Galois involutions and exceptional buildings

Autor(en): Mühlherr, Bernhard / Weiss, Richard M.
Objekttyp: Article
\section*{Zeitschrift: L'Enseignement Mathématique}

Band (Jahr): 62 (2016)

Heft 1-2

$$
\text { PDF erstellt am: } \quad 29.04 .2024
$$

Persistenter Link: https://doi.org/10.5169/seals-685363

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Galois involutions and exceptional buildings

Bernhard Mühlherr and Richard M. Weiss

Abstract

We apply the theory of descent for buildings to give elementary constructions of the exceptional buildings of type A_{2}, B_{2}, C_{3} and F_{4} as the fixed point building of a Galois involution of a building of type E_{6}, E_{7} or E_{8} or, in one case, a pseudo-split building of type F_{4}.

Mathematics Subject Classification (2010). Primary: 20E42, 51E12, 51 E 24.
Keywords. Building, Moufang polygon, exceptional group, descent group.

1. Introduction

In this paper we apply the theory of descent for buildings introduced in [MPW] to give elementary constructions of the exceptional buildings of type A_{2}, B_{2}, C_{3} and F_{4} as the fixed point buildings of a Galois involution of either a building of type E_{6}, E_{7} or E_{8} or, in one case, a pseudo-split building of type F_{4} (as defined in 15.3). Our main results are 11.21, 12.11, 13.12, 14.11, 15.4 and 17.14.

The notion of a building was introduced by J. Tits in order to give a uniform geometric/combinatorial description of the groups of rational points of an isotropic absolutely simple group. The buildings that arise in this context are spherical. In [Tit2], Tits classified irreducible spherical buildings of rank at least 3 and this classification was extended to the rank 2 case in [TW] under the assumption that the building satisfies the Moufang condition (which is automatic when the rank is at least 3). The classification in the rank 2 case is carried out by studying commutator relations; in [TW, Chapter 40] it is used to give another proof of the classification in rank greater than 2 . The question of existence is settled in [TW, Chapter 32] for the rank 2 case and in [TW, 40.56] for the remaining cases using the geometric ideas introduced by Ronan and Tits in [RT]. This replaced the earlier existence proofs for the exceptional buildings in [Tit2, 5.12 and 10.3] and [TW, 42.6], where existence is proved using the theory of Galois descent in algebraic groups (see 5.6).

The result of this classification is that most spherical buildings satisfying the Moufang condition are the spherical buildings associated with absolutely simple algebraic groups. The exceptions are buildings determined by algebraic data involving infinite dimensional structures, defective quadratic or pseudo-quadratic forms, inseparable field extension and/or the square root of a Frobenius endomorphism. Most notable among these exceptions are the indifferent quadrangles, the Moufang quadrangles of type F_{4} and the Moufang octagons.

The classification results in [Tit2] and [TW] do not reveal the connection between a spherical building and its ambient split building which is the central concern in the theory of Galois descent. In [MPW, Part 3], this shortcoming was remedied with a theory of descent for buildings. This theory gives, in particular, a combinatorial interpretation of the Tits indices which appear in [Tit1]. It applies, moreover, to buildings of arbitrary type. Some central results of this theory are summarized in $\S 6$ below and they are applied to buildings of type E_{6}, E_{7}, E_{8} and F_{4} in subsequent sections.

This paper can thus be seen as a contribution to Tits' larger plan of interpreting the classification of isotropic absolutely simple algebraic group purely in the language of buildings.

The results in this paper provide uniform proofs of [MPW, 34.3-34.9]; see [MPW, 34.12]. These results, in turn, are applied in [MPW, Chapter 36] to the study of exceptional affine buildings. Precursors of the results in this paper can be found in [Mue] and [MM1].

We confine our attention in this paper to those exceptional groups which can be constructed as fixed point buildings of Galois involutions (as defined in 4.15 below). This allows various simplifications in the arguments. In particular, we do not treat the Moufang hexagons (which require the action of a larger Galois group) in this paper. The Moufang octagons can be constructed as fixed point buildings of involutions, but these involutions involve a Tits endomorphism rather than a Galois group; see [dMSW] for more about this case.

All known proper Moufang sets can be described in terms of our theory of descent as fixed point buildings of relative rank 1. The methods used in this paper provide a point of access to these buildings which we are presently pursuing. See, in this context, [CdM] and [MM2].

This paper is organized as follows: In $\S 2-\S 5$, we give background material in the theory of buildings, in §6 we summarize the results about descent we require and in $\S 7$ and $\S 8$ we make some observations about buildings of type A_{n} and D_{n} in terms of linear algebra. The proofs of existence for various forms of buildings of type E_{6}, E_{7} and E_{8} begin then in $\S 9$, where we describe an anisotropic Galois involution of a building of type D_{n}. The existence proofs are carried out in $\S 10-\S 15$ by extending this involution (for certain small values of n)
to involutions of various ambient buildings. In $\S 16$ and $\S 17$, finally, we apply our methods to construct the quadrangles of type F_{4}.

Notation 1.1. We will follow the conventions used in [TW] that $a^{b}=b^{-1} a b$ and $[a, b]=a^{-1} b^{-1} a b$ for all elements a, b in some group and we will compose permutations from left to right. (When we are not composing them, however, we will usually write functions on the left.) If $i<j$ are integers, we denote by $[i, j]$ the interval $\{m \in \mathbb{Z} \mid i \leq m \leq j\}$; we only use this notation when i and j are subscripts.

2. Coxeter groups

Let Π be a Coxeter diagram with vertex set S and let (W, S) be the corresponding Coxeter system. An automorphism of (W, S) is an automorphism of the group W that stabilizes the generating set S. There is a canonical isomorphism from $\operatorname{Aut}(W, S)$ to $\operatorname{Aut}(\Pi)$ and we will think of these two groups as being the same.

Notation 2.1. Let Σ be the graph with vertex set W in which two vertices x and y are joined by an edge labeled with the element s of S whenever $x^{-1} y=s$. Thus each edge of Σ has a unique label in the set S. We call this label the type of the edge. The group W acts on Σ by left multiplication and can, in fact, be identified with the group of type-preserving automorphisms of Σ. See [Weil, 3.10] for the definition of a root of Σ.

Lemma 2.2. The only automorphism of Σ stabilizing every root is the identity.
Proof. If c and d are distinct vertices of Σ, there is a root of Σ containing c but not d (by [Wei1, 3.20]). Thus a non-trivial automorphism of Σ cannot stabilize every root of Σ.

Notation 2.3. Let J be a spherical subset of S (by which we mean that the subgroup $W_{J}:=\langle J\rangle$ is finite) and let w_{J} denote the longest element of the Coxeter group W_{J} with respect to the generating set J. By [Weil, 5.11], the map $s \mapsto w_{J} s w_{J}$ is an automorphism of the subdiagram of Π spanned by the set J. We denote this subdiagram by Π_{J} and this automorphism by op ${ }_{J}$. The map op_{J} is called the opposite map of Π_{J}.

Remark 2.4. The map op_{J} stabilizes every connected component of Π_{J} and acts non-trivially on a given connected component if and only if it is isomorphic to the Coxeter diagram A_{n} for some $n \geq 2$, to D_{n} for some odd $n \geq 5$, to E_{6} or to $I_{2}(n)$ for some odd $n \geq 5$.

Suppose now that (W, S) itself is spherical, equivalently, that the graph Σ is finite.

Notation 2.5. We say that two vertices of Σ are opposite if they are at maximal distance in Σ. Let $\xi(x)=x w_{S}$ for all $x \in W$, where w_{S} is as in 2.3 with $J=S$. Every vertex of Σ has a unique opposite vertex, and the unique vertex opposite a vertex x is precisely $\xi(x)$.

Notation 2.6. Let $\mathrm{op}=\mathrm{op}_{S}$ be as in 2.3. By [Wei1, 5.11], ξ maps edges of type s to edges of type $\operatorname{op}(s)$. The automorphism op is trivial if and only if w_{S} is in the center of W and in this case, ξ is given by left multiplication by w_{S}.

Remark 2.7. The permutation op of $S \subset W$ extends to a unique automorphism π of Σ fixing the vertex 1 . The automorphisms π is simply conjugation by w_{S}. The automorphisms π and ξ commute and their product is left multiplication by w_{S}.

Proposition 2.8. The automorphism ξ defined in 2.5 is the unique automorphism of Σ mapping every root to its opposite.

Proof. By [Weil, 5.1], no root of Σ contains two opposite vertices. In other words, $\xi(\alpha) \subset-\alpha$ for each root α. Since all roots contain the same number of vertices (namely $|W| / 2$), we conclude that ξ maps each root to its opposite. Uniqueness holds by 2.2 .

Remark 2.9. Suppose that (W, S) is the spherical Coxeter system associated with a root system Φ, so S is the set of reflections corresponding to the walls of a unique chamber c of Φ. If op is non-trivial, then all the roots of Φ have the same length. Hence there always exists a unique automorphism of Φ fixing c and inducing the permutation op on S. We can thus think of π and ξ in 2.7 as automorphisms of Φ and it follows from 2.8 that ξ is the unique automorphism of Φ mapping every root of Φ to its negative.

Remark 2.10. Let Φ and ξ be as in 2.9. If Φ is of type D_{n} with $n \geq 4$ even, then by $2.4,2.6$ and $2.9, w_{S}$ is the unique automorphism of Φ mapping every root of Φ to its negative.

3. Buildings

Let (W, S) be a spherical Coxeter system and let Δ be a building of type (W, S) as defined in [Weil, 7.1]. (All buildings considered in this paper are
assumed to be spherical and thick.) Thus Δ is a graph whose vertices are called chambers and whose edges are labeled by elements of S. The apartments of Δ are the subgraphs isomorphic to the graph Σ defined in 2.1 . We assume that Δ is Moufang as defined in [Wei1, 11.2]. This means that Δ is irreducible and of rank $|S|$ at least 2 and that for each root of Δ, the corresponding root group U_{α} defined in [Weil, 11.1] acts transitively on the set of apartments containing α.

Notation 3.1. We denote by G^{\dagger} the subgroup of $G:=\operatorname{Aut}(\Delta)$ generated by all the root groups of Δ.

Remark 3.2. Let Σ be an apartment of Δ, let c be a chamber of Σ, let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of Σ containing c but not some chamber of Σ adjacent to c and let D be the subgroup of G^{\dagger} generated by the $2 n$ root groups $U_{ \pm \alpha_{1}}, \ldots, U_{ \pm \alpha_{n}}$. By [Weil, 11.22], the stabilizer D_{Σ} induces the group W on Σ and hence D contains U_{β} for all roots β of Σ. By [Weil, 11.11(ii)], therefore, D contains U_{β} for all roots of Δ containing c. Since Δ is connected and D acts transitively on each panel containing c, D acts transitively on the set of chambers of c. Thus $D=G^{\dagger}$.

Moufang buildings were classified in [Tit2] and [TW]. There is a summary of the classification in [Wei2, Appendix B]. We will use the notation for these buildings given in [Wei2, 30.15].

Notation 3.3. Suppose that (K, L, Q) is a regular quadratic space of finite Witt index $\ell \geq 1$. We denote by $\mathcal{B}(Q)$ the building defined in [MPW, 35.5] whose chambers are the maximal flags of subspaces of L that are totally isotropic with respect to the quadratic form Q.

Proposition 3.4. Let (K, L, Q) be a regular but not hyperbolic quadratic space with finite Witt index $\ell \geq 1$. Then $\mathcal{B}(Q) \cong \mathrm{B}_{\ell}^{\mathcal{Q}}(\Lambda)$, where Λ is the anisotropic part of (K, L, Q) and $\mathrm{B}_{\ell}^{\mathcal{Q}}(\Lambda)$ is as in [Wei2, 30.15].

Proof. By [MPW, 35.6], it suffices to assume that $\ell=1$. Let $\hat{L}=K \oplus K \oplus L$ and let $\hat{Q}: \hat{L} \rightarrow K$ be the quadratic form given by $\hat{Q}(x, y, v)=x y+Q(v)$ for all $(x, y, v) \in \hat{L}$. Then $\mathcal{B}(Q)$ is a residue of $\mathcal{B}(\hat{Q})$ and we have $\mathcal{B}(Q) \cong \mathrm{B}_{1}^{\mathcal{Q}}(\Lambda)$ by [MPW, 3.8 and 3.20] applied to \hat{Q}.

The remaining results in this section will be needed in $\S 13$.
Definition 3.5. Let Σ be an apartment and let R be a residue of Δ containing chambers of Σ. We say that a root α of Σ cuts R if it contains some but not all chambers of the apartment $\Sigma \cap R$ of R. Equivalently, a root cuts a residue if the residue contains panels in the wall of the root.

Notation 3.6. Let Π be the Coxeter diagram corresponding to (W, S), let J be a subset of S such that the subdiagram Π_{J} spanned by J is irreducible and $|J| \geq 2$ and suppose that K is a subset of S such that $J \cap K=\varnothing$ and [J, K] $=1$. Let $L=J \cup K$, let R be a J-residue of Δ, let T be an L-residue containing R, let π be the restriction of the projection map proj_{R} (as defined in [Wei1, 8.23]) to T, let $G_{T, J}$ denote the subgroup G consisting of those elements of the stabilizer G_{T} which induce an automorphism of the Coxeter diagram Π mapping J to itself and let

$$
x^{\xi(g)}=\pi\left(x^{g}\right)
$$

for all $g \in G_{T, J}$ and all chambers x of R. By [MPW, 21.40], ξ is a homomorphism from $G_{T, J}$ to $\operatorname{Aut}(R)$.

Notation 3.7. Let R, T, π, etc., be as in 3.6, let Σ be an apartment containing chambers of R, let α be a root of Σ cutting R, let g be an element of $G_{T, J}$ stabilizing Σ, let $R_{1}=R$ and let $R_{2}=R^{g}$. By [MPW, 21.38(i)], the residues R_{1} and R_{2} are parallel as defined in [MPW, 21.7]. By [MPW, 21.19(i)], therefore, α cuts R_{2} and by [MPW, 21.8(v)], the restriction $\hat{\pi}$ of π to R_{2} is an isomorphism from R_{2} to R_{1}. Let X denote the set of apartments of Δ containing α (so $\Sigma \in X)$ and for $i \in[1,2]$, let Y_{i} be the set of apartments of R_{i} containing the root $\alpha \cap R_{i}$ of R_{i}. The map $A \mapsto A \cap R_{i}$ is a bijection from X to Y_{i} for $i \in[1,2]$. By [Weil, 8.23], $\pi\left(A \cap R_{2}\right) \subset A \cap R_{1}$ for all $A \in X$. Since $\hat{\pi}$ is a bijection, it follows that

$$
\begin{equation*}
\hat{\pi}\left(A \cap R_{2}\right)=A \cap R_{1} \tag{3.8}
\end{equation*}
$$

for all $A \in X$. Hence, in particular, we have

$$
\begin{equation*}
\hat{\pi}\left(\alpha \cap R_{2}\right)=\alpha \cap R_{1} \tag{3.9}
\end{equation*}
$$

For $i \in[1,2]$, let φ_{i} denote the map that sends each element of U_{α} to its restriction to R_{i}. By [Wei1, 9.3 and 11.10] U_{α} acts faithfully on X, the root group $U_{\alpha \cap R_{i}}$ of R_{i} acts faithfully on Y_{i} and φ_{i} is an isomorphism from U_{α} to $U_{\alpha \cap R_{i}}$ such that

$$
A^{a}=\left(A \cap R_{i}\right)^{\varphi_{i}(a)}
$$

for all $A \in X$, all $a \in U_{\alpha}$ and for $i \in[1,2]$. By (3.8) and (3.9), therefore,

$$
\begin{equation*}
\hat{\pi}^{-1} \cdot \varphi_{1}(a) \cdot \hat{\pi}=\varphi_{2}(a) \tag{3.10}
\end{equation*}
$$

for all $a \in U_{\alpha}$. This means that if we identify U_{α} with $U_{\alpha \cap R_{i}}$ via φ_{i} for $i \in[1,2]$, then $\hat{\pi}$ simply centralizes the root group U_{α}.

Proposition 3.11. Let R and ξ be as in 3.6, let Σ, α, g and φ_{1} be as in 3.7 and let $\beta=\alpha^{g}$. Then $\xi(g)$ is an automorphism of R, β is a root of Σ cutting $R, \beta \cap R=(\alpha \cap R)^{\xi(g)}$ and for each $a \in U_{\alpha}$, the restriction of $a^{g} \in U_{\beta}$ to R equals $\varphi_{1}(a)^{\xi(g)} \in U_{\beta \cap R}$.

