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The derived Maurer—Cartan locus

Ezra GETZLER

Abstract. The derived Maurer—Cartan locus is a functor MC® from differential graded Lie
algebras to cosimplicial schemes. If L is a differential graded Lie algebra, let L4 be the
truncation of L in positive degrees i > 0. We prove that the differential graded algebra
of functions on the cosimplicial scheme MC®(L) is quasi-isomorphic to the Chevalley—
Eilenberg complex of L .

Mathematics Subject Classification (2010). Primary: 14B20, 18G55.
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1. Introduction

Derived algebraic geometry is a non-linear analogue of homological algebra.
Just as homological algebra studies modules M through projective resolutions

.= Py - P — Py — M — 0,

derived algebraic geometry studies algebraic schemes through resolutions by
derived schemes. In this paper, we will only concern ourselves with affine derived
schemes.

Different frameworks may be employed in the study of derived schemes in
characteristic zero: they may be represented as differential graded schemes or as
cosimplicial schemes. The former approach is due to Tate [Tat] in the affine case;
its globalization is due to Ciocan—Fontanine and Kapranov [CK]. The second
approach is largely due to Quillen [Quil].

If A* is a differential graded algebra, we denote by A* its underlying graded
algebra. In this paper, we only consider differential graded commutative algebras
A* such that A* =0 for i > 0. If E* is a vector space concentrated in negative
degrees, let Sym E be the free graded commutative algebra generated by E*:
this is a polynomial algebra in generators in negative even degrees tensored with
an exterior algebra in generators in negative odd degrees.
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An affine differential graded scheme X over a field K of characteristic zero
is characterized by its ring of functions O(X), which is a differential graded
commutative algebra over K, with differential d : O*(X) — O**t1(X), satisfying
the following conditions:

(a) O'(X) =0 in positive degree i > 0, and there is a regular affine variety X
such: that @%(X) 2 O(X);

(b) there is a graded vector bundle
E*=E'®FE’®...
over X, and an isomorphism of graded commutative algebras
O*(X)* = I'(X,Sym E)

over O(X).

The condition that the underlying variety X be regular is not usually taken to
be part of the definition: Ciocan—Fontanine and Kapranov call differential graded
schemes satisfying this additional condition differential graded manifolds. But this
condition will be satisfied in all cases of interest. (In the language of homotopical
algebra, it is a condition of fibrancy: it is analogous to restricting attention to
projective resolutions in homological algebra.)

The classical locus 7°(X) C X of a derived scheme is the vanishing locus
of the sheaf of ideals

im(d: 071 (X)) — 0°(X)),
or equivalently, the spectrum of the quotient ring
H%0O*(X),d) = coker(d : 071(x) - 0°()).

In the special case that the cohomology of O(X) is concentrated in degree O,
the differential graded scheme X should be thought of as a resolution of the
vanishing locus 7°(X), in the same way as a projective resolution resolves a
module.

Any regular affine scheme is a differential graded affine scheme, but there
are many more examples. Tate proved in [Tat] that given any finitely generated
Noetherian commutative algebra R over a field K of characteristic 0, there is
a differential graded commutative ring R of the above type such that R¥ is a
finitely generated free graded commutative algebra and

i R i=0,
H'(R) =
0, i<0.
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In effect, R is the ring of functions on an affine differential graded scheme
X with 7%(X) = Spec(R). Tate also proved that this affine differential graded
scheme is essentially unique, in the sense that given any two differential graded
algebras Ry and R, with the above properties, there is a morphism of differential
graded algebras from R to R; such that the following diagram commutes:

0\
/

1

R

D — —— &

Let L* be a differential graded Lie algebra. This means that L* is a cochain
complex, with differential §: L* — L**!, with a bilinear bracket

[-,—]: L} x LY — L'/,
which is graded symmetric,
e,y ==(=1"[y,x], xel’, yel’,
satisfies the graded Jacobi identity,
[x,[.2]] =[x, 0] 2] + 1) [y, [x.2]], xel’, yell, zeL¥,
and the Leibniz identity,
8[x,y] = [6x,y] + (=1)'[x,8y], xelL', yelL’.

The differential graded Lie algebra is of finite type if dim L’ < oo for all i, and
vanishes for i < 0.
The function

F(u) = 8u + 3w, ul

from L' to L? is called the curvature. It satisfies the Bianchi identity

(1.1) 8F(u) + [, F(w)] = 0.

The Maurer—Cartan locus MC(L) C L' of L* is the vanishing locus of the
curvature F(u) = 0.

There is a variant of the Maurer—Cartan locus, called the Deligne groupoid,
which takes into account the component L° of the differential graded Lie algebra
in degree 0. The Lie algebra L° acts on L! by vector fields X¢, & € L%, given
by the formula



264 E. GETZLER

Xe(p) = =66 — [u,£], pell.

Let G° be the universal algebraic group with Lie algebra L° (so that all finite-
dimensional representations of L° come from a representation of G°), and
suppose that the above action of L° exponentiates to an action of G® on L!: for
example, this will be the case when the differential §: L° — L! vanishes. Then
this action preserved the Maurer—Cartan locus MC(L): the groupoid associated
to the action of G° on MC(L) is called the Deligne groupoid of the differential
graded Lie algebra L*. Locally, most, if not all, deformation problems in algebraic
geometry may be represented as Deligne groupoids.

