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Sur le principe d'incertitude pour les familles
orthonormales de L2(R)

Anne de Roton, Bahman Saffari,
Harold S. Shapiro et Gérald Tenenbaum

Abstract. A result of uncertainty principle type due to H.S. Shapiro states that, given
an infinite orthonormal family of L2(R), there is no square integrable function uniformly
dominating all functions and also all their Fourier transforms. However, Shapiro conjectured
the existence of an orthonormal basis of L2(R) such that all elements and all their Fourier
transforms are uniformly dominated by a constant multiple of r(x) :=

1

vI+HI
In this work, we provide a proof of Shapiro's uncertainty principle and we confirm his

conjecture in a strong form, where one of the two upper bounds is replaced by a function
with arbitrarily fast decay. We also show that, for a certain, natural type of basis, the initial
bound is optimal. Finally, we construct an orthonormal family of L2(R) all of whose

elements and all their Fourier transforms are dominated at infinity by a function ,y(x) with
decay strictly faster than r(x), but which is not square-integrable in a neighbourhood of
the origin.
Résumé. Un résultat de type principe d'incertitude dû à H.S. Shapiro stipule que, étant

donnée une famille orthonormale infinie de L2(R), il n'existe aucune fonction de carré

intégrable dominant uniformément à la fois tous les vecteurs et toutes leurs transformées

de Fourier. Shapiro a cependant conjecturé l'existence d'une base orthonormale de L2(R)
dont les éléments et toutes leurs transformées de Fourier sont uniformément dominés par
un multiple constant de r(x) :=

1

V 1 +l-*|
Dans ce travail, nous donnons une démonstration du principe d'incertitude de Shapiro

et nous établissons sa conjecture sous une forme forte, dans laquelle l'un des deux

majorants uniformes est remplacé par une fonction de décroissance arbitrairement rapide.
Nous montrons également que, pour un certain type naturel de base, la majoration initiale
est optimale. Enfin, nous construisons une famille orthonormale infinie de L2(R) dominée à

l'infini ainsi que sa transformée de Fourier par une fonction s(x) de décroissance strictement

plus rapide que r(x), mais qui n'est pas de carré intégrable au voisinage de l'origine.

Mathematics Subject Classification (2010). Primary: 42A38.

Keywords. Orthonormal families of L2(R), Fourier transform, exponential decay, umbrella

theorem.

Mots-clés. Familles orthonormales de L2(R), transformation de Fourier, décroissance

exponentielle, théorème du parapluie.
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1. Introduction

En analyse harmonique, un principe d'incertitude est, à l'instar de celui de

Heisenberg, un résultat qui énonce l'impossibilité qu'une fonction et sa transformée
de Fourier soient simultanément petites, sous diverses acceptions de ce qualificatif.
Par exemple, une fonction non nulle / e L2(M) et sa transformée / ne peuvent
être toutes deux à support compact. Plus précisément, un théorème classique de

Hardy stipule que, sauf encore dans le cas de la fonction nulle, / et / ne

peuvent être toutes deux asymptotiquement négligeables devant e~x2/2 à l'infini.
La littérature contient de nombreux résultats analogues, dont le lecteur pourra
consulter un panorama dans [FS] ou [HJ].

Nous nous intéressons ici à un principe d'incertitude relatif à une classe entière
de fonctions. Nous établissons ainsi que les fonctions d'une famille orthonormale
infinie {gn}'^>=1 de L2(R) et toutes leurs transformées de Fourier

gn (0 := / g„(x)eTl,x dx
JK

ne peuvent être simultanément dominées par une fonction de carré intégrable.
Ce résultat a fait l'objet d'une note de travail non publiée de Shapiro [Sha],

La démonstration repose sur une application simple d'un théorème de Fréchet-

Kolmogorov. L'idée essentielle est qu'une majoration uniforme des fonctions et de

leurs transformées de Fourier implique la précompacité de la famille considérée.

Nous reproduisons cette preuve au paragraphe 2.