Proof. By 3.6, $\xi(g) \in \operatorname{Aut}(R)$. By [MPW, 21.19(i) and 21.38(i)], β is a root of Σ cutting R. We can thus replace α by β everywhere in 3.7. By (3.9), therefore, $\beta \cap R=(\alpha \cap R)^{\xi(g)}$. The last assertion holds by 3.10.

Remark 3.12. Let α, ξ, etc., be as in 3.11 and for each root γ of Σ cutting R, let U_{γ} be identified with the root group $U_{\gamma \cap R}$ of R via the map that sends an element to its restriction to R. Then the last assertion in 3.11 says simply that $a^{g}=a^{\xi(g)}$ for all $a \in U_{\alpha}$.

4. Simply laced buildings

We continue to let Δ be a spherical building of type (W, S) satisfying the Moufang condition. In this section we assume that Δ is simply laced and split. This means that there exists a field E such that Δ is isomorphic to $A_{n}(E)$ for some $n \geq 1$, to $\mathrm{D}_{n}(E)$ for some $n \geq 3$, to $\mathrm{E}_{6}(E)$, to $\mathrm{E}_{7}(E)$ or to $\mathrm{E}_{8}(E)$.

Notation 4.1. Let Φ be the corresponding root system of type $A_{n}, D_{n}, E_{6}, E_{7}$ or E_{8}, let $\alpha_{1}, \ldots, \alpha_{n}$ be the basis of the root system Φ described in [Bou, Plate I or IV-VII] and let d be the unique chamber of Φ which is the intersection of the half-spaces determined by the roots $\alpha_{1}, \ldots, \alpha_{n}$, let Σ be an apartment of Δ and let c be a chamber of Σ. We denote the reflection associated with a root β of Φ by s_{β} and we identify W with the Weyl group of Φ in such a way that $S=\left\{s_{\alpha_{1}}, \ldots, s_{\alpha_{n}}\right\}$. There is then a unique W-equivariant bijection θ from the set of chambers of Σ to the set of chambers of Φ mapping c to d. The bijection θ induces a bijection from $\operatorname{Aut}(\Phi)$ into $\operatorname{Aut}(\Sigma)$ that carries the stabilizer of d to the stabilizer of c and it induces a bijection from the set of roots of Σ to the set of half-spaces associated with the roots of Φ and thus to Φ itself. From now on, we identify $\operatorname{Aut}(\Phi)$ with its image in $\operatorname{Aut}(\Sigma)$ under θ and we identify the roots of Σ with the corresponding roots of Φ. In particular, $W \subset \operatorname{Aut}(\Phi)$ is the group of type-preserving automorphisms of Σ and to each root β of Φ, we have a root group U_{β} of Δ (as defined in [Weil, 11.1]).

Theorem 4.2. There exists a collection of isomorphisms $x_{\beta}: E \rightarrow U_{\beta}$, one for each root β of Φ, and a mapping $\tau: \Phi \times \Phi \rightarrow\{1,-1\}$ such that for all ordered pairs (α, β) of roots of Φ such that $\alpha \neq \pm \beta$ and for all $s, t \in E$, the following hold:
(i) $\left[x_{\alpha}(s), x_{\beta}(t)\right]=x_{\alpha+\beta}(\tau(\alpha, \beta) s t)$ if $\alpha+\beta \in \Phi$.
(ii) $\left[x_{\alpha}(s), x_{\beta}(t)\right]=1$ if $\alpha+\beta \notin \Phi$.
(iii) $U_{\alpha}^{x_{-\alpha}(t)}=U_{-\alpha}^{x_{\alpha}\left(t^{-1}\right)}$ if $t \neq 0$.

Proof. The building Δ is the building obtained by applying [TW, Prop. 42.3.6] to the root group data associated with the corresponding Chevalley group. The assertions (i) and (ii) hold, therefore, by [Ste, (R2) on p. 30]; see also [Car, Thm. 5.2.2]. Assertion (iii) holds by [Ste, (R7) on p. 30 and Lemma 59 on p. 160].

Remark 4.3. Let $\alpha \in \Phi$ and suppose that $U_{\alpha}^{g}=U_{-\alpha}^{x_{\alpha}\left(t^{-1}\right)}$ for some $g \in U_{-\alpha}$ and some $t \in E^{*}$. Since the identity is the only element of $U_{-\alpha}$ normalizing U_{α}, it follows from 4.2(iii) that $g=x_{-\alpha}(t)$.

Notation 4.4. We call a set $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ satisfying the three conditions in 4.2 for some map τ a coordinate system for Δ and we call the map τ the sign function of $\left\{x_{\beta}\right\}_{\beta \in \Phi}$. This notion depends, of course, on the choice of the apartment Σ and the choice of the identification of Φ with the set of roots of Σ which we made (once and for all) in 4.1.

If $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ is a coordinate system, then we obtain new coordinate system (with a new sign function) by choosing $\beta \in \Phi$ and replacing x_{β} and $x_{-\beta}$ by x_{β}^{\prime} and $x_{-\beta}^{\prime}$, where $x_{\beta}^{\prime}(t)=x_{\beta}(-t)$ and $x_{-\beta}^{\prime}(t)=x_{-\beta}(-t)$ for all $t \in E$.

Notation 4.5. We call two coordinate systems $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ and $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$ equivalent if there exists a map $\beta \mapsto \varepsilon_{\beta}$ from the set of positive roots Φ^{+}to $\{1,-1\}$ such that $x_{\beta}^{\prime}(t)=x_{\beta}\left(\varepsilon_{\beta} t\right)$ and $x_{-\beta}^{\prime}(t)=x_{-\beta}\left(\varepsilon_{\beta} t\right)$ for each $t \in E$ and for each $\beta \in \Phi^{+}$.

Proposition 4.6. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ and $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$ be two coordinate systems for Δ such that $x_{\alpha_{i}}=x_{\alpha_{i}}^{\prime}$ for all $i \in[1, n]$. Then $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ and $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$ are equivalent.

Proof. By [Hum, §10.2, Cor. to Lemma A] and induction, there exists a map $\beta \mapsto \varepsilon_{\beta}$ from Φ^{+}to $\{1,-1\}$ such that $x_{\beta}^{\prime}(t)=x_{\beta}\left(\varepsilon_{\beta} t\right)$ for all $\beta \in \Phi^{+}$and all $t \in E$. By 4.3, it follows that $x_{-\beta}^{\prime}(t)=x_{-\beta}\left(\varepsilon_{\beta} t\right)$ for all $\beta \in \Phi^{+}$and all $t \in E$.

Theorem 4.7. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be a coordinate system for Δ, let $\lambda_{1}, \ldots, \lambda_{n}$ be non-zero elements of E and let $\sigma \in \operatorname{Aut}(E)$. Then the following hold:
(i) There exists a unique automorphism

$$
g=g_{\lambda_{1}, \ldots, \lambda_{n}, \sigma}
$$

of Δ that fixes the chamber c and stabilizes the apartment Σ such that

$$
x_{\alpha_{i}}(t)^{g}=x_{\alpha_{i}}\left(\lambda_{i} t^{\sigma}\right)
$$

for all $i \in[1, n]$ and all $t \in E$.
(ii) If

$$
\beta=\sum_{i=1}^{n} c_{i} \alpha_{i} \in \Phi,
$$

then

$$
x_{\beta}(t)^{g}=x_{\beta}\left(\lambda_{\beta} t^{\sigma}\right)
$$

where

$$
\lambda_{\beta}=\prod_{i=1}^{n} \lambda_{i}^{c_{i}} .
$$

Proof. The existence assertion in (i) holds by [Ste, Lemma 58 on p. 158] and the existence of field automorphisms; uniqueness holds by [Wei1, 9.7]. By 4.3, we have $x_{-\alpha_{i}}(t)^{g}=x_{-\alpha_{i}}\left(\lambda_{i}^{-1} t^{\sigma}\right)$ for all $t \in E$ and each $i \in[1, n]$. By 4.2(i), [Hum, $\S 10.2$, Cor. to Lemma A] and induction, it follows that (ii) holds.

Remark 4.8. Let $\kappa: E \rightarrow E$ be given by $\kappa(t)=-t$ for all $t \in E$. Suppose that the set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is ordered so that for each $j \in[2, n]$, there is at most one $i \in[1, j-1]$ such that $\alpha_{i}+\alpha_{j} \in \Phi$. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be a coordinate system for Δ. Replacing $x_{\alpha_{i}}$ by $\kappa \cdot x_{\alpha_{i}}$ for suitable i, we can find an equivalent coordinate system $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$ whose sign function τ^{\prime} satisfies $\tau^{\prime}\left(\alpha_{i}, \alpha_{j}\right)=1$ for all $i, j \in[1, n]$ such that $i<j$.

In the following display, x_{β}^{φ} denotes the map $t \mapsto x_{\beta}(t)$ followed by the inner automorphism of the root group U_{β} induced by the automorphism φ of Δ.

Proposition 4.9. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ and $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$ be two coordinate systems for Δ. Then there exists a unique automorphism φ of Δ acting trivially on Σ such that

$$
\left\{x_{\beta}^{\varphi}\right\}_{\beta \in \Phi}
$$

is a coordinate system for Δ which is equivalent to $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$ for all $\beta \in \Phi$.

Proof. Let τ and τ^{\prime} be the sign functions of $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ and $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$. Since the Coxeter diagram of Δ has no circuits, it follows from 4.8 that after replacing $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$ by an equivalent coordinate system, we can assume that

$$
\begin{equation*}
\tau\left(\alpha_{i}, \alpha_{j}\right)=\tau^{\prime}\left(\alpha_{i}, \alpha_{j}\right) \tag{4.10}
\end{equation*}
$$

for all $i, j \in[1, n]$.
Let M be the set of pairs $i, j \in[1, n]$ such that $\alpha_{i}+\alpha_{j} \in \Phi$. For each $\{i, j\} \in M$, let $R_{i j}$ be the unique $\left\{\alpha_{i}, \alpha_{j}\right\}$-residue containing c. By (4.10) and [TW, 7.5], there exists for each $\{i, j\} \in M$ a unique automorphism $\varphi_{i j}$ of $R_{i j}$ acting trivially on $\Sigma \cap R_{i j}$ such that

$$
x_{\alpha_{k}}^{\varphi_{i j}}=x_{\alpha_{k}}^{\prime}
$$

for $k=i$ and j. By 4.7(i) applied to each $R_{i j}$ and then to Δ, it follows that there exists a unique automorphism φ of Δ acting trivially on Σ such that

$$
x_{\alpha_{k}}^{\varphi}=x_{\alpha_{k}}^{\prime}
$$

for all $k \in[1, n]$. By 4.6, we conclude that $\left\{x_{\beta}^{\varphi}\right\}_{\beta \in \Phi}$ is a coordinate system equivalent to $\left\{x_{\beta}^{\prime}\right\}_{\phi \in \Phi}$.

In the following result, we are identifying U_{β} with the root group $U_{\beta \cap R}$ of the residue R for each $\beta \in \Phi_{1}$ via the isomorphism which sends each element of U_{β} to its restriction to R, and hence for each $\beta \in \Phi_{1}, x_{\beta}$ is simultaneously an isomorphism from E to U_{β} and an isomorphism from E to $U_{\beta \cap R}$.

Proposition 4.11. Let $M \subset[1, n]$, let $X=\left\{\alpha_{i} \mid i \in M\right\}$, let $J=\left\{s_{\alpha_{i}} \mid i \in M\right\}$ and let R be the unique J-residue of Δ containing c. Suppose that R is irreducible and of rank at least 2 , let Φ_{1} denote the root system $\langle X\rangle \cap \Phi$ and let $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi_{1}}$ be a coordinate system for R with respect to the apartment $\Sigma \cap R$. Then there exists a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ such that $x_{\beta}=x_{\beta}^{\prime}$ for all $\beta \in \Phi_{1}$.

Proof. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be an arbitrary coordinate system for Δ. Since R is irreducible and of rank at least 2, it is Moufang (by [Wei1, 11.8]). By 4.9, therefore, there exists an automorphism φ_{R} of R acting trivially on $\Sigma \cap R$ such that $\left\{x_{\beta}^{\varphi_{R}}\right\}_{\beta \in \Phi_{1}}$ is a coordinate system for R equivalent to the coordinate system $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi_{1}}$. Thus there exists a coordinate system $\left\{x_{\beta}^{\prime \prime}\right\}_{\beta \in \Phi}$ equivalent to $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ such that $\left(x_{\beta}^{\prime \prime}\right)^{\varphi_{R}}=x_{\beta}^{\prime}$ for all $\beta \in \Phi_{1}$. By 4.7(i), φ_{R} can be extended to an automorphism φ of Δ acting trivially on Σ. Hence $\left\{\left(x_{\beta}^{\prime \prime}\right)^{\varphi}\right\}_{\beta \in \Phi}$ is a coordinate system for Δ extending $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi_{1}}$.

Theorem 4.12. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be a coordinate system for Δ and let $\gamma \in \operatorname{Aut}(\Phi)$. Then there exists a unique automorphism $\tilde{\gamma}$ of Δ that stabilizes the apartment Σ such that

$$
x_{\alpha_{i}}(t)^{\tilde{\gamma}}=x_{\gamma\left(\alpha_{i}\right)}(t)
$$

for all $t \in E$. Furthermore, there exists a mapping $\rho_{\gamma}: \Phi \rightarrow\{1,-1\}$ such that $x_{\beta}(t)^{\tilde{\gamma}}=x_{\gamma(\beta)}\left(\rho_{\gamma}(\beta) t\right)$ for all $\beta \in \Phi$ and all $t \in E$.

Proof. This holds by [Ste, Thm. 29 on p. 154].
Notation 4.13. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be a coordinate system for Δ. We set

$$
g_{\gamma, \lambda_{1}, \ldots, \lambda_{n}, \sigma}=g_{\lambda_{1}, \ldots, \lambda_{n}, \sigma} \cdot \tilde{\gamma}
$$

for all $\gamma \in \operatorname{Aut}(\Phi)$, all $\lambda_{1}, \ldots, \lambda_{n} \in E^{*}$ and all $\sigma \in \operatorname{Aut}(E)$, where $g_{\lambda_{1}, \ldots, \lambda_{n}, \sigma}$ is as in 4.7(i) and $\tilde{\gamma}$ is as in 4.12.

Proposition 4.14. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be a coordinate system for Δ. If $g \in \operatorname{Aut}(\Delta)$ stabilizes Σ, then there exist $\gamma \in \operatorname{Aut}(\Phi), \lambda_{1}, \ldots, \lambda_{n} \in E^{*}$ and $\sigma \in \operatorname{Aut}(E)$ such that

$$
g=g_{\gamma, \lambda_{1}, \ldots, \lambda_{n}, \sigma}
$$

Proof. It suffices to assume that g is an element of $\operatorname{Aut}(\Delta)$ acting trivially on Σ. Thus g stabilizes every irreducible rank 2 residue containing the chamber c. By [TW, 37.13], we can assume that g acts trivially on each of the n panels containing c. The claim holds, therefore, by [Weil, 9.7].

Definition 4.15. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be a coordinate system for Δ. A Galois involution of Δ is an element of order 2 in the coset $g_{\gamma, \lambda_{1}, \ldots, \lambda_{n}, \sigma} G^{\dagger}$ for some $\gamma, \lambda_{1}, \ldots, \lambda_{n}, \sigma$ such that $\sigma \neq 1$, where G^{\dagger} is as in 3.1. This is a special case of the notion of a Galois involution of an arbitrary Moufang building given in [MPW, 31.1]. By 4.9, in particular, it is independent of the choice of the coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$. By [MPW, 29.24], it is, in fact, independent also of the choice of Σ and the identification of the set of roots of Σ with Φ in 4.1.

