conjugacy between circle
actions, which generalizes the notion of conjugacy. With this notion he proved:

Theorem 1.2 ([Ghyl, Theorem Al]). Two circle actions py,p2 : ' — Homeo™ (S1)
are semi-conjugate if and only if they have the same bounded Euler class.

The bounded Euler class which appears in Theorem 1.1 and Theorem 1.2 is an
invariant with values in the second bounded cohomology Hg(F;Z) of I' with
Z -coeflicients. The theory of Ghys developed in [Ghyl, Ghy2] goes far beyond
Theorem 1.2. Namely, not only does it parametrize semi-conjugacy classes of circle
actions by classes in H bz([‘;Z), but it also characterizes exactly which classes
in Hbz([‘;Z) can be realized by circle actions. This then provides a bijection
between semi-conjugacy classes of circle actions and a certain explicit subset of
Hg(F;Z). Although we will have nothing to say on this part of the theory in
this note, let us at least state the main result:

Theorem 1.3 ([Ghyl, Theorem B]). Let I" be a discrete countable group and
B e Hg(I‘,Z). There exists a representation p: I — Homeo™ (S') such that B
is the bounded Euler class of p if and only if B can be represented by a cocycle
taking only the values 0 and 1.

Ghys’ theory of the bounded Euler class has found applications in many
different directions. Recently there has been revived interest in Theorem 1.2,
since it plays a fundamental role in the bounded cohomology approach to higher
Teichmiiller theory ([BIWI, BIW2, BSBH]).

The beginner in the field who is trying to understand the proof of Theorems 1.1
and 1.2 has to face several challenges which we try to address with this note.

The first challenge is to understand the notion of bounded Euler class. Like
ordinary cohomology, bounded cohomology can be defined either abstractly or
through various concrete resolutions. In each concrete model the bounded Euler
class is represented by a specific cocycle. For example, the proof of Ghys’
Theorem makes use of two different incarnations of the bounded Euler class,
namely the geometric description of the bounded Euler class associated with the
Homeo™ (S')-action on S', and the algebraic description in terms of translation
numbers. Neither of these incarnations is particularly intuitive at first sight, and
while it is well known to the experts that they represent the same cohomology
class under a canonical isomorphism, this does not appear obvious just by looking
at the definitions.
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In our opinion, the most canonical way to define the bounded Euler class is to
define it as the bounded lifting obstruction for the central extension corresponding
to the universal covering of Homeo™ (S1). This is the approach taken in the present
note (see Definition 3.4). We then carefully establish that the so-defined class can
be represented over the circle by the well-known Euler cocycle (Corollary 3.10)
and can also be related to the translation number (Proposition 3.5). This then
shows in particular the equivalence of the two definitions used in the proof of
Ghys’ Theorem. Yet another characterization of the bounded Euler class in terms
of the Sullivan cocycle over the double covering of the circle is given in the
appendix. This description is crucial if one wants to extend the notion of bounded
Euler class to higher dimensions and plays an important role in the study of the
cohomology of SL,(R). It also allows us to give a different (and apparently new)
characterization of circle actions with vanishing bounded Euler class, hence we
include it here.

Once the notion of bounded Euler class is clarified, one needs to understand the
notion of semi-conjugacy. Unfortunately, the original definition in [Ghyl] suffered
from a minor inaccuracy, which was corrected in later papers of the author. In
the meantime, different authors had developed fixes of their own, leading to a
plethora of alternative definitions. Right now the situation seems to be that all
of these definitions are used simultaneously in the literature without much of a
distinction. Several of the most used definitions can be shown to be equivalent
and, more importantly, to satisfy Theorem 1.2. However there also appear several
other definitions of semi-conjugacy in the literature, which are not equivalent and
for which Theorem 1.2 does not hold. The main goal of this article is to clarify
the situation and to compare the different definitions.

All definitions of semi-conjugacy start from the notion of a non-decreasing
degree one map, i.e., a map ¢ : S' — S! which admits a lift ¥ : R — R
(called a good lift) such that ¢ (x +1) = @ (x) + 1 for every x € R and @
is non-decreasing, i.e., ¢ (x) < @ (y) whenever x < y. (In the body of this

text, we will adopt the equivalent but more geometric point of view given in
Definition 2.2.)

We emphasize that no continuity requirement is imposed in this definition,
and hence the Brouwer—Hopf degree of ¢ may not be well defined. Even if
¢ happens to be continuous, it may still be constant and thus of Brouwer—
Hopf degree 0. In general, the Brouwer—Hopf degree of a continuous non-
decreasing degree one map is either 0 or 1 (and it is equal to zero if and
only if the map is constant). We say that a non-decreasing degree one map ¢
is upper/lower semi-continuous if it admits a good lift with the corresponding

property.
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Now let H := Homeo'(S'). We call a non-decreasing degree one map
¢ : S' — St a left-semi-conjugacy from a circle action p; : I' — H to a circle
action pp : ' —»> H if

p1(y)p = ppa(y) for every y eT.

We then call p; left-semi-conjugate! to p, and p, right-semi-conjugate to pj.

Theorem 14. Let py : ' — H and p, : ' — H be circle actions of the same
group I'. Then the following are equivalent:

(i) p1 is both left-semi-conjugate and right-semi-conjugate to p;.

(ii) Either both pi(T") and p>(I") do not have a fixed point and p; is left-semi-
conjugate to pa, or p1(I") and po(I") both have a fixed point.

(iii) There exist a left-semi-conjugacy ¢ from py to py and a p2(I')-invariant
subset K C S such that ¢|x is injective.

(iv) There exist a left-semi-conjugacy ¢ from py to pa, lifts p1 (y) and p3 (y) for
each y € I' and a good lift ¢ of ¢ such that p1 (y) ¢ (x) = @ (pz (y)(x))
for all y €' and x € R.

(v) p1 and pp have the same bounded Euler class.

All of these conditions remain equivalent if the left-semi-conjugacies in question
are required to be either upper semi-continuous or lower semi-continuous.

In this note we will define two circle actions p; and p, to be semi-conjugate
if they satisfy Condition (i) of the theorem (see Definition 2.5 below). The
equivalence (i)< (v) is then exactly the content of Theorem 1.2. According to
the theorem, each of the Conditions (ii)—(iv) could equally well be used as the
definition of semi-conjugacy for Theorem 1.2 to hold.

Definition (ii) is essentially Ghys’ original definition (modulo the necessary
correction in the case of fixed points). The case where both p;(I") and p>(I")
have fixed points is actually equivalent to the vanishing of the bounded Euler
class. One problem with Definition (ii) is that it is not obvious a priori whether it
is an equivalence relation at all. From this point of view, Definition (i) is clearly
preferable. The (re-)discovery of this “symmetric” definition by the second named
author was one of our main motivations to write this note. (Later we learned
from the referee that this definition already appeared in an old manuscript of
Takamura [Tak], which however was never published.) Definition (iii) is due to the
first-named author [Buc] and convenient to check in practice, since only one left-
semi-conjugacy has to be constructed. Definition (iv) was kindly communicated
to us by Maxime Wolfl' [Wol].

UIn [Ghyl] p; is simply called semi-conjugate to p>, but we would like to emphasize here the
asymmetry in p; and p>.
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Remark 1.5. As was communicated to us by Ghys and is pretty clear from the
proofs in [Ghyl], what was actually meant is a condition very close to Condition
(iv) in Theorem 1.4, which we state as Condition (vi) below. For this we observe
that every circle action of I' gives rise to a central extension I'(p) of I' as
follows. Denote by H the universal covering group of H, which is a central
Z -extension of H and acts on the real line (see Subsection 3.2). Then I'(p) is
defined as the pullback

~

(o) —— H

»

Pe——s .

We can now state Condition (vi) which is equivalent to (i)—(v) above:

(vi) There exist an isomorphism ¥ : T'(p1) — TU(p2) commuting with the
projections on T' and a good lift ¢ of a non-decreasing degree one map
such that for all y € I'(p1) and x € R,

BT =7 (5 m)).

It is obvious that it implies Condition (iv) of Theorem 1.4. Condition (vi) has
however the slight disadvantage that it requires the corresponding (unbounded)
Euler classes to be equal, which is equivalent to the isomorphism between the
two central extensions of I'. We will point out in Remark 4.5 how Condition
(vi) immediately follows from Condition (i) of Theorem 1.4 based on the proof
of Part (i) of Theorem 4.3.

Having stated a number of equivalent definitions of semi-conjugacy, let us
now point out a number of definitions we found in the literature, which are
not equivalent to the definitions above. For a more detailed discussion including
various concrete counterexamples see Remark 2.7 below. Most importantly, the
fact that p; is left-semi-conjugate to p, by itself does not imply semi-conjugacy.
In fact, left-semi-conjugacy is not even an equivalence relation, since the trivial
action is left-semi-conjugate to every circle action. This problem can also not be
remedied by replacing left-semi-conjugacy by the equivalence relation it generates,
since the latter relation is just the trivial relation in which any two circle actions
are related, nor by excluding constant semi-conjugacies, since these are necessary
for Theorem 1.2 to hold.

However, it is rather remarkable that for fixed point free circle actions all
these problems disappear completely. In fact, as an immediate consequence of
Theorem 1.4 we have the following:
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Corollary 1.6. If py : T' — H and p, : I' — H are fixed point free circle actions
of the same group U, then the following are equivalent:

(1) p1 is semi-conjugate to p,.
(2) p1 is left-semi-conjugate to p;.
(3) p1 is right-semi-conjugate to p,.

(4) p1 and py have the same bounded Euler class.

This corollary is the reason why the wrong definitions in the literature are
in most cases rather innocuous. Another issue concerning the definition of semi-
conjugacy concerns the regularity of the non-decreasing degree one maps involved.
As stated in Theorem 1.4, if p; and p, are semi-conjugate circle actions, then one
can find an upper semi-continuous left-semi-conjugacy from p; to p, (and vice
versa). However, one can in general not find a continuous left-semi-conjugacy
from p; to pp. Nevertheless, semi-conjugacy may be defined via the use of
continuous maps of Hopf-Brouwer degree 1 rather than (possibly non-continuous)
non-decreasing degree one map as follows:

Theorem 1.7 ([Cal]). Semi-conjugacy is the equivalence relation generated by
continuous left-semi-conjugacies of Brouwer—Hopf degree 1.

Note that what we call a “left-semi-conjugacy via a continuous map of
Brouwer—-Hopf degree 17 here, is simply called a semi-conjugacy in [Cal],
conflicting with our terminology. On the other hand, the equivalence relation
generated by continuous left-semi-conjugacies of Brouwer—-Hopf degree 1 which
is equivalent to what we call “semi-conjugacy” is called monotone equivalence
in [Cal].

The rough outline of this note is as follows: In Section 2 we discuss the
symmetric definition of semi-conjugacy stated as Definition (i) in Theorem 1.4.
In particular, we discuss the geometry of non-decreasing degree one maps and
various pitfalls of the definition. Section 3 is then devoted to the discussion of
the bounded Euler class alluded to earlier. In particular, we discuss thoroughly
three well-known characterizations of the bounded Euler class on Homeo™ (S1)
and establish carefully their mutual equivalence (Definition 3.4, Proposition 3.5
and Corollary 3.10).