Bien que non publiée, la note de Shapiro a été mentionnée à plusieurs reprises
dans la littérature, ainsi du reste qu'une version préliminaire du présent travail.
Une version quantitative du théorème d'incertitude de Shapiro fait l'objet du § 3.5

de l'article [JP] de Jaming et Powell. Dans [Mal, §2.2], Malinnikova simplifie et

généralise à la dimension quelconque la formule établie dans [JP],

Le résultat de Shapiro implique que, pour p > 1/2, les deux majorations
suivantes sont incompatibles

sup|g„(x)| « (1 + (xel), sup j'gn (r)| « (1 -F |t|)—^ (t e M).
neZ neZ

Ici et dans la suite, nous employons la notation de Vinogradov / <SC g pour
signifier qu'il existe une constante C pour laquelle |/| < C\g\.

Cela étant, Shapiro a conjecturé dans [Sha] l'existence d'une base orthonormale

{gn}nez de L2(M) telle que l'on ait

(1.1) sup \gn(x)| «
1

(x e M)
neZ Vl + lxl

et
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(1.2) sup | ~gn (0| «
'

(t eR).
ne Z VI + \t\

L'un des objets du présent travail consiste à établir cette conjecture1 sous une

forme forte, également conjecturée dans [Sha], dans laquelle l'un des majorants est

remplacé par une fonction à décroissance beaucoup plus rapide. Nous montrons,

par exemple, au Lemme 3.1 infra qu'il existe une base orthonormale {g„}nez
de L2(R) satisfaisant (1.2) et

(1.3) sup \gn(x)\ « e~w/2 (x e M).
neZ

Cette situation laisse ouverte la question de savoir dans quelle mesure on peut
améliorer simultanément les majorations (1.1) et (1.2).

Dans [Sha], Shapiro introduit une idée naturelle, nouvelle à notre connaissance,

pour construire des bases orthonormales de L2(R) et reposant sur l'introduction
d'un difféomorphisme F e C1(M,]0,1[). Si, par exemple, F est une bijection
strictement croissante, l'image par F de la base orthonormale {&l7Zinx}nez est

donnée par

(1.4) gn(x) e27tinF(x) y/F'{x) (x e R).

La famille {gn}nez est alors une base orthonormale de L2(R), l'orthonormalité et

la complétude étant issues de celles de la base initiale via un simple changement
de variable. Nous avons alors

\gn(x)\ y/F '(x) (ne Z),

ce qui améliore (1.1) en y remplaçant le majorant par une fonction de L2(R).
Le résultat de Shapiro précédemment mentionné interdit semblable amélioration
du second membre de (1.2). Reste à savoir si, par exemple, on peut remplacer
le second membre par cp(t) où <p(t) o( 1 /VT^T) lorsque \t\ -» oo. Une telle

majoration est trivialement satisfaite en moyenne puisque

/ (t)\2àt 2tt / \gn(x)\2 dx 2tï.
JM. JM.

Le § 2 est consacré à la preuve du principe d'incertitude de Shapiro. Au § 3, nous
construisons une base orthonormale de L2(R) qui est à décroissance exponentielle
tout en satisfaisant (1.2). Nous établissons au §4 que l'on peut remplacer la
décroissance exponentielle par une décroissance arbitraire. Le § 5 est dévolu à

l'explicitation des ordres de grandeur exacts des membres de gauche de (1.1)
et (1.2) pour une fonction naturelle F. La partie 6 illustre le fait que, dans un

1 Byrnes a annoncé en 1994 [Byr] une preuve de la conjecture de Shapiro. Toutefois, nous n'avons

pas pu la rendre effective à partir des indications données.
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cas assez général, on ne peut espérer mieux qu'une majoration du type (1.2). Enfin,
dans le dernier paragraphe, nous fournissons un exemple de famille orthonormale
infinie pour laquelle la majoration (1.2) est améliorable hors d'un voisinage de

l'origine.

2. Le théorème d'incertitude

Nous établissons le théorème d'incertitude à partir d'un lemme simple reposant
sur le théorème classique de Fréchet-Kolmogorov (voir par exemple [Yos,

chap. X]), qui, dans le cas de l'espace L2(R), énonce qu'un sous-ensemble K
est relativement compact si, et seulement si, les trois conditions suivantes sont

réalisées, (ici ry désigne l'opérateur de translation /'(•) f-> /(• + y) :

(i) supfeK ||/||2 < oo;
(ii) lim-^o sup/6ic \\ryf - f\\2 0 ;

(iü) lim^oo sup/gA: ||lE^[_ç)f]/[|2 0.