Proposition 4.16. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be a coordinate system for Δ, let g be an element of $\operatorname{Aut}(\Delta)$ acting trivially on Σ and let $\gamma, \lambda_{1}, \ldots, \lambda_{n}, \sigma$ be as in 4.14. If $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$ is another coordinate system for Δ, then there exists a map $i \mapsto \varepsilon_{i}$ from $[1, n]$ to $\{1,-1\}$ such that $\varepsilon_{i}=1$ if $w\left(\alpha_{i}\right)= \pm \alpha_{i}$ and

$$
g=g_{\gamma, \lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}, \sigma}^{\prime}
$$

where $\lambda_{i}^{\prime}=\varepsilon_{i} \lambda_{i}$ for all $i \in[1, n]$ and $g_{\gamma, \lambda_{1}^{\prime}, \ldots, \lambda_{n}^{\prime}, \sigma}^{\prime}$ is as defined in 4.13 with $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ replaced by $\left\{x_{\beta}^{\prime}\right\}_{\beta \in \Phi}$.

Proof. This holds by 4.9.

5. The exceptional Moufang quadrangles

A Moufang quadrangle is a building of type B_{2} satisfying the Moufang condition. The exceptional Moufang quadrangles are the Moufang quadrangles defined in [TW, 16.6-16.7]. These are the Moufang quadrangles denoted by $B_{2}^{\mathcal{E}}(\Lambda)$ and $B_{2}^{\mathcal{F}}(\Lambda)$ in [Wei2, 30.15], where Λ is a quadratic space of type E_{6}, E_{7} or E_{8} in the first case and Λ is a quadratic space of type F_{4} in the second.

Definition 5.1. A quadratic space (K, V, q) is of type E_{k} for $k=6,7$ or 8 if it is anisotropic and for some $\eta_{1}, \ldots, \eta_{d} \in K$, where $d=2+2^{k-6}$, and some separable quadratic extension E / K with norm N, the quadratic form q is equivalent to the quadratic form Q on E^{d} given by

$$
\begin{equation*}
Q\left(u_{1}, \ldots, u_{d}\right)=\eta_{1} N\left(u_{1}\right)+\cdots+\eta_{d} N\left(u_{d}\right) \tag{5.2}
\end{equation*}
$$

for all $\left(u_{1}, \ldots, u_{d}\right) \in E^{d}$ with the additional conditions that

$$
\begin{equation*}
\eta_{1} \eta_{2} \eta_{3} \eta_{4} \notin N(E) \tag{5.3}
\end{equation*}
$$

if $k=7$ and

$$
\begin{equation*}
-\eta_{1} \eta_{2} \cdots \eta_{6} \in N(E) \tag{5.4}
\end{equation*}
$$

if $k=8$.

Remark 5.5. Let (K, V, q) be a quadratic space of type E_{k} for $k=6,7$ or 8. If E is as in 5.1, then $N \otimes_{K} E$ is hyperbolic and hence $q_{E}:=q \otimes_{K} E$ is also hyperbolic. By [dMed, Lemma 4.2] and [MPW, 8.5], if E / K is an arbitrary separable quadratic extension such that q_{E} is hyperbolic, then there exist $\eta_{1}, \ldots, \eta_{d} \in K$ satisfying (5.3) if $k=7$ and (5.4) if $k=8$ such that q is equivalent to the quadratic form $Q: E^{d} \rightarrow K$ given by (5.2).

Remark 5.6. In [dMed, Thm. 5.3], it is shown that for each $\ell \in\{6,7,8\}$, an anisotropic quadratic form is of type E_{ℓ} if and only if its even Clifford algebra has a certain structure. In the paragraphs entitled "Type (2)", "Type (3)" and "Type (4)" in [TW, 42.6], it is shown (given [dMed, Thm. 5.3]) that a quadratic form of type E_{6}, E_{7}, respectively, E_{8} is precisely the ingredient needed to construct a form of type ${ }^{2} E_{6,2}^{16^{\prime}}, E_{7,2}^{31}$, respectively, $E_{8,2}^{66}$ (in the notation of [Tit1]). See also [Tit3, §5].

The following notion was introduced in [TW, 14.1].

Definition 5.7. A quadratic space (K, V, q) is of type F_{4} if it is anisotropic, $\operatorname{char}(K)=2$ and for some separable quadratic extension E / K with norm N, some extension F / K (of arbitrary dimension, possibly infinite) such that $F^{2} \subset K$ and some $\eta_{1}, \eta_{2} \in K$ such that

$$
\eta_{1} \eta_{2} \in F^{2},
$$

the quadratic form q is similar to the quadratic form Q on $E \oplus E \oplus F$ given by

$$
\begin{equation*}
Q\left(u_{1}, u_{2}, t\right)=\eta_{1} N\left(u_{1}\right)+\eta_{2} N\left(u_{2}\right)+t^{2} \tag{5.8}
\end{equation*}
$$

for all $\left(u_{1}, u_{2}, t\right) \in E \oplus E \oplus F$. (Here F^{2} denotes $\left\{t^{2} \mid t \in F\right\}$, not $F \oplus F$.)
Remark 5.9. Let (K, V, q) be a quadratic space of type F_{4}, let F be as in 5.7 and let D denote the radical of the bilinear form ∂q. Then $F^{2}=q(D) / q(v)$ for every non-zero $v \in D$. Thus the extension F / K is an invariant of the similarity class of q.

Remark 5.10. If $\Delta=B_{2}^{\mathcal{E}}(\Lambda)$ for some quadratic space Λ of type E_{6}, E_{7} or E_{8}, then by [TW, 35.11], Λ is an invariant of Δ up to similarity. If $\Delta=\mathrm{B}_{2}^{\mathcal{F}}(\Lambda)$ for some quadratic space $\Lambda=(K, V, q)$ of type F_{4} and F is as in 5.9 , then by [TW, 35.12], the similarity class of Λ determines a second similarity class of quadratic spaces over F of type F_{4} and this pair of similarity classes is an invariant of Δ.

Definition 5.11. We call a quadratic space (K, V, q) pseudo-split if it is the orthogonal sum of a finite dimensional hyperbolic space and an anisotropic totally singular space (of arbitrary dimension). See [MPW, 2.31-2.33].

Remark 5.12. Let (K, V, q) be a quadratic space of type F_{4}, let $f=\partial q$ and let E / K be as in 5.7. Since $N \otimes_{K} E$ is hyperbolic, the quadratic form q_{E} is pseudo-split as defined in 5.11. Suppose that E / K is an arbitrary separable quadratic extension such that q_{E} is pseudo-split. Let v, v^{\prime} be two elements of V such that $v \otimes 1$ and $v^{\prime} \otimes 1$ span a hyperbolic pair in $V \otimes_{K} E$ and $f\left(v, v^{\prime}\right)=1$. The restriction of q to $\left\langle v, v^{\prime}\right\rangle$ is similar to N. Let $\eta_{1}=q(v)$. By [MPW, 9.7], there exists $\eta_{2} \in K$ such that $\eta_{1} \eta_{2} \in F^{2}$ and q is similar to the quadratic form $Q: E \oplus E \oplus F \rightarrow K$ given by (5.8).

Remark 5.13. In [CP, D.2.7], forms of relative rank 2 of a pseudo-split group of type F_{4} are classified in terms of quadratic forms of type F_{4}. The quadratic forms which appear in this context are those where at least one of the two extensions K / F or F / K^{2} in 5.9 is finite.

Proposition 5.14. Let $\Lambda=(K, V, q)$ be an anisotropic quadratic space. Suppose that either Λ is a quadratic space of type E_{6}, E_{7} or E_{8} or that the bilinear form ∂q is degenerate but not identically zero. Then q is not similar to the norm of a composition algebra.

Proof. Let Q be the norm of a composition algebra (as defined in [Wei2, 30.17]). Then the bilinear form ∂Q is either non-degenerate or identically zero. If ∂Q is non-degenerate, then $\operatorname{dim}(Q)$ divides 8 and if $\operatorname{dim}(Q)=8$, its Hasse invariant is trivial. If Λ is of type E_{6}, E_{7} or E_{8}, then ∂q is non-degenerate, but its dimension divides 8 only if Λ is of type E_{7} and in this case the Hasse invariant is non-trivial (by [MPW, 8.3]).

In the following, $\mathrm{A}_{1}(D)$ and $\mathrm{B}_{1}^{\mathcal{Q}}(\Lambda)$ are as defined in [MPW, 3.8]. Thus $\mathrm{A}_{1}(D)$ is the Moufang set (as defined in [MPW, 1.5]) associated with the projective line $D \cup\{\infty\}$ and $B_{1}^{\mathcal{Q}}(\Lambda)$ is the Moufang set associated with an anisotropic quadratic space $\Lambda=(K, V, \varphi)$ on the "projective line" $V \cup\{\infty\}$.

Proposition 5.15. Let Λ be as in 5.14. Then there is no field or skew field D such that $\mathrm{B}_{1}^{\mathcal{Q}}(\Lambda) \cong \mathrm{A}_{1}(D)$.

Proof. Let D be a field or skew field and let F be its center. By [Wei3, 31.21], $\mathrm{B}_{1}^{\mathcal{Q}}(K, V, q) \cong \mathrm{A}_{1}(D)$ for some anisotropic quadratic space (K, V, q) if and only if (D, F) is a composition algebra, $F \cong K$ and q is similar to the norm of (D, F). The claim holds, therefore, by 5.14 .

We will use the following result, which depends on the classification of Moufang polygons, to identify the fixed point buildings that we construct. Alternatively, we could have used [MPW, 24.32] to identify these buildings by calculating their commutator relations. This is what is done, for instance, in [MM1].

Proposition 5.16. Let Δ be a Moufang quadrangle, let $G=\operatorname{Aut}(\Delta)$, let c be a chamber, let R_{1} and R_{2} be the two panels containing c and for $i=1$ and 2 , let \mathbb{M}_{i} be the Moufang set induced by the stabilizer $G_{R_{i}}$ on R_{i}. Suppose that $\mathbb{M}_{1} \cong B_{1}^{\mathcal{Q}}(\Lambda)$ for some quadratic space $\Lambda=(K, V, q)$ of type E_{6}, E_{7}, E_{8} or F_{4} and that either
(a) \mathbb{M}_{2} has non-abelian root groups or
(b) $\mathbb{M}_{2} \cong \mathrm{~B}_{1}^{\mathcal{Q}}(\Theta)$ for some anisotropic quadratic space $\Theta=(F, L, Q)$ such that ∂Q is degenerate but not identically zero.
Then Λ is of type E_{6}, E_{7} or E_{8} and $\Delta \cong \mathcal{B}_{2}^{\mathcal{E}}(\Lambda)$ if (a) holds and Λ is of type F_{4} and $\Delta \cong \mathrm{B}_{2}^{\mathcal{F}}(\Lambda)$ if (b) holds.

Proof. By [TW, 38.9], Δ is in one of the six cases described in [MPW, 4.2], where the quadrangles are described in terms of root group sequences as defined in [TW, 8.7]. The root groups of \mathbb{M}_{1} are abelian and if (b) holds, then by [MPW, 4.8(iii)], the tori of \mathbb{M}_{2} (as defined in [MPW, 1.6]) are non-abelian. If Δ were as in [MPW, 4.2(iii)], then the root groups and (by [MPW, 4.8(iv)]) the tori of \mathbb{M}_{i} for both $i=1$ and 2 would have to be abelian. Hence Δ is not as in [MPW, 4.2(iii)]. If Δ were as [MPW, 4.2(i), (ii) or (iv)], then there would exist a field or a skew field D such that $\mathcal{M}_{i} \cong \mathrm{~A}_{1}(D)$ for $i=1$ or 2 . This is impossible by 5.15. Only the cases (v) and (vi) of [MPW, 4.8] remain. Thus $\Delta \cong B_{2}^{\mathcal{E}}\left(\Lambda^{\prime}\right)$ for some quadratic space Λ^{\prime} of type E_{6}, E_{7} or E_{8} if (a) holds and $\Delta \cong \mathrm{B}_{2}^{\mathcal{F}}\left(\Lambda^{\prime}\right)$ for some quadratic space Λ^{\prime} of type F_{4} if (b) holds. Suppose that (a) holds. Then $\mathbb{M}_{1} \cong B_{1}^{\mathcal{Q}}\left(\Lambda^{\prime}\right)$ and hence by [MPW, 6.10], Λ^{\prime} is similar to Λ. Thus $\Delta \cong \mathcal{B}_{2}^{\mathcal{E}}(\Lambda)$ (by [TW, 35.11]). Suppose that (b) holds and let $\Lambda^{\prime \prime}$ denote the dual of Λ^{\prime} as defined in [MPW, 9.5]. By [TW, 28.45], there is a non-type-preserving isomorphism from $B_{2}^{\mathcal{F}}\left(\Lambda^{\prime}\right)$ to $B_{2}^{\mathcal{F}}\left(\Lambda^{\prime \prime}\right)$. Thus \mathbb{M}_{1} is isomorphic to $B_{1}^{\mathcal{Q}}\left(\Lambda^{\prime}\right)$ to $B_{1}^{\mathcal{Q}}\left(\Lambda^{\prime \prime}\right)$. By [MPW, 6.10] again, Λ is similar to Λ^{\prime} or $\Lambda^{\prime \prime}$. Hence $\Delta \cong \mathrm{B}_{2}^{\mathcal{F}}(\Lambda)$ (by [TW, 35.12]).

6. Descent

In this section we assemble the results in [MPW] on descent in buildings that we will require.

Definition 6.1. Let Δ be a building and let Γ be a subgroup of $\operatorname{Aut}(\Delta)$. A Γ-residue is a residue of Δ stabilized by Γ. A Γ-chamber is a Γ-residue which is minimal with respect to inclusion. A Γ-panel is a Γ-residue P such that for some Γ-chamber C, P is minimal in the set of all Γ-residues containing C properly.

Definition 6.2. Let Δ and Γ be as in 6.1. The group Γ is anisotropic if Δ itself is the unique Γ-chamber and isotropic if this is not the case. Thus Γ is isotropic if and only if there exist Γ-panels (equivalently, if there exist Γ-residues other than Δ itself).

Notation 6.3. Let Δ be a building and let Γ be an isotropic subgroup of $\operatorname{Aut}(\Delta)$. We denote by Δ^{Γ} the graph with vertex set the set of all Γ-chambers, where two Γ-chambers are joined by an edge of Δ^{Γ} if and only if there is a Γ-panel containing them both.

Definition 6.4. Let Δ be a building. A descent group of Δ is an isotropic subgroup Γ of $\operatorname{Aut}(\Delta)$ such that each Γ-panel contains at least three Γ-chambers.

Theorem 6.5. Let Δ be a simply laced spherical building which is Moufang and split. If Ω is an isotropic Galois involution of Δ as defined in 4.15 and 6.2 , then $\Gamma:=\langle\Omega\rangle$ is a descent group of Δ.

Proof. By [MPW, 28.16], Δ satisfies [MPW, 30.1(i)]. The claim holds, therefore, by [MPW, 32.27].

Proposition 6.6. Suppose that R is a residue of a Moufang building Δ. Let Σ be an apartment containing chambers of R and let U_{R} denote the subgroup generated by the root groups U_{α} for all roots α of Σ containing $R \cap \Sigma$. Then U_{R} is independent of the choice of Σ.

Proof. This holds by [MPW, 24.17].
Definition 6.7. The group U_{R} in 6.6 is called the unipotent radical of the residue R.

Definition 6.8. A Tits index is a triple (Π, Θ, A) where Π is a Coxeter diagram, Θ is a subgroup of $\operatorname{Aut}(\Pi)$ and A is a Θ-invariant subset of the vertex set S of Π such that for each $s \in S \backslash A$, the subset $A \cup \Theta(s)$ of S is spherical (i.e., the subgroup $\langle A \cup \Theta(s)\rangle$ of W is finite) and A is stabilized by the opposite map $\mathrm{op}_{A \cup \Theta(s)}$ defined in 2.3. Here $\Theta(s)$ denotes the Θ-orbit containing s.

Definition 6.9. Let $T=(\Pi, \Theta, A)$ be a Tits index. For each $s \in S \backslash A$, let $\tilde{s}=w_{A} w_{A \cup \Theta(s)}$, where w_{J} for $J=A$ and $J=A \cup \Theta(s)$ is as in 2.3. Thus there is one element \tilde{s} for each Θ-orbit in $S \backslash A$. Let \tilde{S} be the set of all these elements \tilde{s}. By [MPW, 20.32], (\tilde{W}, \tilde{S}) is a Coxeter system. Let $\tilde{\Pi}$ be the corresponding Coxeter diagram. We call Π the absolute Coxeter diagram of T and $\tilde{\Pi}$ the relative Coxeter diagram of T. An algorithm for calculating the relative Coxeter diagram of a Tits index is described in [TW, 42.3.5(c)].

