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A note on semi-conjugacy for circle actions

Michelle Bucher, Roberto Frigerio and Tobias Hartnick

Abstract. We define a notion of semi-conjugacy between orientation-preserving actions of
a group on the circle, which for fixed point free actions coincides with a classical definition

of Ghys. We then show that two circle actions are semi-conjugate if and only if they

have the same bounded Euler class. This clarifies some existing confusion present in the

literature.
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1. Introduction

A fundamental problem in one-dimensional dynamics is the classification of
group actions on the circle. More precisely, denote by Homeo+(S1) the group of
orientation-preserving homeomorphisms of the circle. Given a group T, we will
refer to a homomorphism p : T —> Homeo+(51) as a circle action. One would
like to associate to every circle action of F a family of invariants which classify
the action up to a suitable equivalence relation, ideally up to conjugacy. For the

case of a single transformation acting minimally on the circle, this problem was

solved by Poincaré around the end of the 19th century, using his theory of rotation
number [Poil, Poi2].

In [Ghyl, Ghy2] Étienne Ghys introduced and studied a far reaching
generalization of the rotation number, the bounded Euler class of a circle action. For
minimal actions, i.e. actions for which every orbit is dense, he thereby achieved

a complete classification result:

Theorem 1.1 ([Ghy2, Theorem 6.5]). Let p\,p2'.T -> Homeo+(A1) be minimal
circle actions. Then p\ and. p2 are conjugate if and only if they have the same

bounded Euler class.
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The bounded Euler class is thus a complete conjugacy-invariant for minimal
actions. For non-minimal actions, this result is not true. Instead, non-minimal
actions sharing the same bounded Euler class only satisfy a weaker equivalence
relation. In [Ghyl] Ghys introduced the notion of semi-conjugacy between circle
actions, which generalizes the notion of conjugacy. With this notion he proved:

Theorem 1.2 ([Ghyl, Theorem Al]). Two circle actions P\,P2 ' r —Homeo+(51

are semi-conjugate if and only if they have the same bounded Euler class.

The bounded Euler class which appears in Theorem 1.1 and Theorem 1.2 is an

invariant with values in the second bounded cohomology H^ (F ; Z) of F with
Z-coefficients. The theory of Ghys developed in [Ghyl, Ghy2] goes far beyond
Theorem 1.2. Namely, not only does it parametrize semi-conjugacy classes of circle
actions by classes in H£(T; Z), but it also characterizes exactly which classes

in TT^(F;Z) can be realized by circle actions. This then provides a bijection
between semi-conjugacy classes of circle actions and a certain explicit subset of
H£(T; Z). Although we will have nothing to say on this part of the theory in
this note, let us at least state the main result:

Theorem 1.3 ([Ghyl, Theorem B]). Let F be a discrete countable group and

ß e H*(r, Z). There exists a representation p : T —> Homeo+(51) such that ß

is the bounded Euler class of p if and only if ß can be represented by a cocycle

taking only the values 0 and 1.

Ghys' theory of the bounded Euler class has found applications in many
different directions. Recently there has been revived interest in Theorem 1.2,

since it plays a fundamental role in the bounded cohomology approach to higher
Teichmüller theory ([BIW1, BIW2, BSBH]).

The beginner in the field who is trying to understand the proof of Theorems 1.1

and 1.2 has to face several challenges which we try to address with this note.

The first challenge is to understand the notion of bounded Euler class. Like

ordinary cohomology, bounded cohomology can be defined either abstractly or

through various concrete resolutions. In each concrete model the bounded Euler
class is represented by a specific cocycle. For example, the proof of Ghys'
Theorem makes use of two different incarnations of the bounded Euler class,

namely the geometric description of the bounded Euler class associated with the

Homeo+(S1) -action on S1, and the algebraic description in terms of translation
numbers. Neither of these incarnations is particularly intuitive at first sight, and

while it is well known to the experts that they represent the same cohomology
class under a canonical isomorphism, this does not appear obvious just by looking
at the definitions.
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In our opinion, the most canonical way to define the bounded Euler class is to

define it as the bounded lifting obstruction for the central extension corresponding
to the universal covering of Homeo+(51). This is the approach taken in the present
note (see Definition 3.4). We then carefully establish that the so-defined class can
be represented over the circle by the well-known Euler cocycle (Corollary 3.10)

and can also be related to the translation number (Proposition 3.5). This then

shows in particular the equivalence of the two definitions used in the proof of
Ghys' Theorem. Yet another characterization of the bounded Euler class in terms

of the Sullivan cocycle over the double covering of the circle is given in the

appendix. This description is crucial if one wants to extend the notion of bounded

Euler class to higher dimensions and plays an important role in the study of the

cohomology of SL„ (R). It also allows us to give a different (and apparently new)
characterization of circle actions with vanishing bounded Euler class, hence we
include it here.

Once the notion of bounded Euler class is clarified, one needs to understand the

notion of semi-conjugacy. Unfortunately, the original definition in [Ghyl] suffered

from a minor inaccuracy, which was corrected in later papers of the author. In
the meantime, different authors had developed fixes of their own, leading to a

plethora of alternative definitions. Right now the situation seems to be that all

of these definitions are used simultaneously in the literature without much of a

distinction. Several of the most used definitions can be shown to be equivalent
and, more importantly, to satisfy Theorem 1.2. However there also appear several

other definitions of semi-conjugacy in the literature, which are not equivalent and

for which Theorem 1.2 does not hold. The main goal of this article is to clarify
the situation and to compare the different definitions.

All definitions of semi-conjugacy start from the notion of a non-decreasing
degree one map, i.e., a map <p : S1 S1 which admits a lift 7p : R —> R

(called a good lift) such that Ip (x + 1) (x) + 1 for every x e R and lp

is non-decreasing, i.e., Ip (x) < 7p (y) whenever x < y. (In the body of this

text, we will adopt the equivalent but more geometric point of view given in
Definition 2.2.)

We emphasize that no continuity requirement is imposed in this definition,
and hence the Brouwer-Hopf degree of (p may not be well defined. Even if
cp happens to be continuous, it may still be constant and thus of Brouwer-
Hopf degree 0. In general, the Brouwer-Hopf degree of a continuous non-
decreasing degree one map is either 0 or 1 (and it is equal to zero if and

only if the map is constant). We say that a non-decreasing degree one map cp

is upper/lower semi-continuous if it admits a good lift with the corresponding

property.
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Now let H := Homeo+(51). We call a non-decreasing degree one map
cp : Sl — S1 a left-semi-conjugacy from a circle action p\ : T —> H to a circle
action p2 : T -» H if

P\(y)<P — VPiiy) for every y e F.

We then call p\ left-semi-conjugate1 to p2 and p2 right-semi-conjugate to p\.

Theorem 1.4. Let p\ : T -* H and p2 : T -* H be circle actions of the same

group r. Then the following are equivalent:

(i) pi is both left-semi-conjugate and right-semi-conjugate to p2.

(ii) Either both pi T) and P2<T) do not have a fixed point and pi is left-semi-

conjugate to p2, or pi(T) and p2(T) both have a fixed point.

(iii) There exist a left-semi-conjugacy cp from p\ to p2 and a p2{V)-invariant
subset K C S1 such that cp\^ is injective.

(iv) There exist a left-semi-conjugacy cp from p\ to p2, lifts pjf (y) and pj (y) for
each y e F and a good lift jp of cp such that (y)1p (x) ip (pj (y)M)
for all y e T and x e 1.

(v) pi and p2 have the same bounded Euler class.

All of these conditions remain equivalent if the left-semi-conjugacies in question

are required to be either upper semi-continuous or lower semi-continuous.

In this note we will define two circle actions pi and p2 to be semi-conjugate
if they satisfy Condition (i) of the theorem (see Definition 2.5 below). The

equivalence (i)4»(v) is then exactly the content of Theorem 1.2. According to
the theorem, each of the Conditions (ii)-(iv) could equally well be used as the

definition of semi-conjugacy for Theorem 1.2 to hold.

Definition (ii) is essentially Ghys' original definition (modulo the necessary
correction in the case of fixed points). The case where both pi(r) and P2(0
have fixed points is actually equivalent to the vanishing of the bounded Euler
class. One problem with Definition (ii) is that it is not obvious a priori whether it
is an equivalence relation at all. From this point of view, Definition (i) is clearly
preferable. The (re-)discovery of this "symmetric" definition by the second named

author was one of our main motivations to write this note. (Later we learned

from the referee that this definition already appeared in an old manuscript of
Takamura [Tak], which however was never published.) Definition (iii) is due to the

first-named author [Buc] and convenient to check in practice, since only one left-

semi-conjugacy has to be constructed. Definition (iv) was kindly communicated

to us by Maxime Wolff [Wol].

In [Ghyl] p\ is simply called semi-conjugate to pi, but we would like to emphasize here the

asymmetry in p\ and pi.
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Remark 1.5. As was communicated to us by Ghys and is pretty clear from the

proofs in [Ghyl], what was actually meant is a condition very close to Condition

(iv) in Theorem 1.4, which we state as Condition (vi) below. For this we observe

that every circle action of r gives rise to a central extension F(p) of T as

follows. Denote by H the universal covering group of H, which is a central

Z-extension of H and acts on the real line (see Subsection 3.2). Then r(p) is

defined as the pullback

T(p) H

r —p-+ h.

We can now state Condition (vi) which is equivalent to (i)-(v) above:

(vi) There exist an isomorphism \fr : r(p!) —> F (p2) commuting with the

projections on T and a good lift jp of a non-decreasing degree one map
such that for all y e F(pi) and xel,

pT(y)?W ?(?2 OA(y))<»)•

It is obvious that it implies Condition (iv) of Theorem 1.4. Condition (vi) has

however the slight disadvantage that it requires the corresponding (unbounded)
Euler classes to be equal, which is equivalent to the isomorphism between the

two central extensions of T. We will point out in Remark 4.5 how Condition

(vi) immediately follows from Condition (i) of Theorem 1.4 based on the proof
of Part (i) of Theorem 4.3.

Having stated a number of equivalent definitions of semi-conjugacy, let us

now point out a number of definitions we found in the literature, which are

not equivalent to the definitions above. For a more detailed discussion including
various concrete counterexamples see Remark 2.7 below. Most importantly, the

fact that pi is left-semi-conjugate to p2 by itself does not imply semi-conjugacy.
In fact, left-semi-conjugacy is not even an equivalence relation, since the trivial
action is left-semi-conjugate to every circle action. This problem can also not be

remedied by replacing left-semi-conjugacy by the equivalence relation it generates,
since the latter relation is just the trivial relation in which any two circle actions

are related, nor by excluding constant semi-conjugacies, since these are necessary
for Theorem 1.2 to hold.

However, it is rather remarkable that for fixed point free circle actions all
these problems disappear completely. In fact, as an immediate consequence of
Theorem 1.4 we have the following:
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Corollary 1.6. If pi : Y —> H and P2 ' Y —»• II are fixed point free circle actions

of the same group T, then the following are equivalent:

(1) pi is semi-conjugate to p2-

(2) pi is left-semi-conjugate to p2

(3) pi is right-semi-conjugate to p2-

(4) pi and p2 have the same bounded Elder class.

This corollary is the reason why the wrong definitions in the literature are

in most cases rather innocuous. Another issue concerning the definition of semi-

conjugacy concerns the regularity of the non-decreasing degree one maps involved.