Section 4 is the core of this note. Here we establish Theorem 1.2 for
our symmetric definition of semi-conjugacy (i.e., the equivalence (i)« (v) in
Theorem 1.4). It turns out that the argument for fixed point free actions and for
actions with fixed points is quite different. Thus we first establish in Subsection 4.1
that a circle action has a fixed point if and only if it has vanishing bounded Euler
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class, and that this corresponds precisely to being semi-conjugate to the trivial
circle action. This reduces the proof of Theorem 1.2 to the case of fixed point
free actions. For such actions we then establish that they are left-semi-conjugate
if and only if they have the same bounded Euler class. This proves Theorem 1.2
and at the same time yields the equivalences (i) < (ii) < (v) in Theorem 1.4.

Once Theorem 1.2 is established, Theorem 1.1 follows easily. This is explained
in the final Subsection 4.5 of Section 4.

In Section 5 we collect various consequences of Ghys’ Theorem. Firstly, we
explain how Poincaré’s classification of Z-actions on the circle can be considered
as a special case of Ghys’ Theorem. Secondly, we deduce from Ghys’ Theorem
that every action of an amenable group on the circle is semi-conjugate to an
action by rotations, a result commonly attributed to Hirsch and Thurston (see [HT]
and [Cal, Theorem 2.79]). Finally, we characterize circle actions with vanishing real
bounded Euler class. The final Section 6 is devoted to the proofs of Theorem 1.4,
Corollary 1.6 and Theorem 1.7. Finally, in the appendix, we discuss the pullback
of the Euler class to the double covering group of Homeo™(S'). We show that
this pullback can be represented by a multiple of the so-called Sullivan cocycle
which has stronger vanishing properties and also generalizes nicely to higher
dimensions.

Let us emphasize that we do not claim any originality for the proofs of
Theorem 1.1 and Theorem 1.2 (whereas we believe Theorem A.6 to be new).
We hope that our presentation will help to make Ghys’ beautiful theory of the
bounded Euler class more accessible.

2. On the definition of semi-conjugacy

2.1. Non-decreasing degree one maps. Throughout this article we consider the
circle S' = R/Z as a quotient of the real line. A pre-image X of a point x € S!
under the canonical projection R — S will be called a lift of x and we write
[X]:=x.

Definition 2.1. For k € N, an ordered k-tuple (xi,...,x%) € (S")* is said to be

o weakly positively oriented if there exist lifts X; € R of the x;’s such that
X1 <% <. <Xx <% +1,

e positively oriented if furthermore
X] < X3 << Xg <Xx1 +1.

Replacing <, < and X7, X7 + 1 respectively by >, > and ¥x7 + 1, X1 we
obtain the corresponding notion of (weakly) negatively oriented k -tuples.
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Note that if & < 2 then a k-tuple is both weakly positively oriented and
weakly negatively oriented. Furthermore, the property of being (weakly) positively
oriented is obviously invariant under cyclic permutations.

Definition 2.2. A (not necessarily continuous) map ¢: S' — S!' is a non-
decreasing degree one map if the following condition holds for all k € N: If
(x1,...,x¢) € (SHY% is weakly positively oriented, then (@(x1),...,@(xr)) is
weakly positively oriented.

As we will see in Lemma 2.4 below it is actually enough to check the
condition for & = 4. Observe that non-decreasing degree one maps are closed
under composition and that every constant map is a non-decreasing degree one
map.

Definition 2.3. Let ¢: S! — S! be any map. A set-theoretical lift @ : R - R
of ¢ is called a good lift of ¢ if ¢(x+1)= ¢ (x)+1 for every x € R and
@ is non-decreasing, i.e., @ (x) < @ (y) whenever x < y.

By the following lemma, being a non-decreasing degree one map is equivalent
to admitting a good lift, so Definition 2.2 is equivalent to the more classical
definition which we used in the introduction. We warn the reader that a non-
decreasing degree one map may have infinitely many essentially different good
lifts, i.e., good lifts which do not just differ by composition with an integral
translation. For example, for every o € R the maps x — |[x+«| and x — [x+«]
are good lifts of the constant map ¢: S' — S! mapping every point to [0].

Lemma 2.4. Let ¢: S' — S' be any map. Then the following conditions are
equivalent:

(i) The map ¢ is a non-decreasing degree one map.

(i) If (x1,....x4) € (SH?* is weakly positively oriented, then (p(x1)....,@(x4))
is weakly positively oriented;

(iii) There exists a good lift of ¢.

Proof. 'The implication (i) = (ii) holds by definition.

(ii) = (ii): If ¢ is constant, there is nothing to prove. Suppose there
exist xo # x; € S! such that yo := ¢(xg) # @(x1) =: y;. Choose lifts
X0, Yo, X1, y1 € R of xg,yo,x1,y1 respectively such that X7 € (Xp, Xo + 1)
and 37 € (yo, o + 1). Now define @ on [Xy, X + 1) as follows: for

—_—~

Xo <X < Xx1,let ¥ (x) be the unique lift of ¢([X]) lying in [yg, Yo +1); for
X1 <X < xp +1,let @ (x) be the unique lift of ¢([X]) lying in (g, Vo +1].
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Now extend @ to R in the unique possible way such that it commutes with
integral translations.

In order to see that @ is non-decreasing it suffices to show that it is non-
decreasing on [xp, xg +1). Thus let Xg <X < ¥ < xp + 1.

We first prove that if @ (yV) = Vg, then ¢ (X) = ¥g . Indeed ¢ (7) can
be equal to Vo only if ¥ < x;. Thus the quadruple (xo,[X ], [V ], x1) is weakly
positively oriented, and so is (¢(x0). @([X]). @([¥]). ¢(x1)) = (yo.[@ (¥)]. yo. y1)
by (ii). By definition, this means that there exist integers n,n,,m € 7 such that

Vo < @(X)+nx<yo+ny, <yi +m=<T7ys +1.

Since y1 € (g, yo +1) we have m = 0, and this implies in turn that n, = 0, so
that @ (X)+nx = Yo . But since X < X7 its image by ¢ liesin [vg, Yo +1),
so ¢ (X)= Yo, as desired.

A completely analogous symmetric argument also shows that if @ (X) =
Yo + 1, then @ (y) = Vg + 1. Thus we can now restrict to the case where
¢(X), (V)€ (yo,yo +1).

From the assumption that Xxp < X < ¥ < X + 1, we obtain that the
quadruple (xo,[X],[V],x0) is weakly positively oriented, and thus also the
quadruple (¢(x0), ¢([X]. @[V ]).@(x0)) = (yo.[@ (X)].[¢ (¥)]. yo) is weakly
positively oriented by (ii). By definition this means that there exist integers
fix,ny,m € Z such that

Vo @ (X)+nx<@(¥V)+ny, <yg+m=<7ys +1.

Since @ (X)) and @ (¥) now both belong to the open interval (yg, yo + 1) it
follows that ny =n, =0 (and m = 1). We thus obtain ¢ (X) < @ (y), which
finishes the proof of this implication.

(iii) = (i): Let xq,...,x; be weakly positively oriented. By definition this
means that there exist lifts X; € R of the x;’s such that

—_— o~

X1 <% <X =% + 1
Applying the non-decreasing map ¢ to the above inequalities gives
PN =9(R) =X =e(x+D=9(1)+ 1,

where the last equality uses the fact that @ commutes with integral translations.
Since the @ (x;)’s are lifts of ¢(x;), this by definition implies that the k-tuple
(p(x1),...,0(xr)) is weakly positively oriented. U

It is clear from the proof that we cannot replace the statement in (ii) with the
corresponding statement for triples. To give an explicit counterexample, consider
the function ¢ : S! — S! given by
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0], te[0,1/4)U[l/2,3/4),

vt = {[1/2], t e [1/4,1/2) U[3/4,1).

This function ¢ takes any triple into a weakly positively oriented one, but the
quadruple ([0],[1/4],[1/2],[3/4]) is taken by ¢ to ([0],[1/2],[0],[1/2]), which is
not weakly positively oriented.

2.2. Semi-conjugacy. Let us recall the key definition of this note from the
introduction.

Definition 2.5. Let p;: I' — Homeo™ (S!) be circle actions, j = 1,2. We say
that p; is left-semi-conjugate to p, (and p, is right-semi-conjugate to p;p) if
there exists a non-decreasing degree one map ¢ such that

p1(¥)e = @pa(y)

for every y € I'. In this case, ¢ is called a left-semi-conjugacy from p; to pz
and we say that p; is left-semi-conjugate to p, via ¢.

The circle action p; is called semi-conjugate to p, if it is both left- and
right-semi-conjugate to ps.

We recall some standard terminology for group actions: A circle action
p: T — Homeo™ (S!) is said to have a global fixed point if there exists x € S'!
such that p(y)(x) = x for every y € I'. An action is fixed point free if it does
not admit a global fixed point.

Proposition 2.6. (i) Semi-conjugacy is an equivalence relation.
(ii) Every circle action is right-semi-conjugate to the trivial action.

(ili) A circle action is left-semi-conjugate to the trivial action if and only if it
has a global fixed point.

Proof. (i) Reflexivity and symmetry are obvious, while transitivity readily
follows from the fact that non-decreasing degree one maps are closed under
composition.

(ii) Choose ¢ to be an arbitrary constant map.

(iii) If p is left-semi-conjugate to the trivial action, then there exists ¢ such that
forall y €T and x € S!

p(¥)(p(x)) = @(x)

whence the image of ¢ consists of fixed points of p(I'). On the other hand,
if xo is fixed by p(I"), then p is left-semi-conjugate to the trivial action by
the constant map ¢(x) = xo. ]
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Remark 2.7. The definition of semi-conjugacy given in [Ghyl] coincides with our
definition of left-semi-conjugacy. As it obviously follows from Proposition 2.6
(ii)—(iii) that left-semi-conjugacy is not even an equivalence relation, it cannot
be the correct notion. However, for fixed point free circle actions it does indeed
coincide with our notion of semi-conjugacy, see Corollary 4.4.

Elsewhere in the literature semi-conjugacy is defined as the existence of a
continuous left semi-conjugacy ¢ : S — S!. This is still not symmetric: as we
saw in the proof of Proposition 2.6 (ii), every circle action is right semi-conjugate
to the trivial action via a continuous map ¢, while by point (iii) of the same
proposition fixed point free actions cannot be left-semi-conjugate to the trivial
action.

Since constant left-semi-conjugacies are responsible for both problems, one
may be tempted to exclude them from the game. Such a more restrictive definition
does indeed appear in the literature, but Theorem 1.2 can never hold for such a
definition. Namely, it is easy to check that if p; admits a unique global fixed
point xo and p, is the trivial representation, then the constant map with image
{xo} is the unique left-semi-conjugacy from p; to py. On the other hand p; and
p2 have the same bounded Euler class (see Corollary 4.2 below), so they need
to be semi-conjugate in order for Theorem 1.2 to hold.

In some sense, semi-conjugacy in the sense of Definition 2.5 is the most
obvious way to turn left-semi-conjugacy into an equivalence relation. However,
contrary to what is sometimes claimed, it is not the equivalence relation generated
by left-semi-conjugacy. Namely, by Proposition 2.6 the equivalence relation
generated by left-semi-conjugacy is the trivial relation in which any two circle
actions are related.

By definition, conjugate circle actions are semi-conjugate. We will see in
Proposition 4.8 below that for minimal circle actions the converse holds. However,
in general the notion of semi-conjugacy is much weaker than the notion of
conjugacy. For example Proposition 2.6 shows that every circle action admitting
a fixed point is semi-conjugate to the trivial circle action (but of course not
conjugate to the trivial circle action unless it is trivial itself).