Conventions 6.10. Our notion of a Tits index generalizes the usual notion of a Tits index as defined, for example, in [TW, 42.3.4], where it is called a Witt index. We use Tits' conventions for indicating a Tits index (Π, A, Θ), drawing the Coxeter diagram Π with a circle around each Θ-orbit disjoint from A and with vertices in the same Θ-orbit brought near to one another. See [MPW, 34.2] for a more precise description of these conventions.

Examples 6.11. There are Tits indices (drawn using the conventions in 6.10) in all of our main results. Using [TW, 42.3.5(c)], we can check that the relative type of the indices in $11.21,13.12,14.11$ and 17.14 is B_{2}, the relative type of the
index in 12.11 is A_{2}, the relative type of the first three indices in 15.4 is F_{4} and the relative type of the last index in 15.4 is C_{3}. We observe, too, that the Tits index in 17.14 does not appear in [Tit1].

The following is a special case of the main results of [MPW, Part 3].

Theorem 6.12. Let Γ be a descent group of a spherical building Δ. Let Π be the Coxeter diagram of Δ, let S denote the vertex set of Π and let Θ denote the subgroup of $\operatorname{Aut}(\Pi)$ induced by Γ. Then the following hold:
(i) The graph Δ^{Γ} is a building with respect to a canonical coloring of its edges.
(ii) All Γ-chambers are residues of Δ of the same type $A \subset S$, the set A is Θ-invariant and the rank k of Δ^{Γ} is the number of Θ-orbits in S disjoint from A.
(iii) The triple $T:=(\Pi, \Theta, A)$ is a Tits index and Δ^{Γ} is a building of type $\tilde{\Pi}$, where $\tilde{\Pi}$ is the relative Coxeter diagram of T.
(iv) If Δ is Moufang and $k \geq 2$, then Δ^{Γ} is also Moufang.
(v) Suppose that Δ is Moufang and that $k=1$ and let X denote the set of all Γ-chambers. For each $R \in X$, let \tilde{U}_{R} denote the subgroup of $\operatorname{Sym}(X)$ induced by the centralizer $C_{U_{R}}(\Gamma)$ of Γ in the unipotent radical U_{R}. Then

$$
\left(X,\left\{\tilde{U}_{R} \mid R \in X\right\}\right)
$$

is a Moufang set.

Proof. Assertions (i) and (ii) hold by [MPW, 22.20(v) and (viii)], assertion (iii) holds by [MPW, 22.20(iv) and (viii)] and the remaining two assertions hold by [MPW, 24.31].

Definition 6.13. Let Γ and Δ be as in 6.12. We refer to the triple T in 6.12(iii) as the Tits index of Γ. (In fact, the Tits index of a descent group Γ is defined also when Δ is not assumed to be spherical; see [MPW, 22.20 and 22.22].)

Definition 6.14. A fixed point building is a building of the form Δ^{Γ} for some pair Δ, Γ as in 6.12. If the rank of Δ^{Γ} is 1 and Δ is Moufang, we interpret Δ^{Γ} to mean the Moufang set described in 6.12(v).

Remark 6.15. Let $\Delta, \Gamma, \Theta, A$, etc., be as in 6.12 and suppose that Δ is Moufang. Let $\tilde{\Delta}=\Delta^{\Gamma}$ and let $\tilde{G}=\operatorname{Aut}(\tilde{\Delta})$. By 6.9 , we can identify the vertex set of the relative Coxeter diagram $\tilde{\Pi}$ with the set of Θ-orbits disjoint from A. Let $I=\Theta(s)$ be one of these orbits, let $J=A \cup I$, let R be a Γ-residue of type J and let Γ_{R} denote the restriction of Γ to R. By [MPW, 22.39], $P:=R^{\Gamma_{R}}$ is an I-panel of $\tilde{\Delta}$ and by [MPW, 24.30], $R^{\Gamma_{R}}$ is isomorphic as a Moufang set (see 6.14) to the Moufang set induced on P by the stabilizer of P in \tilde{G}.

7. Linear groups

Let V be an $(n+1)$-dimensional vector space over a field E (by which we mean a commutative field) for some $n \geq 1$ and let

$$
\mathcal{B}=\left(e_{1}, \ldots, e_{n+1}\right)
$$

be an ordered basis of V. For each ordered pair (i, j) of distinct integers i, j in the interval $[1, n+1]$ and each $t \in E$, let $x_{i j}(t)$ denote element of $\operatorname{SL}(V)$ that maps e_{j} to $e_{j}+t e_{i}$ and fixes e_{k} for $k \neq j$.

Let Φ be the root system of type A_{n} and let $\varepsilon_{1}, \ldots, \varepsilon_{n+1}, \alpha_{1}, \ldots, \alpha_{n}$ and $\tilde{\alpha}$ be as in [Bou, Plate I]. Thus, in particular, $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}$ for each $i \in[1, n]$ and $\tilde{\alpha}=\varepsilon_{1}-\varepsilon_{n+1}$. For each $\beta \in \Phi$, we set set $x_{\beta}=x_{i j}$ if $\beta=\varepsilon_{i}-\varepsilon_{j}$. Let Δ be the building of type A_{n} associated with V. Thus the chambers of Δ are the maximal flags of subspaces of V, and $\Delta \cong \mathrm{A}_{n}(E)$ in the notation in [Wei2, 30.15]. The groups $x_{\beta}(E)$ act faithfully on Δ and we will simply identify them with their images in $\operatorname{Aut}(\Delta)$. Let Σ the apartment of Δ whose chambers are maximal flags involving only subspaces spanned by subsets of the basis \mathcal{B}, let c denote the chamber

$$
\begin{equation*}
\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \cdots \subset\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle \tag{7.1}
\end{equation*}
$$

of Σ and let Φ be identified with the set of roots of Σ and $\operatorname{Aut}(\Phi)$ with a subgroup of $\operatorname{Aut}(\Sigma)$ as in 4.1. Thus $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of Σ containing c but not some chamber of Σ adjacent to c and $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ is a coordinate system for Δ. By [Tit2, Prop. 6.6], there is a natural homomorphism from $\operatorname{Aut}(\operatorname{SL}(V))$ to $\operatorname{Aut}(\Delta)$.

The following observation will be used in $\S 14$.
Lemma 7.2. There exists a unique automorphism Ω of Δ stabilizing Σ such that $x_{\alpha_{1}}(t) \mapsto x_{\tilde{\alpha}-\alpha_{1}}(-t), x_{\alpha_{n}}(t) \mapsto x_{\tilde{\alpha}-\alpha_{n}}(-t)$ and $x_{\alpha_{i}}(t) \mapsto x_{-\alpha_{i}}(-t)$ for all $i \in[2, n-1]$. The automorphism Ω has order 2 .

Proof. Let T denote the linear automorphism of V that interchanges e_{1} and e_{n+1} and fixes e_{i} for all $i \in[2, n]$, let $\Omega \in \operatorname{Aut}(\operatorname{SL}(V))$ denote the composition of the automorphism $A \mapsto\left(A^{t}\right)^{-1}$ followed by conjugation by T. The automorphism of Δ induced by Ω has the desired properties. Uniqueness holds by 4.7(i).

The following observation will be used in the proof of 15.4.
Lemma 7.3. There exists a unique automorphism Ω of Δ stabilizing Σ such that $x_{\alpha_{i}}(t)^{\Omega}=x_{\alpha_{n+1-i}}(-t)$ for all $i \in[1, n]$ and all $t \in E$. The automorphism Ω has order 2.

Proof. Let T denote the linear automorphism of V that interchanges e_{i} and e_{n+2-i} for all $i \in[1, n+1]$ and let $\Omega \in \operatorname{Aut}(\operatorname{SL}(V))$ denote the composition of the automorphism $A \mapsto\left(A^{t}\right)^{-1}$ of $\mathrm{SL}(V)$ followed by conjugation by T. The automorphism of Δ induced by Ω has the desired properties. Uniqueness holds by $4.7(\mathrm{i})$.

Remark 7.4. Let Ω be as in 7.3 and let c be the flag in (7.1). Then c is the unique chamber of the apartment Σ stabilized by the root group $U_{\alpha_{i}}$ for all $i \in[1, n]$. Since Ω stabilizes Σ and interchanges these root groups, it fixes c.

Remark 7.5. The automorphisms Ω of Δ in 7.2 and 7.3 are not type-preserving.

8. Orthogonal groups

Notation 8.1. Let E be a field, let V be a vector space over E of dimension $2 n$ for some $n \geq 3$, let

$$
\mathcal{B}=\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}
$$

be a basis of V, let $q: V \mapsto E$ be the quadratic form given by

$$
q\left(\sum_{i=1}^{n}\left(x_{i} e_{i}+y_{i} f_{i}\right)\right)=\sum_{i=1}^{n} x_{i} y_{i}
$$

for all $x_{1}, \ldots, y_{n} \in E$ and let $\mathrm{O}(q)$ denote the corresponding orthogonal group.
Notation 8.2. For distinct $i, j \in[1, n]$ and all $t \in E$, we denote by $x_{i j}(t)$ the element of $\mathrm{O}(q)$ fixing e_{k} and f_{m} for all $k \neq j$ and all $m \neq i$ that maps e_{j} to $e_{j}+t e_{i}$ and f_{i} to $f_{i}-t f_{j}$.

For i, j such that $1 \leq i<j \leq n$ and all $t \in E$, we denote by $y_{i j}(t)$ the element of $\mathrm{O}(q)$ fixing e_{k} and f_{m} for all k and all $m \notin\{i, j\}$ that maps f_{i} to $f_{i}-t e_{j}$ and f_{j} to $f_{j}+t e_{i}$.

For i, j such that $1 \leq i<j \leq n$ and all $t \in E$, we denote by $z_{i j}(t)$ the element of $\mathrm{O}(q)$ fixing e_{k} and f_{m} for all $k \notin\{i, j\}$ and all m that maps e_{i} to $e_{i}+t f_{j}$ and e_{j} to $e_{j}-t f_{i}$.

Notation 8.3. Let $\Delta=D_{n}(E)$ denote the building of type D_{n} associated with q. The chambers of Δ are the maximal elements of the set $\mathcal{F}(q)$ described in [MPW, 35.9], where q is the quadratic form in 8.1. We will call these maximal elements oriflammes. Thus an oriflamme is a set of n subspaces Z_{1}, \ldots, Z_{n} of V each of which is totally isotropic with respect to q such that $\operatorname{dim}_{E} Z_{i}=i$ for all $i \in[1, n-2], \operatorname{dim}_{E} Z_{n-1}=\operatorname{dim}_{E} Z_{n}=n, \operatorname{dim}_{E}\left(Z_{n-1} \cap Z_{n}\right)=n-1$ and $Z_{i} \subset Z_{j}$ for all $i \in[1, n-2]$ and all $j \in[1, n]$ whenever $i \leq j$. Let c denote the oriflamme consisting of the subspaces

$$
\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \cdots \subset\left\langle e_{1}, e_{2}, \ldots, e_{n-2}\right\rangle
$$

together with $\left\langle e_{1}, e_{2}, \ldots, e_{n-1}, e_{n}\right\rangle$ and $\left\langle e_{1}, e_{2}, \ldots, e_{n-1}, f_{n}\right\rangle$.
Notation 8.4. Let Φ be the root system of type D_{n} and let $\varepsilon_{1}, \ldots, \varepsilon_{n}, \alpha_{1}, \ldots, \alpha_{n}$ and $\tilde{\alpha}$ be as in [Bou, Plate IV]. Thus $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}$ for $i \in[1, n-1]$, $\alpha_{n}=\varepsilon_{n-1}+\varepsilon_{n}$ and $\tilde{\alpha}=\varepsilon_{1}+\varepsilon_{2}$. For each $\beta \in \Phi$, we set $x_{\beta}=x_{i j}$ if $\beta=\varepsilon_{i}-\varepsilon_{j}$, we set $x_{\beta}=y_{i j}$ if $\beta=\varepsilon_{i}+\varepsilon_{j}$ and we set $x_{\beta}=z_{i j}$ if $\beta=-\varepsilon_{i}-\varepsilon_{j}$. The groups $x_{\beta}(E)$ for $\beta \in \Phi$ act faithfully on Δ and we will simply identify them with their images in $\operatorname{Aut}(\Delta)$. Let S denote the set of reflections $\left\{s_{\alpha_{1}}, \ldots, s_{\alpha_{n}}\right\}$ and let $W=\langle S\rangle \subset \operatorname{Aut}(\Phi)$ be the Weyl group of Φ. Let Σ be the apartment of Δ whose chambers are the oriflammes containing only subspaces spanned by a subset of \mathcal{B} and let Φ be identified with the set of roots of Σ and $\operatorname{Aut}(\Phi)$ (and hence, in particular, W) with a subgroup of $\operatorname{Aut}(\Sigma)$ as in 4.1. Thus $\alpha_{1}, \ldots, \alpha_{n}$ are the roots of Σ containing c but not some chamber of Σ adjacent to c. For each $\beta \in \Phi$, the group $x_{\beta}(E)$ is the root group of Δ corresponding to the root β of Σ, and there exists a map τ such $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ is a coordinate system for Δ as defined in 4.4.

Notation 8.5. The symbol $\Omega(q)$ denotes the subgroup of $\mathrm{O}(q)$ generated by all its root groups. The group $\Omega(q)$ is the kernel of the spinor norm from $\mathrm{O}(q)$ to $E^{*} /\left(E^{*}\right)^{2}$. In particular, the quotient $\mathrm{O}(q) / \Omega(q)$ is an elementary abelian 2-group; see, for example, [Die, II, §6.4 and §10.4].

We will apply $8.6-8.13$ in $\S 13$.
Notation 8.6. Let n be even and at least 6 and let $\Phi_{1}=\left\langle\alpha_{3}, \ldots, \alpha_{n}\right\rangle \cap \Phi$. Thus Φ_{1} is a root system of type D_{n-2}. Let J be the set of reflections $\left\{s_{\alpha_{i}} \mid i \in[3, n]\right\}$, let w_{1} be the longest element in the Coxeter group $W_{J}=\langle J\rangle$ with respect to the
set of generators J and let $w_{0}=s_{\alpha_{1}} w_{1}$. The roots α_{1} and $\tilde{\alpha}$ are perpendicular to Φ_{1} and hence fixed by w_{1}, and $w_{1}\left(\alpha_{i}\right)=-\alpha_{i}$ for all $i \in[3, n]$ by 2.10 . Since

$$
\begin{equation*}
\tilde{\alpha}=\alpha_{1}+2 \alpha_{2}+\cdots+2 \alpha_{n-2}+\alpha_{n-1}+\alpha_{n} \tag{8.7}
\end{equation*}
$$

it follows that $\alpha_{1}+\alpha_{2}+w_{1}\left(\alpha_{2}\right)=\tilde{\alpha}$. Thus

$$
\begin{equation*}
w_{1}\left(\alpha_{2}\right)=\varepsilon_{2}+\varepsilon_{3}, \tag{8.8}
\end{equation*}
$$

so $w_{1}\left(\alpha_{2}\right)$ is the highest root of the root system $\left\langle\alpha_{2}, \ldots, \alpha_{n}\right\rangle \cap \Phi$ of type D_{n-1} (by 8.4). It also follows from (8.8) that

$$
\begin{equation*}
w_{0}\left(\alpha_{2}\right)=\varepsilon_{1}+\varepsilon_{3}=\tilde{\alpha}-\alpha_{2} . \tag{8.9}
\end{equation*}
$$

Finally, we have

$$
\begin{equation*}
w_{0}\left(\alpha_{i}\right)=-\alpha_{i} \tag{8.10}
\end{equation*}
$$

for all $i \in[1, n]$ other than 2.

Lemma 8.11. Let n be even and at least 6 and let w_{0} be as in 8.6. There exists a unique automorphism Ω of Δ mapping the basis \mathcal{B} to itself such that $x_{\alpha_{1}}(t) \mapsto x_{w_{0}\left(\alpha_{1}\right)}(t), \quad x_{\alpha_{2}}(t) \mapsto x_{w_{0}\left(\alpha_{2}\right)}(t)$ and $x_{\alpha_{i}}(t) \mapsto x_{w_{0}\left(\alpha_{i}\right)}(-t)$ for each $i \in[3, n]$. The automorphism Ω has order 2 and interchanges the residues of Δ corresponding to $\left\langle e_{1}\right\rangle$ and $\left\langle e_{2}\right\rangle$.