As stated in Theorem 1.4, if p\ and p2 are semi-conjugate circle actions, then one

can find an upper semi-continuous left-semi-conjugacy from pi to p2 (and vice

versa). However, one can in general not find a continuous left-semi-conjugacy
from p\ to p2. Nevertheless, semi-conjugacy may be defined via the use of
continuous maps of Hopf-Brouwer degree 1 rather than (possibly non-continuous)

non-decreasing degree one map as follows:

Theorem 1.7 ([Cal]). Semi-conjugacy is the equivalence relation generated by
continuous left-semi-conjugacies of Brouwer-Hopf degree 1.

Note that what we call a "left-semi-conjugacy via a continuous map of
Brouwer-Hopf degree 1" here, is simply called a semi-conjugacy in [Cal],
conflicting with our terminology. On the other hand, the equivalence relation

generated by continuous left-semi-conjugacies of Brouwer-Hopf degree 1 which
is equivalent to what we call "semi-conjugacy" is called monotone equivalence
in [Cal],

The rough outline of this note is as follows: In Section 2 we discuss the

symmetric definition of semi-conjugacy stated as Definition (i) in Theorem 1.4.

In particular, we discuss the geometry of non-decreasing degree one maps and

various pitfalls of the definition. Section 3 is then devoted to the discussion of
the bounded Euler class alluded to earlier. In particular, we discuss thoroughly
three well-known characterizations of the bounded Euler class on Homeo+(S1)
and establish carefully their mutual equivalence (Definition 3.4, Proposition 3.5

and Corollary 3.10).

Section 4 is the core of this note. Here we establish Theorem 1.2 for

our symmetric definition of semi-conjugacy (i.e., the equivalence (i)<S>(v) in
Theorem 1.4). It turns out that the argument for fixed point free actions and for
actions with fixed points is quite different. Thus we first establish in Subsection 4.1

that a circle action has a fixed point if and only if it has vanishing bounded Euler
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class, and that this corresponds precisely to being semi-conjugate to the trivial
circle action. This reduces the proof of Theorem 1.2 to the case of fixed point
free actions. For such actions we then establish that they are left-semi-conjugate

if and only if they have the same bounded Euler class. This proves Theorem 1.2

and at the same time yields the equivalences (i) (ii) <s> (v) in Theorem 1.4.

Once Theorem 1.2 is established, Theorem 1.1 follows easily. This is explained
in the final Subsection 4.5 of Section 4.

In Section 5 we collect various consequences of Ghys' Theorem. Firstly, we

explain how Poincaré's classification of Z -actions on the circle can be considered

as a special case of Ghys' Theorem. Secondly, we deduce from Ghys' Theorem

that every action of an amenable group on the circle is semi-conjugate to an

action by rotations, a result commonly attributed to Hirsch and Thurston (see [HT]
and [Cal, Theorem 2.79]). Finally, we characterize circle actions with vanishing real

bounded Euler class. The final Section 6 is devoted to the proofs of Theorem 1.4,

Corollary 1.6 and Theorem 1.7. Finally, in the appendix, we discuss the pullback
of the Euler class to the double covering group of Homeo+(S1). We show that

this pullback can be represented by a multiple of the so-called Sullivan cocycle
which has stronger vanishing properties and also generalizes nicely to higher
dimensions.

Let us emphasize that we do not claim any originality for the proofs of
Theorem 1.1 and Theorem 1.2 (whereas we believe Theorem A.6 to be new).
We hope that our presentation will help to make Ghys' beautiful theory of the

bounded Euler class more accessible.

2. On the definition of semi-conjugacy

2.1. Non-decreasing degree one maps. Throughout this article we consider the

circle S1 R/Z as a quotient of the real line. A pre-image "x of a point x e S1

under the canonical projection M —> S1 will be called a lift of x and we write
[x*] := x.

Definition 2.1. For le e N, an ordered k -tuple (xi,... ,xt) 6 (S1)^ is said to be

• weakly positively oriented if there exist lifts xT e K of the X; 's such that

sr <%<<% < xr+ i,

• positively oriented if furthermore

xf < X2 < < xf < Xi + 1.

Replacing <, < and xf, xf + 1 respectively by >, > and xf + 1, xjf we

obtain the corresponding notion of (weakly) negatively oriented k -tuples.
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Note that if k < 2 then a k -tuple is both weakly positively oriented and

weakly negatively oriented. Furthermore, the property of being (weakly) positively
oriented is obviously invariant under cyclic permutations.

Definition 2.2. A (not necessarily continuous) map <p: S1 -> S1 is a non-

decreasing degree one map if the following condition holds for all k G N : If
(jti,..., jcfc) G (Sl)k is weakly positively oriented, then (ip(xi),..., <p(xk)) is

weakly positively oriented.

As we will see in Lemma 2.4 below it is actually enough to check the

condition for k 4. Observe that non-decreasing degree one maps are closed

under composition and that every constant map is a non-decreasing degree one

map.

Definition 2.3. Let <p: S1 -» S1 be any map. A set-theoretical lift Tp : R -> M

of cp is called a good lift of <p if Lp (x + 1) îp (x) + 1 for every x g M and

Lp is non-decreasing, i.e., 7p (x) < Lp (y) whenever x < y.

By the following lemma, being a non-decreasing degree one map is equivalent
to admitting a good lift, so Definition 2.2 is equivalent to the more classical

definition which we used in the introduction. We warn the reader that a non-

decreasing degree one map may have infinitely many essentially different good

lifts, i.e., good lifts which do not just differ by composition with an integral
translation. For example, for every a. g R the maps Lx+aJ an^ x ^ \x+oT\
are good lifts of the constant map <p: Sl -> S1 mapping every point to [0].

Lemma 2.4. Let cp : S1 —» S1 be any map. Then the following conditions are

equivalent:

(i) The map <p is a non-decreasing degree one map.

(ii) If (xi,..., xf) G (S1)4 is weakly positively oriented, then {np{xi),..., <p{x4))

is weakly positively oriented;

(iii) There exists a good lift of <p.

Proof. The implication (i) =y (ii) holds by definition.

(ii) => (iii): If cp is constant, there is nothing to prove. Suppose there

exist xq ^ xi g S1 such that yo := cp(x0) ^ <p(xi) =: Ti- Choose lifts
xo y0 xf, fi e R of xo.yoWi, Ji respectively such that xf G (xo xo + 1)

and jq G (yo > To + !)• Now define 7p on [xo xo + 1) as follows: for

xo < 'x < xT let 7p (x) be the unique lift of ç{[Tc\) lying in [ yo yo +1) ; for
xT < Tc < xo +1, let 7p (x) be the unique lift of ^([x-]) lying in (yo yo +!]
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Now extend Hp to K in the unique possible way such that it commutes with
integral translations.

In order to see that 7p is non-decreasing it suffices to show that it is non-

decreasing on [xo x^ +1). Thus let x^<xf<y<xo+l.
We first prove that if 7p Cy) yo then y (3c yo • Indeed 7p Cy) can

be equal to y0 only if y < x\. Thus the quadruple (x0, [3c], [y],xi) is weakly
positively oriented, and so is (<p(x0),<K[x ]),?>([J]),= (To- [?"(* )],To,Ti)
by (ii). By definition, this means that there exist integers nx,ny,m e Z such that

To < V (x) + «* < yo + % < Tif +>«<To+1 •

Since yT £ To To +1) we have m 0, and this implies in turn that ny 0, so

that y (3c +nx yo • But since 3c < xy its image by y lies in [ To To +1),
so y (3c yo as desired.

A completely analogous symmetric argument also shows that if y (3c)

To + 1, then y(y) To +1- Thus we can now restrict to the case where

y(x),y(y) +1).
From the assumption that To < 3c < y" < 3co + 1, we obtain that the

quadruple (x0, [3c], [y],x0) is weakly positively oriented, and thus also the

quadruple (<Kx0),<p{[x]),<p([y]),<jo(x0)) (to, [? (*)], [?(T )],To) is weakly

positively oriented by (ii). By definition this means that there exist integers

nx,ny,m e Z such that

To < y(x) + nx < y(y) + ny < To + m < To + 1
•

Since y (3c) and '(p Cy) now both belong to the open interval (yo To + 1) it
follows that nx ny 0 (and m 1). We thus obtain y (3c) < TpCy), which
finishes the proof of this implication.

(iii) => (i): Let x0,...,Xfc be weakly positively oriented. By definition this

means that there exist lifts xf e E of the x,- 's such that

XÏ < t2 <<% < 3cT + 1.

Applying the non-decreasing map 7p to the above inequalities gives

y(xf)<y(x^)-- -< vCxiï)< vCxi +i) y(jcr) +1,

where the last equality uses the fact that y commutes with integral translations.

Since the y(x/)'s are lifts of <p(x,), this by definition implies that the k -tuple
(yp{x\),... ,(p{xk)) is weakly positively oriented.

It is clear from the proof that we cannot replace the statement in (ii) with the

corresponding statement for triples. To give an explicit counterexample, consider

the function y : S1 -> S1 given by
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[0], t e [0,1/4) U [1/2, 3/4),
[1/2], t [1/4,1/2) U [3/4,1).

This function <p takes any triple into a weakly positively oriented one, but the

quadruple ([0], [1/4], [1/2], [3/4]) is taken by q> to ([0], [1/2], [0], [1/2]), which is

not weakly positively oriented.

2.2. Semi-conjugacy. Let us recall the key definition of this note from the

introduction.

Definition 2.5. Let pj : F Homeo+(51) be circle actions, j 1,2. We say
that pi is left-semi-conjugate to P2 (and p2 is right-semi-conjugate to p\ if
there exists a non-decreasing degree one map <p such that

for every y e T. In this case, cp is called a left-semi-conjugacy from p\ to p2
and we say that p\ is left-semi-conjugate to p2 via (p.

The circle action p\ is called semi-conjugate to p2 if it is both left- and

right-semi-conjugate to p2

We recall some standard terminology for group actions: A circle action

p : T -> Homeo+(51) is said to have a global fixed point if there exists x e S1

such that p(y) (x) x for every y e T. An action is fixed point free if it does

not admit a global fixed point.

Proposition 2.6. (i) Semi-conjugacy is an equivalence relation.

(ii) Every circle action is right-semi-conjugate to the trivial action.

(iii) A circle action is left-semi-conjugate to the trivial action if and only if it
has a global fixed point.

Proof, (i) Reflexivity and symmetry are obvious, while transitivity readily
follows from the fact that non-decreasing degree one maps are closed under

composition.

(ii) Choose <p to be an arbitrary constant map.

(iii) If p is left-semi-conjugate to the trivial action, then there exists <p such that

for all y e T and xeS1

whence the image of <p consists of fixed points of p(T). On the other hand,

if x0 is fixed by p(F), then p is left-semi-conjugate to the trivial action by

pi(y)<p (pp2(y)

P(.V)(<P(x)) <P(x)

the constant map <p(x) x0.
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Remark 2.7. The definition of semi-conjugacy given in [Ghyl] coincides with our
definition of left-semi-conjugacy. As it obviously follows from Proposition 2.6

(ii)-(iii) that left-semi-conjugacy is not even an equivalence relation, it cannot
be the correct notion. However, for fixed point free circle actions it does indeed

coincide with our notion of semi-conjugacy, see Corollary 4.4.

Elsewhere in the literature semi-conjugacy is defined as the existence of a

continuous left semi-conjugacy cp : S1 —>• Sl. This is still not symmetric: as we

saw in the proof of Proposition 2.6 (ii), every circle action is right semi-conjugate
to the trivial action via a continuous map <p, while by point (iii) of the same

proposition fixed point free actions cannot be left-semi-conjugate to the trivial
action.