3. Three characterizations of the bounded Euler class

The goal of this section is to introduce the bounded Euler class and provide
three different characterizations: as a bounded obstruction class (Subsection 3.2),
via the translation number (Subsection 3.3) and as a bounded geometric class on
the circle (Subsection 3.4). Yet another description of the bounded Euler class,
which generalizes readily to higher dimensions, will be discussed in the appendix.
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In order to keep this note self-contained we collect in the next subsection various
basic facts concerning (bounded) group cohomology. The expert can skip that
subsection without loss of continuity.

3.1. Preliminaries on (bounded) group cohomology. Given a group H acting
on a space X we set C"(H ~, X;Z) := Map(X"+1;Z)# , where the superscript
# denotes H -invariants under the diagonal H -action, and refer to elements
of C"(H ~ X;Z) as homogeneous H -cochains of degree n (or simply a
homogeneous cochain if H is clear from the context). We then obtain a cocomplex
(C"(H ~ X:7Z),8) by defining the homogeneous differential § as

8f (Xor.nxn) = ) (=1 f(xornn Koo Xn),
i=0

whose cohomology we denote by H*(H ~ X;Z). Elements in the kernel, re-
spectively image of § are called homogeneous H -cocycles, respectively homoge-
neous H -coboundaries. If X = H with the left- H -action, then the cohomology
H*(H ~ X;Z) is precisely the classical group cohomology H°®(H;Z) with Z-
coefficients. Given a homogeneous cocycle ¢ € C"(H ~ X;Z) and a basepoint
Xxp € X we obtain a homogeneous cocycle ¢y, € C"(H ~ H;Z) by

Cxo(ho,...,hn) — C(h() -)C(),...,hn 'Xo).

The class of ¢y, is independent of the choice of basepoint xo. We thus obtain
amap 1y : H*(H ~ X;Z) — H®*(H;Z) and we say that a class o« € H*(H;Z)
is represented over X if it is in the image of this map.

There is a more efficient representation for classes in H°®(H;Z) based on the
fact that we can identify C"(H ~ H;Z) with C"(H;Z) := Map(H";Z) via the
isomorphism

t:C"(H;Z)—>C"(H~ H:Z)

given by

(Yo ) = flhg hy, kT ha, o B2 )
L_l(g)(hl’ .. vhf’l) = g(e:hlshlhza L 9hlh2 feel " hn)

Thus H®(H;Z) = H*(C*(H;Z),d), where the differential d = :"! oo is
given by

n
Af(hi,....hnr1) = f(h2, ... hpy1) + Z(_l)if(hlv--',hihi-i-l,---,hn—l—l)

i=1

+ (=D (e, h).
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Cochains in this model are called inhomogeneous cochains, and are particularly
useful to compute low degree cohomologies. We will be specifically interested in
cohomology of degree 2; we thus recall briefly the relation between H?(H:;Z)
and central extensions. Given a central extension of groups of the form

£=(0 /A G {e})

and a set theoretic section o : H — H of p we define a function ¢ : H — H
by
co (1. h2) = a(ha)a(hiha) o (hy).

Since p(cs(h1,h2)) = e we can consider ¢, as a function into 7(Z). We will
often tacitly identify Z with its image in H and thus consider ¢, as a function
co : H?> — 7. It is straightforward to check that ¢, satisfies the cocycle identity

deo(hy,hy, h3) = co(ha, h3) — co(h1ha, h3) + co(hy, hah3) — co(hy, ha) = 0,

whence we refer to it as the obstruction cocycle associated with the extension
£ and the section o. It turns out that the class e(£) := [¢y] € H?(H:Z) is
independent of the choice of section. This independence can easily be proved
directly, but it is also a consequence of the following universal property of the
class [cq]:

Lemma 3.1 (Lifting obstruction). If p: " — H is a homomorphism, then there
exists a lift

0 /A ﬁ_P H {e)

if and only if p*[cs] =0€ H*(T;Z).

Conversely, a class ¢ € H?(I';Z) determines a central extension, which is
unique up to a suitable notion of isomorphism between extensions. We refer the
reader to [Bro, Chapter 1V] for the details.

In the sequel we will need the following explicit version of (one direction of)
the lemma:

Proposition 3.2 (Lifting formula). Let p: " — H be a homomorphism. Assume
that p*cy = du for some u: T — Z. Then a homomorphic lift B :T — H s
given by the formula

D) =0a(p)-i(—uy)).
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Proof. Since this formula is at the heart of our argument we carry out the
straightforward computation. By definition of ¢,, we have

G o(p(r1y2) = o (p(r)p(r2) = o (p(r))es (p(r1), p(r2)) o (p(12)).

Since by assumption p*c, = du, we have

co(p(1). p(¥2)) = p*(ca)(y1.¥2) = du(y1, y2) = u(y2) —u(y1y2) + u(y1).

—~

Since i(Z) is central in H we can rewrite Equation (3.1) as

o(p(y1y2)) = o(p(y1)i(—uly))o(p(y2)) (i (—u(y2))i (u(y1y2)).

Multiplying both sides by i(—u(y1y2)) now yields p(y1v2) = P (y1)p (y2) and
finishes the proof. 0

The subcomplex C}(H ~ X;Z) C C"(H ~ X;Z) of bounded functions
is invariant under §, and its cohomology is called the (integral) bounded
cohomology of the H -action on X and denoted H,(H ~ X:;Z). In particular,
Hp(H:Z) := Hj(H ~ H;Z) is the bounded group cohomology of H in the
sense of [Gro]. Note that the isomorphism ¢ : C"(H;Z) — C"(H ~ H;Z)
identifies C;'(H ~ H;Z) with the subspace C;(H;Z) < C"(H;Z) of bounded
functions, hence H,(H;Z) can also be computed from bounded inhomogeneous
cochains.

The inclusion of complexes (C;'(H;Z),8) < (C"(H;Z),5) induces on the
level of cohomology a comparison map Hp(H:;Z) — H®(H:Z), whose kernel is
classically denoted by EH,(H;Z). Note that an inhomogeneous bounded cocycle
representing a class in EHg*(H;Z) is of the form d7 for some 7 : H — Z
with the property that |7 (hihy) — T(hy) — T'(hy)| = |dT(hy1,h2)| is uniformly
bounded. Such a function 7 is called an integral quasimorphism and the number
D(T) := ||dT oo is called its defect. Given two quasimorphisms 77,7, we have
[dT] =[dTz] € EHbZ(H;Z) if and only if 77 —7> € Hom(H ; Z) & Map,(H ;7).
In particular, changing 7 by a bounded amount does not change the bounded
cohomology class of [dT].

Bounded group cohomology can also be defined with real coefficients. In
this case, bounded inhomogeneous cocycles in EH f(H ;R) are of the form dT
where 7" is a real-valued quasimorphism. Every real-valued quasimorphism (and
in particular every integral one) is at bounded distance from a unique homogeneous
real-valued quasimorphism called its homogeneization. Here a real-valued function
f is called homogeneous provided f(h") =n- f(h) for all n € N. Homogeneous
quasimorphisms have the additional properties of being conjugacy-invariant and
linear on abelian subgroups. They also satisfy f(h") =n- f(h) for all n € Z,
positive or not. Note that two quasimorphisms are at bounded distance if and only
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if their homogeneizations coincide. The following lemma illustrates how bounded
cohomology with real coefficients can be used to obtain results concerning integral
bounded cohomology; we will apply this in our second characterization of the
bounded Euler class below.

Lemma 3.3. If p: H > Hisa surjective homomorphism with amenable (e.g.
abelian) kernel, then p* : Hbz(H;Z) — Hbz( H ;7Z) is injective.

Proof. The short exact sequence 0 — Z — R — R/Z — 0 of coefficients
induces a natural long exact sequence in bounded cohomology, called the Gersten
sequence (see [Mon, Prop. 8.2.12]), and the corresponding ladder associated with
the homomorphism p starts from

0 —> Hom(H;R/Z) — HZ(H:;Z) —> H2(H;R)
p*l p*l p*l
0 —> Hom(H;R/Z) — HZ(H;Z) —> HZ(H;R)

Now surjectivity of p implies that the pullback map p* : Hom(H;R/Z) —
Hom( H ;R/Z) is injective, and the map p* : HZ(H:R) — HZ(H ;R) is an
isomorphism by [Gro, Iva], whence the lemma follows from the 4-lemma. [l

3.2. The bounded Euler class as a bounded lifting obstruction. From now on
we reserve the letter H to denote the group H := Homeo™(S!) of orientation-
preserving homeomorphisms of the circle S! = R/Z and abbreviate by

H = {7{ e Homeot(R) |Vx e R: h(x+1)= & (x)+ 1}

its universal covering group (with respect to the compact-open topology). We
then have a central extension

£=(0 z—>H-*2-H {e}).

where i(n)(x) ;= x +n and p(h)([x]) = [# (x)].

A section o : H — H is provided by specifying o(h)(0) for each h € H;
the section is called bounded provided E, := {o(h)(0) | h € H} is bounded. In
this case the obstruction cocycle ¢, : H? — 7Z is bounded and thus defines also
a class in the bounded second cohomology Hg(H;Z). Again it is easy to see
that this class is independent of the choice of bounded section. We then obtain
two classes eu := [c,] € H*(H;Z) and euy := [¢o] € HE(H;Z).

Definition 3.4. The classes eu and eu, are called the Euler class, respectively
bounded Euler class.
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One special section o is obtained by taking E, < [0,1). Let us give an
explicit formula for the cocycle ¢, in this case. For all &;,h, € H we have
o(hy)o(hiha) Yo (hy) = i(cy(hy.ha)). Since i(Z) < ‘H is central this can be
written as o (hy)o(hy) = a(hihs)i(cy(h1, hy)). Evaluating at 0 we obtain

o(h1)o(h2)(0) = a(h1h2)(0) + co(h1, h2).

Observe that o(h1h2)(0) and o(h3)(0) are contained in [0, 1). The latter implies
that o (fi;)o(hy)(0) € [0,2). Thus

1 if o(h1)o(h2)(0) € [1,2),

(3.2) colhn,ha) = { 0 if o(h1)o(ha)(0) € [0, 1).

Another equivalent description can be given as follows: Observe that o(k;)(1) =
o(h1)(0) + 1 € [1,2) and that o(hy)(0) < 1 implies o(h1)o(h2)(0) < o(hy)(1),
and similarly 0 < o(h2)(0) implies o(h1)(0) < o(h1)o(h2)(0). We may thus
rewrite (3.2) as

1 if 1 <o(h)o(h2)(0) <o(h)d) <2,

(3.3) Co(h1,ha) = { 0 if 0 <o (h1)(0) < o(h)o(h)(0) < 1.

Both formulas will be used below.

3.3. The bounded Euler class and the translation number. The Poincaré
translation number T : H — R is the homogeneous quasimorphism on H
given by _
T(7W) = lim X 7% (xeR),
n—-00 n

which by a classical theorem of Poincaré is independent of the choice of basepoint
x € R (see [Poil, Poi2]). Let Tz : H — 7 be any function at bounded
distance from 7. Then the cocyle d7z is bounded and thus defines a class
[dTz]) e H bz(?f : Z)), which is independent of the concrete choice of function 77 .
We can now state the second characterization of the bounded Euler class. We

recall that p: H — H denotes the canonical projection.