Example 1.1. Let R be a commutative ring, and let A* be a differential graded
algebra defined over R. The Hochschild complex B*(R, A) is the bigraded abelian

group
B/*(R, A) = Hom(R®/, A%)

with differentials o : B/** — B/**1 and §: B/* — B/*T1* given by the formulas

J
{de)(ri:sis rit1) =ric(ra,....rjy1) + Z(—l)’c(rl, s PETEp o oo s ML)
i=1
and (8c)(r1,...,rj) = 6(c(ry,...,r;)). Furthermore, B(R, A) is a graded Lie
algebra, with bracket

i
[exs@alCFes s vo s By i) = (12010015 w00 0 P Y055 405 w5 6 o B gt )

= ()N HRIUARINERL 6o (e ) S0 bty o 2 st

where ¢ € B/t%1 and ¢, € B/2:k2

Special cases of this construction give differential graded Lie algebras with
applications to deformation theory. For example, let M be a finite-dimensional
vector space and let n be a natural number, and consider the graded algebra

End(M), k=0,
A*¥ = {Hom(R®", M), k =1,
0, otherwise.

The product on A* is given by the product on End(M), and the natural pairing
End(M) ® Hom(R®", M) — Hom(R®", M), and otherwise it vanishes. The
differential on A* is zero. A Maurer—Cartan element of B(R, A) is a pair (p, f),
where p is an action of R on M, and f: R®" — M is a morphism of R-
modules. The Deligne groupoid is given by the natural action of the semisimple
algebraic group GL(M) on MC(B(R, A)), which has the effect of conjugating
p, and composing with f.
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The Quotr scheme of projective geometry is obtained by an analogue of this
construction: one takes a finite dimensional truncation R of the homogenous
ring of polynomials C[xg,...,xy], a finite dimensional truncation M of a
homogenous C|[xo,...,xn]|-module, and forms the Lie subalgebra Bo(R,A) C

B(R, A) consisting of elements of zero total homogeneity. For further details,
see [CK].

Example 1.2. Our second example is the Harrison complex of a vector space R.
Given natural numbers p and ¢, let III(p,q) be the set of partitions of
{0,..., p+q—1} into disjoint subsets / = (i; <--- <ip) and J = (j1 <:-- < jg).
Harrison cochains are multilinear maps from R to itself which vanish on shuffles:
CHarr* (R, R) is the set of ¢ € Hom(R®+1 R) such that for all 0 < p <k, we
have

Z (=D e(ry iy T ,) = 0.
(I’J)Em(p!k_p)

This is a graded Lie algebra with respect to the Gerstenhaber bracket: if
c1 € CHarr*! (R,R) and ¢, € CHarr*2 (R, R), the bracket equals

ki
ik
e1.cal(ro. - - Tk k) = D (=1 F2c1(ro, .. ca(rin e Tidey)s - Tk k)
i=0
ko
- Z(—l)k1k2+lk102(l‘0, eews C (i‘i, 5 @ 5 r,-+kl), ¥ &0 rk1+k2).
=0

The Maurer—Cartan locus MC(CHarr(R, R)) consists of all bilinear maps pu €
CHarr' (R, R) such that [u,pu] = 0. This is the space of all commutative
associative products on R.

The Lie algebra CHarr®(R, R) may be identified with End(R), which is a
semisimple Lie algebra with associated universal algebraic group GL(R). This
group acts on the graded Lie algebra CHarr(R, R) by the formula

(8- O)ro.- i) = g(e(g7 (o). g7 ().

Thus, the Deligne groupoid of CHarr*(R, R) is the space of commutative
associative products on R up to conjugation.

Example 1.3. As a final example, we sketch an application of this formalism
in the study of holomorphic vector bundles. This example lies outside algebraic
geometry, and requires the use of Sobolev spaces to make any sense of it.
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Given a complex manifold X and a holomorphic vector bundle £ on X,
the Dolbeault complex A%*(X,End(E)) is a differential graded Lie algebra, with
differential . The curvature of an element e A% (X,End(E)) is the obstruction
in A%2(X,End(E)) to the first-order differential operator & + ad(u) inducing a
holomorphic structure on E . Thus, the Maurer—Cartan locus of A%*(X,End(E))
is the space of holomorphic structures (or Cauchy-Riemann operators) on E.

The graded Lie algebra A%%(X,End(E)) is the space of sections of the
endomorphism bundle End(E). The associated group is the gauge group of FE,
which is the space of sections of the smooth bundle of Lie groups Aut(G), and
the Deligne groupoid models the stack of holomorphic structures on E up to
gauge equivalence.

The differential graded Maurer—Cartan locus MC(L) of a differential graded
Lie algebra L* of finite type is the affine differential graded scheme with
underlying scheme the affine space L', and with the graded algebra of functions

o(Mme(L))F = Sym (Lo [11Y).

Here, L7 is the truncation of L in positive degrees:

L L, ix1,
® 0, i<l,

and L4 [1] denotes the shift of the cochain complex L, down in degree by 1.
This graded algebra may be identified with the graded vector space of Chevalley—
Eilenberg cochains of the differential graded Lie algebra L7 . The differential d
on O(MC(L)) is the differential of the Chevalley-Eilenberg complex: it is the
sum of the adjoints of §, which maps (L‘*t!)Y to (L)Y, and of [—,—], which
maps (L*)Y to

k—1
@ (Li)v ® (Lk—i)\/-
i=l1

The image of the differential d in O°(MC(L)) is the ideal generated by the
curvature F(x). This proves the following result.

Proposition 1.4. The classical locus w°(MC(L)) of the differential graded scheme
MC(L) is the Maurer—Cartan locus MC(L).