Since constant left-semi-conjugacies are responsible for both problems, one

may be tempted to exclude them from the game. Such a more restrictive definition
does indeed appear in the literature, but Theorem 1.2 can never hold for such a

definition. Namely, it is easy to check that if p\ admits a unique global fixed

point xq and p2 is the trivial representation, then the constant map with image

{xo} is the unique left-semi-conjugacy from p\ to p2. On the other hand p\ and

p2 have the same bounded Euler class (see Corollary 4.2 below), so they need

to be semi-conjugate in order for Theorem 1.2 to hold.

In some sense, semi-conjugacy in the sense of Definition 2.5 is the most
obvious way to turn left-semi-conjugacy into an equivalence relation. However,

contrary to what is sometimes claimed, it is not the equivalence relation generated

by left-semi-conjugacy. Namely, by Proposition 2.6 the equivalence relation

generated by left-semi-conjugacy is the trivial relation in which any two circle
actions are related.

By definition, conjugate circle actions are semi-conjugate. We will see in

Proposition 4.8 below that for minimal circle actions the converse holds. However,
in general the notion of semi-conjugacy is much weaker than the notion of
conjugacy. For example Proposition 2.6 shows that every circle action admitting
a fixed point is semi-conjugate to the trivial circle action (but of course not

conjugate to the trivial circle action unless it is trivial itself).

3. Three characterizations of the bounded Euler class

The goal of this section is to introduce the bounded Euler class and provide
three different characterizations: as a bounded obstruction class (Subsection 3.2),

via the translation number (Subsection 3.3) and as a bounded geometric class on

the circle (Subsection 3.4). Yet another description of the bounded Euler class,

which generalizes readily to higher dimensions, will be discussed in the appendix.
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In order to keep this note self-contained we collect in the next subsection various
basic facts concerning (bounded) group cohomology. The expert can skip that

subsection without loss of continuity.

3.1. Preliminaries on (bounded) group cohomology. Given a group H acting

on a space X we set Cn{H r> X\Z) Map(W+1; Z)H, where the superscript
H denotes //-invariants under the diagonal //-action, and refer to elements

of Cn (H r> X ; Z) as homogeneous H -cochains of degree n (or simply a

homogeneous cochain if H is clear from the context). We then obtain a cocomplex
(iCn(H r>X;Z),5) by defining the homogeneous differential 8 as

n

8f(xo,...,xn) - f(x0,..., xT,... ,xn),
;=o

whose cohomology we denote by H'{H r\ X;Z). Elements in the kernel,

respectively image of 8 are called homogeneous H -cocycles, respectively homogeneous

H -coboundaries. If X — H with the left- H -action, then the cohomology

H'{H X; Z) is precisely the classical group cohomology //*(//; Z) with Z-
coefficients. Given a homogeneous cocycle c e Cn(H r\ X; Z) and a basepoint

x0el we obtain a homogeneous cocycle cxo e Cn(H r\ H ; Z) by

cXo(h0,...,hn) c(h0-x0,...,hn -x0).

The class of cXQ is independent of the choice of basepoint x0. We thus obtain

a map ix H'(H X;Z) -> //*(//; Z) and we say that a class a e H'(H; Z)
is represented over X if it is in the image of this map.

There is a more efficient representation for classes in //*(//; Z) based on the

fact that we can identify Cn(U H\Z) with Cn{H\Z) := Map(/Z";Z) via the

isomorphism
i : Cn{H\Z) -> Cn(H H; Z)

given by

i(/)(/i0, ...,hn)-= f(Klhi,hy1h2,h~yxhn)
r1(g)(hi,...,h„) := g(e,hi,hih2,...,hih2 ...-h„).

Thus //*(//;Z) H'(C'(H',Z),d), where the differential d rl o 8 o i is

given by

n

df(hi,...Jin+1) f{h2,...,hn+1) + f{hx,... ,hihi+i,... ,hn+i)
1 1

+ (-iy+1f(h1,...,hny
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Cochains in this model are called inhomogeneous cochains, and are particularly
useful to compute low degree cohomologies. We will be specifically interested in
cohomology of degree 2; we thus recall briefly the relation between H2(Ii: Z)
and central extensions. Given a central extension of groups of the form

£ 0 ^ Z —^ H —U- H ^ {e}

and a set theoretic section a : H H of p we define a function ca : H2 -> H
by

ca{h\, h2) cr(h2)a(hih2)~la(hi).

Since p(ca(h\, h2)) e we can consider ca as a function into i(Z). We will
often tacitly identify Z with its image in H and thus consider ca as a function

ca : H2 Z. It is straightforward to check that ca satisfies the cocycle identity

dca(h\,h2, h3) ca(h2,h3) - ca(hlli2,h3) + ca(hi,h2h3) - ca{hx,h2) 0,

whence we refer to it as the obstruction cocycle associated with the extension

£ and the section a. It turns out that the class e(£) := [ca] e H2(H; Z) is

independent of the choice of section. This independence can easily be proved

directly, but it is also a consequence of the following universal property of the

class [ca] :

Lemma 3.1 (Lifting obstruction). If p : T —> H is a homomorphism, then there

exists a lift
0 ^ Z —ÎU- H —H ^ {e}

v

p
p

F

if and only if p*[cCT] 0 e //2(f;Z).

Conversely, a class e e H2(T;Z) determines a central extension, which is

unique up to a suitable notion of isomorphism between extensions. We refer the

reader to [Bro, Chapter IV] for the details.

In the sequel we will need the following explicit version of (one direction of)
the lemma:

Proposition 3.2 (Lifting formula). Let p : r -> H be a homomorphism. Assume

that p*ca du for some u : T —» Z. Then a homomorphic lift f> : F —» H is

given by the formula
p(y) o"(p(y)) -i(-M(y)).
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Proof. Since this formula is at the heart of our argument we carry out the

straightforward computation. By definition of ca, we have

(3.1) o(p(yxy2)) o{p(yx)p(y2)) o{p{yx))ca(p(yx), p(y2))~Xa(p(y2)).

Since by assumption p*ca du, we have

c<r{p(yi),p(.y2)) p*(ca)(yx,y2) du(yx,y2) u(y2) - u(yxy2) + u(yx).

Since i(I) is central in H we can rewrite Equation (3.1) as

o{p(y\Y2)) ct(p(yl))i(-u(y1))o(p(y2))(i(-u(y2))i(u(yxy2)).

Multiplying both sides by z'(—u(yxy2)) now yields "p (yxy2) f {V\)^P iyf) and

finishes the proof.

The subcomplex C£(H X;Z) C Cn(H r> X;Z) of bounded functions
is invariant under <5, and its cohomology is called the (integral) bounded

cohomology of the H -action on X and denoted H ' (H X ; Z). In particular,

H'(H] Z) := H'(H H;Z) is the bounded group cohomology of H in the

sense of [Gro], Note that the isomorphism i : Cn(H;Z) —>• Cn(H H;Z)
identifies C£(H r\ H\Z) with the subspace C£(H\Z) < Cn{H\Z) of bounded

functions, hence H'(H: Z) can also be computed from bounded inhomogeneous
cochains.

The inclusion of complexes (C^(//;Z),<5) ^ (Cn{H;Z),8) induces on the

level of cohomology a comparison map H£(H\Z) —> H'(H\Z), whose kernel is

classically denoted by £//*(//; Z). Note that an inhomogeneous bounded cocycle

representing a class in EH^(H\Z) is of the form dT for some T : H ->• Z
with the property that \T(hxh2) — T(hx) — T(h2)\ \dT(hx,h2)\ is uniformly
bounded. Such a function T is called an integral quasimorphism and the number

D(T) \= ||</71oo is called its defect. Given two quasimorphisms TX,T2 we have

[dTx\ [idT2] e EH£(H; Z) if and only if Tx—T2e Hom(// ; Z) ® Map6(/7; Z).
In particular, changing T by a bounded amount does not change the bounded

cohomology class of [dT).
Bounded group cohomology can also be defined with real coefficients. In

this case, bounded inhomogeneous cocycles in EH£(H;R) are of the form dT
where T is a real-valued quasimorphism. Every real-valued quasimorphism (and

in particular every integral one) is at bounded distance from a unique homogeneous
real-valued quasimorphism called its homogeneization. Here a real-valued function

/ is called homogeneous provided f(hn) n- f(h) for all n e N. Homogeneous

quasimorphisms have the additional properties of being conjugacy-invariant and

linear on abelian subgroups. They also satisfy f(hn) n f(h) for all ne Z,
positive or not. Note that two quasimorphisms are at bounded distance if and only
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if their homogeneizations coincide. The following lemma illustrates how bounded

cohomology with real coefficients can be used to obtain results concerning integral
bounded cohomology; we will apply this in our second characterization of the

bounded Euler class below.

H is a surjective homomorphism with amenable (e.g.

H^(H\ Z) —> H^( H ;Z) is infective.

Lemma 3.3. If p : H -

abelian) kernel, then p*

Proof. The short exact sequence 0^>-Z—»M—»R/Z^-0 of coefficients

induces a natural long exact sequence in bounded cohomology, called the Gersten

sequence (see [Mon, Prop. 8.2.12]), and the corresponding ladder associated with
the homomorphism p starts from

0 Hom(//;

0 Hom(E;

Hfr(H ; Z)

HhHf

Hu(H; I

Hu(H ; 1

Now surjectivity of p implies that the pullback map p* : Hom(//;l
Hom(//;R/Z) is injective, and the map p* : H£(H;W) -> H£(H;W) is an

isomorphism by [Gro, Iva], whence the lemma follows from the 4-lemma.

3.2. The bounded Euler class as a bounded lifting obstruction. From now on

we reserve the letter H to denote the group H Homeo+ (S1 of orientation-

preserving homeomorphisms of the circle S1 R/Z and abbreviate by

H := { h e Homeo+(R) | Vx e R : h (x + 1) h (x) + l}

its universal covering group (with respect to the compact-open topology). We

then have a central extension

£ 0 ^ Z —U- H —U- H ^ {e}

where i(n)(x) := x + n and p(h )([x]) [h (x)].
A section a : H —H is provided by specifying a (h)(0) for each h e H ;

the section is called bounded provided Ea := (a(/z)(0) | h 6 H} is bounded. In
this case the obstruction cocycle ca : H2 —> Z is bounded and thus defines also

a class in the bounded second cohomology H£(H; Z). Again it is easy to see

that this class is independent of the choice of bounded section. We then obtain

two classes eu := [ca] e H2(H\7L) and eu^ := [cCT] e 7/^(//;Z).

Definition 3.4. The classes eu and eiq, are called the Euler class, respectively
bounded Euler class.
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One special section a is obtained by taking Ea c [0,1). Let us give an

explicit formula for the cocycle ca in this case. For all h\,h2 6 H we have

o(h2)o(hih2)~1a(h\) i(ca(h\, h2)) Since i(Z) < H is central this can be

written as o(h\)o{h2) — a(hih2)i(ca(hi, h2)) Evaluating at 0 we obtain

a(hi)a(h2)(0) a(/zi/z2)(0) + ca(hi,h2).

Observe that a(h\h2)(0) and cr(/z2)(0) are contained in [0,1). The latter implies
that o{h\)o(h2)(0) e [0,2). Thus

(3.2) C(J{h \, h2)
1 if a(hi)a(h2)(0) G [1,2),
0 if a(/îi)a(/z2)(0) G [0,1).

Another equivalent description can be given as follows: Observe that a(/zi)(l)
ct(/zi)(0) + 1 6 [1,2) and that cr(/?.2)(0) < 1 implies a(/zi)cr(/z2)(0) < a(/zi)(l),
and similarly 0 < a(h2)(0) implies a(Ai)(0) < cr(h\)a(h2)(0). We may thus

rewrite (3.2) as

(3.3) ca(huh2)

Both formulas will be used below.