Proposition 3.5. The bounded Euler class euy is the unique class in Hbz(H 7))
such that p*ew, = —[dTz) € HZ(H ;Z).

Proof. Let hi,h, € H . We abbreviate h; := p(ﬁ;), By = p(?zz). Given a
real number r € R we denote by r = |[r] + {r} the unique decomposition of r
with |r] € Z and {r} € [0,1). Since 7, and o(hy) have the same projection
they differ by an integral translation which we obtain by evaluating the difference
on 0. We thus compute
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1 (0) = a(h1)(0) = L1 (0)] + {71 (0)} — 5(h1)(0) = L1 (0)],
where the last equality follows from the fact that both {717(0)} and o(h1)(0)

belong to [0, 1). Thus, for every x € R, we have o(h1)(x) = hy(x) — [ 1 (0)]
and similarly o(h2)(x) = ha (x) — | h2 (0)]. We deduce that

o (h1)0 (h2)(0) = o (h1)(h2(0) — [72(0)]) = o (h1)(h2(0)) — [12(0)]
= I /2(0) — 11(0)] — |h12(0)]
= | h2(0)] — |h1(0)] — |h2(0)] + {h1h2(0)}.

Since the last term is contained in [0, 1), this expression is in [1,2) respectively
[0, 1) if the sum of the first three terms is equal to 1 respectively 0. Representing
eup by the cocycle ¢, given in (3.2), we thus obtain

P ca(hi, ha) = colhy ha) = LIy Bz (0)] = Ly (0)] = Lz (0)).

—_—

Now the function 77 : H — Z given by ki - LE(O)) is at bounded
distance from the translation number 7" and the last identity can be written as
p*ce = —dTz. We thus deduce that p*eup, = —[dTz] and uniqueness follows
from Lemma 3.3. 0

3.4. The bounded Euler class realized over the circle. In this subsection
we are going to show that the Euler class and the bounded Euler class are
representable over the circle, i.e., that they are in the respective images of the
maps H*(H ~, S':Z) — H*(H:Z) and H}(H ~ S';Z) - H?(H:;Z). Recall
that throughout we think of S! as the quotient space R/Z. In order to describe
cocycles in C"(H ~, S';Z) we need to understand H -orbits in (S')"*!. For
n < 2 the classification of orbits is as follows:

Orbits of H acting on (S1)"+1,
(n = 0) The action of H on S! has exactly one orbit.

(n = 1) The action of H on (§!)? has two orbits:
one degenerate orbit Oy., := {(x,x) | x € S!} and one non-degenerate orbit
Ondeg ={(xy) | x#Fye Sl}-

(n =2) The action of H on three factors (S')? has six orbits. Choose distinct
points x,y.z € S! and suppose that (x,y,z) is a positively oriented triple.
Then there are 4 degenerate orbits

Op:=H-(x,x,x), Op:=H-(y,x,x),
02 ::H‘(x,y.X), 03 ::H'(x!xsy),
and 2 non-degenerate orbits

Oy :=H-(x,y,z), O-:=H-(y,x,2z).
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For general n there are still only finitely many H -orbits in (S!)”. This
implies C}(H ~ S%Z) = C*(H ~ S'Z) and thus the comparison map
H)H ~ S%“7Z) = H"(H ~ S';Z) is an isomorphism. In particular, if an
element of H"(H:Z) is representable over S', then it is bounded.

In degree 2 we can actually parametrize all possible homogeneous H -
cocycles and homogeneous H -coboundaries using the above enumeration of
orbits. Note that every homogeneous 2-cochain f is determined by the 6
integers {fo. f1. f2, f3, f+, /—}, where f; is the value of f on the orbit
O; for j € {0,1,2,3,4,—}. For homogeneous coboundaries a straightforward
computations shows that these numbers are given as follows.

Lemma 3.6. Let b: (SY)? — R be an arbitrary homogeneous 1-cochain taking
the values o and B on the orbits Ogeq and O,g.o respectively and let f = 6b
be the associated homogeneous 2-coboundary. Then

fo=fi=faiza, fo=28-a, fi=[f =8

One very familiar homogeneous H -cocycle on S! of degree 2 is the
orientation cocycle Or, which assigns the value 41, respectively —1, to positively
oriented, resp. negatively oriented non-degenerate triples, and 0 to all degenerate
triples. By the previous lemma, none of its multiples is a coboundary, since the
value on positively and negatively oriented triples is not the same. It thus defines
a class [Or] of infinite order in HG,(H ~ S';Z). We now describe general
homogeneous 2-cocycles:

Lemma 3.7. Let f :(S1)3 = R be an invariant homogeneous H -cochain. Then
f is a cocycle if and only if

fo=hH=fn f+/f-=fHL+1]
Moreover, Hg (H ~ S';Z) = Z via the map [f]+— f+— f-.

Proof. Let (x,y,z) be a positively oriented triple. Writing out the cocycle relations
of (y,x,x,x) =8f(x,x,x,y) = 6f(x, y,%x,2z) = 0 yields

Jox,x) = f(y.x,x) = flx,x,9),
f.x,2) = f(x,9,%) = f(x,x,2) = f(x,,2),

which implies that every 2-cocycle satisfies the 3 identities of the lemma.
The space C? of all cochains satisfying these 3 identities can be identified
with Z3 via the map f — (fo. f+, f-). Under this identification the space of
coboundaries corresponds to {(m,n,n) | m,n € Z}, hence the quotient of C?
modulo coboundaries is isomorphic to Z via the map [f]— f4 — f—. If there



A note on semi-conjugacy for circle actions 335

were any other identities satisfied by all 2-cocycles than those following from
the 3 identities above, then H (Zb)(H ~ S1:Z) would be a proper subgroup of 7,
hence there would be no cocycle f satisfying f; — f= = 1. However, such a
cocycle does exist (namely the Euler cocycle given in Definition 3.8 below). [l

It follows from the lemma that the class of the orientation cocycle generates
a subgroup of index 2 in H(Zb)(H ~ S':7Z) and that the generator —%[Or] is
represented by the cocycle ¢ satisfying

(34) Co=C1=C3=C+=O, 6‘2=C_=1.

Definition 3.8. The homogeneous 2-cocycle ¢ € CZ(H ~ S';7Z) given by (3.4)
is called the Euler cocycle.

In order to relate the Euler cocycle to the bounded Euler class we need the
following computation (see [loz, Lemma 2.1]):

Lemma 3.9. If ¢ € Cg(H ~ SY7Z) is the Euler cocycle from Definition 3.8
and ¢y € Cbz(H ;) denotes the obstruction cocycle associated with the special
section 0 : H —- H with E, =[0,1), then

co(hy1,hy) = c([O],hl -[0], Ayhy - [0]).
Moreover,
Or = —2c¢ + 6b,
where b is the H -invariant 1-cochain which takes values 0 and 1 on Ogyeg

and Opgeg respectively.

Proof. It follows from the explicit definition of ¢ that

1 if 1 <o(hy)o(h)(0) <a(hy)(l) <2,
0 if 0 <a(h)0) <o(hy)o(hy)(0) < 1.

In view of (3.3) this implies c¢q(h1,h2) = ¢([0], hy - [0], h1ho - [0]). The relation
Or = —2c¢ + b is straightforward. (]

([0, s - O, hyhs - [O]) = {

From this computation we draw the following conclusion.

Corollary 3.10. The bounded Euler class euy, is representable over the circle.
In fact it is represented by the Euler cocycle ¢ : (SY)? — Z. Similarly, the class
—2-euy is represented over the circle by the orientation cocycle. U

Note that, in particular, for every x € S!' the homogeneous 2-cocycle
cx : H3> — Z given by
(h.o, ]’11 s ]22) = Cx (h(), h1 N hz) = C(l’lox, 1114\‘, hzx)

represents the bounded Euler class.
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4. Ghys’ Theorem

4.1. Circle actions with vanishing bounded Euler class. Before we turn to the
proof of Ghys’ Theorem in the general case we provide a characterization of
circle actions with vanishing bounded Euler class. This characterization can be
seen as a special case of Ghys’ Theorem, but it is also of independent interest
and has a particularly simple proof. Parts of this special case will also be used
in the proof of the general theorem.

Recall that the Euler class eu was defined as an obstruction class. It thus
follows from Lemma 3.1 that if p: " — H is a circle action, then

p*eu =0 < the action lifts to an action on the real line.

The following result shows that the vanishing of the bounded Euler class has
much more drastic consequences:

Proposition 4.1. Let p: ' — H be a circle action with p*eu, = 0. Then the
action lifts to an action on the real line which moreover has a fixed point.

Proof. By assumption there exists a bounded function u : I' — Z with
p*ce = du, where ¢, is the cocycle representing eup explicitly given in Equations
(3.2) and (3.3). By Proposition 3.2 we have a homomorphism

P:T—H, By =0(p) i(-u@).

In particular,

P ()0) = o (p(1))(0) —u(y).
Now, since o is a bounded section and u is bounded, p (y)(0) is also bounded.
It follows that

FY(P) = sup B (y)(0)
yel

is well defined, and it is clearly a fixed point for p(I"). O
Using the second characterization of the bounded Euler class via the translation

number we obtain a converse to this result, leading to the following characteri-
zation:

Corollary 4.2 (Circle actions with vanishing bounded Euler class). Let p: ' —
Homeot (S') be a circle action. Then the following are equivalent:

(i) p*eup = 0.

(ii) The circle action p lifts to an action on the real line which moreover has
a fixed point.
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(iii) p(T") fixes a point in S'.
(iv) p is semi-conjugate to the trivial circle action.

Proof. We have already seen that (i)=>(ii) in Proposition 4.1. Conversely, if (ii)
holds for a lift o : ' — H with fixed point xq, then by Proposition 3.5

preup = —p [dTz] = —[d p " Tz].
However we have for every y € I,

= R~ e

whence p *Tyz is bounded and thus (i) holds. The implication (ii) = (iii) is obvious,
since the projection of a fixed point of a lift is a fixed point for the original
action. Conversely, if p(I') fixes [xo] € S!, then it acts on S!\ {[xo]} and this
action can be lifted to an action on (xg,x¢ + 1) and periodically to an action on
R fixing all points in x¢ 4+ Z. This shows (ii) < (iii) and the equivalence (iii) <
(iv) follows from Proposition 2.6. L]

Although Corollary 4.2 is only a very simple special case of Ghys’ Theorem,
it is sufficient for many applications. E.g., most of the applications of Ghys’
Theorem in higher Teichmiiller theory depend only on Corollary 4.2 (see, e.g.,
[BIWI, BSBH]). We therefore find it important to point out the above simple
proof. Note that a slightly stronger version of Corollary 4.2 is established in the
appendix.

4.2. A refined statement of Ghys’ Theorem. We will now prove Ghys’
Theorem 1.2 (with our Definition 2.5 of semi-conjugacy), thus establishing that the
bounded Euler class is a complete invariant of semi-conjugacy. We will actually
prove the following more precise version:

Theorem 4.3. Let py, p2 be circle actions of T'.
(i) If pieup = p5eup, then py and pp are semi-conjugate.

(ii) If py and py are semi-conjugate and either of them has a fixed point, then
both have a fixed point and pieup = pjeup = 0.

(iii) If p1 is fixed point free and left-semi-conjugate to pa, then pieu, = pieu, #
0.