There is also a differential graded analogue of the Deligne groupoid. For
simplicity, we consider only the case where the differential §: L% — L! vanishes.
The universal algebraic group G° with Lie algebra L° acts on the differential
graded Lie algebra L, and hence on the derived Maurer—Cartan locus MC(L).
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The groupoid in differential graded schemes associated to this action is the
derived Deligne groupoid of L. For example, the derived Deligne groupoid of
the differential graded Lie algebra Bg(R, A) considered by Ciocan—Fontanine
and Kapranov gives rise to the derived Quot scheme, while the derived Deligne
groupoid of the graded Lie algebra CHarr(R, R) leads to the derived stack of
commutative associative products on R.

Quillen [Quil] introduced cosimplicial schemes as an alternate foundation for
the theory of derived geometry: unlike differential graded schemes, they give
the correct model for derived schemes even in positive characteristic (though in
this paper, we will only consider cosimplicial schemes in characteristic zero). A
cosimplicial scheme X°*® is a functor from the category A of nonempty finite
totally ordered sets to the category of schemes. For n > 0, denote the object

0<---<n

of A by [n]: the functor X* takes the value X" at [n].

A cosimplicial scheme X* is the spectrum of a simplicial commutative ring.
Quillen proved that in characteristic zero, simplicial commutative algebras and
differential graded commutative algebras have equivalent homotopy theory, in
the following sense: the normalization functor N, from simplicial vector spaces
to chain complexes induces a functor from simplicial commutative algebras to
differential graded commutative algebras, also denoted N., and this functor
induces an equivalence of homotopy categories. (In fact, N, is a right Quillen
equivalence with respect to the projective closed model structures on these
categories; cf. [Qui2, Section 4].) We review the construction of the functor
N, in Sections 2 and 3.

In the category A, we have the coface maps

di:[n—11—1[n], 0<i<n,
defined by

| - ja j<l:
d’(1)={. .
S+l j=i

and the codegeneracy maps
siin+1]—>1[n], 0<i<n,
defined by

P s Jd =1,
S‘(J)={. .
.]_lv .]Zl
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If X. is a cosimplicial object, we denote the induced morphisms d*: X"~! — X7

and s': X"*1 — X" by the same symbol. If X, is a simplicial object, we denote

the face and degeneracy morphisms by 9;: X* — X"~ ! and o;: X" — X"+,
'The maximal augmentation of a cosimplicial scheme is the equalizer

d°
7%(X°®) = eq( X9 —x1 )
dl
Observe the analogy with the definition of the set of components of a simplicial
set X,, which is the coequalizer

o (Xe) = coeq( X % Xo )
01

It is the goal of this paper to make the equivalence between differential graded
schemes and cosimplicial schemes in characteristic zero as explicit as possible for
derived Maurer—Cartan loci. The realization of the derived Maurer—Cartan locus
as a cosimplicial scheme that we propose is new. This realization may also be
used in other settings, for example when afine schemes are replaced by Banach
analytic spaces: it has the advantage over the differential graded Maurer—Cartan
locus that it does not require making sense of the Chevalley—Eilenberg complex
in the setting of differential graded Banach Lie algebras.

In order to realize the derived Maurer—Cartan locus as a cosimplicial scheme,
we introduce a certain cosimplicial differential graded commutative algebra A°®.
As a graded algebra, A" is the exterior algebra generated by elements {eg,...,en}
in degree —1: the differential on A" is defined on the generators e; by de; = 1.
A morphism f: [m] — [n] of A induces a homomorphism f: A™ — A"
of differential graded commutative algebras by its action on the generators:
flei) = erqy.

The tensor product L* ® A" of a differential graded Lie algera L* with the
differential graded commutative algebra A" is again a differential graded Lie
algebra, with bracket

[X1 ® a1, X2 ® aa] = (—1)21 [x1, x5] ® g0z,

where x; € L/, x;, € L2, oy € (A")*1, and a5 € (A™)*2.

Definition 1.5. The derived Maurer—Cartan locus MC®(L) of a differential graded
Lie algebra L is the cosimplicial scheme

MC" (L) = MC(L ® A™).

We may now state our main result.
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Theorem 1.6. The normalization N«(O(MC®(L))) of the simplicial commutative
algebra O(MC®(L)) of functions on the cosimplicial scheme MC®(L) is a
differential graded commutative algebra concentrated in nonpositive degrees. There
is a natural homomorphism of differential graded commutative algebras

®: O(MC(L)) — N-.(0(MC*(1))),
which is a quasi-isomorphism.

Thus, the two realizations of the derived Maurer—Cartan locus of L* are
equivalent.

In Section 2 of this paper, we review the Dold—Kan correspondence between
simplicial abelian groups and connective chain complexes.

In Section 3, we review Eilenberg and MacLane’s formulation of the
Eilenberg—Zilber theorem, in particular, the formulas for the Alexander—Whitney
and shuffle maps. We show that for abelian differential graded Lie algebras L*,
the derived Maurer—Cartan locus MC®(L) may be identified with the cosimplicial
vector space K*(L4[l]) associated to the coconnective cochain complex L7 [1].
In this sense, MC*(L) is a nonlinear generalization of the functor K*® realizing
the equivalence of Dold and Kan between the categories of coconnective cochain
complexes and cosimplicial vector spaces.