1 if 1 < cr(hi)a(h2)(0) < a(hi)(l) < 2,
0 if 0 < ct(/zi)(0) < a(hi)cr(h2)(0) < 1.

3.3. The bounded Euler class and the translation number. The Poincaré
translation number T : H R is the homogeneous quasimorphism on H
given by

T(k)lim (x R).
n^-oo u

which by a classical theorem of Poincaré is independent of the choice of basepoint

x e M (see [Poil, Poi2]). Let 7z : H Z be any function at bounded

distance from T. Then the cocyle d T% is bounded and thus defines a class

[dTz] e Hfr( H ;Z), which is independent of the concrete choice of function Tz
We can now state the second characterization of the bounded Euler class. We

recall that p : H H denotes the canonical projection.

Proposition 3.5. The bounded Euler class eu^ is the unique class in H^(H\ Z)
such that p*eub — —\dTj\ e Hl{H ;Z).

Proof. Let h\ h2 e H We abbreviate h\ := p(h\ h2 := p(h2). Given a

real number r e K we denote by r — [_/• J + {r} the unique decomposition of r
with [rj G Z and {r} G [0,1). Since h 1 and o(h\) have the same projection
they differ by an integral translation which we obtain by evaluating the difference

on 0. We thus compute
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ht (0) — a(hi)(0) LAt (0)J + {hi (0)}-ff(Ax)(0) [hi (0)J,

where the last equality follows from the fact that both {h\ (0)} and a(/ti)(0)
belong to [0,1). Thus, for every xel, we have o(hi)(x) h\ (x) — [h\ (0)J

and similarly a{h2)(x) h2 (x) — [h2 (0)J. We deduce that

cr(h1)a(h2)(0) o(hi)(h2(0) - [h2(0)\) a(hy)(h2{0)) - [h2(0)j

hihk0) - LA~(0)J - L/T2(0)J

L^/~2(0)J - [hi(0)J - [h2(0)\ + {hih2m-
Since the last term is contained in [0,1), this expression is in [1,2) respectively
[0,1) if the sum of the first three terms is equal to 1 respectively 0. Representing

eu£ by the cocycle ca given in (3.2), we thus obtain

p*ca(hi, hi) ca(hi,h2) [hi hi (0)J - [hi (0)1 - [hl(0)\.
Now the function 7z : H -> Z given by h\ [hi (0)J is at bounded

distance from the translation number T and the last identity can be written as

p*ca —dTz We thus deduce that p*eub —[dTz] and uniqueness follows
from Lemma 3.3.

3.4. The bounded Euler class realized over the circle. In this subsection

we are going to show that the Euler class and the bounded Euler class are

representable over the circle, i.e., that they are in the respective images of the

maps H2(H S1; Z) -» H2[H\Z) and H2{H S1; Z) H2(H: Z). Recall
that throughout we think of S1 as the quotient space R/Z. In order to describe

cocycles in Cn(H r> S1; Z) we need to understand //-orbits in (S')"+1. For

n < 2 the classification of orbits is as follows:

Orbits of H acting on (S1)""1"1.

(n =0) The action of H on S1 has exactly one orbit.

(n 1) The action of H on (S1)2 has two orbits:

one degenerate orbit O^eg {(*>*) I x e 51} and one non-degenerate orbit
Ondeg '-= {(-^i y) I X y S S1 }.

(n 2) The action of H on three factors (S1 )3 has six orbits. Choose distinct

points x,y,z 6 S1 and suppose that (x,y,z) is a positively oriented triple.
Then there are 4 degenerate orbits

O0 := H (x,x,x), ö\ := H (y,x,x),
02 := H (x,y,x), 03 := H (x,x,y),

and 2 non-degenerate orbits

Ö+ := H (x, y, z), Ö- := H (y, x, z).
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For general n there are still only finitely many H -orbits in (S1 )". This

implies C^(H S1; Z) Cn(H S3;Z) and thus the comparison map

Hb"(H H"(H r> S1; Z) is an isomorphism. In particular, if an

element of Hn(H\ Z) is representable over S1, then it is bounded.

In degree 2 we can actually parametrize all possible homogeneous H-
cocycles and homogeneous H -coboundaries using the above enumeration of
orbits. Note that every homogeneous 2-cochain / is determined by the 6

integers {/0, f\, fz, fs, f+, /-}, where fj is the value of / on the orbit

Oj for j e {0,1,2,3,+,-}. For homogeneous coboundaries a straightforward
computations shows that these numbers are given as follows.

Lemma 3.6. Let b : (S1)2 —> M be an arbitrary homogeneous l-cochain taking
the values a and. ß on the orbits Odeg and On(ieg respectively and let f Sb

be the associated homogeneous 2-coboundary. Then

fo fi h «. fi 2ß- a, /+ /_ ß.

One very familiar homogeneous H-cocycle on S1 of degree 2 is the

orientation cocycle Or, which assigns the value +1, respectively —1, to positively
oriented, resp. negatively oriented non-degenerate triples, and 0 to all degenerate

triples. By the previous lemma, none of its multiples is a coboundary, since the

value on positively and negatively oriented triples is not the same. It thus defines

a class [Or] of infinite order in //^ (II S1; Z). We now describe general

homogeneous 2-cocycles:

Lemma 3.7. Let f : (S1)3 —M be an invariant homogeneous H -cochain. Then

f is a cocycle if and only if

fo f\ /3, /+ + /- fï + h-

Moreover, H^(H r> S1;!,) Z via the map [/] i-> /+ — /_.

Proof Let (x,y,z) be a positively oriented triple. Writing out the cocycle relations

Sf(y, x, x, x) — 8f(x, x, x, y) 8f{x, y, x, z) 0 yields

f(x,x,x) f(y,x,x) f(x,x,y),
f{y, x, z) - f{x, y, x) f(x, x, z) - f(x, y, z),

which implies that every 2-cocycle satisfies the 3 identities of the lemma.
The space C2 of all cochains satisfying these 3 identities can be identified
with Z3 via the map / (/0,/+,/_). Under this identification the space of
coboundaries corresponds to {(m,n,n) | m,n e Z}, hence the quotient of C2

modulo coboundaries is isomorphic to Z via the map [/] h^ /+ — /_. If there
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were any other identities satisfied by all 2-cocycles than those following from
the 3 identities above, then Hf. (H r> S1 ; Z) would be a proper subgroup of Z,
hence there would be no cocycle / satisfying /+ — /_ 1. However, such a

cocycle does exist (namely the Euler cocycle given in Definition 3.8 below).

It follows from the lemma that the class of the orientation cocycle generates
a subgroup of index 2 in H^(H r> S1;Z) and that the generator — |[Or] is

represented by the cocycle c satisfying

(3.4) Co cl — c3 — C+ — 0, C2 — C— — 1.

Definition 3.8. The homogeneous 2-cocycle c e C£{H r\ Sl,,Z) given by (3.4)
is called the Euler cocycle.

In order to relate the Euler cocycle to the bounded Euler class we need the

following computation (see [Ioz, Lemma 2.1]):

Lemma 3.9. If c e C^(H nv S':Z) is the Euler cocycle from Definition 3.8

and ca e C£(H; Z) denotes the obstruction cocycle associated with the special
section o : H s- H with Ea — [0,1), then

ca(hi,h2) c([0],hi [0],h\h2 [0]).

Moreover,
Or —2c + 8b,

where b is the H -invariant 1 -cochain which takes values 0 and 1 on Odeg

and Ondeg respectively.

c([0], h\ [0], h\h2 [0])

Proof. It follows from the explicit definition of c that

1 if 1 < o(hi)o{h2)(0) < <t(/îi)(1) < 2,

0 if 0 < a(/?i)(0) < o{hi)a(h2)(0) < 1.

In view of (3.3) this implies ca(h\,h2) c([0],Ai • [0],h\h2 [0]). The relation
Or —2c + 8b is straightforward.

From this computation we draw the following conclusion.

Corollary 3.10. The bounded Euler class eu^ is representable over the circle.
In fact it is represented by the Euler cocycle c : (S1)3 —> Z. Similarly, the class

—2 • euft is represented over the circle by the orientation cocycle.

Note that, in particular, for every x e S1 the homogeneous 2-cocycle
cx : H3 —^ Z given by

(h0,hi,h2) cx(h0,hi,h2) c(h0x,hix,h2x)

represents the bounded Euler class.
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4. Ghys' Theorem

4.1. Circle actions with vanishing bounded Euler class. Before we turn to the

proof of Ghys' Theorem in the general case we provide a characterization of
circle actions with vanishing bounded Euler class. This characterization can be

seen as a special case of Ghys' Theorem, but it is also of independent interest
and has a particularly simple proof. Parts of this special case will also be used

in the proof of the general theorem.

Recall that the Euler class eu was defined as an obstruction class. It thus

follows from Lemma 3.1 that if p : T -» H is a circle action, then

p*eu 0 4» the action lifts to an action on the real line.

The following result shows that the vanishing of the bounded Euler class has

much more drastic consequences:

Proposition 4.1. Let p : T -» H be a circle action with p*cu/:i 0. Then the

action lifts to an action on the real line which moreover has a fixed point.

Proof. By assumption there exists a bounded function u : T -> Z with
p*ca du, where ca is the cocycle representing eu^ explicitly given in Equations

(3.2) and (3.3). By Proposition 3.2 we have a homomorphism

"p-.r-^H, p(y) ff(p(y)) -i(-u(y)).
In particular,

p(y)(0) o(p(y))(0) -u(y).
Now, since a is a bounded section and u is bounded, fi(y)(0) is also bounded.

It follows that

F+Cp) := sup p(y)(0)
ysr

is well defined, and it is clearly a fixed point for p'(r).

Using the second characterization of the bounded Euler class via the translation

number we obtain a converse to this result, leading to the following characterization:

Corollary 4.2 (Circle actions with vanishing bounded Euler class). Let p : T ->
Homeo+ (S1 be a circle action. Then the following are equivalent:

(i) p*eub 0.

(ii) The circle action p lifts to an action on the real line which moreover has

a fixed point.
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(iii) p(E) fixes a point in S1.

(iv) p is semi-conjugate to the trivial circle action.

Proof. We have already seen that (i)=^(ii) in Proposition 4.1. Conversely, if (ii)
holds for a lift jo : T —> H with fixed point xo, then by Proposition 3.5

p*euè -p*[dTz] -[dp*Tz\.

However we have for every y e T,

s p(y)"Oo)-*o „
P T(y) hm 0,

n—»oo m

whence ~p*Tz is bounded and thus (i) holds. The implication (ii) => (iii) is obvious,
since the projection of a fixed point of a lift is a fixed point for the original
action. Conversely, if p(r) fixes [x0] e S1, then it acts on S1 \{[xo]} and this

action can be lifted to an action on (x0,x0 + 1) and periodically to an action on
ffi fixing all points in x0 + Z. This shows (ii)<f>(iii) and the equivalence (iii)
(iv) follows from Proposition 2.6.

Although Corollary 4.2 is only a very simple special case of Ghys' Theorem,

it is sufficient for many applications. E.g., most of the applications of Ghys'
Theorem in higher Teichmüller theory depend only on Corollary 4.2 (see, e.g.,

[BIW1, BSBH]). We therefore find it important to point out the above simple

proof. Note that a slightly stronger version of Corollary 4.2 is established in the

appendix.