Note that in the situation of (iii), p; and py are actually semi-conjugate
by (i). This proves the following result alluded to in the introduction, also proven
in [Mat, Proposition 1.4].
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Corollary 4.4. If a fixed point free circle action p; is left-semi-conjugate to a
circle action p,, then they are semi-conjugate. In particular, left-semi-conjugacy
defines an equivalence relation on the set of all fixed point free circle actions.

Part (ii) of Theorem 4.3 follows directly from Corollary 4.2: If, say, p;
has a fixed point, then it is semi-conjugate to the trivial circle action by the
implication (iii) = (iv), whence also p, is semi-conjugate to the trivial circle
action and thus has a fixed point by the implication (iv) = (iii). Then, by the
implication (iii) = (i) we have pleu, = pJeu, = 0. Thus it remains to show
only (i) and (iii), which we will do in the next two subsections.

4.3. Same bounded Euler class implies semi-conjugacy. In this subsection
we are going to establish Part (i) of Theorem 4.3. Our proof is a slight
variation of Ghys’ original proof, which emphasizes the similarity to the proof
of Proposition 4.1.

To fix notation, let p;, p2 be circle actions with the same bounded Euler class
pieu, = pseup. We claim that p; and p, are semi-conjugate. By symmetry it
suffices to show that p; is left-semi-conjugate to p,.

Let T be the central extension of I' which corresponds to pfeu = pieu.
Then we can choose lifts p;, p; making the diagram

0 7 —s H H 1
ERNCRRC
0 7Z— T IP 1

commute. Since pjeu, = pieu, and the diagrams commute we have
[dpi"Tz] = pi"[dTz] = —p1™(p"ewy) = —p2" (p ewp) = p2"[d Tz]
= [dp2*Tz].

This implies that there exist a homomorphism u : I' — Z and a bounded function
b: T — Z such that p1 *Tz— pz *Tz = u+b. It follows that py *T —p3 *T —u
is a bounded homogeneous function, hence 0. Thus,

01T — 02T = u.

Replacing the lift p; by p; +iou we can ensure that u = 0. Assume that

—~

02 is chosen in that way. Then for every g € H ,

IT(P1() ' P200)| = |- T(P1(9) + T(B2(9)| + D(T) = D(T),

where D(T) is the defect of the quasimorphism 7. In particular, 7 1(g)"! 7 2(g)
has uniformly bounded translation number and thus
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¢ (x) == sup (P1(2) ' P2(9)(x))
geTl

~

is well defined. By definition we have for every go € I',

P(P2(20) () = supPi(e) ™" (P2(&) (P2(20)()))
gel’

= suppi(g 2o (pa(g)(x))
gel’

= B1(g0)(supFi ()~ (P2(2) ()
gerl

=01(g0)(9(x)).

Moreover, being the supremum of increasing maps which commute with integral
translations, the map ¢ : R — R is non-decreasing and commutes with integral
translations, so it is a good lift of a non-decreasing degree one map ¢: S! — S!.
It follows that ¢ realizes the desired left-semi-conjugacy from p; to p,. This
finishes the proof of Part (i) of Theorem 4.3.

Remark 4.5. Note that it now immediately follows that Condition (i) of
Theorem 1.4 implies Ghys’ condition stated as Condition (vi) in Remark 1.5.
Indeed, if the bounded Euler classes are equal, then so are the (unbounded) Euler
classes and the map @ in the above proof gives the map required in Condition

(vi).

4.4. Semi-conjugacy implies same bounded Euler class. In this subsection we
establish the remaining Part (iii) of Theorem 4.3 thereby finishing the proof of the
theorem. Here we will finally make use of the third (geometric) characterization
of the bounded Euler class.

Instead of Theorem 4.3.(iii) we will actually prove a slightly stronger statement.
To state this result we introduce the following notation. Throughout this section
we will fix two circle actions p;,p> of I' and a semi-conjugacy ¢ from p; to
p2. We will not assume a priori that p; is fixed point free. For each y € T
we fix lifts pj (y) and ps (y) of pi(y) respectively p,(y). Suppose now that
@ is some good lift of ¢. Since py (y)¢@ and ¢ p; (y) are lifts of the same
map and are invariant under integral translations, there exists a map n, : R — Z
(dependent on ¢ ), invariant under integral translations, such that for all x € R,

(4.1) P1 (1)@ (x) = G (P2 () (X)) + ny (x).
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Proposition 4.6. Let py, pa be circle-actions of T and let ¢ be a semi-conjugacy
from py to py. Let a good lift ¢ of ¢ be fixed and let n, : R — Z be defined
by (4.1). Consider the following statements:

() p1(I) does not have a global fixed point in S*.

(2) @ is not the constant map.

(3) There exists a good lift ‘¢ of ¢ such that for each y € T' the map n, given
by (4.1) is constant.

(4) There exists a good lift ‘¢ of ¢ such that p1 (y) ¢ (x) = ¢ (pz (y)(x)) for
all y €T and x € R.

(5) There exists a non-empty po(I')-invariant subset K C S' such that ¢|x is
injective.

(6) preup = pyeup.

Then the implications ()= (2)= (3= (4 = (5)=(6) hold.

Note that the implication (1)=(6) gives Part (iii) of Theorem 4.3.

Proof of Proposition 4.6. The implication (1) = (2) is obvious, so we turn directly
to the proofs of the implications (2)= (3)= (4)=(5)= (6).

Assume that (2) holds and fix y € T'. Let @ be a good lift of ¢. Since ¢
is non-constant we find distinct elements ag, by € R with by —ag € (0,1) and
@ (bo) — @ (ap) € (0,1). Since py (y) is strictly increasing and commutes with
integral translations, this implies at once that

(4.2) 0 < D1 (N (bo)) = b1 (¥ (a0)) < 1.

On the other hand, since @ o p3 (y) is non-decreasing and commutes with integral
translations, we also have 0 < @ (02 (¥)(bo))— ¢ (2 (y)(ap)) < 1. However, these
inequalities must both be strict, because otherwise we would have

p1()(e([bo]) = @(p2(¥)([bo])) = @(p2(¥)([aa))) = p1(¥)(¢(ac])).

which contradicts (4.2). We have thus shown that

0 < p1(¥)(@(bo)) — p1(¥)(@(ag)) < 1,
0 <@(p2(y)(bo)) — @(p2(y)(ag)) < 1.

Subtracting the second inequality from the first we deduce that n,(bg) —n,(ag) €
[0,1)—=[0,1) = (=1,1). Since both are integers we deduce that n,(bg) = ny(ao),
which implies that n, is constant on E := (ag + Z) U (bg + Z).

Now let x € R\ E. Then the interval (x,x+1) contains one translate of ao and
one translate of by, and these take different values under @ . We thus find ¢ € E
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with x <e<x+1 and ¢ (x) # ¢ (e), whence {x —e, ¢ (x) — ¢ (e)} C[0,1)
and ny,(x) —ny(e) € (—1,1), so that n,(x) = ny(e). This finishes the proof of
the implication (2)= (3).

Now assume that (3) holds, i.e. for every y € I' we have n,(x) = n, for
some constant n, . We can then replace the lift py (y) by the lift py (y) —n,
and thereby achieve that for all x e R,

(4.3) TP =7 (P2 (1K),

which is (4).
We now deduce (5) from (4). Given xo € R we define

Svo =X €R| T (x) = §(x0)} = ¢ (¥ (x0).

Since ¢ is increasing, the sets Sy, are connected, and since ¢ commutes with
integral translations we have S, C (xo —1,x0 + 1). In particular, each Sy, is
bounded and if we define «/(xg) := inf Sy, and B(xp) := sup Sy, , then

Sxo € {(@(x0), B(x0)), ((x0). B(x0)], [(x0). B(x0)). [(xo). Bx0)]}.

is an open, half-closed or closed interval. Since R is connected, not all of these
intervals can be open. Thus the sets

K_ = {xeR|x=infS,} and K 4= {x e R | x = sup Sy}
cannot both be empty (though it is easy to construct examples where one of them
is empty).

We observe that the restrictions ?ﬂ’f{i are both injective. Assume first that
x1,x2 € K_ and @ (x1) = §(x2). Then Sy, = S, and thus
x1 = inf Sy, = inf Sy, = x3,
showing that ¢ |z is injective. Replacing inf by sup, we deduce similarly that
'cﬁ]*,;+ is injective.
Now we claim that ?i are invariant under p; (y) for every y € I'. For

this it suffices to check that p; (y)(Sx) = S for every x e R, y € I'. This
follows from the chain of equivalences

P2 (¥)x

¥ €my)(Sx) &= iy () €Sy = F(o2(y")y) =9(x)
= pn(y () =9k = () =pn0)ex) =¢(p2)(x))

& Y € S5 0)x

Now let K1 be the projections of K+ on S'. Then Ky are p2(T")-invariant
and ¢ is injective on both K, and K_. Since at least one of these two sets is
non-empty, this finishes the proof of the implication (4)=(5).
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Finally, we establish the implication (5)=(6): Let K be as in (4) and let
x € K. By Lemma 3.7 the cohomology class p;euy is represented by the cocycle

pycx(go, g1, 82) = c(p2(go)x, p2(g1)x, p2(g2)x).

Note that for j = 0,1,2 the points p,(g;)x are all contained in K, since K
is po(I')-invariant. It thus follows from injectivity of ¢ on K that they are
pairwise distinct if and only if their images under ¢ are pairwise distinct.
Since ¢ also preserves their weak orientation, we deduce that the triples
(p2(go)x, p2(g1)x, p3(g2)x) and (¥ (p2(go)x), ¥ (p2(g1)X), ¢ (p2(g2)x)) are in
the same H -orbit. Indeed, this follows from the classification of H -orbits on
(S1)3 in Subsection 3.4. Since ¢ is H -invariant we obtain

Piex(go, &1, 82) = c(@(p2(80)%), ¢(p2(81)x), ¢(p2(g2)x))
= c(p1(g0)e(x). p1(g1)@(x), p1(g2)p(x))
= P Co(x)(80. &1.82)-

Since the cocycle pjc,(x) represents pieu,, we deduce that pieu, = pieu,. This
finishes the proof. U

At this point we have finished the proof of Theorem 4.3 and thereby of
Theorem 1.2.

Remark 4.7. In [Ghyl, Equation (1), Proof of Proposition 5.2]) our map n, is
denoted by u(y). It is assumed to be constant independently of whether ¢ is
constant or not. The following example shows that this is not true in general.
Let p; be the trivial circle action of Z and p, be the circle action sending 1
to the rotation by 1/2. Then p; is left semi-conjugate to p, by Proposition 2.6
(ii). The left semi-conjugacy can be given by the constant map ¢(x) = [0] which
lifts to @ : x +— |x]. A lift of p;(1) is the identity and a lift of p(1) is the
translation 77/, by 1/2. Then p;(1)¢ = @p2(1) on the circle but the translation
X = ¢(x)— @ (Ty2(x)) = [x] — |x+1/2] depends on x since it is 0 for
x €[0,1/2) + Z and —1 for x € [1/2,1) + Z. More generally, neither of the
statements (2)—(5) is correct without the assumption that p; is fixed point free.
For example, if p; has a fixed point then we can alway choose ¢ to be constant.
In that case, every set K C S' on which ¢ is injective is a singleton. If p,(T")
is fixed point free, then such a set cannot be invariant. The reader may check that
in this case our set K, constructed in the proof is indeed a singleton, and that
the proof of invariance breaks down in the absence of (3), e.g., in the situation
of the example above.
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4.5. The minimal case: Semi-conjugacy equals conjugacy. Recall that a circle
action p : I' — Homeo™" (S') is minimal if every p(I')-orbit is dense in S'.
The following proposition shows that for minimal circle actions, the notions of
conjugacy and semi-conjugacy coincide. This implies in particular that Theorem 1.1
follows from Theorem 1.2.