Proof. It follows from 8.2, (8.9) and (8.10) that conjugation by the automorphism of V that interchanges e_{1} with e_{2}, f_{1} with f_{2} and e_{i} with f_{i} for each $i \in[3, n]$ induces an automorphism of Δ with the desired properties. Uniqueness holds by 4.7(i).

Remark 8.12. Let V_{1} be a totally isotropic subspace of V of dimension $k \leq n-3$ contained in an oriflamme c_{1}, let R_{1} be the residue of Δ containing all oriflammes that agree with c_{1} in all dimensions at least k, let R_{2} be the residue of Δ containing all oriflammes that agree with c_{1} in all dimensions at most k and let $\pi_{i}=\operatorname{proj}_{R_{i}}$ for $i=1$ and 2 (as defined in [Weil, 8.23]). Let d be an arbitrary oriflamme containing V_{1}. Then $\pi_{1}(d)$ is the oriflamme that agrees with c_{1} in all dimensions at least k and with d in all dimensions at most k, and $\pi_{2}(d)$ is the oriflamme that agrees with c_{1} in all dimensions at most k and with c_{1} in all dimensions at least k.

Remark 8.13. Let Ω be the automorphism of Δ in 8.11, let c_{1} be an oriflamme (i.e. a chamber of Δ) containing $\left\langle e_{1}\right\rangle$ and $\left\langle e_{1}, e_{2}\right\rangle$ and contained in the apartment Σ, let d be the oriflamme containing $\left\langle e_{2}\right\rangle$ that agrees with c_{1} in all dimensions greater than 1 and let P be the panel of Δ containing c_{1} and d. Thus d is the other chamber in $P \cap \Sigma$. By 8.12, the composition $\Omega \cdot \operatorname{proj}_{P}$ (that is, Ω followed by $\left.\operatorname{proj}_{P}\right)$ interchanges c_{1} and d and maps the image of d under $x_{\alpha_{1}}(t)$ to the image of d under $x_{\alpha_{1}}\left(t^{-1}\right)$ for all $t \in E^{*}$.

The following will be applied in $\S 12$.
Lemma 8.14. There exists a unique automorphism Ω of Δ stabilizing Σ such that $x_{\alpha_{1}}(t) \mapsto x_{\tilde{\alpha}}(t)$ and $x_{\alpha_{i}}(t) \mapsto x_{-\alpha_{i}}(-t)$ for each $i \in[2, n]$. The automorphism Ω has order 2.

Proof. The automorphism of Δ induced by the element of $\mathrm{O}(q)$ that fixes e_{1} and f_{1} and interchanges e_{i} and f_{i} for each $i \in[2, n]$ has the desired properties. Uniqueness holds by 4.7(i).

Notation 8.15. Let σ be an involution in $\operatorname{Aut}(E)$ and let $K=\operatorname{Fix}_{E}(\sigma)$. We will usually write \bar{x} in place of x^{σ} for elements $x \in E$. Let N be the norm of the quadratic extension E / K.

The last two results of this section will be applied in the proof of 15.4. For the definition of the quaternion algebra $(E / K, \kappa)$ that appears in the next result, see, for example, [TW, 9.3].

Lemma 8.16. Suppose that n is even and that κ is an element of K not in $N(E)$. Let R be the residue of Δ whose chambers are the oriflammes containing the subspaces $\left\langle e_{1}, e_{2}, \ldots, e_{k}\right\rangle$ for all even $k \in[1, n]$ and let R_{1} denote the residue whose chambers are the oriflammes containing the subspace $\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle$. Then there exists a type-preserving Galois involution Ω on Δ that stabilizes Σ, R and R_{1} such that Ω does not stabilize any proper residues of R and

$$
R_{1}^{\left\langle\Omega_{1}\right\rangle} \cong \mathrm{A}_{m}(D),
$$

where Ω_{1} denotes the restriction of Ω to $R_{1}, m=(n / 2)-1$ and D denotes the quaternion division algebra $(E / K, \kappa)$.

Proof. Let T denote the unique σ-linear automorphism of V that extends the maps $t e_{i} \mapsto \bar{t} e_{i+1}$ and $t f_{i} \mapsto \kappa \bar{t} f_{i+1}$ for all odd $i \in[1, n]$ and $t e_{i} \mapsto \kappa \bar{t} e_{i-1}$ and $t f_{i} \mapsto \bar{t} f_{i-1}$ for all even $i \in[1, n]$. Then $q(T(v))=\kappa \cdot \overline{q(v)}$ for all $v \in V$ and T stabilizes the subspaces $\left\langle e_{1}, \ldots, e_{k}\right\rangle$ for all even $k \in[1, n]$. Let Ω denote the
automorphism of Δ induced by T. Then $\Omega^{2}=1$ and Ω stabilizes both R and R_{1}. Let $\Gamma=\langle\Omega\rangle$ and let Γ_{1} denote the restriction of Γ to R_{1}.

Every subspace of $\tilde{V}:=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ of dimension $n-1$ is contained in exactly two totally isotropic subspaces of V of dimension n. It follows that the residue R_{1} is isomorphic to the building of type A_{n-1} whose chambers are the maximal flags of subspaces of $\tilde{V}:=\left\langle e_{1}, \ldots, e_{n}\right\rangle$.

We have

$$
D=\{x+u y \mid x, y \in E\}
$$

where $u y \cdot u z=\kappa \bar{y} z, u y \cdot z=u(y z)$ and $y \cdot u z=u(\bar{y} z)$ for all $y, z \in E$. The vector space \tilde{V} has a unique structure as a right vector space over D of dimension $n / 2$ such that

$$
\left(s e_{i}+t e_{i+1}\right)(x+u y)=(x s+\kappa y \bar{t}) e_{i}+(x t+y \bar{s}) e_{i+1}
$$

for all odd $i \in[1, n]$ and all $s, t, x, y \in E$. We have $T(v)=v \cdot u$ for all $v \in \tilde{V}$. It follows that the T-invariant subspaces of \tilde{V} as a vector space over E are precisely the subspaces of \tilde{V} as a right vector space over D. Thus R is a Γ-chamber and $R_{1}^{\Gamma_{1}} \cong \mathrm{~A}_{m}(D)$.

Lemma 8.17. If $n=3$, then there exists a unique automorphism Ω of Δ stabilizing Σ such that $x_{\alpha_{1}}(t)^{\Omega}=x_{\alpha_{1}}(-\bar{t})$ and $x_{\alpha_{2}}(t)^{\Omega}=x_{\alpha_{3}}(-\bar{t})$ for all $t \in E$. The automorphism Ω is a non-type-preserving Galois involution and $\Delta^{\langle\Omega\rangle} \cong \mathrm{B}_{2}^{\mathcal{Q}}(K, E, N)$.

Proof. Let T be the unique σ-linear automorphism of V that fixes e_{1} and f_{1}, maps e_{2} to $-e_{2}$ and f_{2} to $-f_{2}$ and interchanges e_{3} with f_{3}. Then $T^{2}=1$ and $q(T(v))=\overline{q(v)}$ for all $v \in V$ and by 8.2, $x_{\alpha_{1}}(t)^{T}=x_{\alpha_{1}}(-\bar{t})$ and $x_{\alpha_{2}}(t)^{T}=x_{\alpha_{3}}(-\bar{t})$ for all $t \in E$. Let Ω denote the Galois involution of Δ induced by T. Then Ω is non-type-preserving and stabilizes Σ. By 4.7(i), Ω is unique. Since c is the unique chamber of Σ contained in α_{i} for all $i \in[1,3]$, Ω fixes c. Thus, in particular, Ω is isotropic.

Let τ be a non-zero element of trace 0 in E, let ω be an element of E not in K and let $V_{0}=\operatorname{Fix}_{V}(T)$, let V_{1} denote the subspace over K (rather than E) spanned by the set

$$
\mathcal{B}_{1}:=\left\{e_{1}, f_{1}, \tau e_{2}, \tau^{-1} f_{2}, e_{3}+f_{3}, \omega e_{3}+\bar{\omega} f_{3}\right\}
$$

Then $V_{1} \subset V_{0}$, so $q\left(V_{1}\right) \subset K$ and by [MPW, 2.40(i)], $V_{1}=V_{0}$. Let $Q: V_{1} \rightarrow K$ denote the restriction of q to V_{1}. By 6.5, $\Gamma:=\langle\Omega\rangle$ is a descent group of Δ. By [MPW, 2.40(ii)], Δ^{Γ} is isomorphic to the building $\mathcal{B}(Q)$ defined in 3.3. The restriction of Q to $\left\langle e_{1}, f_{1}, \tau e_{2}, \tau^{-1} f_{2}\right\rangle$ is hyperbolic and the map

$$
s\left(e_{3}+f_{3}\right)+t\left(\omega e_{3}+\bar{\omega} f_{3}\right) \mapsto s+t \omega
$$

is an isometry from the restriction of Q to the subspace $\left\langle e_{3}+f_{3}, \omega e_{3}+\bar{\omega} f_{3}\right\rangle$ of V_{1} to the norm N viewed as a quadratic form over K. Thus N is the anisotropic part of Q. By 3.4 , we conclude that $\mathcal{B}(Q) \cong \mathrm{B}_{2}^{\mathcal{Q}}(K, E, N)$.

9. An anisotropic Galois involution of $\mathrm{D}_{\boldsymbol{n}}(q)$

We continue with all the notation and assumptions from the previous section. In particular, Δ is the building $\mathrm{D}_{n}(E)$ whose chambers are the oriflammes of V with respect to the quadratic form q as defined in 8.3.

Notation 9.1. Let $\sigma, K, x \mapsto \bar{x}$ and N be as in 8.15, let ω be an element of E not in K and let

$$
x^{2}-a x+b=(x-\omega)(x-\bar{\omega})
$$

be the minimal polynomial of ω over K. Thus

$$
\begin{equation*}
N(x+y \omega)=x^{2}+a x y+b y^{2} \tag{9.2}
\end{equation*}
$$

for all $x, y \in K$.
Lemma 9.3. Let $\omega, a, b, x \mapsto \bar{x}$ and N be as in 9.1. Let $i \in[1, n]$, let $e=e_{i}$, let $f=f_{i}$, let $\eta \in E$ and let φ be the quadratic form on $\langle e, f\rangle$ given by

$$
\varphi(x e+y f)=x y
$$

for all $x, y \in E$. Let $b_{1}=\eta e+f$ and let $b_{2}=\eta \omega e+\bar{\omega} f$. Then the following hold:
(i) $e=\eta^{-1}(\bar{\omega}-\omega)^{-1}\left(\bar{\omega} b_{1}-b_{2}\right)$ and $f=-(\bar{\omega}-\omega)^{-1}\left(\omega b_{1}-b_{2}\right)$.
(ii) $\varphi\left(x b_{1}+y b_{2}\right)=\eta\left(x^{2}+a x y+b y^{2}\right)$ for all $x, y \in E$.
(iii) $\varphi \cong N \otimes_{K} E$.

Proof. It can be verified with a few calculations that (i) and (ii) hold; (iii) follows from (ii) and (9.2).

Notation 9.4. Let $\eta_{1}, \ldots, \eta_{n}$ be non-zero elements of K and let $Q: E^{n} \rightarrow K$ denote the quadratic from over K given by

$$
Q\left(y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} \eta_{i} N\left(y_{i}\right)
$$

for all $\left(y_{1}, \ldots, y_{n}\right) \in E^{n}$.

Proposition 9.5. Let $q: V \rightarrow E$ be as in 8.1, let $x \mapsto \bar{x}$ and K be as in 9.1, let $\eta_{1}, \ldots, \eta_{n}$ and Q be as in 9.4 and let $\Omega=\Omega_{\eta_{1}, \ldots, \eta_{n}}$ be the σ-linear automorphism of V given by

$$
\begin{equation*}
\Omega\left(\sum_{i=1}^{n}\left(x_{i} e_{i}+y_{i} f_{i}\right)\right)=\sum_{i=1}^{n}\left(\eta_{i} \overline{y_{i}} e_{i}+\eta_{i}^{-1} \overline{x_{i}} f_{i}\right) \tag{9.6}
\end{equation*}
$$

for all $x_{1}, \ldots, y_{n} \in E$. Then the following hold:
(i) $q(\Omega(v))=\overline{q(v)}$ for all $v \in V$ and $\Omega^{2}=1$.
(ii) $q \cong Q \otimes_{K} E$.
(iii) If the quadratic form Q is anisotropic, then there are no non-zero Ω invariant subspaces of V that are totally isotropic with respect to q.

Proof. Assertion (i) is clear and assertion (ii) follows from 9.3(iii). Suppose that V_{0} is a non-zero totally isotropic Ω-invariant subspace of V. Thus $q(v)=0$ for all $v \in V_{0}$. Let u be a non-zero element of V_{0}. The sum $v:=u+\Omega(u)$ is fixed by Ω. Replacing u by $t u$ for some $t \in E \backslash K$ if necessary, we can assume that v is non-zero. Hence

$$
v=\sum_{i=1}^{n}\left(x_{i} e_{i}+y_{i} f_{i}\right)
$$

for some $x_{1}, \ldots, y_{n} \in E$ not all zero. Since v is fixed by Ω, we have $x_{i}=\eta_{i} \overline{y_{i}}$ for each $i \in[1, n]$. Therefore the elements y_{1}, \ldots, y_{n} are not all zero and

$$
Q\left(y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} \eta_{i} y_{i} \overline{y_{i}}=q(v)=0
$$

Thus (iii) holds.
Proposition 9.7. Let $\alpha_{1}, \ldots, \alpha_{n}$ and x_{β} for $\beta \in \Phi$ be as in 8.4 and let Ω be as in (9.6). Then

$$
x_{\alpha_{i}}(t)^{\Omega}=x_{-\alpha_{i}}\left(-\eta_{i}^{-1} \eta_{i+1} \bar{t}\right)
$$

for all $i \in[1, n-1]$ and all $t \in E$ and

$$
x_{\alpha_{n}}(t)^{\Omega}=x_{-\alpha_{n}}\left(-\eta_{n-1}^{-1} \eta_{n}^{-1} \bar{t}\right)
$$

for all $t \in E$.

Proof. This holds by 8.2, (9.6) and some computation.

Notation 9.8. Let W be the Weyl group of Φ, let w_{1} be the longest element in W with respect to the set of generators $\left\{s_{\alpha_{i}} \mid i \in[1, n]\right\}$ and let $\Omega_{1}:=\Omega_{1, \ldots, 1}$ be the involution obtained by setting $\eta_{1}=\cdots=\eta_{n}=1$ in 9.5 . We use the same letters $\Omega=\Omega_{\eta_{1}, \ldots, \eta_{n}}$ and Ω_{1} to denote the automorphisms of Δ induced by these two involutions of V; this convention should not cause any confusion. Since $\eta_{1}, \ldots, \eta_{n} \in K$, we have

$$
\begin{equation*}
\Omega=g_{\lambda_{1}, \ldots, \lambda_{n}, \mathrm{id}} \cdot \Omega_{1}=g_{w_{1},-\lambda_{1}, \ldots,-\lambda_{n}, \sigma} \tag{9.9}
\end{equation*}
$$

if n is even by $2.10,8.15$ and 9.7, where $\lambda_{i}=\eta_{i}^{-1} \eta_{i+1}$ for all $i \in[1, n-1]$ and $\lambda_{n}=\eta_{n-1}^{-1} \eta_{n}^{-1}, g_{\lambda_{1}, \ldots, \lambda_{n}, \text { id }}$ is as in 4.7(i) and $g_{w_{1},-\lambda_{1}, \ldots,-\lambda_{n}, \sigma}$ is as in 4.13.

Notation 9.10. Let ι be the automorphism of V given by

$$
\iota\left(\sum_{i=1}^{n}\left(x_{i} e_{i}+y_{i} f_{i}\right)\right)=\sum_{i=1}^{n}\left(\overline{\bar{x}} e_{i}+\overline{y_{i}} f_{i}\right)
$$

for all $x_{1}, \ldots, y_{n} \in E$. Then $\iota(q(v))=\overline{q(v)}$ for all $v \in V, \iota$ commutes with the element Ω_{1} in 9.8, the composition $\iota \cdot \Omega_{1}$ is contained in $\mathrm{O}(q)$ and

$$
x_{\beta}(t)^{\iota}=x_{\beta}(\bar{t})
$$

for all $\beta \in \Phi$ and all $t \in E$.
Proposition 9.11. Let n be even and let Ω_{1} and ι be as in 9.8 and 9.10. Then the product $\iota \cdot \Omega_{1}$ induces an automorphism of Δ contained in the group G^{\dagger} defined in 3.1.

