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Sur le principe d’incertitude pour les familles
orthonormales de LZ(R)

Anne DE RotoN, Bahman SAFFARI,
Harold S. Suariro et Gérald TENENBAUM

Abstract. A result of uncertainty principle type due to H.S. Shapiro states that, given
an infinite orthonormal family of L?(R), there is no square integrable function uniformly
dominating all functions and also all their Fourier transforms. However, Shapiro conjectured
the existence of an orthonormal basis of L2(R) such that all elements and all their Fourier
transforms are uniformly dominated by a constant multiple of r(x) := I}HX| s

In this work, we provide a proof of Shapiro’s uncertainty principle and we confirm his
conjecture in a strong form, where one of the two upper bounds is replaced by a function
with arbitrarily fast decay. We also show that, for a certain, natural type of basis, the initial
bound is optimal. Finally, we construct an orthonormal family of LZ(R) all of whose
elements and all their Fourier transforms are dominated at infinity by a function s(x) with
decay strictly faster than r(x), but which is not square-integrable in a neighbourhood of
the origin.
Résumé. Un résultat de type principe d’incertitude di a H.S. Shapiro stipule que, étant
donnée une famille orthonormale infinie de LZ?(R), il n’existe aucune fonction de carré
intégrable dominant uniformément a la fois tous les vecteurs et toutes leurs transformées
de Fourier. Shapiro a cependant conjecturé 1’existence d’une base orthonormale de L?(R)
dont les éléments et toutes leurs transformées de Fourier sont uniformément dominés par
un multiple constant de r(x) := «/ﬁ

Dans ce travail, nous donnons une démonstration du principe d’incertitude de Shapiro
et nous établissons sa conjecture sous une forme forte, dans laquelle I'un des deux
majorants uniformes est remplacé par une fonction de décroissance arbitrairement rapide.
Nous montrons également que, pour un certain type naturel de base, la majoration initiale
est optimale. Enfin, nous construisons une famille orthonormale infinie de L?(R) dominée
I’infini ainsi que sa transformée de Fourier par une fonction s(x) de décroissance strictement
plus rapide que r(x), mais qui n’est pas de carré intégrable au voisinage de I’origine.

Mathematics Subject Classification (2010). Primary: 42A38.

Keywords. Orthonormal families of L?(R), Fourier transform, exponential decay, umbrella
theorem.

Mots-clés. Familles orthonormales de L?(R), transformation de Fourier, décroissance
exponentielle, théoréeme du parapluie.
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1. Introduction

En analyse harmonique, un principe d’incertitude est, a I'instar de celui de
Heisenberg, un résultat qui énonce I’impossibilité qu’une fonction et sa transformée
de Fourier soient simultanément petites, sous diverses acceptions de ce qualificatif.
Par exemple, une fonction non nulle f € L?(R) et sa transformée ? ne peuvent
étre toutes deux a support compact. Plus précisément, un théoréme classique de
Hardy stipule que, sauf encore dans le cas de la fonction nulle, f et ? ne
peuvent €tre toutes deux asymptotiquement négligeables devant e=**/2 3 Iinfini.
La littérature contient de nombreux résultats analogues, dont le lecteur pourra
consulter un panorama dans [FS] ou [HJ].

Nous nous intéressons ici a un principe d’incertitude relatif a une classe enti¢re
de fonctions. Nous établissons ainsi que les fonctions d’une famille orthonormale
infinie {g,}52, de L2(R) et toutes leurs transformées de Fourier

() = [R gn(x) €% dx

ne peuvent étre simultanément dominées par une fonction de carré intégrable.

Ce résultat a fait I’objet d’une note de travail non publiée de Shapiro [Sha].
La démonstration repose sur une application simple d’un théoréme de Fréchet—
Kolmogorov. L'idée essentielle est qu'une majoration uniforme des fonctions et de
leurs transformées de Fourier implique la précompacité de la famille considérée.
Nous reproduisons cette preuve au paragraphe 2.