Proposition 4.8 (Ghys). Let p;, p2: I' — Homeo™ (S') be minimal circle actions.
Then the following are equivalent:

(i) p1 is left-semi-conjugate to p;.
(i) p1 and p, are semi-conjugate.

(iii) p1 and p are conjugate.

Proof. Since minimal actions are fixed point free, the equivalence (i) < (ii) follows
from Corollary 4.4. Moreover, the implication (iii) = (i) holds trivially. Concerning
the implication (i)=> (iii) assume that p; is left-semi-conjugate to p, via ¢. Then
the image of ¢ is p;(I")-invariant, whence dense in S' by minimality. This in
turn implies that the image of @ is dense in R. So the map @ , being non-
decreasing and commuting with integral translations, is continuous and surjective.
Therefore, the same is true for ¢, and we are left to show that ¢ is also injective.

Suppose by contradiction that there exist distinct points x,y € S such that
@(x) = ¢(¥), and choose lifts X,y of x,y in R such that ¥ <3 < X + 1.
Since @ is non-decreasing and commutes with integral translations, we have
either ¥ (V)= ¢ (X) or 9 (¥y)= ¢ (X +1). In any case, ¢ is constant on
a non-trivial interval, so there exists an open subset U C § I such that elu is
constant. Let now x be an arbitrary point of S!. By minimality of p, there
exists y € I' such that po(y)~!(x) € U, and consequently V := p>(y)(U) is an
open neighborhood of x. Now

olv = (ep2(¥)lv o 2Ny = (1 )P)lw © p2(¥) ',

whence ¢ is locally constant. It follows that ¢ is constant, and this contradicts
the fact that ¢ is surjective. U]

We have now established Theorems 1.1 and 1.2 mentioned in the introduction.

5. Variations and examples

5.1. Circle actions of Z and the rotation number. Let us spell out a few
special immediate consequences of Ghys’ Theorem. We start with the case where
[' = Z. In this case a circle action p: ' — Homeo™t (S') is given by a single
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invertible transformation p(1) € Homeo™ (S1!). The action lifts to 7 : Z — H
and following Poincaré we define its rotation number as

R(p):=T(p(1)) mod Z,

where T is the real valued translation number defined in Section 3.3.

Example 5.1. Given « € R/Z we denote by R, € Homeo' (S!) the rotation by
«. Then the Z-action p with p(1) = R, has rotation number «. In particular,
every rotation number can be realized by a rotation.

The fact that any Z-action lifts is illustrated by p*(eu) =0 € H?*(Z;7Z) = {0}.
Thus, the unbounded Euler class cannot give any information for Z-actions. The
case of the bounded Euler class is much more interesting:

Corollary 5.2 (Poincaré). For circle actions py,p, : Z — Homeot(S') the
following are equivalent:

(i) p1 and py are semi-conjugate.
(if) pjeup = pseuy.
(iii) R(p1) = R(p2).
In particular, Poincaré’s rotation number is a complete semi-conjugacy invariant

for circle actions of Z (and a complete conjugacy invariant for minimal 7 -
actions).

Proof. The equivalence (i) < (ii) is a special case of Theorem 1.2. For j = 1,2
we have
pieu, = p; “peuy = —p; *[dTz] = —[d pj *Tz],

whence (ii) is equivalent to [d(py *Tz — p2 *Tz)] = 0. This in turn means
that there exists a homomorphism f € Hom(Z,Z) such that the quasimorphism
01 *Tz — 02 *Tz — f is bounded. Now using the fact that a quasimorphism
is bounded if and only if its homogeneization is trivial we see that the latter
condition is equivalent to

T — 55 *T = f € Hom(Z, Z).

Since two homogeneous functions on Z agree iff they agree on 1 we see that
this condition is equivalent to

BT~ 5 *T(1) = T(57 (D) — T(7 (1) € Z,

i.e., R(p1) = R(p2). 0
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5.2. The Hirsch-Thurston theorem. Let us denote by Rot(S!) =~ R/Z the
subgroup of Homeo™(S') given by rotations. A circle action which factors
through Rot(S!) will be called a rotation action. It follows from Example 5.1
and Corollary 5.2 that every Z-action is semi-conjugate to a rotation action. This
is more generally true for actions of amenable groups; the corresponding result is
usually attributed to Hirsch and Thurston (see e.g. [Cal]), since it can be derived
easily from results in [HT].

Corollary 5.3 (Hirsch-Thurston). Every circle action p: T — Homeo™ (S!) of
an amenable group is semi-conjugate to a rotation action.

Proof. By a classical result of Trauber (see, e.g., [Gro, Iva]) the bounded coho-
mology of I' with real coefficient vanishes. Thus the connecting homomorphism

§: HY(T;R/Z) — HX(T; Z)

of the Gersten exact sequence (see [Mon, Prop. 8.2.12]) is an isomorphism.
Let o := p*euy € H;(F;Z) and B := 8§ !(«). Then under the isomorphism
HY(I';R/Z) = Hom(I',R/Z) = Hom(I",Rot(S!)) the class B corresponds to a
homomorphism p’ : I' — Rot(S'). Now a standard diagram chase shows that
(p')*eup = 8(B) = p*eup, whence p and p’ are semi-conjugate. O

5.3. Real bounded Euler class. In many applications, computations in integral
bounded cohomology are difficult, and thus one relies on real bounded coho-
mology. The image of eu, in HbZ(H;]R{) under the change of coefficients map
HZ(H;Z) — HZ(H:R) is called the real bounded Euler class and denoted eujf .
Corollary 4.1 has the following real counterpart:

Corollary 5.4. Let p: ' — HomeoV(S') be a circle action with p*euﬂ[f = 0.
Then p([T'.T]) fixes a point on S'.

Proof. Since p"‘eu]})ig = 0 we can argue as in the proof of Corollary 5.3 and
prove that p is semi-conjugate to an action p’ : I' — Rot(S') < Homeo™ (S!).
In particular, p|irr is semi-conjugate to p|irr). Now since Rot(S') is abelian,
o’ vanishes on [I',I']. It follows that (p|rr))*eup = (p'[[r,r))*eup = 0, whence
p([[,T]) fixes a point on S' by Corollary 4.1. O

6. Alternative characterizations of semi-conjugacy

6.1. Regularity of semi-conjugacies. Having established Theorems 1.1 and 1.2
and some of their consequences, we now return to the characterizations of semi-
conjugacy given in Theorem 1.4 of the introduction. We start by discussing the
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issue of regularity of semi-conjugacies. In general, if two circle actions p; and p;
are semi-conjugate it does not follow that they are semi-conjugate via continuous
left-semi-conjugacies. A concrete counterexample is given as follows.

Example 6.1. Let p; be the action of Z given by sending the generator 1 to
1

the rotation by m. Let p, be an action of Z with rotation number 5 for which
02(2) has precisely two fixed points. For example, the generator could be sent to
the fixed point free lift of a parabolic isometry to the double cover of S! = dH?2.
Both actions have rotation number 1/2, so that they are semi-conjugate, say, p;
is right-semi-conjugate to p; via ¢ : S' — S§1. By definition, ¢ sends orbits
for the pj-action to orbits for the p,-action. Now all p; orbits have precisely
two points, while only one p, orbit has two points (and the other orbits have
infinite order). It follows that the image of ¢ is equal to the unique p, orbit
consisting of two points, hence the map ¢ cannot be continuous. Even worse,
the semi-conjugacy ¢’ : S! — S! in the opposite direction, i.e. from p; to ps
cannot be chosen continuous either. Indeed, let {x;,x;} be the unique p,-orbit
containing two points. Then ¢’ has to send x; and x, to a pair of antipodal
points y,y. Now restrict to the index two subgroup 27 < Z and look at the
restricted orbits: The restricted p;-action is trivial, so orbits for the restricted
02 -action have to be sent to points. But x; and x, are accumulation points of
the same restricted p;-orbit, which is all mapped to a point z. Then z cannot

be equal both to y and 7, so that ¢’ is not continuous.

Things improve if we replace continuity with the less demanding notion of
semicontinuity. Recall that a non-decreasing degree one map ¢: S! — S is called
upper semicontinuous if it admits an upper semicontinuous good lift ¢ : R — R.
Indeed we can show:

Lemma 6.2. If a circle action p; : T — H is left-semi-conjugate to a circle action
02 : I' — H, then it is left-semi-conjugate to p, via an upper SemiCONINUOUS
map ¢’ S1 — S!.

Proof. Let ¢ be an arbitrary left-semi-conjugacy from p; to p,. If ¢ is constant
then there is nothing to show, hence we may assume that ¢ is non-constant. We
then define ¢, p;., p2 and n, as in the beginning of Subsection 4.4 and also
define a new function ¢¥’:R — R by

?'(x)=sup{F (M |y <x}.

Since @’ is non-decreasing and commutes with integral translations, it is the
good lift of a non-decreasing degree one map ¢': S' — S'. We claim that ¢’
is a left-semi-conjugacy from p; to p;.
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In order to prove our claim we fix y € I' and abbreviate 717 = p; () € H
for j =1,2. By (4.1) we have for every y e R,

(6.1) e ) =7 (h () +ny,0).

By the implication (2)=(3) in Proposition 4.6, there exists an integer m € N
such that n, = m. Now for every x € R we have

g (x) = h1(sup{@(y) | ¥ < x}) = sup (@) | ¥ < x}
=sup {@(h2 () +m | y <x} =sup{@(y) | y < ha(x)} +m
= 'gb"(hz(x)) —+ m,

which implies that p;(y)¢" = ¢’pa(y), and concludes the proof. O

6.2. Proof of Theorem 1.4. The equivalences (i) < (ii) < (v) of Theorem 1.4 are
immediate from Theorem 4.3. The equivalence (i) < (iii) < (iv) of Theorem 1.4
follows from the following corollary of Proposition 4.6.

Corollary 6.3. For circle actions p; and p> the following are equivalent:

(i) There exists a left-semi-conjugacy from py to p, which satisfies Property (4)
of Proposition 4.6.

(ii) There exists a left-semi-conjugacy from py to p> which satisfies Property (5)
of Proposition 4.6.

(iii) p1 and p> are semi-conjugate.

Proof. 'The implications (i)=>(ii)=>(iii) of the corollary follow from the implica-
tions (4)= (5)=(6) in Proposition 4.6 and Part (i) of Theorem 4.3. Conversely
assume that (iii) holds and that p; is left-semi-conjugate to p, via ¢. If ¢ is
non-constant then (i) and (ii) hold by the implications (2) = (4) = (5) of Proposi-
tion 4.6. Now assume, on the other hand, that ¢ is constant. Then the image of
@ is a fixed point [x;] for p;. According to Part (ii) of Theorem 4.3 there is also
a fixed point [x2] of pp. Let X7, x; € R be lifts of x; and x, respectively.
Then there exists a unique good lift ¢ of ¢ such that ¥ ([x3, X7 +1)) = {7},
and this lift clearly satisfies Property (4) of Proposition 4.6. This shows that (iii)
implies (i) and finishes the proof. O

We have thus established the equivalence of the conditions (i)-(v) in Theo-
rem 1.4. Together with Lemma 6.2 this finishes the proof of Theorem 1.4.
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6.3. Semi-conjugacy and monotone equivalence. Let us say that a circle action
p1: I' — H is left-equivalent to another circle action py: I' — H if p;
is left-semi-conjugate to p, via a continuous non-decreasing degree one map
¢: ' — H of Hopf-Brouwer degree 1, and recall from the introduction that
monotone equivalence is defined as the equivalence relation generated by left-
equivalence. This subsection is devoted to the proof of Theorem 1.7, which states
that monotone equivalence is equivalent to semi-conjugacy in the sense of the
present note. One direction is immediate from what we have proved so far:

Proposition 6.4. Suppose that py,p>: I' — H are monotone equivalent circle
actions. Then py and p, are semi-conjugate.