A key idea in the proof of Theorem 1.6 is the observation that the derived
Maurer—Cartan locus is a grouplike cosimplicial scheme, in the sense of Bousfield
and Kan [BK]: although MC®*(L) is not actually a cosimplicial group scheme
unless L* is abelian, it is close to being so in a certain precise sense, as we
explain in Section 4.

In particular, the underlying graded commutative algebra N, (O(MC*® (L))¥ of
the differential graded commutative algebra N,(O(MC®*(L))) only depends on the
graded vector space L¥ underlying L*. We also prove that N,(O(MC®(L)))*
is a free graded commutative algebra: the proof uses a result of Milnor and
Moore [MM, Theorem 7.5] (which they ascribe to Leray), and a recent important
complement to the Eilenberg—Zilber Theorem due to Severa and Willwacher [SW].

In Section 5, we complete the proof of Theorem 1.6. In Section 6, we state
the generalization of our results for nilpotent L, -algebras.

2. The Dold-Kan correspondence for cosimplicial abelian groups

The normalized chain complex of a simplicial abelian group A, is the graded
abelian group
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n—1
Na(4) = A, / Y im(0i: Auet = An),
i=0

with differential
n

8= (=1)'di: Na(A) > Nu—1(A).
i=0

The chain complex Ni(A) is connective: it vanishes in negative homological, or
positive cohomological, degrees. (We may consider any chain complex Vi to be
a cochain complex V*, by setting V* = V_,.)

For example, the abelian group Ni(ZA") is a free abelian group with
generators

{Xig.ip |0 <dp <+ <ig < n},

where x;,. ;, corresponds to the nondgenerate simplex [k] — [r] with vertices

{io, ... ix} C{0,... n).

The differential d: Ny (ZA”") — Ni_1(ZA") is given by the formula

k
- —1)/ ~
gty = D% 5y
j=0

The right-adjoint of the functor N, is the functor K, from chain complexes to
simplicial abelian groups defined by Eilenberg and Mac Lane [EM2]:

Hom(N«(A). Z.) = Hom (4., K.(2)).

The Yoneda lemma implies that the n-simplices of the simplicial abelian group
K(Z) are given by the formula

(2.1) Kn(Z) = Hom (N (ZA"), Z.).

Dold [Dol] and Kan [Kan] proved that the adjoint pair of functors N -4 K yields
an adjoint equivalence between the categories of simplicial abelian groups and
connective chain complexes. Dold and Puppe [DP] extended this equivalence to
arbitrary abelian categories, with the functors N. and K, being given by the
same formulas as in the category of abelian groups.

The opposite category to the category of abelian groups is an abelian category:
the corresponding categories of connective chain complexes and simplicial
objects are the categories of coconnective chocain complexes (cochain complexes
vanishing in negative degree) and cosimplicial abelian groups. Let us make the
adjoint equivalence of Dold and Puppe more explicit in this situation.

The normalized cochain complex of a cosimplicial abelian group A* is the
graded abelian group
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n—1
N"(A) = ﬂ ker(s': A" — A",
i=0

with differential
n-+1

D (=1)'d": N"(4) — N"*1(A).

i=0
The functor N* has a left-adjoint K*®, which takes cochain complexes to
cosimplicial abelian groups. In fact, since it is an equivalence, it is also the
right-adjoint of N*. Let A, be the cosimplicial set corepresented by the object
[n] € A: we have

(An)* = A(In), [K]).

Form the cosimplicial abelian group ZAj . If Z* is a cosimplicial abelian group,
Yoneda’s Lemma implies that

Z" ~ Hom(ZA,, Z*).
Thus, parallel to the case of simplicial abelian groups (2.1), we see that

(2.2) K"(Z) =~ Hom (ZA;, K*(Z))

=~ Hom (N*(ZAH), Z*).
Unlike its cousin N.(ZA"™), the cochain complex N*(ZA,) has not been
discussed in the literature. Let fy,. »,: [n] = [k] be the morphism such that

o () ={no+ -+ -1, n0+ - 40 — 1),

The action of the coface maps is given by

(2.3) @ frouni = Sapuni_10ng.ngs

and the action of the codegeneracy maps by

(2.4) 5" fagunk = Fowmi+nipy.ng-

Denote by [fn,..ni] €N k(ZA,,) the image of f,,.., in the normalized cochain

complex.
The chain complex N.(A) may be represented as a colimit.

Lemma 2.1 (Dold [Dol], Lemma 1.11). 7The quotient map from A, to N,(A)
induces a natural isomorphism of abelian groups

Na(A) = () ker(3;: An > An_1).

i=1
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Under this isomorphism, the differential 0 corresponds to the operator
n n—1
do: m ker(d;: Ap — Ap—1) — m ker(d; : An—1 = An—2).

i=1 i=1

In the opposite category to the category of abelian groups, this lemma yields
the following corollary.

Corollary 2.2. The abelian group N¥(ZA,) is a free abelian group, generated
by the elements [ fn,..n, ], where no+---4+nr =n+1 and n; >0 when i <n.
The differential is given by the formula

d[fnonk] = [fno...nk()]-

3. The Eilenberg-Zilber theorem

Let A.. be a bisimplicial abelian group: a contravariant functor from the
category A x A to the category of abelian groups. Denote the maps defining the
first simplicial structure by 8( ) and a( ), and those defining the second simplicial
structure by 8( ) and 0'(2)

By the Dold-Kan theorem, the categories of bisimplicial abelian groups and
first-quadrant double complexes X.. are equivalent. This equivalence is realized
by the naturally equivalent functors N,£2) N,ﬁl) e N,EI)N,,EZ) . Denote either of these
functors by Nyx.