Le résultat suivant figure dans [Sha]. Jaming nous a récemment signalé qu'une

preuve antérieure a été obtenue par Pego [Peg], La courte preuve suivante, qui
nous semble plus simple que celle de [Peg], est une variante de celle de [Sha],

Théorème 2.1. Soit K une partie bornée de L2(R). Alors K est précompacte
si, et seulement si, l'on a

(2.1) lim sup f {l/WI2 + | / (x)\2} dx 0.
Ç^°°feKJ\x\>Ç

Démonstration. Notons que la limite figurant au membre de gauche de (2.1) est

toujours bien définie puisque la quantité en cause est décroissante en £.
Considérons une partie bornée K de L2(R) vérifiant (2.1). Alors la suite

X :={? :feK}
vérifie trivialement (i) et (iii). De plus, d'après la formule de Parseval, nous avons,

pour tout £ > 0,

\\*y? -?\\2 f sin(xy/2)2|/(x)|2 dx
Jr

=$471 f |/(x)|2dx + 7T(^)2||/||2.
J\xM

Ainsi la relation (ii) est également satisfaite pour K ce qui implique la

précompacité de K donc de K par isométrie.

Réciproquement, si K, et donc K est précompacte, la condition (2.1) résulte

de l'application de la condition (iii) à K et K



Sur le principe d'incertitude pour les familles orthonormales de L2(R) 289

Théorème 2.2 (Shapiro, 1991). Soit {gn}fLi une suite orthonormale de L2(W).

Alors l'une au moins des fonctions x h> sup„ |gn(x)| et t h» sup„ |gn(t)l n'est

pas dans L2(M).

Démonstration. En vertu de l'orthogonalité de ses éléments, la suite {gn}fLi ne

contient aucune sous-suite convergente. Elle n'est donc pas précompacte. D'après
le Théorème 2.1, il s'ensuit que

Le résultat suivant permet d'exhiber une base orthonormale construite selon le

procédé (1.4) et qui est à la fois à décroissance exponentielle tout en satisfaisant

la condition (1.2).

Théorème 3.1. Soit F la fonction de C1 (R, |0, 1 [) définie par

Pour ne Z, on définit la fonction gn : R —> C par (1.4) pour ce choix de F,
soit

3. Étude d'un cas de décroissance exponentielle

(3.1)

gn(x) := \ ^e2*inFW &~\x\/2 (x 6

Alors on a

(3.2)

Démonstration. Posons

Un calcul standard permet d'écrire

Tn(t) iV2{/_„(-0 + fn(t)} (t e M).

Introduisons à présent les fonctions
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Nous obtenons après intégration par parties

/•OO

f„(t) \ J <&n,t(x) e-x/2 dx.

La majoration annoncée découle donc immédiatement du Lemme 3.3 infra.

Pour la commodité du lecteur, nous rappelons ci-dessous certaines estimations

classiques d'intégrales oscillantes — voir, par exemple [Ten, ths. 1.6.2 et 1.6.3],

Lemme 3.2. Soient a, b des nombres réels tels que a < b, et f 6 Cl]a,b[.

(i) Si f est monotone et de signe constant sur ]a,b[ et si

m := mïa<t<b \f'(t)\ > 0, alors f-
Ja

(3.3) s2jiif(t) dt
TT m

(ii) Si f e C2]a,b[, si f" est de signe constant sur ]a.b[ et si

r := mfa<t<b \f"{t)\ > 0, alors

t'b

(3.4)

Lemme 3.3. Nous avons

fJa
,2mm dt

/nr

sup |$„^(x)| « 1 /Vt (f 3ï 1).
neZ,x^0

Démonstration. Nous avons <p„)t e C2(l+) et

Vn,t (") ~nn e~v +t, <p'f t (v) nn e~v

Comme <p'n
t est monotone, il résulte de (3.3) que, si | — nne~v + t\ > t/2 sur

l'intervalle ]a,b[, on a

L
b 9

Ttt

alors que, si | — nne, v + t\ ^ t/2 pour v e]a,b[, on a

\<p%t(v)\ — \njte~v\ ^ t — tjl i/2 sur le même intervalle, et donc, par (3.4),

fJa

JVnAv) du <
yjnt/2

On conclut en observant que, du fait de la monotonicité de v h> e~~v, l'intervalle
[0,x] est la réunion d'au plus trois intervalles relevant de l'une ou l'autre des

catégories précédentes.
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4. Décroissance unilatérale arbitraire