4.2. A refined statement of Ghys' Theorem. We will now prove Ghys'
Theorem 1.2 (with our Definition 2.5 of semi-conjugacy), thus establishing that the

bounded Euler class is a complete invariant of semi-conjugacy. We will actually

prove the following more precise version:

Theorem 4.3. Let p\, p2 be circle actions of T.

(i) If p*eu^ p^euj, then p\ and p2 are semi-conjugate.

(ii) If pi and P2 are semi-conjugate and either of them has a fixed point, then

both have a fixed point and p*euè p^eu^ 0.

(iii) If pi is fixed point free and left-semi-conjugate to p2, then p*eu^ p|eu^
0.

Note that in the situation of (iii), pi and p2 are actually semi-conjugate
by (i). This proves the following result alluded to in the introduction, also proven
in [Mat, Proposition 1.4].
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Corollary 4.4. If a fixed point free circle action p\ is left-semi-conjugate to a

circle action P2, then they are semi-conjugate. In particular, left-semi-conjugacy
defines an equivalence relation on the set of all fixed point free circle actions.

Part (ii) of Theorem 4.3 follows directly from Corollary 4.2: If, say, pi
has a fixed point, then it is semi-conjugate to the trivial circle action by the

implication (iii) =$ (iv), whence also p2 is semi-conjugate to the trivial circle
action and thus has a fixed point by the implication (iv) =>• (iii). Then, by the

implication (iii) =$ (i) we have p*eip, p^eu^ 0. Thus it remains to show

only (i) and (iii), which we will do in the next two subsections.

4.3. Same bounded Euler class implies semi-conjugacy. In this subsection

we are going to establish Part (i) of Theorem 4.3. Our proof is a slight
variation of Ghys' original proof, which emphasizes the similarity to the proof
of Proposition 4.1.

To fix notation, let p\, p2 be circle actions with the same bounded Euler class

p*eu^ p2eu^. We claim that p\ and p2 are semi-conjugate. By symmetry it
suffices to show that p\ is left-semi-conjugate to p2.

Let T be the central extension of T which corresponds to p*eu p^eu.
Then we can choose lifts pT, pi making the diagram

0 s-Z —U- H —^ H s-1

Pj Pj

o—^z—^ i
commute. Since p*eu^ p|eu^, and the diagrams commute we have

[dp[*lz] pi*[dTz\ -pT(p*euè) -p2*(p*eub) p2*[dTz]

[dp2*Tz\.

This implies that there exist a homomorphism u : F —> Z and a bounded function
b : T -» Z such that 'p[*T% — 'p2*T% u + b. It follows that — u

is a bounded homogeneous function, hence 0. Thus,

' "— rri - '
sg rjipi T - p2 T — u.

Replacing the lift pj by pj + i o u we can ensure that u 0. Assume that

pjf is chosen in that way. Then for every g e H

|T(p i(g)"1 p2(g))| < I - T(p i(g)) + T(p2(g))| + D(T) D(T),

where D(T) is the defect of the quasimorphism T. In particular, p"i(g)_1 "p 2(g)
has uniformly bounded translation number and thus
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<p(x):= sup (p!(g) 1 P2{g)(x))
g e r

is well defined. By definition we have for every g0 e T

?(P2(go)W) sup^Cg)'1 (p2(g)(p2(go)(x)))
ger
SU£Pi (g gö' r1 (pi(g)(x))
ger

Pi (go) SU£P! (g)~ ' (P2 (g) (*))
ger

Pi(io)(p(x)).

Moreover, being the supremum of increasing maps which commute with integral
translations, the map 7p : R -> M is non-decreasing and commutes with integral
translations, so it is a good lift of a non-decreasing degree one map cp: S1 —» S1.

It follows that tp realizes the desired left-semi-conjugacy from pi to p2. This
finishes the proof of Part (i) of Theorem 4.3.

Remark 4.5. Note that it now immediately follows that Condition (i) of
Theorem 1.4 implies Ghys' condition stated as Condition (vi) in Remark 1.5.

Indeed, if the bounded Euler classes are equal, then so are the (unbounded) Euler
classes and the map 7p in the above proof gives the map required in Condition

(vi).

4.4. Semi-conjugacy implies same bounded Euler class. In this subsection we
establish the remaining Part (iii) of Theorem 4.3 thereby finishing the proof of the

theorem. Here we will finally make use of the third (geometric) characterization

of the bounded Euler class.

Instead of Theorem 4.3.(iii) we will actually prove a slightly stronger statement.
To state this result we introduce the following notation. Throughout this section

we will fix two circle actions p\, p2 of T and a semi-conjugacy <p from p\ to

p2. We will not assume a priori that p\ is fixed point free. For each y e T

we fix lifts pj( (y) and pj (y) of pi(y) respectively p2(y). Suppose now that
7p is some good lift of <p. Since pT(y)^' and 7p pj (y) are lifts of the same

map and are invariant under integral translations, there exists a map nY : M Z
(dependent on 7p invariant under integral translations, such that for all x e E,

(4.1) pT(y) y (x) Tp (pï(y)M) +/iY(x).
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Proposition 4.6. Let p\, P2 be circle-actions of Y and let cp be a semi-conjugacy

from pi to p2 Let a good lift 7p of cp be fixed and let nY : R -» Z be defined
by (4.1). Consider the following statements:

(1) pi(r) does not have a global fixed point in S1.

(2) Ip is not the constant map.

(3) There exists a good lift 7p of <p such that for each y e Y the map ny given
by (4.1) is constant.

(4) There exists a good lift 7p of ip such that fp (y)1p (x) 7p (pj (y)(*)) for
all y 6 F and x e R.

(5) There exists a non-empty P2(Y)-invariant subset K C S1 such that <p\k is

injective.

(6) p*euè p*euè.

Then the implications (I) (2) =ï (3) =y (4) => (5) =y (6) hold.

Note that the implication (1) =4> (6) gives Part (iii) of Theorem 4.3.

Proof of Proposition 4.6. The implication (1)=>(2) is obvious, so we turn directly
to the proofs of the implications (2)=s>(3)=>(4)=^(5)=^(6).

Assume that (2) holds and fix y e T. Let 2p be a good lift of <p. Since <p

is non-constant we find distinct elements ao,bo e M with bo — ao e (0,1) and

7p (bo) — Ip (ao) £ (0,1). Since pjf (y) is strictly increasing and commutes with
integral translations, this implies at once that

(4.2) 0 < pT (y) (è0)) - pT (y) (a0)) < 1

On the other hand, since 7p o pj (y) is non-decreasing and commutes with integral
translations, we also have 0 < lp pj (y)(bo))— P2 (y)(«o)) < 1 However, these

inequalities must both be strict, because otherwise we would have

Pi(y)(</?([£o])) <p(p2(y)([6o]>) <p(p2(y)([ao])) Pi(y)(<p([aoD),

which contradicts (4.2). We have thus shown that

0 < Pi(y)(?(£0)) - Pi(y)(?Tao)) < 1

0 <tp(p2(y)(bo)) -?(p2(y)(ao)) < 1
•

Subtracting the second inequality from the first we deduce that nY(b0) -nY(a0) e

[0,1) — [0,1) (—1,1). Since both are integers we deduce that nY(bo) — nY(ao),
which implies that nY is constant on E := (a0 + Z) U (bo + Z).

Now let x e M\E. Then the interval (x,x+l) contains one translate of a0 and

one translate of bo, and these take different values under 7p We thus find e e E
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with x < e < x + \ and 7p {x) ^ 7p (e), whence {x — e, (x) — 7p (e)} c [0,1)
and nY(x) — nY(e) e (—1,1), so that nY(x) ny(e). This finishes the proof of
the implication (2)=y(3).

Now assume that (3) holds, i.e. for every y e T we have nY(x) — nY for

some constant nY. We can then replace the lift pjf (y) by the lift pï" (y) — nY

and thereby achieve that for all xel,
(4.3) pT(y)?W ?(p2(y)W).

which is (4).
We now deduce (5) from (4). Given io el we define

SXo {x M I 7p(x) y (x0)} v~l(7p (x0)).

Since 7p is increasing, the sets SXo are connected, and since 7p commutes with

integral translations we have Sxo C (x0 — 1, x0 + 1). In particular, each SXo is

bounded and if we define a(xo) := infSXo and ß(xo) := supS^0, then

Sxo G j(a(xo),ß(xo)), (a(x0),jö(xo)], [a(x0), ß(x0)). [a(x0), yß(x0)]|,

is an open, half-closed or closed interval. Since R is connected, not all of these

intervals can be open. Thus the sets

K _ := {x e R | x inf S*} and K + := {x e R | x sup Sx}

cannot both be empty (though it is easy to construct examples where one of them

is empty).
We observe that the restrictions 7p \ j; are both injective. Assume first that

xi,X2 K - and ^(xi) p (x2). Then SX2 and thus

X\ inf SXl inf SX2 x2,

showing that 7p\ j; _
is injective. Replacing inf by sup, we deduce similarly that

Ip I ^ is injective.

Now we claim that K ± are invariant under pj (y) for every y T. For
this it suffices to check that pj (y)(Sx) — S ~ for every xeR, y e r. This

follows from the chain of equivalences

y e pi{y)(Sx) <t=> P2(y-1)(y) e Sx <^=y ?(pKy~1)y) =?(x)
<=> piiy^Wiy) =?M ?O0 pI(yW(x) =?(^(y)(x))
<ï==^ y e ^P2(y)x-

Now let K± be the projections of K± on 51. Then K± are p2(T)-invariant
and (p is injective on both K+ and K-. Since at least one of these two sets is

non-empty, this finishes the proof of the implication (4) =^(5).
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Finally, we establish the implication (5) =>(6): Let K be as in (4) and let

x e K. By Lemma 3.7 the cohomology class Pjeu^ is represented by the cocycle

P2cx(g0,gl,g2) c(p2(go)x, p2(gl)x, p2{g2)x).

Note that for j — 0,1,2 the points p2(gj)x are all contained in K, since K
is p2(T) -invariant. It thus follows from injectivity of (p on K that they are

pairwise distinct if and only if their images under <p are pairwise distinct.
Since (p also preserves their weak orientation, we deduce that the triples
(p2(go)x,p2(gi)x,p3(g2)x) and (?(p2(go)*), V (p2(gi)x), V (p2(g2)x)) are in
the same H -orbit. Indeed, this follows from the classification of H -orbits on

(S1)3 in Subsection 3.4. Since c is //-invariant we obtain

P2Cx(gO,gl,g2) c(<p(p2(go)x),<p(p2(gl)x),(p(p2(g2)x))

C(pi (go)<p(x), Pi (gl)<p(x), Pi (g2)<p(pc))

— P*C,p(x)(gO> gl,g2)-

Since the cocycle p*cv(x) represents p*eu^, we deduce that p*eu^ p^eu^. This

finishes the proof.

At this point we have finished the proof of Theorem 4.3 and thereby of
Theorem 1.2.

Remark 4.7. In [Ghyl, Equation (1), Proof of Proposition 5.2]) our map ny is

denoted by u(y It is assumed to be constant independently of whether (p is

constant or not. The following example shows that this is not true in general.
Let pi be the trivial circle action of Z and p2 be the circle action sending 1

to the rotation by 1/2. Then pi is left semi-conjugate to p2 by Proposition 2.6

(ii). The left semi-conjugacy can be given by the constant map ^>(x) [0] which
lifts to 7p : x I—> |_xj • A lift of pi(l) is the identity and a lift of p2( 1 is the

translation T\/2 by 1/2. Then pi(l)<p <PP2(1) on the circle but the translation

x i-» 7p (x) — 01(71/2(*)) |xj — [x + 1/2J depends on x since it is 0 for

x e [0,1/2) + Z and —1 for x e [1/2,1) + Z. More generally, neither of the

statements (2)—(5) is correct without the assumption that pi is fixed point free.