The double complex Nyx(A) has two commuting differentials d(!) and 0@,
of bidegree (1,0) and (0, 1) respectively. The fotal chain complex of this double

complex is the chain complex
Toty (Nux(A)) = €D Npg(4),
ptq=k
with differential 9 = 3V + (—=1)79@ .
The diagonal of a bisimplicial abelian group is the simplicial abelian group
Diag,(4) = A

The Eilenberg—Zilber theorem [EZ] compares the chain complex Tot (N (A))
to the normalization N.(Diag,(A4)) of the diagonal of A... We will use the
following explicit formulation of the theorem.

Theorem 3.1 (Eilenberg and MacLane [EMZ2], Section 2). There are natural
morphisms of complexes

f: Ni(Diag,(4)) — Tots (Nsx(A))
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and
g: Toty (Nsxx(A4)) — Ny (Diag,(4))

and a natural homotopy
h: N.(Diag,(A)) — N,+1(Diag,(4)),

such that fg is the identity of Tot«(Nu«x(A)), gf + 0h + ho is the identity of
N« (Diag,(A)), and fh and hg vanish. In particular, the homology groups of
the complexes Tot«(N««(A)) and Ny(Diag,(A)) are isomorphic.

The explicit formulas for the natural transformations f and g are as follows.
The map f from Ng(Diag,(A)) to Toty(N«x(A)) is the Alexander—Whitney map

k
(3.1) fo="3 850 .. B0 .. 82,
p=0
The component g,,; of g mapping A,; to Npy4(Diag,(A4)) is given by the
formula (Eilenberg and Mac Lane [EM1], Section 5)

(3.2) gpg = Z (_1)Zf=l (ie—t+1) 6](;) B _Uj(ll)gi(;) 3 'Gi(lz)'
{i1<-<ip}{j1<~<Jjg}elll(p,q)

This map is called the shuffle map.

A simplicial coalgebra is a simplicial R-module A, together with simplicial
morphisms c¢: Ae — As ® A., the comultiplication, and &: A, — R, the
augmentation, such that the diagram

A, s Ae ® A,
c c®A
Ae ® As Ae @ Ae ® Ao

commutes (coassociativity), and both (¢ ® A)c and (A ® &)c equal the identity
morphism of A,.

Using the Alexander—Whitney map, we may show that the normalized chain
complex of a simplicial coalgebra over a commutative ring R is a differential
graded coalgebra. Let (A X A).. be the bisimplicial R-module

In particular, Diag,(A X A) =~ A, ® A and

Tot, (Nax (A B A)) 2= Nu(4) ® Nu(A).
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The comultiplication c¢: Ae — Ae ® Ao gives a morphism of complexes
Ni(c): Ni(A) — Ni(Diag,(4 ® 4)).

Composing with the Alexander—Whitney map, we obtain a map
FN«(c): Nu(A) = Niu(A) @ Ni(A).

It is easily checked that this morphism of chain complexes is coassociative, and
has
Nyi(g): Nx(A) > N«(R) = R

as a counit.
A simplicial algebra is a simplicial R-module A. together with simplicial
morphisms m: Ae @ Ae — A., the multiplication, and n: R — A., the unit, such

that the diagram

A.®A.®A.ﬂéA.®A.

A®m m

A. @ A. A

m

commutes (associativity), and both m(n ® A) and (A ® n)m equal the identity
morphism of A,.

Using the shuffle map, we may show that the normalized chain complex of a
simplicial algebra A. over a commutative ring R is a differential graded algebra.
The multiplication m: A, ® Ae — A, gives a morphism of complexes

Ny (m): Ny(Diag,(A R A)) — N«(A).
Composing with the shuffle map, we obtain a morphism
Ni(m)g: Nx(A) @ Ni(A) — Ni(4).
This morphism of chain complexes is associative, and has
Na(m): Na(R) = R — No(A)

as a unit. In fact, more is true: if A. is a simplicial commutative algebra, then
N« (A) is a differential graded commutative algebra.

Parallel constructions in the opposite category to the category of R-modules
shows that the normalized cochain complex N*(A) of a cosimplicial algebra
A® is a differential graded algebra, and that the normalized cochain complex
N*(A) of a cosimplicial (cocommutative) coalgebra A°® is a differential graded
(cocommutative) coalgebra.
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A simplicial bialgebra is a simplicial algebra A, which is at the same time
a simplicial coalgebra, in such a way that the comultiplication c: Ae = Ae ® 4.
and augmentation ¢: A, — R are morphisms of simplicial algebras. The following
result is proved in Appendix A of Severa and Willwacher [SW]: the proof is by an
explicit calculation verifying the required compatibility between the Alexander—
Whitney and shuffle maps.

Proposition 3.2. The normalized chain complex N.(A) of a simplicial (commu-
tative) bialgebra A. is a differential graded (commutative) bialgebra.

If X. is a simplicial set, the simplicial abelian group ZX, is a simplicial
coalgebra, and the Alexander—Whitney map makes N.(ZX), the simplicial chain
complex of X,., into a differential graded coalgebra. On the other hand, if
X*® is a cosimplicial set, the cosimplicial abelian group ZX*® is a cosimplicial
cocommutative coalgebra, and the shuffle map makes N*(ZX) into a differential
graded cocommutative coalgebra. In the following proposition, we analyse the
differential graded coalgebra N*(ZA}).