Nous nous proposons ici de généraliser le Théorème 3.1 en établissant,
essentiellement par la même méthode, l'existence d'une base orthonormale

dominée, à une constante multiplicative près, par une fonction arbitraire de L2(R)
et satisfaisant cependant (3.2).

Théorème 4.1. Soit G une fonction de L2{M) telle que la borne inférieure de |G|

sur tout compact de R soit non nulle. Il existe une bijection continue croissante

F : R —^]0, 1[, de classe C1 par morceaux, telle que la base orthonormale

{gninez définie presque partout par (1.4) satisfasse

(4.1) sup \gn(x)\ «; G(x) (x e R)
ïi gZ

et

(4.2) sup | (0| «;
1

(t e R).
neZ y 1 + |t|

Démonstration. Posons

Xm min inf |G(x)|, e"|m| (me Z), L := V A2

m&Z

Désignant par w la fonction continue définie par

w(x) min(l,x+)2,

nous choisissons

F(x) ~ Xmw(x ~ m) O e R)-
meZ

Ainsi, F est une bijection strictement croissante de R sur ]0,1[, de classe C2

sur R^Z. La suite {gn}nez définie par

(4.3) gn(x) :=
\e2xinFW Jpfx) (xeR-
10 (x e Z),

est clairement une base orthonormale de L2(R). De plus, pour m, n e

m < x < m + 1, on a

|g„(x)| $ VF'(x) \my/2(x - m)/L «; Xm « G(x),

donc la condition (4.1) est bien satisfaite.
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Il reste à estimer (t). Posant pm := A2JL, am := J2k<mPk (me Z),
nous pouvons écrire

gn(t) [ e^inFM-ix' /^)dxJR

çm+l
(4.4) y/2 e2innam+i{2xnPm(.X-m)l-tx}

meZ

>/2 V Äe2inna'»-imt [ V^du,
me

où l'on a posé

<Pm,n(t, v) := 2nnpmv2 - vt.

On a en particulier

lin (Ol §V2 ^ < OO'

meZ

de sorte que nous pouvons nous limiter à établir (4.2) pour |t| > 1.

D'après la seconde formule de la moyenne, pour tous entiers m, n e Z, il
existe un nombre réel £ W e [0,1] tel que

J e'<Pm,n(t,v) y^du «C $m,„(?,£) := J ei'Pm-"{t'v) dv.

On a

V>'m,n(v) tonpmV - t, <Pm,n(v) ^npm (0 ^ V ^ 1).

Par le Lemme 3.2, cela implique que

1/t (|f| > %n\n\pm),

,1/Vl"lPm (|f| ^ S7T\n\pm).

En reportant dans (4.4), il s'ensuit que

f) «

— 1 V- 1 1 V-«»W«m+ E -Trrfr « T7T + E
1 \\n\Pm ^

1

l'I l'i ,èt/wV l'i -M

5. Étude d'un cas de décroissance polynomiale

Le résultat suivant fournit, pour une fonction F naturelle, l'ordre de grandeur
exact de la décroissance des transformées de Fourier obtenues par le procédé (1.4).
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Théorème 5.1. Soit ne Z et gn : R -> C la fonction définie par (1.4) pour le

choix
arctan x1 fx du

F(x) ~ / 2 \ +
n J-oo 1 + v2

Alors, uniformément pour ne Z, on a

s"(" <<:
(TTW75 ('

De plus, on a

- _ (—i)"r(i/3) î ^+ °\JTx) (" " 1}-

Démonstration. Nous pouvons pleinement supposer t >- 1.