Proof. We may reduce to the case when p; is left-equivalent to p,. In this
case, pp is left-semi-conjugate to p, via a non-constant map, so the implication
(2)=(6) of Proposition 4.6 and Theorem 1.4 imply that p; is semi-conjugate to
P2 - [

Concerning the converse implication we recall the following classical tri-
chotomy for circle actions (see, e.g., [Ghy2] for a detailed discussion and proof).

Lemma 6.5. Let p: I' — H be a circle action. Then exactly one of the following
three possibilities occurs:

(1) p(I') has a finite orbit.
(2) p is minimal, i.e., every p(I')-orbit is dense.

(3) there exists a unique p(I')-invariant infinite compact proper subset K C S1
(called the exceptional minimal set of p(I')) such that K is contained in
the closure of any orbit of p(I').

In case (3), K is homeomorphic to a Cantor set. O
From this we deduce:

Proposition 6.6. Let p: I' — H be a circle action without finite orbits. Then p
is monotone equivalent to a minimal action.

Proof. Since (1) is excluded by the assumption and the conclusion holds trivially
in case (2), we may assume that p satisfies (3) of the above trichotomy. Thus let
K ¢ S be the minimal exceptional set of p(I'). We have S'\ K = |,y Ui,
where the U; ’s are pairwise disjoint non-empty open subsets of S' homeomorphic
to open intervals. Define an equivalence relation ~ on S! by declaring x ~ y if
and only if there exists i € N such that {x,y} C U;, andlet ¢ : S' = X :=S!/ ~
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denote the quotient map. Since X is obtained from S!' by collapsing intervals,
it is homeomorphic to S!. Moreover, the map ¢ is a continuous, non-decreasing
degree one map of Hopf-Brouwer degree 1 (any of its lifts to R is just a devil’s
staircase).

Now let y € I'. Since K is p(y)-invariant, the element p(y) permutes the
intervals U; and thus descends to an orientation-preserving homeomorphism of
X . We thus obtain a homomorphism p': ' — Homeo™ (X) such that for all
y €T,

') = ep(y),

and it remains to show only that X is minimal under p’(I"). However, this follows
from the observation that since K is contained in the closure of any p(I")-orbit,
the set S! = ¢(K) is contained in the closure of any p'(I")-orbit. O

The proof of Theorem 1.7 in the case where every orbit of p;(I") and p>(I")
is infinite is now immediate.

Proof of Theorem 1.7 if every orbit of p1(I') and p,(") is infinite.  Let us as-
sume that p; and p, are semi-conjugate and that every orbit of p;(I") and po(I")
is infinite. By Proposition 6.6, the actions p; are monotone equivalent to min-
imal actions p; for i = 1.2. We have already proved in Proposition 6.4 that
monotone equivalence implies semi-conjugacy, so p| is semi-conjugate to pj.
On the other hand, we know from Proposition 4.8 that semi-conjugate minimal
actions are conjugate, whence in particular monotone equivalent. Since monotone
equivalence is an equivalence relation, this implies that p; and p, are monotone
equivalent. U

It remains to deal with the case where p; or p, has a finite orbit. This is
slightly more technical.

Proof of Theorem 1.7 in the presence of a finite orbit. Here we assume that p;
and p, are semi-conjugate via a pair of non-decreasing degree one maps
@, ¢ S! — S satisfying

p1(Y)e = @p2(y) and  pa(y)e" = ¢'p1(y)

for every y € I', and that one of them, say p;, has a finite orbit {xi,...,xx}.
We may assume that (xp,...,xg) is positively oriented. Note that, since p;(I")
acts transitively on the Xx;’s, it also acts transitively on the connected components
of S\ {x1,....xx}. As a consequence, every orbit of p;(I") must contain at
least k points. In particular, if we set y; = ¢(x;) for every i = 1,...,k, then
{y1,..., Yk} is a finite pp(I")-orbit, and ¢'({y1,...,yr}) is a finite p;(T)-orbit,
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hence has to have at least k& points. This implies that the y;’s are pairwise distinct
and that (y;,...,yx) is a positively-oriented p,(I")-invariant & -tuple.

For every y € I' the homeomorphism p;(y) induces a cyclic permutation of
(X4 iv s Xr), hence there exists j(y) € Z/kZ such that

p1(y)x;i = Xi+j(y)»

where addition of indices is always understood in Z/kZ. We can now compute

the rotation number of p;(y) using the orbit {x,...,xx}; we then obtain
R(p1(y)) = [j(y)/ k] € R/Z.
Note that the cyclic permutation induced by p;(y) on (xq,..., Xi) is completely

determined by R(p;(y)). However, since the restrictions of p; and p, to the
cyclic subgroup generated by y are semi-conjugate, it follows from Corollary 5.2
that the rotation numbers of p;(y) and pa(y) coincide. We deduce that p;(y)
induces the same cyclic permutation on (xy,...,xg) as p2(y) on (¥1,..., V).
This information is enough to construct a circle action p3 ‘“containing” both p;
and p, as follows.

Let us first assume that k > 2. Given two distinct points a,b € S we define
the open interval (a,b) as

(a,b) :={z € S' | (a,z,b) positively oriented}.

For every i = 1,...,k we define U; := (x;,x;4+1) and V; := (¥, yi+1) and
denote by U; and V; the closures of U; and V; in S! respectively. By the
assumption k > 2 these are homeomorphic to closed intervals. We then define
X as the quotient space obtained from the disjoint union of the U; and the
V; obtained by identifying the right endpoint x;4, € Uy with the left endpoint
y& € Vk and the right endpoint y;,, € Vi with the left endpoint xgy; € Ugy;-
In the case k = 1 we instead define X by cutting S' at the respective fixed
points x; and y; and glueing the resulting two open intervals U; and V; along
a 0-sphere. Either way we obtain a circle X which contains Uy, Vi, ..., Uk, Vi
in this exact cyclic order, and such that the complement of these open sets is
a finite set of points. We now define p3 : I' — Homeo™ (X) as follows: Given
y € I' we define

k k
: UV s m _ ) ), xe U,
p): | Juiuvi > Juiuw, p3<y)(x)—{ o)), x eV

i=1 i=1

Since p;(y) induces the same permutation on the x; as py(y) on the y;, it
follows that p3(y) extends uniquely to an orientation-preserving homeomorphism
of X =8°,
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It remains to show only that p; and p, are left-equivalent to psz, but this is
obvious: Concerning p; we define a continuous non-decreasing map ¢ : X — S'!
by contracting each of the intervals V; to a point. Then ¢ has Hopf—Brouwer
degree 1 and, by construction, p;(y)¢ = ¢p3(y) holds for all y € I'. Similarly,
the left-equivalence from p, to ps is obtained by collapsing the U;. O

A. The action of the double cover of H on the circle

Consider the circle S! and its double cover X which, somewhat confusingly,
is again homeomorphic to a circle. We denote by H the group of those
homeomorphisms of X which map antipodal points to antipodal points. The
action of H on X then factors through an action of S! and thus gives rise to
a surjective homomorphism

p: H — H :=Homeot (S,

which exhibits H as the unique double cover of H. Since X = S!, the group
H can also be seen as a subgroup of Homeo(X) = H , but this is not the point
of view we are going to take.

From now on we will denote the double covering of the circle simply by
S1, with the understanding that the action of H on S! is the one described
above. This action is actually important in many applications, since it contains
the action of SL,(R) on the circle obtained by letting SL,(R) act on R?2\ {0}
via the standard action and identifying S! with (R?\ {0})/R~¢. This action in
turn is a particular instance of the action of SL,(R) on S"! =~ (R”\ {0})/Rx,
for n > 2, and these generalizations play an important role concerning higher
Euler classes.

The aim of this appendix is twofold: On the one hand, we describe all
homogeneous cocycles obtained as H -invariant functions (S')? — Z and relate
them to the cohomology class p*(eup) € Hﬁ(ﬁ,Z). On the other hand, we
establish a fixed point theorem (Theorem A.6) which is stronger than its analogue
for H (Corollary 4.2) since in this case a fixed point is not only equivalent to the
vanishing of the pullback of the bounded Euler class, but further to the vanishing
of the pullback of a particular cocycle.

Non-degenerate homogeneous cochains. For every point x € S', we denote by
X its antipodal point. We say that an H -orbit in (S1)* is degenerate if it contains
a point of the form (...,x,...,x,...) or of the form (..., x,...,x,...). Given
n € N let us denote by (S")" ¢ ()" the union of all non-degenerate H -orbits
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in (SY)". We refer to an H -invariant function f : (SH**Y — Z as a non-
degenerate homogeneous n-cochain. Note that if (xq,...,x,) € (SHPH | then
(%05 -2y Xi yeunrXn) € (Sl)[”] for all i =0,...,n, and hence the homogeneous
differential defines a map

5 : Map((SH", 2)™ — Map((sH)l+1, z)7

for every n. We refer to elements in the kernel respectively image of this map as
non-degenerate homogeneous cocycles, respectively non-degenerate homogeneous
coboundaries.

Every cochain f € Map((Sl)”“,Z)ﬁ restricts to a non-degenerate homoge-
neous cochain on (S1)["*1 and this restriction defines a chain map

res : (Map((Sl)”‘H,Z)ﬁ, 5) N (Map((Sl)[”"'l].Z)ﬁ, 5), f > flgmin.

Lemma A.l. The map res induces an isomorphism on the level of cohomology.
In particular,

(A1) HYH S = H(H S = H'(Map((sl)["“].z)ﬁ, 5),

Proof. Since for every n there will always be finitely many (non-degenerate)
H -orbits, it is immediate that Hy(H ~ S') = H*(H ~ S1).
Following [BM] we construct an extension map

ext: (Map((sH"+1. 2)" 5) — (Map((s'y+'. 2)".58). /T

which on the level of cohomology is an inverse to res. Intuitively, in order to
define 7(x0,...,xn) for a degenerate (n + 1)-tuple (xg,...,X,) Wwe want to
move Xx,,...,. xo (in this order) a very small amount in the positive direction to
make the (n + 1)-tuple non-degenerate, and then evaluate f on the perturbed
tuple. More precisely, if x, is equal to x; or X; for i # n, replace x, by a point
x5 such that (x,,x;",X,) is positively oriented and no x; or X, for i # n, lies
in the positive direction between x, and x,”. Continue inductively for all x;’s
and set ?(xo,...,xn) = f(xgr,...,x;"). As in [BM] one then shows that ext
is a chain map which is inverse to res in cohomology. (]

In view of the lemma we can represent every class in H*(H ~ S!) by a
non-degenerate homogeneous cocycle, and thus we will focus on non-degenerate
homogeneous cocycles from now on.