Proposition 3.3. The dual N*(ZAp)Y of the differential graded coalgebra
N*(ZAy) is isomorphic to the differential graded commutative algebra A".

This duality is induced by the following pairing between the free abelian groups
NYZA,) and (A™)71:

1, i</,

0, i>].

([ﬁ,n—i-l—l], ej) — {

Proof. If ¢: [m] — [n] is a morphism of A, then

@*[fin-i+1] = [firm=ir+1],

where i’ is the cardinality of the set ¢~ 1({0,...,i —1}). It is easily seen that

(@*[fin—i+1], €j) = ([fin—i+1], €o()):

and hence that the pairing between the simplicial abelian group [n] — NY(ZA,)
and the cosimplicial abelian group [n] + (A™)"! is compatible with the
respective actions of the category A. That is, the pairing descends to the colimit
NYZA) @a (A*)7L.

Given a coalgebra A with comultiplication c: 4 > A® A, let

c® = (A®k_2 ®c)...(A®c)c: A — A%k

be the iterated coproduct. Let p be the projection from N*(ZA,)®* to
NYZA,)®* . Let = be the symmetrization operator
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T = —1)*@g: NY(ZA,)®* - NY(ZA,)®*.
> (=D

g€eSy,

The proposition is a consequence of the following formula:

pc(k) [fnonk] — ﬁ([fno,n]+"-+nk] ® [fn0+n1,n2+---+nk] ®...0 [fn0+'"+nk_1,nk])
e N (ZA,)®.

This formula is proved using the explicit formulas (3.2) and (2.4) for the shuffle
product and for the action of the codegeneracies on ZA; . O

4. The derived Maurer—Cartan locus

In the last section, we introduced the simplicial differential graded cocommu-
tative coalgebra [n] — Ni«(Ay), and proved that it was dual to the cosimplicial
differential graded commutative algebra [n] — A"™. As we have seen in (2.2), the
inverse functor to the normalized cochains from cosimplicial abelian groups to
coconnective cochain complexes may be represented in terms of A°®:

K*(Z) =Z%Z ® A*).

Here, Z°%(—) is the abelian group of 0-cocycles in the tensor product of Z*
with the cosimplicial cochain complex A®.

An abelian differential graded Lie algebra is the same thing as a cochain
complex, and its Maurer—Cartan locus may be identified with the space of 1-
cocycles of L*. Thus, in this case, we obtain the identification

MC(L) = K°(L4[1]),

where we recall from the introduction that L[1] is the suspended cochain
complex
Li +1, i > 0,

Lo AT =
il {0, i <0.

Tensoring L* with A", we see that the functor K* may be identified with the
derived Maurer—Cartan locus of abelian differential graded Lie algebras:

MC*(L) = K*(L[1]).

This provides some motivation for our definition of the derived Maurer—Cartan
locus for not necessarily abelian differential graded Lie algebras.

The graded vector space A" decomposes as the direct sum of the ideal egA”
and the image of the coface map d°: A*~! — A™. The monomials in the elements
g =eijy1 —ei, 0<i <n, form a basis over Z of the free abelian group A”.
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Lemma 4.1. There is a natural isomorphism
n
- k+1
MC'"L)y=P B ..o L
k=00<i|<-<ip<n

induced by the projection A" — A"/egA" = im(d®). The element of MG"(L)
corresponding to

n
= E E k+1
g - Eiq oo Eip Xipoips Xij..ip € L s

k=00<iy<--<ip<n

equals & —egF(§).

Proof. An element of L* ® A" of total degree 1 has the form & + egn, where

n
— k42
n= Z Z Eiy o Eig Viroig>  Vipixg €L7T7.

k=00<ij<-<ip<n

Taking the curvature of this element, we obtain the expression

F(& +eqn) = (F(§) + 1) —eo(8n + [, 7).

Along the vanishing locus of the equation F(§)+n = 0, the equation én+[§,7] = 0
holds automatically: it is just the Bianchi identity (1.1) for the curvature. U

In terms of this representation for MC®(L), the codegeneracy morphism
s/ MC"t! (L) — MC"(L) is given by the formula
4.1)

(s7%)i, i, = Xii wdetppiFlaiptl ¥ Xijadi_iigtladptls T2+l =J;
1.1k

Xiy.igipp1+1.ig+1, ig +1< j < ig+1.

When j > 0, the coface morphism d7: MC""!(L) — MC"(L) is given by the
formula

; Xitodvisa1—lode—1, g+ 1<j <ipiq,
(4.2) (A7 x)iyi = 4 e T ’ o
0, Jef{ir+1,.. .., i +1}.

The remaining coface map d® encodes the geometry of the derived Maurer—Cartan
locus: it is given by the formulas

(4‘3) (dox)i1+1...ik+1 = Xiy..ig

and

k
(4.4) (d°X)0ig+1.ig+1 = Z Z (_l)exig...igiig+1...ik — F(&)y...55-

{=1ig<i<ipgy
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In particular, the codegeneracy s°: MC'(L) — MC®(L) is given by the formula
s%(x,y) = x, and the face maps

d® d': MC(L) = L' - MCY(L) =~ L' x L?

are given by the formulas d%x = (x,—F(x)) and d'x = (x,0). Thus, there is
a natural identification of the classical locus 7®(MC®(L)) of the cosimplicial
scheme MC*(L) with the Maurer—Cartan locus MC(L) of the differential graded
Lie algebra L*.