Posons (pt(x) := 2n arctan x — tx. Nous avons

Tn (0 ~J- r ZiMX) **
X J—oo •%/1 ~j- X2

où l'intégrale est semi-convergente. La fonction (pt est impaire et indéfiniment
dérivable sur M. On a

// ^
2n «/x -4«x x

3x2 — 1

v' ] TTt?-'' p'w (iTi¥' w= (î+W
Notant

(5.1) ®t(x):= f ei<PtMdv,
J0

nous obtenons après intégration par parties

— 2(—1)" [°° xVteQtix) A(5-2) gn (t) —t= / ——^u^dx.
J 0TT Jo (1 + X2)3/2

Soit c une constante arbitraire de ]0, i[. Lorsque > 2(1 + c)n, nous avons

inf |<Pj(x)| > ct/(l + c).
x>0

Il résulte alors du Lemme 3.2(i) que supx>0 <ï>t(x) <?C \/t et donc

gï (t) « 1/L

Nous pouvons dorénavant supposer n ^ 1.

Lorsque t < 2(1— c)n, posons xo : ^2n/{\ + c)t — 1, xi := ^2n/{\ — c)t.
Nous avons encore 4>r(x) «; \/t lorsque x ^ xo et 4fi(x) - <fi,(xi) < 1/t
lorsque x > x\. La contribution de 1+ \ / à l'intégrale (5.2) est donc \/1
Lorsque x e I, nous pouvons utiliser l'estimation
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1 1 + x2
$iW « t Jnx

obtenue en scindant l'intégrale (5.1) à v */c et en utilisant, comme indiqué
au Lemme 3.2, la minoration (p't{y) ^ c2t pour 0 < v < -J7: et la minoration

<p't'(v) nx/( 1 + x2)2 pour sfc ^ v ^ x. Il s'ensuit que

f x4>r(x) 1 f dx 1 [xï 1

/ TT ^577 dx « - + / —= «-+/—« —.2/ (1 + x2)3/2 t J/ V"* t y n jt
Nous avons ainsi établi que

S») «4=

lorsque t < 2(1 — c)n.
Il reste à examiner le cas 2(1 — c)n ^ ^ 2(1 + c)n. Nous avons

alors <p't(v) =< —ct/{ 1 + c) pour u ^ 2^c. La contribution de l'intervalle
[min(x, x] à l'intégrale (5.1) est donc 4C 1 /r. Nous évaluons la contribution

complémentaire en scindant l'intégrale à v S := min (x, 2^/c/n1^3). Comme

(p't'(v) ï?> Sn pour 8 ^ v ^ 2,/c, nous obtenons

/»min(*,2.^0) i i
/ e^du«,5 + —«—•2o ?1/3

Cela implique, sous la condition considérée,

« jiTä-

D'après (5.2), la même majoration vaut donc pour g7(t). Cela achève la

démonstration de la première partie de l'énoncé.
Nous tournons à présent notre attention vers l'évaluation de la quantité

(5.3) rn (2n) ~ r t2in6{x)
~7====!v rr 2—oo v 1 "f x

où l'on a posé 0(x) := arctanx — x.
Soit J := [—n~L4,n_i/4]. Comme 0'(x) 1 /-Jn pour x e I\/, une

intégration par parties implique immédiatement que la contribution de M \ J à

l'intégrale de (5.3) est <§; 1 /^fn.
Pour évaluer la contribution de 2, nous effectuons un développement limité

de 6(x) à l'ordre 4 au voisinage de l'origine. On a 0(0) 0'(O) 0"(O) 0,
0"'(O) -2 et 0(4>(x) « x, d'où

7îfW/'"3,3{, + 0(^)ld*
1 f &iy

d n( M- 2l/3.32/3„l/3 JRy^Ï3 y + \Qï)-



Sur le principe d'incertitude pour les familles orthonormales de L2(R) 295

Une manipulation classique d'intégration complexe permet de montrer que la

dernière intégrale vaut V3F(l/3). Cela implique bien le résultat annoncé.

6. Limitations

Nous nous proposons ici de décrire une situation assez générale dans laquelle
on a

sup|frT(Ol rr—ri) 0 e r).
V V 1 + \t\)

Théorème 6.1. Soit F e C2(R,]0,1[) une bijection strictement croissante.