Proof. Since n is even, there is a unique element of $\mathrm{O}(q)$ that maps e_{i} to e_{i+1} and f_{i} to f_{i+1} for all odd $i \in[1, n]$ and e_{i} to f_{i-1} and f_{i} to e_{i-1} for all even $[1, n]$, and the square of this element equals $\iota \cdot \Omega_{1}$. By 8.5 , it follows that $\iota \cdot \Omega_{1} \in \Omega(q)$. The claim holds, therefore, by 8.5 .

10. An extension from $\mathrm{D}_{n}(E)$ to $\mathrm{D}_{n+1}(E)$

Let $V, E, \Omega=\Omega_{\eta_{1}, \ldots, \eta_{n}}, q, \mathcal{B}, \Phi$, etc., be as in the previous two sections.
Notation 10.1. Let V_{0} be a vector space over E containing V as a subspace of co-dimension 2, let

$$
\mathcal{B}_{0}=\left\{e_{0}, \ldots, e_{n}, f_{0}, \ldots, f_{n}\right\}
$$

be an extension of the basis \mathcal{B} to a basis of V_{0}, let $q_{0}: V_{0} \rightarrow E$ be the quadratic form given by

$$
q_{0}\left(\sum_{i=0}^{n}\left(x_{i} e_{i}+y_{i} f_{i}\right)\right)=\sum_{i=0}^{n} x_{i} y_{i}
$$

and let $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}$ be an extension of the basis $\alpha_{1}, \ldots, \alpha_{n}$ of Φ to a basis of a root system Φ_{0} of type D_{n+1} containing Φ. We extend Ω to a σ-linear automorphism Ω_{0} of V_{0} by setting

$$
\begin{equation*}
\Omega_{0}\left(x_{0} e_{0}+y_{0} f_{0}+v\right)=\overline{x_{0}} e_{0}+\overline{y_{0}} f_{0}+\Omega(v) \tag{10.2}
\end{equation*}
$$

for all $x_{0}, y_{0} \in E$ and all $v \in V$. Since Ω is an involution, so is Ω_{0}.
Notation 10.3. Let Δ_{0} denote the building of type D_{n+1} whose chambers are the oriflammes with respect to q_{0}. We identify the building $\Delta=\mathrm{D}_{n}(E)$ in $\S 9$ with the residue of Δ_{0} consisting of all oriflammes containing the subspace $\left\langle e_{0}\right\rangle$ and we denote the automorphism of Δ_{0} induced by Ω_{0} also by Ω_{0}. Thus Δ is a $\left\langle\Omega_{0}\right\rangle$-residue and Ω_{0} is a Galois involution of Δ_{0} extending Ω.

Proposition 10.4. Suppose that the quadratic form Q in 9.4 is anisotropic. Then Δ is a $\left\langle\Omega_{0}\right\rangle$-chamber and the fixed point building $\Delta_{0}^{\left\langle\Omega_{0}\right\rangle}$ is isomorphic to

$$
\mathrm{B}_{1}^{\mathcal{Q}}\left(K, E^{n}, Q\right),
$$

where $\mathrm{B}_{1}^{\mathcal{Q}}\left(K, E^{n}, Q\right)$ is as defined in [Wei2, 30.15].
Proof. It follows from 9.5 (iii) that Δ is a $\left\langle\Omega_{0}\right\rangle$-chamber. Let

$$
Q_{0}: K \oplus K \oplus E^{n} \rightarrow K
$$

be the quadratic form over K given by

$$
Q_{0}\left(x_{0} e_{0}+y_{0} f_{0}+v\right)=x_{0} y_{0}+Q(v)
$$

for all $x_{0}, y_{0} \in K$ and all $v \in E^{n}$. Thus Q is the anisotropic part of Q_{0}. Let $\hat{V}=\operatorname{Fix}_{V_{0}}\left(\Omega_{0}\right)$. By [MPW, 2.40(i)], there is a canonical isomorphism from $\hat{V} \otimes_{K} E$ to V_{0} mapping $\hat{v} \otimes t$ to $t \hat{v}$ for all $\hat{v} \in \hat{V}$ and all $t \in E$. By [MPW, 2.40(ii)], the map $W \mapsto W \cap \hat{V}$ is an inclusion- and dimension-preserving bijection from the set of Ω_{0}-invariant subspaces of V_{0} to the set of all subspaces of \hat{V}. For each $i \in[1, n]$, the elements b_{1} and b_{2} defined in 9.3 are fixed by Ω_{0}. The set of these elements together with e_{0} and f_{0} is thus a basis for \hat{V} over K. By 9.3(ii), it follows that Q_{0} is the restriction of q_{0} to \hat{V}. Thus by 9.5(ii), an Ω_{0}-invariant subspace W of V_{0} is totally isotropic with respect to q_{0} if and only if $W \cap \hat{V}$ is totally isotropic with respect to Q_{0}. By 3.4 , we conclude that $\Delta_{0}^{\left\langle\Omega_{0}\right\rangle} \cong \mathrm{B}_{1}^{\mathcal{Q}}\left(K, E^{n}, Q\right)$.

Notation 10.5. For all $\beta \in \Phi_{0}$ and all $t \in E$, let $x_{\beta}(t)$ be the elements of $\mathrm{O}\left(q_{0}\right)$ defined by applying 8.2 and 8.4 with the interval [1, n] replaced by the interval $[0, n]$. Thus, in particular, the restriction of $x_{\beta}(t)$ to V is as it was in the previous section for all $\beta \in \Phi$ and all $t \in E, x_{\alpha_{0}}(t)$ is the unique element of $\mathrm{O}\left(q_{0}\right)$ that fixes the elements e_{k} and f_{m} of \mathcal{B}_{0} for all $k \neq 1$ and all $m \neq 0$ and maps e_{1} to $e_{1}+t e_{0}$ and f_{0} to $f_{0}-t f_{1}$ for all $t \in E$ and $x_{\tilde{\alpha}}(t)$ is the unique element of $\mathrm{O}\left(q_{0}\right)$ that fixes the elements e_{k} and f_{m} of \mathcal{B}_{0} for all $k \in[0, n]$ and all $m \in[2, n]$ and maps f_{0} to $f_{0}-t e_{1}$ and f_{1} to $f_{1}+t e_{0}$ for all $t \in E$, where $\tilde{\alpha}$ is the highest root of Φ_{0} with respect to the basis $\alpha_{0}, \ldots, \alpha_{n}$.

Proposition 10.6. Let Ω_{0} be as in 10.2 and let $\tilde{\alpha}$ be the highest root of the root system $\Phi=\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle \cap \Phi_{0}$ of type D_{n}. Then

$$
x_{\alpha_{0}}(t)^{\Omega_{0}}=x_{\tilde{\alpha}}\left(\eta_{1} \bar{t}\right)
$$

and

$$
x_{\alpha_{i}}(t)^{\Omega_{0}}=x_{-\alpha_{i}}\left(-\eta_{i}^{-1} \eta_{i+1} \bar{t}\right)
$$

for all $t \in E$ and all $i \in[1, n-1]$ as well as

$$
x_{\alpha_{n}}(t)^{\Omega_{0}}=x_{-\alpha_{n}}\left(-\eta_{n-1}^{-1} \eta_{n}^{-1} \bar{t}\right)
$$

for all $t \in E$.
Proof. The first identity holds by (10.2), 10.5 and some computation, and the remaining identities hold by 9.7.

11. The quadrangles of type E_{8}

Our goal in this section is to prove 11.21. Let Φ be a root system of type E_{7} and let $\alpha_{1}, \ldots, \alpha_{7}$ and $\tilde{\alpha}$ be as in [Bou, Plate VI]. Let W be the Weyl group of Φ, let S be the set of reflections $s_{\alpha_{i}}$ for $i \in[1,7]$, let Φ_{1} be the root system $\left\langle\alpha_{2}, \ldots, \alpha_{7}\right\rangle \cap \Phi$ of type D_{6}, let $S_{1}=S \backslash\left\{s_{\alpha_{1}}\right\}$ and let $W_{1}=\left\langle S_{1}\right\rangle$.

The pair $\left(W_{1}, S_{1}\right)$ is a Coxeter system of type D_{6}. Let w_{1} denote the longest element in W_{1} with respect to the set of generators S_{1}. Since $\tilde{\alpha}$ is orthogonal to α_{i} for all $i \in[2,7]$, we have

$$
\begin{equation*}
w_{1}(\tilde{\alpha})=\tilde{\alpha} \tag{11.1}
\end{equation*}
$$

By 2.10, $w_{1}\left(\alpha_{i}\right)=-\alpha_{i}$ for all $i \in[2,7]$. Applying w_{1} to the equation

$$
\begin{equation*}
\tilde{\alpha}=2 \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7} \tag{11.2}
\end{equation*}
$$

we conclude that

$$
\begin{equation*}
\tilde{\alpha}=w_{1}\left(\alpha_{1}\right)+\alpha_{1} . \tag{11.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
w_{1}\left(\alpha_{1}\right)=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+4 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7} \tag{11.4}
\end{equation*}
$$

Notation 11.5. We denote by Δ the building $\mathrm{E}_{7}(E)$. Let Σ be an apartment of Δ, let c be a chamber of Σ and let Δ_{1} be the unique residue of Δ of type D_{6} containing c. Thus $\Delta_{1} \cong D_{6}(E)$ and $\Sigma_{1}:=\Delta_{1} \cap \Sigma$ is an apartment of Δ_{1}. We identify the root system Φ with the set of roots of Σ and $\operatorname{Aut}(\Phi)$ with a subgroup of $\operatorname{Aut}(\Sigma)$ as in 4.1. This gives an identification of Φ_{1} with the roots of Σ_{1}.

Notation 11.6. Let $\tilde{\Delta}, \tilde{\Sigma}, \tilde{c}, \tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{6}$ and $\left\{\tilde{x}_{\beta}\right\}_{\beta \in \Phi_{1}}$ be the building, the apartment, the chamber, the set of roots and the coordinate system called Δ, $\Sigma, c, \alpha_{1}, \ldots, \alpha_{6}$ and $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ in 8.3 and 8.4 with $n=6$. There exists an isomorphism v from $\tilde{\Delta}$ to Δ_{1} mapping $\tilde{\Sigma}$ to Σ_{1}, \tilde{c} to c and the root $\tilde{\alpha}_{i}$ to $\alpha_{\pi(i)}$ for all $i \in[1,6]$, where π is the map sending the sequence $1,2, \ldots, 6$ to the sequence $7,6,5,4,2,3$. Let $x_{\beta}=v^{-1} \cdot \tilde{x}_{\beta} \cdot v$ for all $\beta \in \Phi_{1}$. Then $\left\{x_{\beta}\right\}_{\beta \in \Phi_{1}}$ is a coordinate system for Δ_{1}. By 4.11, we can extend this coordinate system to a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ.

The root $\tilde{\alpha}$ is orthogonal to the root α_{i} for all $i \in[2,7]$. Thus $\left[U_{ \pm \alpha_{i}}, U_{\tilde{\alpha}}\right]=1$ for all $i \in[2,7]$ by 4.2 (ii). By 3.2 and 9.11 , there exists an element $\hat{\Omega}_{1}$ in

$$
\left\langle U_{\beta} \mid \beta \in \Phi_{1}\right\rangle \subset \operatorname{Aut}(\Delta)
$$

stabilizing Δ_{1} and Σ_{1} and centralizing $U_{\tilde{\alpha}}$ such that

$$
\begin{equation*}
x_{\alpha_{i}}^{\hat{\Omega}_{1}}=x_{-\alpha_{i}}(-t) \tag{11.7}
\end{equation*}
$$

for all $i \in[2,7]$.
Let R be the unique residue such that $R \cap \Sigma$ and Σ_{1} are opposite residues of Σ. For each root β in Φ_{1}, there exist chambers of Σ_{1} not in β. Thus each root of Φ_{1} contains chambers of R (by [Weil, 5.2]) and hence the corresponding root group stabilizes R. Therefore the element $\hat{\Omega}_{1}$ stabilizes R. Since it also stabilizes Σ_{1}, it stabilizes $\operatorname{proj}_{R}\left(\Sigma_{1}\right)$. By [Weil, 5.14(i)], $\operatorname{proj}_{R}\left(\Sigma_{1}\right)=R \cap \Sigma$. Hence $\hat{\Omega}_{1}$ stabilizes the convex closure of Σ_{1} and $R \cap \Sigma$. By [Wei1, 8.9 and 9.2], this convex closure is Σ. We conclude that $\hat{\Omega}_{1}$ stabilizes Σ. Since w_{1} and $\hat{\Omega}_{1}$ have the same restriction to Σ_{1}, the restriction of $\hat{\Omega}_{1}$ to Σ is w_{1}. By 4.14, therefore, there exist $\kappa_{1}, \ldots, \kappa_{7} \in E^{*}$ such that

$$
\hat{\Omega}_{1}=g_{w_{1}, \kappa_{1}, \ldots, \kappa_{7}, \text { id }} .
$$

Thus, in particular, we have

$$
\begin{equation*}
x_{\alpha_{1}}(t)^{\hat{\Omega}_{1}}=x_{w_{1}\left(\alpha_{1}\right)}(\kappa t) \tag{11.8}
\end{equation*}
$$

for $\kappa=\kappa_{1}$ and for all $t \in E$. By (11.7), $\kappa_{i}=-1$ for all $i \in[2,7]$. By 4.7(ii), there exists $\rho \in E^{*}$ such that

$$
\begin{equation*}
x_{w_{1}\left(\alpha_{1}\right)}(t)^{\hat{\Omega}_{1}}=x_{\alpha_{1}}(\rho t) \tag{11.9}
\end{equation*}
$$

for all $t \in E$. By 4.2(i) and (11.3), there exists $\delta \in\{1,-1\}$ such that

$$
\begin{equation*}
\left[x_{\alpha_{1}}(s), x_{w_{1}\left(\alpha_{1}\right)}(t)\right]=x_{\tilde{\alpha}}(\delta s t) \tag{11.10}
\end{equation*}
$$

for all $s, t \in E$. Applying $\hat{\Omega}_{1}$ to this identity, we find that

$$
\left[x_{w_{1}\left(\alpha_{1}\right)}(\kappa s), x_{\alpha_{1}}(\rho t)\right]=x_{\tilde{\alpha}}(\delta s t)
$$

for all $s, t \in E$. Thus

$$
\left[x_{\alpha_{1}}(\rho t), x_{w_{1}\left(\alpha_{1}\right)}(\kappa s)\right]=x_{\tilde{\alpha}}(-\delta s t)
$$

for all $s, t \in E$. Applying (11.10) to the left-hand side of this identity, we conclude that

$$
\begin{equation*}
\kappa \rho=-1 \tag{11.11}
\end{equation*}
$$

Notation 11.12. Let $\sigma, x \mapsto \bar{x}$ and K be as in 8.15 , let $\lambda_{1}, \eta_{1}, \ldots \eta_{6} \in K^{*}$ and let Q be as in 9.4 with $n=6$. We set

$$
\hat{\Omega}=g_{\lambda_{1}, \lambda_{2} \ldots, \lambda_{7}, \sigma} \cdot \hat{\Omega}_{1},
$$

where $\lambda_{2}=\eta_{5}^{-1} \eta_{6}, \lambda_{3}=\eta_{5}^{-1} \eta_{6}^{-1}, \lambda_{4}=\eta_{4}^{-1} \eta_{5}, \lambda_{5}=\eta_{3}^{-1} \eta_{4}, \lambda_{6}=\eta_{2}^{-1} \eta_{3}$, $\lambda_{7}=\eta_{1}^{-1} \eta_{2}$ and $g_{\lambda_{1}, \ldots, \lambda_{7}, \sigma}$ is as in 4.7(i). Thus

$$
\begin{equation*}
\lambda_{2}^{2} \lambda_{3}^{3} \lambda_{4}^{4} \lambda_{5}^{3} \lambda_{6}^{2} \lambda_{7}=\eta_{1}^{-1} \cdots \eta_{6}^{-1} \tag{11.13}
\end{equation*}
$$

Notation 11.14. Let $v: \tilde{\Delta} \rightarrow \Delta_{1}$ be as in 11.6 and let $\tilde{\Omega}$ be the automorphism of $\tilde{\Delta}$ in (9.6) with $n=6$ and $\eta_{1}, \ldots, \eta_{6}$ be as in 11.12. We denote by Ω the automorphism $v^{-1} \cdot \tilde{\Omega} \cdot v$ of Δ_{1}. The automorphism Ω satisfies the identities in 9.7 with $n=6$ and with the roots $\alpha_{1}, \ldots, \alpha_{6}$ replaced by the roots $\alpha_{7}, \alpha_{6}, \alpha_{5}, \alpha_{4}, \alpha_{2}, \alpha_{3}$ of Φ_{1} (in that order).