By (4.1) and (4.2), the codegeneracy maps s* of MC®*(L) as well as the coface
maps d', i > 0, are homomorphisms of (abelian) group schemes. Adapting the
terminology of Bousfield and Kan ([BK], Chapter X, Section 4.8), we call such
a cosimplicial scheme grouplike. Grouplike cosimplicial spaces are fibrant (op.
cit. Section 4.6): we now show that an analogous property holds for grouplike
simplicial schemes.

Let X* be a cosimplicial scheme. The matching scheme M"(X) is the
equalizer

Mn(X) = eq( H05i<n Xn_l e 2 H0§i<j<n Xn_2 )

where the two maps in this diagram take (x')p<i<n to (s'x/ )o<i<j<n and
(S]_lxt)05i<j<n'

A cosimplicial scheme X°® is fibrant if for each n > 0, the morphism
X" — M"(X) given by the formula x’ = s’x is smooth. The proof of the
following proposition is modeled on Moore’s proof that simplicial groups are
fibrant.

Proposition 4.2 (cf. [BK], Proposition 4.9). A grouplike cosimplicial scheme is
fibrant.

Proof. In characteristic zero, a morphism of group schemes is smooth if it has
a section. We define morphisms y’: M"(X) — X", 0 <i <n+1, by induction
oni: y=1 and

yi-l-l - yidi ((siyi)_lxi).
It is easily proved, by induction on i, that s/y* = x/ for j < i. The desired
section is y"*t1: M"(X) = X". O

The graded commutative algebra N,(Q(MC®(L)))* is actually a free commu-
tative algebra: there is a graded vector space V, and an isomorphism of graded
commutative algebras

N, (o( MC'(L)))ﬂ ~ Sym V.
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This is a because the multiplicative structure of N.(O(MC®*(L))) does not depend
on the coface maps of MC®(L), but only on its codegeneracies, and thus there
is an isomorphism

: . :
4.5) N.(o(MC*(1)))" = N.(o(Mc (D)),

where LY is the underlying cochain complex of the differential graded Lie algebra
L*. We now apply the following result.

Proposition 4.3. Let W, be a connective chain complex. Then there is a connective
graded vector space Vi and an isomorphism of graded commutative algebras

N (Sym K(W))ﬁ =~ Sym V.

Proof. The proof makes use of the fact that Sym K (W) is a simplicial commutative
bialgebra. Proposition 3.2 implies that N.(Sym K(W))¥ is a graded commutative
bialgebra.

Let W, be the chain complex

There is a natural isomorphism of graded commutative bialgebras
Nu(Sym K(W))* = Sym Wy ® N.(Sym K(WH))*.

Let N.(Sym K(W™)) be the augmentation ideal of N,(Sym K(W ™)), that is,
the chain complex of elements of positive degree, and let

0(Nu(symK(W™)))
=~ N.(Sym KW*) /(N o(Sym KW ) - N Sym K(W™)

be the chain complex of indecomposables.
Theorem 7.5 of Milnor and Moore [MM], which holds over any field of

characteristic zero, states that N,(Sym K(W™))# is a free graded commutative

algebra, generated by any section of the quotient morphism

f

Na(Sym KW H)F > 0 (No(Sym K(W™))) 0

5. Proof of Theorem 1.6

This section is the heart of this paper: we prove that the differential graded
Maurer—Cartan locus MC(L) is equivalent to the derived Maurer—Cartan locus
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MC*®(L). Since both functors only depend on L* , we will assume in this section
that L* = L%, in other words, that Lt vanishes unless i > 1.

The normalization N.(O(MC*(L))) of the simplicial commutative algebra
O(MC® (L)) is the differential graded commutative algebra of functions on an affine
differential graded scheme. If n > 0, there is a natural linear map « > ®(«) from
the vector space (L"T1)V to O(MC"(L)), which takes « € (L"T1)V to the linear
form a(xg..,—1) on MC"(L). (Here, we use the coordinate system of Lemma 4.1.)
The explicit formula (4.2) for the coface maps d': MC" (L)) — MC"(L),
1 <i <n, shows that the function ®(«) lies in

ﬂ ker (8;: O(MC"(L)) - O(MC"™!(L))),

and thus determines an element of N,(O(MC®(L))). The resulting linear map
from @2, (LY to Prry N-n(O(MC*(L))) induces a morphism of graded
commutative algebras

(5.1) ®: O(MC(L)) > N_s (O(MC‘(L))).

Lemma 5.1. The morphism © is compatible with the differentials on the
differential graded algebras O(MC(L)) and N_,(O(MC*(L))).

Proof. The differential d: O"'(MC(L)) — O"(MC(L)) is the sum of differen-
tials d; and d, given by the formulas (d;x)(x) = a(6x) and (drx)(x,y) =
(=D a([x, y]), where x,y € L*.