For example, if pi has a fixed point then we can alway choose <p to be constant.

In that case, every set K C Sl on which <p is injective is a singleton. If p2(T)
is fixed point free, then such a set cannot be invariant. The reader may check that

in this case our set K2 constructed in the proof is indeed a singleton, and that
the proof of invariance breaks down in the absence of (3), e.g., in the situation
of the example above.
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4.5. The minimal case: Semi-conjugacy equals conjugacy. Recall that a circle
action p : T -» Homeo+(51) is minimal if every p(T) -orbit is dense in S1.

The following proposition shows that for minimal circle actions, the notions of
conjugacy and semi-conjugacy coincide. This implies in particular that Theorem 1.1

follows from Theorem 1.2.

Proposition 4.8 (Ghys). Let pi,p2: T -> Homeo+(51) be minimal circle actions.
Then the following are equivalent:

(i) pi is left-semi-conjugate to p2.

(ii) pi and p2 are semi-conjugate.

(iii) pi and p2 are conjugate.

Proof. Since minimal actions are fixed point free, the equivalence (i) (ii) follows
from Corollary 4.4. Moreover, the implication (iii) =y (i) holds trivially. Concerning
the implication (i) =y (iii) assume that pi is left-semi-conjugate to p2 via <p. Then

the image of <p is pi (T)-invariant, whence dense in S1 by minimality. This in

turn implies that the image of 7p is dense in M. So the map Tp being non-
decreasing and commuting with integral translations, is continuous and surjective.
Therefore, the same is true for <p, and we are left to show that <p is also injective.

Suppose by contradiction that there exist distinct points x,y e S1 such that

Ip(x) (p{y), and choose lifts Te, f of x, y in M such that 3c < f < ~x + 1.

Since 7p is non-decreasing and commutes with integral translations, we have

either 1p Cy) (3c or q>Cy) — f> (fx +1). In any case, lp is constant on
a non-trivial interval, so there exists an open subset U Q S1 such that <p\u is

constant. Let now x be an arbitrary point of S1. By minimality of p2 there

exists y e T such that p2(y)~x(x) e U, and consequently V := P2(y)(U) is an

open neighborhood of x. Now

<p\v {<pp2(y))\u °P2(y)~x\v (p\(y)<p)\u °P2(y)_1 Ik.

whence <p is locally constant. It follows that <p is constant, and this contradicts
the fact that <p is surjective.

We have now established Theorems 1.1 and 1.2 mentioned in the introduction.

5. Variations and examples

5.1. Circle actions of Z and the rotation number. Let us spell out a few

special immediate consequences of Ghys' Theorem. We start with the case where

T Z. In this case a circle action p : T -» Homeo+(S1) is given by a single
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invertible transformation p(l) 6 Homeo+(S1). The action lifts to p : Z -> H
and following Poincaré we define its rotation number as

R(p) \= T(j> (1)) mod Z,

where T is the real valued translation number defined in Section 3.3.

Example 5.1. Given ael/Z we denote by Ra e Homeo+(S'1) the rotation by

a. Then the Z-action p with p(l) Ra has rotation number a. In particular,

every rotation number can be realized by a rotation.

The fact that any Z-action lifts is illustrated by p*(eu) 0 e H2{Z; Z) {0}.
Thus, the unbounded Euler class cannot give any information for Z-actions. The

case of the bounded Euler class is much more interesting:

Corollary 5.2 (Poincaré). For circle actions pi,p2 : Z, ->• Homeo+(S1) the

following are equivalent:

(i) pi and p2 are semi-conjugate.

(ii) p*euè=p2euè.

(iii) R(Pi) R(P2)-

In particular, Poincaré's rotation number is a complete semi-conjugacy invariant

for circle actions of Z (and a complete conjugacy invariant for minimal Z -

actions).

Proof. The equivalence (i)<S>(ii) is a special case of Theorem 1.2. For j 1,2

we have

p* euft pf*p*eub -pf*[dTz] -[d'pf* Tz\,

whence (ii) is equivalent to [d(fpj*Tz — 'pi*T%)\ 0. This in turn means

that there exists a homomorphism / e Hom(Z,Z) such that the quasimorphism
pT*7z - P2*Tz - f is bounded. Now using the fact that a quasimorphism
is bounded if and only if its homogeneization is trivial we see that the latter

condition is equivalent to

pj*T-pj*T / e Hom(Z, Z).

Since two homogeneous functions on Z agree iff they agree on 1 we see that

this condition is equivalent to

pTr(i) - pf*T{l) r(pT(i)) - p(pÏ(i)) e z,

i.e., R(Pl) R(P2)
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5.2. The Hirsch-Thurston theorem. Let us denote by Rot(5') R/Z the

subgroup of Homeo+(.S'1 j given by rotations. A circle action which factors

through Rot(51) will be called a rotation action. It follows from Example 5.1

and Corollary 5.2 that every Z-action is semi-conjugate to a rotation action. This

is more generally true for actions of amenable groups; the corresponding result is

usually attributed to Hirsch and Thurston (see e.g. [Cal]), since it can be derived

easily from results in [HT],

Corollary 5.3 (Hirsch-Thurston). Every circle action p : F —» Homeo+(S1 of
an amenable group is semi-conjugate to a rotation action.

Proof. By a classical result of Trauber (see, e.g., [Gro, Iva]) the bounded coho-

mology of T with real coefficient vanishes. Thus the connecting homomorphism

8 : H1 (F: R/Z) -> Lf^(F;Z)

of the Gersten exact sequence (see [Mon, Prop. 8.2.12]) is an isomorphism.
Let a := p*eu/, e H£(F;Z) and ß 8~l(a). Then under the isomorphism
Hl(F; R/Z) ^ Hom(r, R/Z) Hom(T. Rot(5')) the class ß corresponds to a

homomorphism p' : F -> Rot(5I). Now a standard diagram chase shows that

(p')*euè 8{ß) — p*eub, whence p and p' are semi-conjugate.

5.3. Real bounded Euler class. In many applications, computations in integral
bounded cohomology are difficult, and thus one relies on real bounded coho-

mology. The image of eu& in H^(H\ R) under the change of coefficients map

H£(H;Z) is called the real bounded Euler class and denoted eu®.

Corollary 4.1 has the following real counterpart:

Corollary 5.4. Let p : F ->• Homeo+(5'1) be a circle action with p*eu® 0.

Then p([F, T]) fixes a point on S1.

Proof. Since p*eu® 0 we can argue as in the proof of Corollary 5.3 and

prove that p is semi-conjugate to an action p' : F -» Rot(S'1) < Homeo+(S1).
In particular, p|[r,r] is semi-conjugate to p'|[r,r]- Now since Rot(S') is abelian,

p' vanishes on [F, T]. It follows that (p|[r,r])*eui (p'|[r,r])*eu^ 0, whence

p([F. T]) fixes a point on S1 by Corollary 4.1.

6. Alternative characterizations of semi-conjugacy

6.1. Regularity of semi-conjugacies. Having established Theorems 1.1 and 1.2

and some of their consequences, we now return to the characterizations of semi-

conjugacy given in Theorem 1.4 of the introduction. We start by discussing the
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issue of regularity of semi-conjugacies. In general, if two circle actions p\ and p2

are semi-conjugate it does not follow that they are semi-conjugate via continuous

left-semi-conjugacies. A concrete counterexample is given as follows.

Example 6.1. Let pi be the action of Z given by sending the generator 1 to
the rotation by n. Let p2 be an action of Z with rotation number \ for which

p2(2) has precisely two fixed points. For example, the generator could be sent to

the fixed point free lift of a parabolic isometry to the double cover of S1 3H2.

Both actions have rotation number 1/2, so that they are semi-conjugate, say, pi
is right-semi-conjugate to p2 via <p : Sl -> S1. By definition, <p sends orbits

for the pi-action to orbits for the p2-action. Now all p\ orbits have precisely
two points, while only one p2 orbit has two points (and the other orbits have

infinite order). It follows that the image of cp is equal to the unique p2 orbit

consisting of two points, hence the map <p cannot be continuous. Even worse,
the semi-conjugacy <p' : Sl -> S1 in the opposite direction, i.e. from pi to p2

cannot be chosen continuous either. Indeed, let {xi,x2} be the unique p2-orbit
containing two points. Tlren cp' has to send x\ and x2 to a pair of antipodal

points y,y. Now restrict to the index two subgroup 2Z < Z and look at the

restricted orbits: The restricted pi -action is trivial, so orbits for the restricted

p2-action have to be sent to points. But x\ and x2 are accumulation points of
the same restricted p2-orbit, which is all mapped to a point z. Then z cannot
be equal both to y and y, so that cp' is not continuous.

Things improve if we replace continuity with the less demanding notion of
semicontinuity. Recall that a non-decreasing degree one map <p\ S1 -a- S1 is called

upper semicontinuous if it admits an upper semicontinuous good lift lp : E -> M.

Indeed we can show:

Lemma 6.2. Ifa circle action p\ : F -> H is left-semi-conjugate to a circle action

p2 : T -> H, then it is left-semi-conjugate to p2 via an upper semicontinuous

map cp' : S1 —>• S1.

Proof. Let cp be an arbitrary left-semi-conjugacy from pi to p2. If <p is constant

then there is nothing to show, hence we may assume that cp is non-constant. We

then define lp pjf, pj and nY as in the beginning of Subsection 4.4 and also

define a new function lp' : R M by

lp'{x) := sup {lp{y) I y < x).

Since lp' is non-decreasing and commutes with integral translations, it is the

good lift of a non-decreasing degree one map cp' : S1 -»• S1. We claim that <p'

is a left-semi-conjugacy from pi to p2.
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In order to prove our claim we fix y e r and abbreviate hj pj (y) e H
for j 1,2. By (4.1) we have for every y e M,

(6.1) hi Tp(y) v(h2(y)) +nY(y).

By the implication (2) =»(3) in Proposition 4.6, there exists an integer m N
such that nY m. Now for every x e M we have

h{p\x) /ti(sup{^(y) | y < x}) sup {hpp(y) | y < x}

sup {p(h2(y)) + m \ y < x} sup fô(y) \ y < h2(x)} + m

7p\h2{x)) + m,

which implies that pi(y)<p' — (p'p2(y), and concludes the proof.

6.2. Proof of Theorem 1.4. Tie equivalences (i) <£> (ii) 4» (v) of Theorem 1.4 are

immediate from Theorem 4.3. The equivalence (i) 4» (iii) 4» (iv) of Theorem 1.4

follows from the following corollary of Proposition 4.6.

Corollary 6.3. For circle actions p\ and p2 the following are equivalent:

(i) There exists a left-semi-conjugacy from p\ to p2 which satisfies Property (4)

of Proposition 4.6.

(ii) There exists a left-semi-conjugacy from p\ to p2 which satisfies Property (5)

of Proposition 4.6.

(iii) pi and p2 are semi-conjugate.

Proof. The implications (i) =£> (ii) (iii) of the corollary follow from the implications

(4) =>• (5) => (6) in Proposition 4.6 and Part (i) of Theorem 4.3. Conversely
assume that (iii) holds and that p\ is left-semi-conjugate to p2 via <p. If ip is

non-constant then (i) and (ii) hold by the implications (2) => (4) => (5) of Proposition

4.6. Now assume, on the other hand, that <p is constant. Then the image of
(p is a fixed point [xi] for p\. According to Part (ii) of Theorem 4.3 there is also

a fixed point [X2] of p2. Let xj, xj 6 M be lifts of x\ and x2 respectively.
Then there exists a unique good lift Tp of <p such that Tp ([ xj, xj +1)) {xf},
and this lift clearly satisfies Property (4) of Proposition 4.6. This shows that (iii)
implies (i) and finishes the proof.