Bien que non publi€e, la note de Shapiro a été mentionnée a plusieurs reprises
dans la littérature, ainsi du reste qu’une version préliminaire du présent travail.
Une version quantitative du théoréme d’incertitude de Shapiro fait I’objet du § 3.5
de 1’article [JP] de Jaming et Powell. Dans [Mal, § 2.2], Malinnikova simplifie et
généralise a la dimension quelconque la formule établie dans [JP].

Le résultat de Shapiro implique que, pour p > 1/2, les deux majorations
suivantes sont incompatibles

sup [ga ()| < 1+ [xD7F (x€R),  sup|g ) KA+ D77 (@ €R).
nez nez
Ici et dans la suite, nous employons la notation de Vinogradov f <« g pour
signifier qu’il existe une constante C pour laquelle | f| < C|g|.
Cela étant, Shapiro a conjecturé dans [Sha] I’existence d’une base orthonormale
{gn}nez de L2(R) telle que 'on ait

(1.1) sup [gn (x)| < :

nez ‘/1—}—|x|

(x e R)

et
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e 1
(1.2) sup | gn ()] € ———==
nez V14 |I l

[’un des objets du présent travail consiste a établir cette conjecture! sous une
forme forte, également conjecturée dans [Sha], dans laquelle I'un des majorants est
remplacé par une fonction a décroissance beaucoup plus rapide. Nous montrons,

par exemple, au Lemme 3.1 infra qu’il existe une base orthonormale {g,},ez
de L2?(R) satisfaisant (1.2) et

(t e R).

(1.3) sup |gn(x)| € e *112 (x e R).
neZz

Cette situation laisse ouverte la question de savoir dans quelle mesure on peut
améliorer simultanément les majorations (1.1) et (1.2).

Dans [Sha], Shapiro introduit une idée naturelle, nouvelle a notre connaissance,
pour construire des bases orthonormales de L2(R) et reposant sur I’introduction
d’un difféomorphisme F € C!'(R,]0,1[). Si, par exemple, F est une bijection
strictement croissante, 1’image par F de la base orthonormale {e2"'"*},cz est
donnée par

(1.4) gn(x) 1= 2FInF®) [Fi(x) (x € R).

La famille {g,}nez est alors une base orthonormale de L?(R), ’orthonormalité et
la complétude étant issues de celles de la base initiale via un simple changement
de variable. Nous avons alors

gn(X)| = VF'(x)  (neZ),

ce qui améliore (1.1) en y remplagant le majorant par une fonction de L?(R).
Le résultat de Shapiro précédemment mentionné interdit semblable amélioration
du second membre de (1.2). Reste a savoir si, par exemple, on peut remplacer
le second membre par (f) ot ¢(t) = o(1/+/]t]) lorsque |t| — co. Une telle
majoration est trivialement satisfaite en moyenne puisque

[ & (2 dr = 2n[ 2a ()2 dx = 27,
R R

Le § 2 est consacré a la preuve du principe d’incertitude de Shapiro. Au § 3, nous
construisons une base orthonormale de L?(R) qui est & décroissance exponentielle
tout en satisfaisant (1.2). Nous établissons au §4 que I'on peut remplacer la
décroissance exponentielle par une décroissance arbitraire. Le §5 est dévolu a
I’explicitation des ordres de grandeur exacts des membres de gauche de (1.1)
et (1.2) pour une fonction naturelle F. La partie 6 illustre le fait que, dans un

I Byrnes a annoncé en 1994 [Byr] une preuve de la conjecture de Shapiro. Toutefois, nous n’avons
pas pu la rendre effective a partir des indications données.
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cas assez général, on ne peut espérer mieux qu’une majoration du type (1.2). Enfin,
dans le dernier paragraphe, nous fournissons un exemple de famille orthonormale
infinie pour laquelle la majoration (1.2) est améliorable hors d’un voisinage de
’origine.