Supposons que F' est strictement positive sur R, que F" ne s'annule qu'un
nombre fini de fois et qu'il existe xo > 0, rj > 0, tels que, pour tout

reR \ [—xo,xo], on ait

(6.1) F(x+h) F{x) + hF\x) + \h2F'\x) + Ox(\h\2+11) (\h\ Ü 1).

Alors, il existe une suite {tn}f=i e (R+)N* telle que limn_>ootra oo et

lim sup Vü I gn (tn) I > 0.
n->oo

Remarque. L'hypothèse de régularité de F dans le théorème peut être légèrement
affaiblie. Cela permet de montrer que la conclusion est valide pour la fonction F
définie en (3.1), de sorte que la majoration (3.2) est optimale.

Démonstration. Soient n0 une constante arbitraire, qui sera précisée par la suite,

et n un nombre entier excédant n0
Observons tout d'abord que les conditions

F' eC1(R,R+), lim F\x) 0
|x |—>oo

impliquent que F' est bornée.

Comme la fonction F" change de signe au plus un nombre fini de fois et

comme F' > 0, F'(±oo) 0, il existe x\ > xo tel que xF"(x) < 0 pour
\x\ > x\. Posons m := min^i^j F'(x) > 0. Alors F'(x) < m pour |x| assez

grand, et il existe des nombres réels a e]0,/n[, u < —x\ et v > x\, tels que

xF"(x) <0 (x e R\]w, u[)

F'(]-oo,m]) F'(jv, oo[) =]0, a],

F'(]u,v[) c]a, oo[.

On peut alors définir une bijection strictement décroissante 6 e C1 (]—oo, u], [u, oo[)

par la formule
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F'(0(x)) F'(x).

Soit z ] — oo, u[ un paramètre que nous déterminerons plus loin. Nous posons

tn tn(z) := 2jtnF'(z) (n ^ 1),

de sorte que

(6.2) gnitn) [ dx,
2r

avec <p„(x) := 2:r«{.F(x) -xF'(z)} (x R) et donc

y,(x) 2Ttn{F'{x) — F'(z)} (x R).

Soit e e]0, ~[. Posons 8„ :=ns~1^2 et

En [z-8n,z + 8n] U [0(z) - 8n, 6{z) + 8n\.

II est possible de choisir n0 assez grand pour que l'on ait

£, Cl \ [u,v], |R'(x) — F'(z) I > C(z)8n (jeIs E„)

où nous avons posé C(z) := ^ min{|F"(z)|, \ F"(ß{z))\) et où la seconde relation
découle du théorème des accroissements finis.

Nous pouvons majorer la contribution de \ En à l'intégrale de (6.2) en

notant que l'on a \(p'n(x)| > 2iïC(z)n8n pour tout élément x de cet ensemble.

Pour tout intervalle ]a,b[ de R \ En sur lequel F" ne s'annule pas, on a donc

par (3.3),

<Mx) := J FVn(t) àt « (a x ^ b)

d'où

çb çb
/ jF'{x)àx / jF'(x) d<D(x)

Ja Ja
rb F"(x)- / 3>(x) ±1- dx

Ja 2 y/P'(x)

„ i r» \F"(x)\
nxl1+E +nWja y X

/FW) 1

« 7X +
^ 1/2+e y^\/1-\-s

yyfFW-yfFW «
1

jj l/2-\-s

Comme F" ne possède qu'un nombre fini de changements de signe, il s'ensuit

que la contribution du domaine R ^ En à l'intégrale g~n (/„) est <<C n~l!2~e.
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Pour reR, posons

{' 8n

In(x) := ei(p"(x+h) jF'(x + h)dh.
J-Sn

Il résulte de ce qui précède que

(6.3) Tn(tn) In(z) + /„(0(z)) + O (^+7) •

Évaluons à présent les deux intégrales de (6.3). D'après (6.1), nous pouvons
écrire

<pn(z + h) 2nn{F(z + h) — (z + h)F'(z)}
2nn{F(z) + hF'(z) + \h2F"(z) + 0(\h\2+11) - (z + h)F'(z)}
(pn (z) + Jtnh2 F"(z) + 0(n\h\2+v).