Proposition 11.15. The automorphism $\hat{\Omega}$ stabilizes Δ_{1}, the restriction of $\hat{\Omega}$ to Δ_{1} is the automorphism Ω defined in 11.14 and Ω is an involution.

Proof. Since $\hat{\Omega}_{1}$ and $g_{\lambda_{1}, \ldots, \lambda_{7}, \sigma}$ both stabilize Δ_{1}, so does $\hat{\Omega}$. The second claim holds by (9.9) and the third claim by $9.5(\mathrm{i})$.

Proposition 11.16. The automorphism $\hat{\Omega}$ is an involution if and only if

$$
\begin{equation*}
N\left(\lambda_{1}\right)=-\eta_{1} \cdots \eta_{6} \tag{11.17}
\end{equation*}
$$

where N is as in 9.1.
Proof. The automorphism $\hat{\Omega}$ is an extension of Ω and $\Omega^{2}=1$. Thus $\hat{\Omega}^{2}$ centralizes $U_{\alpha_{i}}$ for all $i \in[2,7]$. By the uniqueness assertion in 4.7(i), therefore, $\hat{\Omega}$ is an involution if and only if $\hat{\Omega}^{2}$ centralizes $U_{\alpha_{1}}$. We have

$$
\begin{aligned}
x_{\alpha_{1}}(t)^{\hat{\Omega}^{2}} & =x_{w_{1}\left(\alpha_{1}\right)}\left(\kappa \lambda_{1} \bar{t}\right)^{\hat{\Omega}} & & \text { by }(11.8) \\
& =x_{w_{1}\left(\alpha_{1}\right)}\left(\lambda_{1} \cdot \eta_{1}^{-1} \cdots \eta_{6}^{-1} \cdot \kappa \overline{\lambda_{1}} t\right)^{\hat{\Omega}_{1}} & & \text { by } 4.7(\mathrm{ii)},(11.4) \text { and }(11.13) \\
& =x_{\alpha_{1}}\left(\rho \kappa \cdot N\left(\lambda_{1}\right) \eta_{1}^{-1} \cdots \eta_{6}^{-1} t\right) & & \text { by }(11.9) \\
& =x_{\alpha_{1}}\left(-N\left(\lambda_{1}\right) \eta_{1}^{-1} \cdots \eta_{6}^{-1} t\right) & & \text { by }(11.11) .
\end{aligned}
$$

Thus $\hat{\Omega}$ is an involution if and only if (11.17) holds.
Corollary 11.18. Suppose the quadratic form Q in 11.12 is anisotropic and that (11.17) holds. Then $\hat{\Omega}$ is a Galois involution and Δ_{1} is a $\langle\hat{\Omega}\rangle$-chamber.

Proof. The first claim holds by 11.16 and the second claim holds by 9.5 (iii) and 11.15.

Proposition 11.19. Suppose the quadratic form Q in 11.12 is anisotropic and that (11.17) holds. Then $\Delta^{\langle\hat{\Omega}\rangle}$ is a Moufang set with non-abelian root groups.

Proof. By 11.18, $\hat{\Omega}$ is an involution and by 4.7(ii), (11.2) and (11.13), we have

$$
\begin{equation*}
x_{\tilde{\alpha}}(t)^{\hat{\Omega}}=x_{\tilde{\alpha}}\left(-\lambda_{1}{\overline{\lambda_{1}}}^{-1} \bar{t}\right)^{\hat{\Omega}_{1}}=x_{\tilde{\alpha}}\left(-\lambda_{1}{\overline{\lambda_{1}}}^{-1} \bar{t}\right) \tag{11.20}
\end{equation*}
$$

for all $t \in E$. Let T be the trace of the extension E / K and let

$$
X=\left\{(t, u) \in E^{2} \mid T\left(\overline{\lambda_{1}} u\right)+\kappa \delta N\left(\lambda_{1} t\right)=0\right\} .
$$

It follows from (11.8), (11.10) and (11.20) that for all $(t, u) \in X$, the element

$$
g_{t, u}:=x_{\alpha_{1}}(t) x_{w_{1}\left(\alpha_{1}\right)}\left(\kappa \lambda_{1} \bar{t}\right) x_{\tilde{\alpha}}(u)
$$

is centralized by $\hat{\Omega}$.
The roots of Σ cutting Δ_{1} (as defined in 3.5) are the roots in Φ_{1}. All the other positive roots of Φ contain $\Delta_{1} \cap \Sigma$. In particular, $\alpha_{1}, w_{1}\left(\alpha_{1}\right)$ and $\tilde{\alpha}$ all contain $\Delta_{1} \cap \Sigma$. By $6.12(\mathrm{v})$, the root group of $\Delta^{\langle\hat{\Omega}\rangle}$ fixing the $\langle\hat{\Omega}\rangle$-chamber Δ_{1} is isomorphic to the centralizer of $\hat{\Omega}$ in the group generated by all the roots
of Φ containing $\Delta_{1} \cap \Sigma$. Thus $\left\langle g_{u, t} \mid(u, t) \in X\right\rangle$ is contained in this root group. For each $t \in E$, we can choose $u_{t} \in E$ such that $\left(t, u_{t}\right) \in X$. Applying (11.10) and the identities [TW, 2.2], we find that

$$
\left[g_{s, u_{s}}, g_{t, u_{t}}\right]=x_{\tilde{\alpha}}\left(\delta \kappa \lambda_{1}(s \bar{t}-\bar{s} t)\right)
$$

for all $s, t \in E$. Thus not all of the elements $g_{t, u_{t}}$ commute with each other.
Theorem 11.21. Let $\Lambda=(K, V, Q)$ be a quadratic space of type E_{8}. Then there exists a separable quadratic extension E / K such that Q_{E} is hyperbolic and for each such extension E / K, there exists a Galois involution Ω of the building $\Delta=\mathrm{E}_{8}(E)$ such that the Tits index of the group $\Gamma:=\langle\Omega\rangle$ is

and the fixed point building Δ^{Γ} is isomorphic to $\mathrm{B}_{2}^{\mathcal{E}}(\Lambda)$.
Proof. By 5.5, we can choose a separable quadratic extension E / K such that Q_{E} is hyperbolic and we can assume that $V=E^{6}$ and there exists $\eta_{1}, \ldots, \eta_{6} \in K$ such that

$$
Q\left(u_{1}, \ldots, u_{6}\right)=\eta_{1} N\left(u_{1}\right)+\cdots+\eta_{6} N\left(u_{6}\right)
$$

for all $\left(u_{1}, \ldots, u_{6}\right) \in V$, where N is the norm of the extension E / K, and

$$
\begin{equation*}
-\eta_{1} \eta_{2} \cdots \eta_{6} \in N(E) \tag{11.22}
\end{equation*}
$$

Let $\Delta=\mathrm{E}_{8}(E)$, let Σ be an apartment of Δ and let c be a chamber of Σ. Let Φ be the root system of type E_{8} and let $\alpha_{1}, \ldots, \alpha_{8}$ be as in [Bou, Plate VII]. We identify Φ with the set of roots of Σ and $\operatorname{Aut}(\Phi)$ with a subgroup of $\operatorname{Aut}(\Sigma)$ as in 4.1 and choose a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ. Let A be the unique subset of S spanning a subdiagram of Π of type D_{6}, let w_{1} denote the longest element in the Coxeter group W_{A} with respect to the set of generators A, let R denote the unique A-residue of Δ containing c, let R_{1} be the unique residue of type D_{7} containing R and let R_{2} be the unique residue of type E_{7} containing R.

By (11.22), we can choose λ_{1} so that (11.17) holds. Let κ be as in (11.8) and let $\lambda_{2}, \ldots, \lambda_{7}$ be as in 11.12. We then set $\kappa_{1}=\kappa \lambda_{1}, \kappa_{i}=-\lambda_{i}$ for all $i \in[2,7]$, $\kappa_{8}=\eta_{1}$ and

$$
\Omega=g_{w_{1}, \kappa_{1}, \ldots, \kappa_{8}, \sigma}
$$

where σ is the non-trivial element in $\operatorname{Gal}(E / K)$ and $g_{w_{1}, \kappa_{1}, \ldots, \kappa_{8}, \sigma}$ is as in 4.13. Let $\Gamma=\langle\Omega\rangle$. Since w_{1} stabilizes $R \cap \Sigma$, it also stabilizes $R_{1} \cap \Sigma$ and $R_{2} \cap \Sigma$. Hence R, R_{1} and R_{2} are Γ-residues.

By 4.11 with R_{1} in place of R and 11.6 , we can assume that the coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ was chosen so that there are two isomorphisms, one from R_{1} to the building Δ_{0} in 10.3 with $n=6$ carrying the automorphism Ω_{0} defined in 10.2 to the restriction of Ω to R_{1} and the other from R_{2} to the building Δ in 11.5 carrying the automorphism $\hat{\Omega}$ defined in (11.12) to the restriction of Ω to R_{2}. By 10.6 applied to the restriction of Ω to R_{1}, Ω^{2} centralizes $U_{\alpha_{i}}$ for all $i \in[2,8]$ and R is a Γ-chamber. By 11.18 applied to the restriction of Ω to R_{2}, Ω^{2} also centralizes $U_{\alpha_{1}}$. Thus Ω is a Galois involution. By 6.5 , therefore, Γ is a descent group of Δ. By 6.11 and 6.12 (iii), Δ^{Γ} is a building of type B_{2}, and thus by 6.12 (iv), Δ^{Γ} is a Moufang quadrangle. Let \mathbb{M}_{1} and \mathbb{M}_{2} be as in 5.16 applied to Δ^{Γ}. By $6.15,10.4$ and 11.19 , one of these two Moufang sets is isomorphic to $\mathrm{B}_{1}^{\mathcal{Q}}\left(K, E^{6}, Q\right)$ and the other has non-abelian root groups. By 5.16(a), it follows that $\Delta^{\Gamma} \cong B_{2}^{\mathcal{E}}(\Lambda)$.

12. The exceptional buildings of type \boldsymbol{A}_{2}

Our goal in this section is to prove 12.11.
Notation 12.1. Let $\Delta=\mathrm{D}_{5}(E)$ and let $\Sigma, c, \Phi, \alpha_{1}, \ldots, \alpha_{5}, \tilde{\alpha},(W, S)$, the identification of Φ with the set of roots of Σ and the identification of $\operatorname{Aut}(\Phi)$ with a subgroup of $\operatorname{Aut}(\Sigma)$ be as in 4.1. Let $S_{1}=S \backslash\left\{s_{\alpha_{1}}\right\}$, let $W_{1}=\left\langle S_{1}\right\rangle$, let Φ_{1} be the root system $\left\langle\alpha_{2}, \ldots, \alpha_{5}\right\rangle \cap \Phi$ of type D_{4} and let Δ_{1} be the unique residue of type D_{4} containing c.

Notation 12.2. Let $\tilde{\Delta}, \tilde{\Sigma}, \tilde{c}, \tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4}$ and $\left\{\tilde{x}_{\beta}\right\}_{\beta \in \Phi_{1}}$ be the building, the apartment, the chamber, the set of roots and the coordinate system called Δ, $\Sigma, c, \alpha_{1}, \ldots, \alpha_{4}$ and $\left\{x_{\beta}\right\}_{\beta \in \Phi_{1}}$ in 8.3 and 8.4 with $n=4$. There exists an isomorphism v from $\tilde{\Delta}$ to Δ_{1} mapping $\tilde{\Sigma}$ to Σ_{1}, \tilde{c} to c and the root $\tilde{\alpha}_{i}$ to $\alpha_{\pi(i)}$ for all $i \in[1,4]$, where π is the map sending the sequence $1,2,3,4$ to the sequence $5,3,4,2$. Let $x_{\beta}=v^{-1} \cdot \tilde{x}_{\beta} \cdot v$ for all $\beta \in \Phi_{1}$. Then $\left\{x_{\beta}\right\}_{\beta \in \Phi_{1}}$ is a coordinate system for Δ_{1}. By 4.11 , we can extend this coordinate system to a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ.

The pair (W, S) is a Coxeter system of type D_{5} and the pair $\left(W_{1}, S_{1}\right)$ is a Coxeter system of type D_{4}. Let w_{1} denote the longest element in W_{1} with respect to the set of generators S_{1} and let Φ_{0} be the root system of type D_{6} obtained by applying 10.1 to Φ. By 8.6 applied to Φ_{0}, we have

$$
\begin{equation*}
w_{1}\left(\alpha_{1}\right)=\tilde{\alpha}=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5} . \tag{12.3}
\end{equation*}
$$

We also know that

$$
\begin{equation*}
w_{1}\left(\alpha_{i}\right)=-\alpha_{i} \tag{12.4}
\end{equation*}
$$

for all $i \in[2,5]$. By 4.16 and 8.14 , there exists $\delta \in\{1,-1\}$ such that

$$
\begin{equation*}
\hat{\Omega}_{1}:=g_{w_{1}, \delta,-1,-1,-1,-1, \mathrm{id}} \tag{12.5}
\end{equation*}
$$

is an involution, where $g_{w_{1}, \delta,-1,-1,-1,-1, \text { id }}$ is as in 4.13.
Notation 12.6. Let $\eta_{1}, \ldots, \eta_{4}$ and Q be as in 9.4 with $n=4$, let σ, K, etc., be as in 8.15 , let v and $\tilde{\Delta}$ be as in 12.2 and let $\tilde{\Omega}$ be the automorphism of $\tilde{\Delta}$ in (9.6) with $n=4$. We denote by Ω the automorphism $v^{-1} \cdot \tilde{\Omega} \cdot v$ of Δ_{1}. The automorphism Ω satisfies the identities in 9.7 with $n=4$ and with the roots $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ replaced by the roots $\alpha_{5}, \alpha_{3}, \alpha_{4}, \alpha_{2}$ of Φ_{1} (in that order).

Notation 12.7. Suppose that there exists $\lambda_{1} \in E$ such that $N\left(\lambda_{1}\right)=\eta_{1} \eta_{2} \eta_{3} \eta_{4}$ and let

$$
\hat{\Omega}=g_{\lambda_{1}, \ldots, \lambda_{5}, \sigma} \cdot \hat{\Omega}_{1}=g_{w_{1}, \delta \lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4},-\lambda_{5}, \sigma}
$$

where $\lambda_{2}=\eta_{3}^{-1} \eta_{4}^{-1}, \lambda_{3}=\eta_{2}^{-1} \eta_{3}, \lambda_{4}=\eta_{3}^{-1} \eta_{4}, \lambda_{5}=\eta_{1}^{-1} \eta_{2}, \hat{\Omega}_{1}$ and δ are as in (12.5) and $g_{\lambda_{1}, \ldots, \lambda_{5}, \sigma}$ is as in 4.7(i). We have

$$
\begin{equation*}
\lambda_{1} \lambda_{2}^{2} \lambda_{3}^{2} \lambda_{4} \lambda_{5}={\overline{\lambda_{1}}}^{-1} \tag{12.8}
\end{equation*}
$$

Theorem 12.9. Suppose that $\eta_{1} \eta_{2} \eta_{3} \eta_{4} \in N(E)$ and that the quadratic form Q in 12.6 is anisotropic. Let $\hat{\Omega}$ be as in 12.7 and let Δ_{1} be the unique residue of type D_{4} containing the chamber c. Then $\hat{\Omega}$ is a Galois involution of Δ stabilizing Δ_{1} but not any proper residue of Δ_{1}.