2. Le théoréme d’incertitude

Nous établissons le théoréeme d’incertitude a partir d’'un lemme simple reposant
sur le théoreme classique de Fréchet—Kolmogorov (voir par exemple [Yos,
chap. X]), qui, dans le cas de I'espace L?(R), énonce qu’'un sous-ensemble K
est relativement compact si, et seulement si, les trois conditions suivantes sont
réalisées, (ici 7, désigne l'opérateur de translation f(-) — f(-+ y)):

(i) supreg [ fll2 < o0
(ii) limyosupseg |ty f — fll2 =03
(iii) limg oo SUpseg [Mr~[-£,1/ l2 = 0.
Le résultat suivant figure dans [Sha]. Jaming nous a récemment signalé qu’une

preuve antérieure a été obtenue par Pego [Peg]. La courte preuve suivante, qui
nous semble plus simple que celle de [Peg], est une variante de celle de [Sha].

Théoréme 2.1. Soit K une partie bornée de L*(R). Alors K est précompacte
si, et seulement si, l'on a
2.1 lim sup f HF@P+17 @) dx =o0.
§=00 rek Jix|>¢
Démonstration. Notons que la limite figurant au membre de gauche de (2.1) est

toujours bien définie puisque la quantité en cause est décroissante en §.
Considérons une partie bornée K de L?(R) vérifiant (2.1). Alors la suite

K:={Ff:fek}

vérifie trivialement (i) et (iii). De plus, d’apres la formule de Parseval, nous avons,
pour tout § > 0,

I 7 — 713 = 4x fR sinCxy /22| () dx
<dn f ISP dx + 2 EIFIE
|x|>§

—

Ainsi la relation (ii) est également satisfaite pour K , ce qui implique la
précompacité de K , donc de K par isométrie.

Réciproquement, si K, et donc K, est précompacte, la condition (2.1) résulte
de I'application de la condition (iii) a K et K. O
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Théoréme 2.2 (Shapiro, 1991). Soit {g,}°2, une suite orthonormale de L*(R).

Alors 'une au moins des fonctions x +> sup, |g.(x)| et t — sup, | g (¢)| n’est
pas dans L*(R).

Démonstration. En vertu de 1’orthogonalité de ses éléments, la suite {g,}5>,; ne
contient aucune sous-suite convergente. Elle n’est donc pas précompacte. D’apres
le Théoreme 2.1, il s’ensuit que

im sup [ {an()” + |84 COP) dx >0

E§—00 peN

3. Etude d’un cas de décroissance exponentielle

Le résultat suivant permet d’exhiber une base orthonormale construite selon le
procédé (1.4) et qui est a la fois & décroissance exponentielle tout en satisfaisant
la condition (1.2).

Théoréme 3.1. Soit F la fonction de C'(R,]0,1|) définie par
(3.1) F(x) := %f el dv.

Pour n € 7, on définit la fonction g, : R — C par (1.4) pour ce choix de F,
soit
gn(x) 1= 14/2e27InF ) g=lxl/2 (x € R).

Alors on a

(3.2) sup | g ()] <

1
nez v1+ [t

Démonstration. Posons

(r € R).

o0
Falf) o= f exp{— 2x +inmwe ¥ +itx}dx (neZ, teR).
0
Un calcul standard permet d’écrire

& @) =V2{f -+ £,())  (t eR).

Introduisons a présent les fonctions

X
Ot (X) :=nme™ +1x, Ppi(x) = f eleni(v) gy
0
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Nous obtenons apres intégration par parties

o.¢]
HO =1 [ S 2ax
0
La majoration annoncée découle donc immédiatement du Lemme 3.3 infra. [

Pour la commodité du lecteur, nous rappelons ci-dessous certaines estimations
classiques d’intégrales oscillantes — voir, par exemple [Ten, ths. 1.6.2 et 1.6.3].

Lemme 3.2. Soient a, b des nombres réels tels que a <b, et f € Clla,bl.

(i) Si f' est monotone et de signe constant sur la,b[ et si
m:=inf,,<p | f'(t)] > 0, alors

b
f 2mif @) 4y
a

() Si f € C?a,bl, si f" est de signe constant sur la,b[ et si
r:=inf,«;«p | f" ()| > 0, alors

1

s_.
mm

(3.3)

b 4
(3.4) fa >/ dr| < v
Lemme 3.3. Nous avons
sup | @ (x)| € 1/t (@ =1).
nez,x=0
Démonstration. Nous avons ¢, ; € C*(RT) et
¢n (V) = —nmwe " +t, ¢, (V) =nwe™”.