Comme F'(z + h) — F'(z) <SC h pour \h\ ^ 8n, il s'ensuit que, sous l'hypothèse
supplémentaire 0 < e ^ 77/(4 + 2rj), qui garantit que nS2+ri <+ 1, nous pouvons
écrire

ß

In(z) f "
ëv^z+h) UF'{z) + 0(h)} dh

J-Sn

/P(?)ei<0"(z) [ "
é"nh2F"(z) {1 + 0(n^+')}d/i + 0(S2)

JSn
f^rt //

2/PÖÖ e'>"(z) / é*nh F (z) dh + 0(n82+1> + 82).
J0

Imposons à présent la condition 0 < s < 77/(8 + 2/7), de sorte que le dernier terme
d'erreur est <£ n~1^2~£. En effectuant le changement de variable t jtnh2F"(z)
dans l'intégrale, nous obtenons

n(v\„2e

I(z)= F'(Z) e'*« P ê>?L + o(^-\
y 7xnF"(z) J0 */t \n}!2+eJ

/
— ^ J<Pn{z) prit p'^/4 \Ç)( \ ^

~innF"(z)e +U{ni/2+e)

~ ' '1 ' 7F+)
^ _rip,!(z)+î7r/4

De même, nous obtenons à l'aide du changement de variable t —nnh2F"(9(z)),

/»(0(z)) - {i + 0(—)}
^ e'+/i(ö(z))—ijr/4
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En reportant dans (6.3), nous obtenons donc que, posant

[ ei<Pn(.z)+ix/4 J<pn (0(z))-ijr/4 \

Kn(z) := yfF^)\ —. +

nous avons établi, pour tout z e] — oo,w[, la formule asymptotique

K„(z) + 0(l/ne) / ^ ^gn (tn) -/= (n 5; 1).
s/n

Si l'on avait lim„^oo fC, (z) 0, alors on aurait d'une part F"(z) —F"(ô(z))
et d'autre part

<Pn(z)~ <Pn (ö(z)) -> \tx (mod 2n),

soit encore, en notant ||x|| la distance du nombre réel x à l'ensemble des entiers

relatifs,
Um In{F(z) - F(0(zj) - {z - d(z)}F'(z)) - ±|| =0,

ce qui conduit à une contradiction en considérant par exemple deux grands entiers

consécutifs.

Ainsi Kn{z) ne tend pas vers 0 lorsque n tend vers l'infini. Cela fournit la

conclusion requise.

7. Une famille orthonormale presque optimale

Considérons une fonction à croissance lente L, à valeurs dans [l,oo[ et telle

que, pour tout c > 0, x i-> xc/L(x) soit croissante sur M+, et x i-> l/{xcL(x)}
soit décroissante sur R+. Supposons de plus que n(x) := \/{^fxL(x)} ne soit pas
dans L2(R). Les fonctions L(x) max(l, loglogx) et L(x) := max(l, -/logx),
par exemple, satisfont ces hypothèses.

Il existe alors une suite {À«}^ d'éléments de [l,oo[ telle que la suite de

fonctions
n Xn,X„+i[(.x)

gn(x) 7=77 (n =; 1)
VxL(x)

soit une famille orthonormale de L2(R).
De plus

sup|g„(x)| < w(x) (x > 0).
n

Nous avons
f^n+ l p~>xt

dx
fXn+ l

' n(j) /
JXn y/xL{x)

et <L„(x,t) := eTiyt dy <5C x/(l + xt) (x > An, t > 0). Cela impliquerx

immédiatement
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gn(t)<Ç.\/t (t ^ 1).

Lorsque 0 < t < 1, une intégration par parties permet d'écrire

rLi+i
gn(t) $«(A„+l)w(A„+i) - / <&n(x,t)u\x) dx

J Xn

L[Xn+l dx 1

« ~7\ —TTTt 7 + / «(1 + iA„+i)L(A„+i) Jxn yfx{\ + tx)L(x) VtL(l/t)
Ainsi, nous avons construit une famille orthonormale de L2(R) vérifiant

i i i^i w(l/x)
sup |g„(x)| + sup | g n{x)\ < u(x) H (x > 0).

n n X

Cependant, il ne s'agit pas d'une base et la majoration n'est pas de carré intégrable
au voisinage de l'origine.
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