Non-degenerate orbits of H acting on (S')”*!. The classification of non-
degenerate H -orbits on (§')"t! for n <2 is as follows.
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(n = 1) The action of H on S! has exactly one non-degenerate orbit.

(n = 1) The action of H on two factors (S')? has two non-degenerate orbits:
If x,y € S! are chosen so that (x,y,X) is a positively oriented triple, then
we denote them by

0P :=H-(x,y) and 0@ :=H-(y,x).

(n = 2) The action of H on three factors (S!)* has eight non-degenerate orbits.
Choose distinct points xg.x1.x> € S' and suppose that (xg,x1,x2.Xg) is a
strictly positively oriented quadruple. Then the orbits are given as follows.
There are six non-degenerate orbits parametrized by the symmetric group
Sym(3) over {0,1,2} and given by

08 :=H - (x4(0), Xo(1)s ¥o2)), (0 € Sym(3)),
and there are two additional non-degenerate orbits given by

O = H.-(x0.x2.51) and 0P :=H - (x0, %1, x2).

Non-degenerate homogeneous 2-cocycles and non-degenerate homogeneous
2-coboundaries. Denote by p; : S — S! the double cover given by identifying
antipodal points. Then p, induces a map commuting with the map induced by
p:H—H

H*(H ~ $4.2) 2> H*H ~ §':2)

o

H*(H;Z)—% -~ H*(H;Z).

Specialising to degree 2, we know that the left-hand side H?(H ~ S';Z) is
an infinite cyclic group generated by the class of the Euler cocycle ¢. Our goal
now is to prove that the right-hand side H?(H ~, S';Z) is also infinite cyclic
and to construct an explicit homogeneous cocycle representing its generator.

To this end we first observe that a non-degenerate homogeneous 2-cochain f
is given by the 8 numbers

Jo = floﬁ,”’ f+ = flo(j), S~ = flo®,

where ¢ € Sym(3).

Lemma A.2. A nondegenerate homogeneous 2-cochain f is a cocycle if and
only if
Jiu=Jo12 = fo2 1):1f+,
Jon=foar=ranr=S",
[T+ =f++ /-
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and f is a coboundary if and only if there exists wy € R such that

Ju=wy, fonp=w-, [fyr=2wr—w_, Jfo=2w_—wq.

Furthermore there is an isomorphism H?*(H ~ SY;Z) = Z given by sending
[f1€ HXH A SU:Z) 1o fo—2f*+ f~ €.

Proof. 1Tt it is a matter of elementary case by case consideration of configurations
of four points on the circle to show that the cocycle equation implies the
5 identities above. For example, let xo,x1,x2,x3,X7 be positively oriented
points on S!. Applying the cocycle relation §f = 0 to (xy,xs,x3,x0) and
(x3, X0, X1,X2) leads to the first two equalities defining /. Applying the relation
to (x2,x1,Xx0,x3) and (xg, x3,x2,x7) gives the two next equalities defining f~.
Finally, §f(x3,%0,%2,X1) = fy — [~ + f-— [T =0.

Moreover, if b is a 1-cochain with b| of’ = w4, then a routine computation
yields

b =wg, (b)) n=w-, b)y =2wy—w_, (b)) =2w_ —wy.

It remains to show that there are no other relations satisfied by an arbitrary
non-degenerate homogeneous 2-cocycle. For this we observe that the quotient of
the space of non-degenerate homogeneous 2-cochains satisfying the 5 identities
above by the space of coboundaries is isomorphic to Z via the map f
f+ —=2f" + f~. If there were any other relations, then there was no cocycle
with f4 —2f7 + f~ = 1. However, it is easy to check that the Sullivan cocycle
given in Definition A.3 below is such a cocycle. O

In particular, a non-degenerate 2-cocycle f is given by 4 integers f*, f~,
f+, f- subject to the single relation f* + f~ = f4 + f_ (or equivalently by
the 3 integers f*, f~ and f_).

Definition A.3. The Sullivan cocycle Esy; is the non-degenerate 2-cocycle f
givenby ft=f"=0, fr =1, f-=-1.

This cocycle was found by Sullivan as an explicit representative for the Euler
class of flat oriented RZ-vector bundles. Table 1 below compares the Sullivan
cocycle with the pullback of the Euler cocycle via p, and also with the orientation
cocycle on S! and the pullback of the orientation cocycle under p,, and expresses
all of these cocycles in terms of the 4 integers /™, f~, fi., f-.

In particular we see from Table 1 and the isomorphism described in Lemma A.2
that the Sullivan class [Esy) is a generator for H*(H ~ S%:Z) = HZ(H ~
S 7).
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TaBLE 1
a 1= S I H?(H ~ S'; Z)
Esul 0 0 1 -1 [Esun]
p5(c) 1 0 0 1 —2[Esun]
Or 1 —1 1 =1 —2[Esu]
p5 (Or) 1 -1 -1 1 —4[Esun]
&b wy w— 2wy —w— 2w_ — w4 0

The geometric interpretation of the Sullivan cocycle. Unravelling the definition
and considering configurations of 3 points on the circle case by case, we see that
the Sullivan cocycle can be described geometrically as follows: it is nonzero on a
non-degenerate triple (x, y,z) if and only if the triple contains O in the interior
of its convex hull and in that case it is +1 or —1 depending on the orientation
of the triple. This geometric definition generalizes to higher dimensions and leads
to an SL,(R)-invariant cocycle on the (n — 1)-sphere for each n > 2.

One consequence of this description is that the Sullivan cocycle is not invariant
under the full homeomorphism group of the circle, but only under its subgroup

H.

Another useful consequence is that the Sullivan cocycle and its higher-
dimensional analoga detect small subsets of spheres. Here a subset of a sphere is
called small if its spherical convex hull is not the whole sphere. In the case of
St aset X ¢ S! is small if and only if it is contained in a half-open half-circle.

Proposition A.4. Let X C S be any subset. Then Es,; vanishes on X3 if and
only if X is small.

Proof. Tf X C S! is a small subset then no three points in X ever contain 0 in
their convex hull, so that Eg,; vanishes on X3.

Conversely, suppose that Esy vanishes on X2. View X as a subset of R?
and consider its convex hull in R2. By Caratheodory’s Theorem, if 0 is contained
in the convex hull of X, then there exist xg, x;, x» € X such that 0 belongs to the
convex hull of xg,x1,x2 and hence Esgyj(xo,x1,x2) # 0, which is impossible.
If 0 is not on the boundary of the convex hull, then by Hahn-Banach there
exists a hyperplane separating 0 and the convex hull of X, so X is in particular
contained in the intersection of S with the (appropriate) half plane delimited by
the hyperplane. If O is in the boundary of the convex hull, then by the supporting
hyperplane theorem, there exists a hyperplane through 0 so that the convex hull
of X is contained in one closed half space delimited by that hyperplane. We are
almost done, except that we need to exclude the case that X is contained in one
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closed half-circle, but is not contained in a half-open half-circle. Suppose that x
and ¥ belong to X . Then Egu(x,X,x) = Esui(x,XT,xT) = 1, where the points
xt,xT € S! are very small perturbations of X,x in the positive direction. [J

Note that the same proof holds also for the higher dimensional generalization
of the Sullivan cocycle.

The cohomology class [Esyy]. Given a basepoint x € S! we obtain a cocycle
Egn H > 7 by pullback along the corresponding orbit map, i.e.,

Egu(go. &1, 82) := Esun(gox, g1x, g2x).

This cocycle determines a class in the group cohomology H?(H:Z); since E Syt 18
bounded, it also determines a class in the bounded group cohomology H 5 (H:Z).
Recall from the table above that —2 - [Esy] = p5c, where ¢ denotes the Euler
cocycle on S and p,: S! — S! is the double covering.

Now the Euler class eu = [cx] € H?(H,Z) corresponds to the central extension
of H given by the common universal covering group H of H and H, and
thus it follows from the commuting diagram of central extensions

H
K
H

that [-E3,,] € H 2(H;Z) corresponds to the central extension in the top row
of the above diagram. By Lemma 3.1 this yields the following interpretation of
[Esun] as an obstruction class: Given a group T', the S1-action associated with
a homomorphism p: " — H lifts to an action of I" on the real line if and only
if p*[E%,;; ] =0€ H*(I',Z) for some (hence any) x € S'.

i p

7 H
l-z lld
7 H

le}

i P

0 {e}

The bounded cohomology class [Esyi]. We now turn to an interpretation of the
bounded class defined by Egy. It turns out that the case of the bounded Sullivan
cocycle in degree 2 is very particular since the vanishing of the cohomology
class is equivalent to the vanishing of the cocycle:

Proposition A.5. Let T be a group and p : T — H be any homomorphism.
Then p*[Eg, ;s =0¢€ HZ(T.Z) if and only if p*(E%,,;,) =0 for any base point
xe S
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Proof. The if-direction is trivial. For the only-if-direction, suppose that p*Eg, =
8b for some x € S! and a I'-invariant bounded cochain b : I'? — Z. We will
show that » = 0. Writing out the cocycle equation in a special case yields for
all y e T,

p*Edy(e. v.v?) = 2b(e,y) — b(e,y?).
This implies in particular |2b(e,y) — b(e,y?)| < 1, hence inductively
(A2) [2¢b(e. y) — ble.y?)| < 2F - 1.
Since b is bounded, we can choose & sufficiently big so that |b(e,y2")| < 2k~1.
Dividing (A.2) by 2F we obtain

1 K 1 1 1
lb(&)’)lfz—k\b(&}/)z |+1—2—k§1+§_~§]: <2.

Since b takes integral values, it follows that it takes values in {—1,0,1}. Assume
that b(e,y) = 1. Then (A.2) yields
\2]‘ —b(e,yzk)l < 9k .1,

hence b(e,yzk) = 1. A similar argument in the negative case shows that for
every y € I', either b(e,y) = 0 or 0 # b(e,y) = b(e,yzk) for every k > 0.
Thus if b(e,y) # 0 for some y, then
Esun(x, p(y)x, p(y)?x) = 2b(e, y) — b(e,y?) = b(e.y) = b(e, y?)
= Esun(x, p(y)*x, p(y)*x).

This means that there exist w,x,y,z € S I such that

Esui(x,y,z) = Esun(x, z, w) # 0.

By our extension of the Sullivan cocycle to degenerate orbits, we can without loss
of generality suppose that both triples (x, y,z) and (x,z,w) are non-degenerate.
Since their evaluations on the Sullivan cocycle agree both triples contain O in the
interior of their convex hull and have the same orientation. This is impossible. [l

For the Sullivan cocycle we now obtain the following stronger version of
Corollary 4.2:

Theorem A.6. Let T' be a group, p : I' — H a homomorphism. Then the
Jfollowing are equivalent:

(1) p*[Egls =0¢€ Hbz(F; Z);
(2) p lifts to a homomorphism p : T — H and ‘0 (') has a fixed point in R.
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(3) p(T) fixes a point in S'.

(4) Every p(I')-orbit on S' is small.

(5) There exists a small p(T")-orbit in S!.
(6) p*ES =0 for every x € S'.

(7) There exists x € S' such that p*Eg, , = 0.

Proof. We summarize the shown implications in the following diagram:

Prop A4 _ Prop A.S

(4) (6) (1)
trivialu trivialﬂ /
trivial
(5) (7) (3).

Prop A4 trivial

The remaining equivalences between (1), (2) and (3) admit the same proof as the
equivalences between (i), (ii) and (iii) in Corollary 4.2. ]
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