Comme ¢, , est monotone, il résulte de (3.3) que, si |—nme™ + | > /2 sur
I’intervalle ]a, b[, on a

b 2
f elPnt gy < =
a it

alors que, si | — ame™ + ¢| < t/2 pour v €la,b[, on a
lgy (V)| = [nwe™| =t —1/2 =1/2 sur le méme intervalle, et donc, par (3.4),

b
/eiw"”(”)dvs 4 .
a JTI/Z

On conclut en observant que, du fait de la monotonicité de v — e™?, ’intervalle
[0, x] est la réunion d’au plus trois intervalles relevant de 1’'une ou 1’autre des
catégories précédentes. L]
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4. Décroissance unilatérale arbitraire

Nous nous proposons ici de généraliser le Théoreme 3.1 en établissant,
essentiellement par la méme méthode, I'existence d’une base orthonormale
dominée, A une constante multiplicative pres, par une fonction arbitraire de L?(R)
et satisfaisant cependant (3.2).

Théoréme 4.1. Soit G une fonction de L*(R) telle que la borne inférieure de |G|
sur tout compact de R soit non nulle. Il existe une bijection continue croissante
F : R —]0,1[, de classe C' par morceaux, telle que la base orthonormale
{gn}nez définie presque partout par (1.4) satisfasse

4.1) sup |gxn(x)| € G(x) (x € R)
nez
et
4.2) sup | g» ()| <€ _ (t e R).
nez 1+ |I|

Démonstration. Posons

A = ( inf |G ,—l'"l) 7), L:=3S 22,
we=min(_inf [GCLe™) (e, >4
m

Désignant par w la fonction continue définie par
w(x) := min(1, xT)?,
nous choisissons
F(x):= % Z AZw(x —m) (x €R).

mezZ

Ainsi, F est une bijection strictement croissante de R sur ]0, 1[, de classe C?
sur R~ Z. La suite {g,}sez définie par

e2minF(x) [F!(x) (x e R~ 7Z),

4.3 i =
(4.3) gn(x) {0 e D)

est clairement une base orthonormale de L2(R). De plus, pour m,n € Z,
m<x<m-+1,ona

lgn(x)] € VF'(x) = An/2(x —m)/L K Ay < G(x),

donc la condition (4.1) est bien satisfaite.
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Il reste a estimer g, (1). Posant p, := A% /L, Om =Y pem P (m € Z),
nous pouvons écrire

g';z(l) — ] e2minF (x)—ixt /F’(x) dx
R

m+1
(4.4) :ﬁme eZi:‘rnom+i{2Jmpm(x—m)z—tx}mdx
meZ H
1
zﬁZMezinnam—imz/ eifpm_n(t,v) ﬁdv,
meZ 0

ou ’on a posé
Pm.n(t, V) := 2w npmv* — vi.

On a en particulier

|2 (D] < 3v2 ) /Pm < 0,

mez

de sorte que nous pouvons nous limiter a établir (4.2) pour |¢| > 1.
D’apres la seconde formule de la moyenne, pour tous entiers m, n € 7, il
existe un nombre réel & = §,,, € [0, 1] tel que

1 1
f el®m.n (t,v) \/EdU &« ([)m’n (t’ g:) = f el¥m.n (z,v) dv.
0 £

On a
Omn (V) = 4PV — 1, P (V) = 471 O<v<l).
Par le Lemme 3.2, cela implique que

1/t (Iz] > 87 |n|om),
1/Vnlpm (1] < 87 |n|om).

En reportant dans (4.4), il s’ensuit que

Prmn(t,§) K {

&n : 1 1 1 1| om 1
g,,(r)<<—-|- Z —<<_+ << ‘
d om=t/@xlnl) V 17 el = /ln] |z] ]

5. Etude d’un cas de décroissance polynomiale

Le résultat suivant fournit, pour une fonction F naturelle, I'ordre de grandeur
exact de la décroissance des transformées de Fourier obtenues par le procédé (1.4).
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Théoréme 5.1. Soit n € Z et g, : R — C la fonction définie par (1.4) pour le

choix [ )
v arctan x
Fix) = — =1 :
(x) - f_oo T2 2 +—

Alors, uniformément pour n € 7., on a

gn (1) K (t € R).