We have thus established the equivalence of the conditions (i)-(v) in Theorem

1.4. Together with Lemma 6.2 this finishes the proof of Theorem 1.4.
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6.3. Semi-conjugacy and monotone equivalence. Let us say that a circle action

Pi : T H is left-equivalent to another circle action p2 : T -h H if p\
is left-semi-conjugate to p2 via a continuous non-decreasing degree one map
cp: F -> H of Hopf-Brouwer degree 1, and recall from the introduction that

monotone equivalence is defined as the equivalence relation generated by left-

equivalence. This subsection is devoted to the proof of Theorem 1.7, which states

that monotone equivalence is equivalent to semi-conjugacy in the sense of the

present note. One direction is immediate from what we have proved so far:

Proposition 6.4. Suppose that p\, p2 : T —» H are monotone equivalent circle
actions. Then p\ and p2 are semi-conjugate.

Proof. We may reduce to the case when p\ is left-equivalent to p2- In this

case, pi is left-semi-conjugate to p2 via a non-constant map, so the implication
(2) =>(6) of Proposition 4.6 and Theorem 1.4 imply that pi is semi-conjugate to

Pi-

Concerning the converse implication we recall the following classical

trichotomy for circle actions (see, e.g., [Ghy2] for a detailed discussion and proof).

Lemma 6.5. Let p : F H be a circle action. Tlren exactly one of the following
three possibilities occurs:

(1) p(F) has a finite orbit.

(2) p is minimal, i.e., every p(T)-orbit is dense.

(3) there exists a unique p(T)-invariant infinite compact proper subset K Ç S1

(called the exceptional minimal set of p(F)) such that K is contained in

the closure of any orbit of p(r).
In case (3), K is homeomorphic to a Cantor set.

From this we deduce:

Proposition 6.6. Let p\Y H be a circle action without finite orbits. Then p
is monotone equivalent to a minimal action.

Proof. Since (1) is excluded by the assumption and the conclusion holds trivially
in case (2), we may assume that p satisfies (3) of the above trichotomy. Thus let

K c S1 be the minimal exceptional set of p(r). We have S1 \ K IJieN ^ >

where the [/, 's are pairwise disjoint non-empty open subsets of S1 homeomorphic
to open intervals. Define an equivalence relation ~ on Sl by declaring x ~ y if
and only if there exists i e N such that {x,y} c t/j, and let <p : S1 -» X := S1 / ~
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denote the quotient map. Since X is obtained from S1 by collapsing intervals,
it is homeomorphic to S1. Moreover, the map <p is a continuous, non-decreasing
degree one map of Hopf-Brouwer degree 1 (any of its lifts to M is just a devil's
staircase).

Now let y e T. Since K is p(y)-invariant, the element p(y) permutes the

intervals £/; and thus descends to an orientation-preserving homeomorphism of
X. We thus obtain a homomorphism p': r - Homeo+(X) such that for all

y er,
p'{y)(p <pp(y),

and it remains to show only that X is minimal under p'(r). However, this follows
from the observation that since K is contained in the closure of any p(r)-orbit,
the set S1 <p(K) is contained in the closure of any p'(F) -orbit.

The proof of Theorem 1.7 in the case where every orbit of pi(T) and P2(T)
is infinite is now immediate.

Proof of Theorem 1.7 if every orbit of pi(T) and P2(T) is infinite. Let us

assume that pi and p2 are semi-conjugate and that every orbit of pi(T) and p2 (T)
is infinite. By Proposition 6.6, the actions p,- are monotone equivalent to minimal

actions p\ for i — 1,2. We have already proved in Proposition 6.4 that

monotone equivalence implies semi-conjugacy, so p[ is semi-conjugate to p'2.

On the other hand, we know from Proposition 4.8 that semi-conjugate minimal
actions are conjugate, whence in particular monotone equivalent. Since monotone

equivalence is an equivalence relation, this implies that pi and p2 are monotone

equivalent.

It remains to deal with the case where pi or p2 has a finite orbit. This is

slightly more technical.

Proof of Theorem 1.7 in the presence of a finite orbit. Here we assume that pi
and p2 are semi-conjugate via a pair of non-decreasing degree one maps

S1 —> Sl satisfying

Pi(y)<P <PP2(y) and p2(y)<p'= <p'pi(y)

for every y e T, and that one of them, say pi, has a finite orbit {xi,... ,Xk}.
We may assume that (xi,...,x&) is positively oriented. Note that, since pi(F)
acts transitively on the x,- 's, it also acts transitively on the connected components
of S1 \ {xi,... ,Xfc}. As a consequence, every orbit of pi(F) must contain at

least k points. In particular, if we set y, <p(x;) for every i — 1 then

{yi> • • • > Jfc} is a finite p2(r)-orbit, and <p'({y\,. ,yk}) is a finite pi(r)-orbit,
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hence has to have at least k points. This implies that the yi 's are pairwise distinct
and that {y\,...,yk) is a positively-oriented p2(r)-invariant k-tuple.

For every y e T the homeomorphism pi(y) induces a cyclic permutation of

(xi,... ,Xk), hence there exists j(y) e TL/kï, such that

Pi(y)xi xi+jiY),

where addition of indices is always understood in Z/fcZ. We can now compute
the rotation number of p\{y) using the orbit {x\,... ,Xk}\ we then obtain

R{pi(y)) [j(y)/k]eR/Z.

Note that the cyclic permutation induced by pi(y) on (xi,... ,Xk) is completely
determined by Ä(pi(y)). Flowever, since the restrictions of p\ and p2 to the

cyclic subgroup generated by y are semi-conjugate, it follows from Corollary 5.2

that the rotation numbers of pi(y) and P2(y) coincide. We deduce that pi(y)
induces the same cyclic permutation on (xi,...,x&) as P2(y) on {y\, ,yk)
This information is enough to construct a circle action p3 "containing" both pj
and p2 as follows.

Let us first assume that k >2. Given two distinct points a, b e S1 we define

the open interval (a,b) as

(a,b) := {z e S1 | (a,z,b) positively oriented}.

For every i 1 ,...,k we define £/; := (x;,Xj+i) and V\ := (yi,yi+ï) and

denote by Ui and Vi the closures of C,- and fj in 51 respectively. By the

assumption k > 2 these are homeomorphic to closed intervals. We then define

X as the quotient space obtained from the disjoint union of the t/; and the

Vi obtained by identifying the right endpoint x^+i e Uk with the left endpoint

yk e Vk and the right endpoint yk+i e Vk with the left endpoint x^+i e Uk+i
In the case k 1 we instead define X by cutting S1 at the respective fixed

points xi and y\ and glueing the resulting two open intervals U\ and V\ along
a 0-sphere. Either way we obtain a circle X which contains U\, V\,..., Uk, Vk

in this exact cyclic order, and such that the complement of these open sets is

a finite set of points. We now define p3 : F ->• Ftomeo+(W) as follows: Given

y e T we define

Since pi(y) induces the same permutation on the x,- as P2(y) on the y,-, it
follows that p3(y) extends uniquely to an orientation-preserving homeomorphism
of X ^ Sx.
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It remains to show only that p\ and p2 are left-equivalent to p2, but this is

obvious: Concerning p\ we define a continuous non-decreasing map <p : X -> S1

by contracting each of the intervals Vi to a point. Then <p has Hopf-Brouwer
degree 1 and, by construction, pi(y)<p (pp2{y) holds for all y e F. Similarly,
the left-equivalence from p2 to p3 is obtained by collapsing the £/,.

A. The action of the double cover of H on the circle

Consider the circle S1 and its double cover X which, somewhat confusingly,
is again homeomorphic to a circle. We denote by H the group of those

homeomorphisms of X which map antipodal points to antipodal points. The

action of H on X then factors through an action of S1 and thus gives rise to

a surjective homomorphism

p : H -> H := Homeo+(S1),

which exhibits H as the unique double cover of H. Since X S1, the group
H can also be seen as a subgroup of Homeo(A) H, but this is not the point
of view we are going to take.

From now on we will denote the double covering of the circle simply by
S1, with the understanding that the action of H on S1 is the one described

above. This action is actually important in many applications, since it contains
the action of SL2(R) on the circle obtained by letting SL2(R) act on R2 \ {0}
via the standard action and identifying S1 with (R2 \ {0})/R>o. This action in
turn is a particular instance of the action of SL„(R) on S"-1 (R" \{0})/R>0
for n > 2, and these generalizations play an important role concerning higher
Euler classes.

The aim of this appendix is twofold: On the one hand, we describe all

homogeneous cocycles obtained as //-invariant functions (S1)3 —>• Z and relate

them to the cohomology class p*(eu^) e H^(H, Z). On the other hand, we
establish a fixed point theorem (Theorem A.6) which is stronger than its analogue
for H (Corollary 4.2) since in this case a fixed point is not only equivalent to the

vanishing of the pullback of the bounded Euler class, but further to the vanishing
of the pullback of a particular cocycle.

Non-degenerate homogeneous cochains. For every point x e S1, we denote by

x its antipodal point. We say that an //-orbit in (51)fc is degenerate if it contains

a point of the form x,..., x,... or of the form x,..., x,... Given

n e N let us denote by (S1)^ c (Sl)n the union of all non-degenerate //-orbits
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in (S1)". We refer to an //-invariant function / : (5'1)['!+1J -* Z as a non-
degenerate homogeneous n-cochain. Note that if (xo,..., xn) e then

(x0,..., xT,... ,xn) e (S1)^ for all i — 0,...,«, and hence the homogeneous
differential defines a map

8 : Map((51)[n], Z)*0 -* Map((5'1)["+1], Z)H

for every n. We refer to elements in the kernel respectively image of this map as

non-degenerate homogeneous cocycles, respectively non-degenerate homogeneous
coboundaries.

Every cochain / e Map((51)"+1, Z)H restricts to a non-degenerate homogeneous

cochain on and this restriction defines a chain map

res : (Map((51)"+1,Z)ff,i) -> (Map((S1)[n+1],Z)H ,s), / /|s[n+,].

Lemma A.l. The map res induces an isomorphism on the level of cohomology.
In particular,

(A.l) H£(H ry S1) H'(H ry S') ss //*(Map((S1)[n+1], Z)H, s\

Proof. Since for every n there will always be finitely many (non-degenerate)

//-orbits, it is immediate that H'(H ry S1) — H'(H ry S1).

Following [BM] we construct an extension map

ext : ^Map((51)["+1], Z)H,S\ -> (Map((S1)"+1, Z)H, $), / /
which on the level of cohomology is an inverse to res. Intuitively, in order to

define / (x0,..., x„) for a degenerate (« + 1)-tuple (xo,...,x„) we want to

move xn,...,xo (in this order) a very small amount in the positive direction to
make the (n + 1)-tuple non-degenerate, and then evaluate / on the perturbed

tuple. More precisely, if xn is equal to x* or xf for i ^ n, replace xn by a point
x+ such that (xn,xf,xf) is positively oriented and no x; or xf, for i ^ n, lies

in the positive direction between x„ and x+. Continue inductively for all x,- 's

and set / (xo ,x„) : f(xQ,...,xf). As in [BM] one then shows that ext

is a chain map which is inverse to res in cohomology.

In view of the lemma we can represent every class in H'(H ry Sl) by a

non-degenerate homogeneous cocycle, and thus we will focus on non-degenerate

homogeneous cocycles from now on.