Using the explicit formula for the codegeneracy map (4.1), we may show that
the product of the linear forms ®(f) and ®(y) associated to the one-cochains
B e (LPTH)Y and y € (L9T1)Y on L* is represented by the following quadratic
polynomial on MC?*4(L):

(@(B)D())(x) = > CDEe= DBy )y (gy)-

I={i;<-<ip}
J={j1<<jq}
I117={0,...,p+qg—1}

The differential
d: N_, (O(MC'(L))) — N_n+1(O(MC'(L)))

equals the pullback by the morphism d°: MC" '(L) — MC"(L). Applied
to ®(a), where o € (L"T1)V, (4.4) gives

dO@)() = —a(ons) — 5 3 (DT o[ x)).
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The first and second terms inside the parentheses correspond to d; and d»
respectively: in the case of d», we use the explicit formula for ®(B)P(y) to
make this identification. ]

Let FIO(MC(L)) be the augmentation ideal of the algebra of Chevalley—
Eilenberg cochains of L* (that is, cochains of negative degree), and let
F1O(MC®(L)) be the augmentation ideal of the simplicial commutative algebra
O(MC®(L)) (that is, polynomials with vanishing constant term). For & > 1, let
FkO(MC(L)) and FKO(MGC*(L)) be the kth powers of F'O(MC(L)), and
F'OMC*(L)), and let F*¥N,(O(MC*(L)) = N«(F¥O(MC*(L))). The morphism
® of (5.1) is compatible with the filtrations on O(MC(L)) and N.(O(MC*(L)),
and the induced morphism

grp ®: grp O(MC(L)) — grp N_*(O(MC’(L)))
may be identified with the morphism
(5.2) &: O(MC(LY)) —> N_. (O(MC'(L”)))
of differential graded commutative algebras. Theorem 1.6 is thus a consequence
of the following lemma.

Lemma 5.2. The morphism (5.2) is a quasi-isomorphism.

Proof. Let Z, be the connective chain complex L[1]V: as a vector space, we
have Z, =~ (L"*')V. The iterated shuffle product ¢®” induces a morphism of
simplicial abelian groups

Kog™: Ko(Z®") - Ko(2)®",

which is a quasi-isomorphism by the Eilenberg—Zilber theorem. This morphism
is equivariant with respect to the action of the symmetric group S,. Taking
invariants, summing over n, and taking normalized chains, we obtain a quasi-
isomorphism of differential graded commutative algebras

Sym Z — N (Sym K.(Z)).
This may be identified with the morphism & of (5.2). Ol

6. Generalization to nilpotent L ., -algebras

The definition of the differential graded scheme MC(L) extends to Loo-
algebras: these are a generalization of differential graded Lie algebras in which
the Jacobi rule is only satisfied up to a hierarchy of higher homotopies.
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An operation [xi,..., x| on a graded vector space L* is graded antisymmetric
if
[X1s ey Xis Xig1sens Xi) + (—l)lxille‘l| [ %y e s e X1y Kige » wn X =0
forall 1 <i<k-1.
An L -algebra is a graded vector space L* with graded antisymmetric
operations a sequence [xi,...,X,] of degree 2—n, n > 0, such that for each n,

n
Y X COTEROD [ x e %] =0

k=1 I={ij<-<ir}
J={j1<+<jn—i}
TuJ={1,...,n}
Here, the sign (—1)® is the sign associated by the Koszul sign convention to
the action of m on the elements x;,...,x, of L*. The 1-bracket x > [x] is a
differential on L*, so an L. -algebra is in particular a cochain complex.
An Lo -algebra L* is nilpotent if it has a decreasing filtration FpL* such
that for each i € Z, Fp L' =0 if k> 0, and for each n > 0,

A P i sy i
[Flell, ey Fkn Ll"] C Fk1+...+kn_|_1LI1 tn—h .

In particular, every differential graded Lie algebra concentrated in degrees > 1
is nilpotent.

Lemma 6.1. Let L* be an Lo -algebra. Its truncation LY is an Lo -algebra,
which is nilpotent if and only if the curvature

(e ¢]

F@ =Y — ]

n=1

is a polynomial map from L' to LZ2.

The Maurer—Cartan locus MC(L) C L' of an Ly, -algebra L* is the vanishing
locus of the Maurer—Cartan equation F(x) = 0. The differential graded Maurer—
Cartan locus MC(L) of L is the affine differential graded scheme with underlying
scheme the affine space L', and with the differential graded algebra of functions

O(MC(L)) = Sym(L+[1]Y).

The differential d on O(MC(L)) is the differential of the generalization of the
Chevalley—Eilenberg complex to L., -algebras: it is the sum of the adjoints of
the n-fold brackets [—,...,—], which maps (L¥)Y to

P weHe..e@n).
i1+-+in=k—n+2

il,...,lnzl



The derived Maurer—Cartan locus 283

Example 6.2. If F: V — W is an arbitrary polynomial which vanishes at 0 € V,
we may form an L -algebra L* with L' =V, L? = W, and all other vector
spaces L’ vanishing. The brackets of L* are the polarizations of the homogeneous
components of the polynomial F: L' — L?. The Maurer—Cartan locus of L* is
the vanishing locus of the polynomial F, and O(MC(L)) is the Koszul complex
of F.

Thus, the differential graded Maurer—Cartan locus for nilpotent L., -algebras
generalizes at the same time the differential graded Maurer—Cartan locus for
differential graded Lie algebras and the Koszul complex for a polynomial map
between finite dimensional vector spaces.

The tensor product L* ® A" of a nilpotent L, -algebra L* with A" is again
a nilpotent L. -algebra, with brackets

[x1 ®a1,...,xn Qo] = (—I)Z">J'k"£f [X1,...,Xn] @1 ...0p

for x; € L* and o; € (A™)% .

Definition 6.3. The derived Maurer—Cartan locus MC®*(L) of a nilpotent L -
algebra is the cosimplicial scheme

MC"(L) = MC(L ® A™).

The statement and proof of Theorem 1.6 extend without difficulty to nilpotent
Lo -algebras. The only twist in the proof is the verification of Lemma 5.1 in this
more general setting, that ® is a morphism of complexes. We leave this task to
the motivated reader.
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