(1+ [/

De plus, on a

gn (2n) =

CDTTA/3) +0( : ) (n=1).

2173, /7 31/6p1/3 Jn

Démonstration. Nous pouvons pleinement supposer ¢ = 1.
Posons ¢;(x) := 2n arctan x — 1x. Nous avons

=" [ elor (x) dx
VT ) V1 + x?

ol I’intégrale est semi-convergente. La fonction ¢, est impaire et indéfiniment
dérivable sur R. On a

& (1) =

2n —4dnx 3x2 -1
/ — =P " T s S " = e,
Notant
x .
(5.1) ®,(x) := f e’ @) gy,
0

nous obtenons apres intégration par parties

2(-1)" foox%etbt(x)
vr  Jo (1+x2)32

Soit ¢ une constante arbitraire de |0, %[. Lorsque ¢ > 2(1 + ¢)n, nous avons

dx.

(5.2) & (1) =

inf |@;(x)| > ct/(1 + ¢).
x>0
Il résulte alors du Lemme 3.2(i) que sup,., P:(x) < 1/¢ et donc
gn () K€ 1/1.

Nous pouvons dorénavant supposer n = 1.

Lorsque ¢ < 2(1—c)n, posons xg := /2n/(1 +c)t —1, x1 := /2n/(1 —c)t.
Nous avons encore ®,(x) <« 1/r lorsque x < xo et P;(x) — P,(x1) K 1/t
lorsque x > x7. La contribution de R* ~ 7 a I’intégrale (5.2) est donc <« 1/t.
Lorsque x € I, nous pouvons utiliser 1’estimation
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] 2

Jnx

1
q)t(X) < ? +

obtenue en scindant I’intégrale (5.1) 2 v = /¢ et en utilisant, comme indiqué
au Lemme 3.2, la minoration ¢}(v) = ¢ pour 0 < v < ./c et la minoration
@/ (v) > nx/(1 + x?)? pour /c <v < x. Il s’ensuit que
f XPul®) 4] + — o [2E !
1+ x2)3/2 no Wt

Nous avons ainsi établi que

g 1
gn (1) K _\/—Z

lorsque ¢ <2(1 —c)n.

Il reste a examiner le cas 2(1 —c)n < t < 2(1 + c)n. Nous avons
alors ¢;(v) < —ct/(1 +¢) pour v = 2,/c. La contribution de 1’intervalle
[min(x, 24/c), x] a I'intégrale (5.1) est donc « 1/¢. Nous évaluons la contribution
complémentaire en scindant I'intégrale 2 v = § := min (x,2+/c/n'/3). Comme
@/ (v) > én pour § < v < 24/c, nous obtenons

min(x,2./c) 102 (0) 1 1
e VWA L+ ——= K —-
.[0 v/én ghi3
Cela implique, sous la condition considérée,

@ (x) € /3

D’aprés (5.2), la méme majoration vaut donc pour g, (¢). Cela achéve la
démonstration de la premiére partie de 1’énoncé.
Nous tournons a présent notre attention vers 1’évaluation de la quantité

(_l)n o eZinG(x) dx
VLR VIT+x2
ol 'on a posé 6(x) := arctanx — x.

Soit J := [-n~Y* n~14]. Comme €’(x) > 1//n pour x € R~ J, une
intégration par parties implique immédiatement que la contribution de R~ J a
I'intégrale de (5.3) est K< 1//n.

Pour évaluer la contribution de J, nous effectuons un développement limité
de H(x) a lordre 4 au voisinage de l'origine. On a 6(0) = #/(0) = 6”(0) = 0,
0" (0) = =2 et #¥W(x) « x, d’ol

; dx 3
2inf(x) __ Y7~ 2mx /3
f.le V1+x2 / {1+O( 1/4)}dx

B 1 e’ d 0 1
T 21/3.32/3,1/3 g y2/3 y+ (ﬁ)

(2.3) 2n (2n) =
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Une manipulation classique d’intégration complexe permet de montrer que la
derniere intégrale vaut +/3I'(1/3). Cela implique bien le résultat annoncé. [