Non-degenerate orbits of H acting on (S1)""1"1. The classification of non-

degenerate //-orbits on (S1)""1"1 for n < 2 is as follows.
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(n 1) Hie action of H on S1 has exactly one non-degenerate orbit.

(h 1) The action of H on two factors (S1)2 has two non-degenerate orbits:

If x,y e 5"1 are chosen so that (x, y, x) is a positively oriented triple, then

we denote them by

- 77- (x,y) and Ol2) := 77 • (y, x).

(n 2) The action of H on three factors (S1)3 has eight non-degenerate orbits.
Choose distinct points xo,x\,x2 e S1 and suppose that (xo,xi,X2,xö) is a

strictly positively oriented quadruple. Then the orbits are given as follows.
There are six non-degenerate orbits parametrized by the symmetric group
Sym(3) over {0,1,2} and given by

0(3) := H (xcr(o), x0-(1), x0-(2)), (ct e Sym(3)),

and there are two additional non-degenerate orbits given by

:= H • (xo,X2,xf) and Ö® := H (xo,xj~,xj).

Non-degenerate homogeneous 2-eoeyeles and non-degenerate homogeneous
2 -coboundaries. Denote by p2 : S1 -> 51 the double cover given by identifying
antipodal points. Then p2 induces a map commuting with the map induced by

p :~H H
*

H*{H ry S1; Z) —^ H*(H ry S1; Z)

H*(H: Z) — ^ H*(H; Z).

Specialising to degree 2, we know that the left-hand side H2(H ry S1; Z) is

an infinite cyclic group generated by the class of the Euler cocycle c. Our goal

now is to prove that the right-hand side H2(H r> S1; Z) is also infinite cyclic
and to construct an explicit homogeneous cocycle representing its generator.

To this end we first observe that a non-degenerate homogeneous 2-cochain /
is given by the 8 numbers

fa f |0<3), /+ := /10(3>, /- := /l0(3),

where a e Sym(3).

Lemma A.2. A nondegenerate homogeneous 2-cochain f is a cocycle if and

only if
/id /(0 1 2) /(o 2 l) =: f+,

/(0 1) /(0 2) /(I 2)—' f
/+ + /- /+ + /-,
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and f is a coboundary if and only if there exists w± e R such that

/id w+, /(o l) w-, f+ 2w+ - w-, f- 2w- - uj+.

Furthermore there is an isomorphism H2 (H ry S ;Z) Z given by sending

[f]e H2(H cy Sl\Z) to f+-2f+ + f~ eZ.

Proof. It it is a matter of elementary case by case consideration of configurations
of four points on the circle to show that the cocycle equation implies the

5 identities above. For example, let xo, x\, x2, x3,xf be positively oriented

points on S1. Applying the cocycle relation 8f — 0 to (xi,x2,x3,xo) and

(x3,Xo,xj,x2) leads to the first two equalities defining f+. Applying the relation
to (x2, X], xo, x3) and (x0,x3,x2,xi) gives the two next equalities defining f~.
Finally, 5/(x3,x0,x2,xT) /+-/" + /_-/+ 0.

Moreover, if b is a 1-cochain with b\n&) w±, then a routine computation
u±

yields

(5è)id w+, (Sb)(0 i) w-, (8b)y 2w+ — ut-, (8b)- 2w- — w+.

It remains to show that there are no other relations satisfied by an arbitrary
non-degenerate homogeneous 2-cocycle. For this we observe that the quotient of
the space of non-degenerate homogeneous 2-cochains satisfying the 5 identities
above by the space of coboundaries is isomorphic to Z via the map / m-

/+— 2f++f~. If there were any other relations, then there was no cocycle
with f+ — 2/+ + f~ 1. However, it is easy to check that the Sullivan cocycle

given in Definition A.3 below is such a cocycle.

In particular, a non-degenerate 2-cocycle / is given by 4 integers /+, /",
/+, /_ subject to the single relation f+ + /" /+ + /_ (or equivalently by
the 3 integers f+, f~ and /_).

Definition A.3. Hie Sullivan cocycle £suii is the non-degenerate 2-cocycle /
given by f+ f~ 0, /+ 1, /_ -1.

This cocycle was found by Sullivan as an explicit representative for the Euler
class of flat oriented R2-vector bundles. Table 1 below compares the Sullivan

cocycle with the pullback of the Euler cocycle via p2 and also with the orientation

cocycle on S1 and the pullback of the orientation cocycle under p2, and expresses
all of these cocycles in terms of the 4 integers f+, f~, /+, /_.

In particular we see from Table 1 and the isomorphism described in Lemma A.2
that the Sullivan class [Esuii] is a generator for H2(H r> Sl\Z) H^(F[
S1-, Z).
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Table 1

355

f+ f- /+ /- H2{H 51; Z)

Esuii 0 0 1 -1 [Esuii]
Pojc) 1 0 0 1 -2 [-Esull]
Or 1 -1 1 -1 —2[Esuii]
p*(Or) 1 -1 -1 1 -4 [Esuii]
Sb w+ u>_ 2w+ — w_ 2W- — w+ 0

The geometric interpretation of the Sullivan cocycle. Unravelling the definition
and considering configurations of 3 points on the circle case by case, we see that
the Sullivan cocycle can be described geometrically as follows: it is nonzero on a

non-degenerate triple (x,y,z) if and only if the triple contains 0 in the interior
of its convex hull and in that case it is +1 or — 1 depending on the orientation
of the triple. This geometric definition generalizes to higher dimensions and leads

to an SL„(R)-invariant cocycle on the (n — 1)-sphere for each n >2.
One consequence of this description is that the Sullivan cocycle is not invariant

under the full homeomorphism group of the circle, but only under its subgroup
77.

Another useful consequence is that the Sullivan cocycle and its higher-
dimensional analoga detect small subsets of spheres. Here a subset of a sphere is

called small if its spherical convex hull is not the whole sphere. In the case of
S1 a set X c S1 is small if and only if it is contained in a half-open half-circle.

Proposition A.4. Let Zc^1 be any subset. Then Esuii vanishes on X3 if and

only if X is small.

Proof. If X c S1 is a small subset then no three points in X ever contain 0 in
their convex hull, so that issull vanishes on X3.

Conversely, suppose that £suii vanishes on X3. View X as a subset of R2

and consider its convex hull in R2. By Caratheodory's Theorem, if 0 is contained

in the convex hull of X, then there exist xq,xi,x2 e X such that 0 belongs to the

convex hull of xo,Xi,x2 and hence Esuu(xo,xi,x2) 0, which is impossible.
If 0 is not on the boundary of the convex hull, then by Hahn-Banach there

exists a hyperplane separating 0 and the convex hull of X, so X is in particular
contained in the intersection of S1 with the (appropriate) half plane delimited by
the hyperplane. If 0 is in the boundary of the convex hull, then by the supporting
hyperplane theorem, there exists a hyperplane through 0 so that the convex hull
of X is contained in one closed half space delimited by that hyperplane. We are

almost done, except that we need to exclude the case that X is contained in one
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closed half-circle, but is not contained in a half-open half-circle. Suppose that x
and x belong to X. Then fssuiiOr*, *) i?suii(*>*+> x+) 1, where the points
x+,x+ e S"1 are very small perturbations of x, x in the positive direction.

Note that the same proof holds also for the higher dimensional generalization
of the Sullivan cocycle.

The cohomology class [Esuii] • Given a basepoint x e S1 we obtain a cocycle
—3

figuii ' H -> Z by pullback along the corresponding orbit map, i.e.,

£Suii(£o,gi,g2) := ESu\\(gox,gix,g2x).

This cocycle determines a class in the group cohomology H2(H\7L) ; since £|u]1 is

bounded, it also determines a class in the bounded group cohomology
Recall from the table above that -2- [Esuii] P\where c denotes the Euler

cocycle on S1 and p2 : S1 -> S1 is the double covering.
Now the Euler class eu [cx\ e H2(H, Z) corresponds to the central extension

of H given by the common universal covering group H of H and H, and

thus it follows from the commuting diagram of central extensions

Z- H

•2 Id
'

i 1
D *

H H

M

M

that [—Efun] e H2{H\Z) corresponds to the central extension in the top row
of the above diagram. By Lemma 3.1 this yields the following interpretation of
[-Esuii] as an obstruction class: Given a group T, the S '-action associated with
a homomorphism p : T -> H lifts to an action of T on the real line if and only
if P*[Eguji\ 0e H2( T, Z) for some (hence any) x e S1.

The bounded cohomology class [Esuii] • We now turn to an interpretation of the

bounded class defined by Esuii • It turns out that the case of the bounded Sullivan

cocycle in degree 2 is very particular since the vanishing of the cohomology
class is equivalent to the vanishing of the cocycle:

Proposition A.5. Let T be a group and p : T —H be any homomorphism.
Then P*[Egul[\b — 0 e H^(T,Z) if and only if P*(Egull) — 0 for any base point
x e S1.
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Proof. The if-direction is trivial. For the only-if-direction, suppose that P* E^u]l —

Sb for some x e S1 and a T -invariant bounded cochain b : F2 -» Z. We will
show that b 0. Writing out the cocycle equation in a special case yields for
all y eT,

p*EsuiiO' y< y2) 2b(e< y) - b(e' y2)-

This implies in particular \2b{e, y) — b(e, y2)| < 1, hence inductively

(A.2) \2kb(e,y)-b(e,y2k)\ <2k-\.

Since b is bounded, we can choose k sufficiently big so that \b(e,ylk)\ < 2k~l.

Dividing (A.2) by 2k we obtain

I b(e, y) I < ~\b{e, yf | + l- ^<l + ^- ^-<2.

Since b takes integral values, it follows that it takes values in (—1,0,1}. Assume

that b(e, y) 1. Then (A.2) yields

\2k -b{e,y2k)\ < 2* - 1,

hence b(e,y2k) — 1. A similar argument in the negative case shows that for

every y e T, either b{e,y) 0 or 0 ^ b{e, y) b(e,y for every k > 0.

Thus if b(e,y) ^ 0 for some y, then

Esu\\(x, p(y)x, p(y)2x) 2b(e, y) - b(e, y2) b{e, y) b(e, y2)

EsuU (x,p(y)2x,p(y)4x).

This means that there exist w,x,y,z e S1 such that

£Suii(*, y, z) Esu\\(x, z, w) 0.

By our extension of the Sullivan cocycle to degenerate orbits, we can without loss

of generality suppose that both triples (x,y,z) and (x,z,w) are non-degenerate.
Since their evaluations on the Sullivan cocycle agree both triples contain 0 in the

interior of their convex hull and have the same orientation. This is impossible.

For the Sullivan cocycle we now obtain the following stronger version of
Corollary 4.2:

Theorem A.6. Let F be a group, p : T —> H a homomorphism. Then the

following are equivalent:

(1) p*[ExsJb=0eH2{r-Z);
(2) p lifts to a homomorphism 'p : T —> H and f> (T) lias a fixed point in M.
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(3) p(F) fixes a point in S1.

(4) Every p(T)-orbit on S1 is small.

(5) There exists a small p(F) -orbit in S1.

(6) p*ExSull 0 for every x S1.

(7) Ttrere exists x e S1 such that p* Eï,, 0.

Proof. We summarize the shown implications in the following diagram:

Prop A.4, Prop A.5
(4)^ (6) (1)

trivial trivial
trivial

(5) <»(7) 1
Prop Â.4 trivial

(3).

The remaining equivalences between (1), (2) and (3) admit the same proof as the

equivalences between (i), (ii) and (iii) in Corollary 4.2.
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