6. Limitations

Nous nous proposons ici de décrire une situation assez générale dans laquelle
on a

sup | g» (1) :Q(;) (t € R).
1+ [¢]

n=1

Théoreme 6.1. Soit F € C?(R,]0,1[) une bijection strictement croissante.
Supposons que F' est strictement positive sur R, que F"” ne s’annule qu’un
nombre fini de fois et qu’il existe xo > 0, n > 0, tels que, pour tout
x € R ~[—x¢, xo], on ait

(6.1)  F(x+h) = F(x)+hF'(x) + h*F"(x) + O<(|h|**") (k] < 1).

Alors, il existe une suite {t,}2, € RNN" telle que limy_soo tn = c0 et

n=1
limsup /%, | g (12)| > 0.
n—0oo

Remarque. L’hypothese de régularité de F dans le théoréme peut étre 1égerement
affaiblie. Cela permet de montrer que la conclusion est valide pour la fonction F
définie en (3.1), de sorte que la majoration (3.2) est optimale.

Démonstration. Soient no une constante arbitraire, qui sera précisée par la suite,
et n un nombre entier excédant ng.
Observons tout d’abord que les conditions

F' e C'(R,R™), lim F'(x) =0
|x|—>00

impliquent que F’ est bornée.

Comme la fonction F” change de signe au plus un nombre fini de fois et
comme F’ > 0, F'(xoo) = 0, il existe x; > xo tel que xF”(x) < 0 pour
|x| > x1. Posons m := minjyj<x, F'(x) > 0. Alors F/(x) < m pour |x| assez
grand, et il existe des nombres réels « €]0,m[, u < —x; et v > xq, tels que

xF"(x) <0 (x € R~Ju, v])
F'(]—oo,u]) = F’([U,oo[) =]0,.¢],
F'(Ju, v[) Cla, oo,

On peut alors définir une bijection strictement décroissante 6 € C*(]—oo, u], [v, 00l)
par la formule
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F'(0(x)) = F'(x).

Soit z €]—00, u[ un paramétre que nous déterminerons plus loin. Nous posons
th = ty(2) :=2xnF'(2) (n=1),

de sorte que

6.2) G0 = [ o VP dx,
avec ¢p(x) :=2nn{F(x)—xF'(z)} (x € R) et donc
¢n(x) = 2xn{F'(x) — F'(2)} (x € R).
Soit € €]0, 2[. Posons 8, := n*"1/2 et
E,=[z—=8,,z+8:]U[0(2) —8a,0(z) + 8,].
Il est possible de choisir ny assez grand pour que 'on ait
E, CR~[u,v], |F'(x) — F'(2)| > C(2)8, (x e R~ Ep)

ou nous avons posé C(z) := 3 m1n{|F "(2)|,|F"(8(z))|} et ou la seconde relation
découle du théoreme des accrmssements finis.

Nous pouvons majorer la contribution de R ~ E,, a l’intégrale de (6.2) en
notant que 1’'on a |¢;,(x)| > 2nC(z)nd, pour tout élément x de cet ensemble.
Pour tout intervalle Ja,b[ de R ~ E, sur lequel F” ne s’annule pas, on a donc
par (3.3),

1 1

X
o ipn(t) -
D, (x) -—fa e dr < g = e (a<x<b)

d’ou
b b
f el ™) JF!(x)dx = [ VF'(x)d®(x)
- B F"(x)
= /F'(b)®(b) fa ®(x) \/mdx
VE®) 1[I
nl/2+e nl/2+e m
VF'(b
Fo) VF®) - F@| < nl%

nl/2+e nl/2+e

<

e

Comme F” ne posséde qu'un nombre fini de changements de signe, il s’ensuit
que la contribution du domaine R ~ E, 2 l'intégrale g, (f,) est < n~1/27¢,
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Pour x € R, posons

Sn
In(x) ;:f eion G+ ST 1 ) dh,
—8n

Il résulte de ce qui précéde que

— 1

Evaluons 2 présent les deux intégrales de (6.3). D’aprés (6.1), nous pouvons
écrire
on(z + h) =2nn{F(z+h)— (z + h)F'(2)}
=2xn{F(z) + hF'(z) + 1*F"(z) + O(|h|**") — (z + ) F'(2)}
= ¢,(2) + *nh?F"(2) + 0(11|h|2+").
Comme F'(z + h)— F'(z) < h pour |h| < 6,, il s’ensuit que, sous 1’hypothése

supplémentaire 0 < ¢ < n/(4 + 2n), qui garantit que n§2T" « 1, nous pouvons
écrire

8
I,(z) = /_ 8 e'n @R L /F(z) + O(h)} dh

Sn .
= VF'(@)eion@ [~ &mnh*F'@) (1 4 0(n82+7)) dh 4+ O(82)

n
=2/F'(z e'@"@] T FYD gp + O (n82H + 82).
0

Imposons a présent la condition 0 < & < n/(842n), de sorte que le dernier terme
d’erreur est <« n~'/27¢_ En effectuant le changement de variable 1t = wnh?F"(z)
dans 1’intégrale, nous obtenons

F'(z) ] nF"(z)n%® dr 1
I - eion(2) f it 0 _)
n(2) anF"(z) 0 © V't + (n1/2+£

_ [ _F'@) ien po1y ein/a 1
N JU’lF”(Z)e Fz)e +0(n1/2+€)

<o o) g

De méme, nous obtenons a I’aide du changement de variable 1 = —rnh*F"(6(z)),

_ 1 F'(2)  igu@@)—in
L,(6@) = {1+ 0(=)} T ‘
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En reportant dans (6.3), nous obtenons donc que, posant
ign(2)+in/4 ei(pn(ﬂ(z))—in/4}

—[e
K,,(Z).—\/F—(Z){ JF"(2) T |F"(6(z))|

nous avons établi, pour tout z €] — oo, u[, la formule asymptotique
Kn(z) + O(1/n%)

&n (tn) = N (n=1).
Si I'on avait lim,—c K,(z) = 0, alors on aurait d’une part F”(z) = —F”(Q(z))

et d’autre part
on(2) — ¢n(0(2)) = 37 (mod 27),

soit encore, en notant |x| la distance du nombre réel x a I’ensemble des entiers
relatifs,

nli)r{)lo |n(F(z) — F(6(z)) — {z — 6(2)}F'(z)) — 1| = 0,

ce qui conduit a une contradiction en considérant par exemple deux grands entiers
consécutifs.

Ainsi K, (z) ne tend pas vers O lorsque n tend vers 'infini. Cela fournit la
conclusion requise. 0

7. Une famille orthonormale presque optimale

Considérons une fonction a croissance lente L, a valeurs dans [1, 00 et telle
que, pour tout ¢ > 0, x +> x¢/L(x) soit croissante sur Rt et x — 1/{x°L(x)}
soit décroissante sur R*. Supposons de plus que u(x) := 1/{+/xL(x)} ne soit pas
dans L2(R). Les fonctions L(x) := max(1,loglogx) et L(x) := max(1, \/@),
par exemple, satisfont ces hypotheses.

Il existe alors une suite {A,}52, d’éléments de [I,o0[ telle que la suite de

fonctions
1, a1 1(X)

= —_——— =1
g = =2 =)
soit une famille orthonormale de LZ(R).
De plus
sup [ga(x)] < u(x) (x> 0).
n
Nous avons

Ang1 e—ixt
g n(t) = ——x
An \/;L(X)

et &,(x,1) = ffn e dy « x/(1 +xt) (x > A,, t > 0). Cela implique
immédiatement
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g.0) <1/t (t=1).

Lorsque 0 < < 1, une intégration par parties permet d’écrire

Ant1
Zu(t) = ©uCng ) (g 1) — ﬁ B (3. (5

\/An—l-l Ao dx 1

C T 2mr)LOnrn S AT 0Le S LG/

Ainsi, nous avons construit une famille orthonormale de L?(R) vérifiant

u(l/x)

X

sup |gn (x)| + sup | g »(x)| K u(x) + (x > 0).

n n
Cependant, il ne s’agit pas d’une base et la majoration n’est pas de carré intégrable
au voisinage de 1’origine.
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