Proof. By (12.3) and (12.4), we have

$$
x_{\alpha_{1}}^{\hat{\beta}}(t)=x_{\tilde{\alpha}}\left(\delta \lambda_{1} \bar{t}\right)
$$

for all $t \in E$ and

$$
x_{\alpha_{i}}^{\hat{\Lambda}}(t)=x_{-\alpha_{i}}\left(-\lambda_{i} \bar{t}\right)
$$

for all $t \in E$ and all $i \in[2,5]$. Since $\hat{\Omega}_{1}$ is an involution, we have

$$
\begin{equation*}
x_{\tilde{\alpha}}(t)^{\hat{\Omega}_{1}}=x_{\alpha_{1}}(\delta t) \tag{12.10}
\end{equation*}
$$

for all $t \in E$. Therefore

$$
\begin{aligned}
x_{w_{1}\left(\alpha_{1}\right)}(t)^{\hat{\Omega}} & =x_{\tilde{\alpha}}\left(\lambda_{1} \lambda_{2}^{2} \lambda_{3}^{2} \lambda_{4} \lambda_{5} \bar{t}\right)^{\hat{\Omega}_{1}} & & \text { by } 4.7(\mathrm{ii}) \text { and }(12.3) \\
& =x_{\tilde{\alpha}}\left({\overline{\lambda_{1}}}^{-1} \bar{t}\right)^{\hat{\Omega}_{1}} & & \text { by }(12.8) \\
& =x_{\alpha_{1}}\left(\delta{\overline{\lambda_{1}}}^{-1} \bar{t}\right) & & \text { by }(12.10)
\end{aligned}
$$

for all $t \in E$. Hence $\hat{\Omega}^{2}$ centralizes $U_{\alpha_{1}}$. Thus $\hat{\Omega}$ is an involution (and hence a Galois involution). Since w_{1} stabilizes $\Sigma \cap \Delta_{1}, \hat{\Omega}$ stabilizes Δ_{1}. The restriction of $\hat{\Omega}$ to Δ_{1} coincides with the automorphism Ω defined in 12.6. By 9.5 (iii), it follows that $\hat{\Omega}$ stabilizes no proper residue of Δ_{1}.

Theorem 12.11. Let D be an octonion division algebra over a field K and let E / K be a separable quadratic extension such that D_{E} is split. Then there exists a Galois involution Ω of the building $\Delta=\mathrm{E}_{6}(E)$ such that the Tits index of the group $\Gamma:=\langle\Omega\rangle$ is

and the fixed point building Δ^{Γ} is isomorphic to $\mathrm{A}_{2}(D)$.
Proof. Let $\Delta=\mathrm{E}_{6}(E)$, let Σ be an apartment of Δ and let c be a chamber of Σ. Let Φ and $\alpha_{1}, \ldots, \alpha_{6}$ be as in [Bou, Plate V]. We identify Φ with the set of roots of Σ as in 4.1 and choose a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ. Let A be the unique set of vertices of the Coxeter diagram Π spanning a subdiagram of type D_{4}, let w_{1} denote the longest element in the Coxeter group W_{A} with respect to the generating set A, let R denote the unique A-residue of Δ containing c and let R_{1} and R_{2} be the two maximal residues containing R.

There exist $\eta_{1}, \ldots, \eta_{4} \in K$ such that $\eta_{1} \cdots \eta_{4} \in N(E)$ and the quadratic form Q defined in 9.4 is similar to the norm of D. Let $\lambda_{1}, \cdots, \lambda_{5}$ and δ be as in 12.7. We set $\kappa_{1}=\delta \lambda_{1}, \kappa_{2}=-\lambda_{4}, \kappa_{3}=-\lambda_{2}, \kappa_{4}=-\lambda_{3}, \kappa_{5}=-\lambda_{5}$ and $\kappa_{6}=\eta_{1}$. Next, we set

$$
\Omega_{0}=g_{w_{1}, \kappa_{1}, \ldots, \kappa_{6}, \sigma}
$$

where σ is the non-trivial element in $\operatorname{Gal}(E / K)$ and $g_{w_{1}, \kappa_{1}, \ldots, \kappa_{6}, \sigma}$ is as in 4.13. Finally, we set $\Gamma=\left\langle\Omega_{0}\right\rangle$.

By 4.11 with R_{2} in place of R and 12.6 , we can assume that the coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ was chosen so that there are two isomorphisms, one from R_{1} to the building Δ in 12.1 carrying the automorphism $\hat{\Omega}$ in 12.7 to the restriction of Ω to R_{1} and the other from R_{2} to the building Δ_{0} in 10.3 with $n=5$ carrying the automorphism Ω_{0} defined in (10.2) to the restriction of Ω to R_{2}. Since w_{1} stabilizes $R \cap \Sigma, \Gamma$ stabilizes R. Hence Γ stabilizes the residues of Δ that contain R. By 12.9, therefore, Ω_{0}^{2} centralizes $U_{\alpha_{i}}$ for all $i \in[1,5]$ and R is a Γ-chamber, and by $10.6, \Omega_{0}^{2}$ centralizes $U_{\alpha_{6}}$. It follows that Ω_{0} is a Galois involution. By 6.5 , therefore, $\Gamma:=\left\langle\Omega_{0}\right\rangle$ is a descent group of Δ. By 6.11 and $6.12(\mathrm{iii}), \Delta^{\Gamma}$ is a building of type A_{2}, and thus by 6.12(iv), Δ^{Γ} is a Moufang triangle. By [TW, 17.2-17.3], there exists a field, a skew-field or an octonion division algebra D_{1} such that $\Delta^{\Gamma} \cong \mathrm{A}_{2}\left(D_{1}\right)$. Thus the Moufang set
induced by the stabilizer of a panel of Δ^{Γ} in the automorphism group of Δ^{Γ} is isomorphic to $\mathrm{A}_{1}\left(D_{1}\right)$. By 6.15 and 10.4 , it follows that

$$
\mathrm{A}_{1}\left(D_{1}\right) \cong \mathrm{B}_{1}^{\mathcal{Q}}\left(K, E^{4}, Q\right)
$$

Hence by [Wei3, 31.21], D_{1} is an octonion division algebra whose norm is similar to Q. Therefore $D_{1} \cong D$ (by [TW, 20.28], for example).

13. The quadrangles of type \boldsymbol{E}_{7}

Our goal in this section is to prove 13.12.
Notation 13.1. Let $\Delta=\mathrm{D}_{6}(E), \Sigma, c, \Phi, \alpha_{1}, \ldots, \alpha_{6},(W, S)$, the identification of the set of roots of Σ with Φ, the identification of $\operatorname{Aut}(\Phi)$ with a subgroup of $\operatorname{Aut}(\Sigma)$, etc., be as in 4.1. Let $S_{1}=S \backslash\left\{s_{\alpha_{1}}, s_{\alpha_{2}}\right\}$, let $W_{1}=\left\langle S_{1}\right\rangle$ and let Φ_{1} be the root system $\left\langle\alpha_{3}, \ldots, \alpha_{6}\right\rangle \cap \Phi$ of type D_{4}. Let Δ_{1} be the unique residue of type D_{4} containing c.

Notation 13.2. Let $\tilde{\Delta}, \tilde{\Sigma}, \tilde{c}, \tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{4}$ and $\left\{\tilde{x}_{\beta}\right\}_{\beta \in \Phi_{1}}$ be the building, the apartment, the chamber, the set of roots and the coordinate system called Δ, $\Sigma, c, \alpha_{1}, \ldots, \alpha_{4}$ and $\left\{x_{\beta}\right\}_{\beta \in \Phi_{1}}$ in 8.3 and 8.4 with $n=4$. There exists an isomorphism v from $\tilde{\Delta}$ to Δ_{1} mapping $\tilde{\Sigma}$ to Σ_{1}, \tilde{c} to c and the root $\tilde{\alpha}_{i}$ to $\alpha_{\pi(i)}$ for all $i \in[1,6]$, where π is the map sending the sequence $1,2,3,4$ to the sequence $6,4,5,3$. Let $x_{\beta}=v^{-1} \cdot \tilde{x}_{\beta} \cdot v$. Then $\left\{x_{\beta}\right\}_{\beta \in \Phi_{1}}$ is a coordinate system for Δ_{1}. By 4.11 , we can extend this coordinate system to a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ.

The pair (W, S) is a Coxeter system of type D_{6} and the pair $\left(W_{1}, S_{1}\right)$ is a Coxeter system of type D_{4}. Let w_{1} denote the longest element in W_{1} with respect to the set of generators S_{1} and let $w_{0}=s_{\alpha_{1}} w_{1}$. By (8.7), (8.9) and (8.10), we have

$$
\begin{equation*}
w_{0}\left(\alpha_{2}\right)=\alpha_{1}+\alpha_{2}+2 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+\alpha_{6} \tag{13.3}
\end{equation*}
$$

and

$$
w_{0}\left(\alpha_{i}\right)=-\alpha_{i}
$$

for all $i \in[1,6]$ other than 2 . By 4.16 and 8.11 with $n=6$, there exists $\omega \in\{1,-1\}$ such that

$$
\begin{equation*}
\hat{\Omega}_{1}:=g_{w_{0}, 1, \omega,-1,-1,-1,-1, \text { id }} \tag{13.4}
\end{equation*}
$$

is an involution, where $g_{w_{0}, 1, \omega,-1,-1,-1,-1, \text { id }}$ is as in 4.13.

Notation 13.5. Let $\eta_{1}, \ldots, \eta_{4}$ and Q be as in 9.4 with $n=4$, let σ, K, etc., be as in 8.15 , let v and $\tilde{\Delta}$ be as in 13.2 and let $\tilde{\Omega}$ be the automorphism of $\tilde{\Delta}$ in (9.6) with $n=4$. We denote by Ω the automorphism $v^{-1} \cdot \tilde{\Omega} \cdot v$ of Δ_{1}. The automorphism Ω satisfies the identities in 9.7 with $n=4$ and with the roots $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ replaced by the roots $\alpha_{6}, \alpha_{4}, \alpha_{5}, \alpha_{3}$ of Φ_{1} (in that order).

Notation 13.6. Let

$$
\hat{\Omega}=g_{\lambda_{1}, \ldots, \lambda_{6}, \sigma} \cdot \hat{\Omega}_{1}=g_{w_{0}, \lambda_{1}, \omega \lambda_{2},-\lambda_{3}, \ldots,-\lambda_{6}, \sigma}
$$

where $\lambda_{1}=\eta_{1} \eta_{2} \eta_{3} \eta_{4}, \lambda_{2}=1, \lambda_{3}=\eta_{3}^{-1} \eta_{4}^{-1}, \lambda_{4}=\eta_{2}^{-1} \eta_{3}, \lambda_{5}=\eta_{3}^{-1} \eta_{4}$, $\lambda_{6}=\eta_{1}^{-1} \eta_{2}$ and $\hat{\Omega}_{1}$ and $g_{\lambda_{1}, \ldots, \lambda_{6}, \sigma}$ are as in 4.7(i). Note that

$$
\begin{equation*}
\lambda_{1} \lambda_{2} \lambda_{3}^{2} \lambda_{4}^{2} \lambda_{5} \lambda_{6}=1 \tag{13.7}
\end{equation*}
$$

Theorem 13.8. Suppose that $\eta_{1} \eta_{2} \eta_{3} \eta_{4} \notin N(E)$ and that the quadratic form Q defined in 13.5 is anisotropic and let Δ_{0} be the unique residue of type $A_{1} \times D_{4}$ containing the chamber c. Then $\hat{\Omega}$ is a Galois involution of Δ stabilizing Δ_{0} but not any proper residue of Δ_{0}.

Proof. We have

$$
x_{\alpha_{1}}(t)^{\hat{\Omega}}=x_{-\alpha_{1}}\left(\lambda_{1} \bar{t}\right)
$$

and

$$
x_{\alpha_{2}}(t)^{\hat{\Omega}}=x_{w_{0}\left(\alpha_{2}\right)}(\omega \bar{t})
$$

for all $t \in E$ as well as

$$
\begin{equation*}
x_{\alpha_{i}}(t)^{\hat{\Omega}}=x_{-\alpha_{i}}\left(-\lambda_{i} \bar{t}\right) \tag{13.9}
\end{equation*}
$$

for all $t \in E$ and all $i \in[3,6]$. We also have

$$
\begin{equation*}
x_{w_{0}\left(\alpha_{2}\right)}(t)^{\hat{\Omega}_{1}}=x_{\alpha_{2}}(\omega t) \tag{13.10}
\end{equation*}
$$

for all $t \in E$ since $\hat{\Omega}_{1}$ is an involution. Therefore

$$
\begin{aligned}
x_{w_{0}\left(\alpha_{2}\right)}(t)^{\hat{\Omega}} & =x_{w_{0}\left(\alpha_{2}\right)}\left(\lambda_{1} \lambda_{2} \lambda_{3}^{2} \lambda_{4}^{2} \lambda_{5} \lambda_{6} \bar{t}\right)^{\hat{\Omega}_{1}} & & \text { by } 4.7(\mathrm{ii}) \text { and }(13.3) \\
& =x_{w_{0}\left(\alpha_{2}\right)}(\bar{t})^{\hat{\Omega}_{1}} & & \text { by }(13.7) \\
& =x_{\alpha_{2}}(\omega \bar{t}) & & \text { by }(13.10)
\end{aligned}
$$

for all $t \in E$. Hence $\hat{\Omega}^{2}$ centralizes $U_{\alpha_{2}}$. Since $\lambda_{i} \in K$ for all $i \in[1,6]$ and $\hat{\Omega}_{1}^{2}=1$, it follows from 4.7(ii) that

$$
x_{-\alpha_{1}}(t)^{\hat{\Omega}}=x_{-\alpha_{1}}\left(\lambda_{1}^{-1} \bar{t}\right)^{\hat{\Omega}_{1}}=x_{\alpha_{1}}\left(\lambda_{1}^{-1} \bar{t}\right)
$$

and

$$
x_{-\alpha_{i}}(t)^{\hat{\Omega}}=x_{-\alpha_{i}}\left(\lambda_{i}^{-1} \bar{t}\right)^{\hat{\Omega}_{1}}=x_{\alpha_{i}}\left(-\lambda_{i}^{-1} \bar{t}\right)
$$

for all $t \in E$ and all $i \in[3,6]$. Therefore $\hat{\Omega}^{2}$ centralizes $U_{\alpha_{i}}$ for all $i \in[1,6]$. Thus $\hat{\Omega}$ is a Galois involution.

The involution $\hat{\Omega}$ induces the automorphism w_{0} on Σ, and w_{0} stabilizes $\Delta_{0} \cap \Sigma$. Therefore $\hat{\Omega}$ stabilizes Δ_{0}.

Let P be the 1 -panel containing c, let π_{P} be the restriction of the projection map proj_{P} to Δ_{0}, let π denote the restriction of the projection map proj${\Delta_{1}}$ to Δ_{0} and let ζ denote the restriction of $\hat{\Omega} \cdot \pi$ to Δ_{1}. By 3.11, 9.7 and (13.9), ζ coincides with the automorphism Ω defined in 13.5.

Suppose that R is a residue of Δ_{0} stabilized by $\hat{\Omega}$. By 9.5 (iii), ζ does not stabilize any proper residues of Δ_{1}. Therefore the image of R under the projection map π is Δ_{1}. By 8.13 , the image of Δ_{0} under π_{P} is a projective line over E which can be coordinatized so that $\hat{\Omega} \cdot \pi_{P}$ is the map $t \mapsto \lambda_{1} \bar{t}^{-1}$. Since $\lambda_{1}=\eta_{1} \cdots \eta_{4} \notin N(E)$, this map has no fixed points. Therefore the image of R under π_{P} is P. Hence $R=\Delta_{0}$. Thus $\hat{\Omega}$ stabilizes no proper residues of Δ_{0}.

Proposition 13.11. Suppose the quadratic form Q in 13.5 is anisotropic and that $\eta_{1} \eta_{2} \eta_{3} \eta_{4} \notin N(E)$. Then $\Delta^{\langle\hat{\Omega}\rangle}$ is a Moufang set with non-abelian root groups.

Proof. By (13.8), $\hat{\Omega}$ is an involution. By 4.2(i) and (13.3), there exists $\delta \in\{1,-1\}$ such that

$$
\left[x_{\alpha_{2}}(t), x_{w_{0}\left(\alpha_{2}\right)}(s)\right]=x_{\tilde{\alpha}}(\delta s t)
$$

for all $s, t \in E$. Setting $s=\delta$ and conjugating by $\hat{\Omega}$, we have

$$
\begin{aligned}
x_{\tilde{\alpha}}(t)^{\hat{\Omega}} & =\left[x_{w_{0}\left(\alpha_{2}\right)}(\omega \bar{t}), x_{\alpha_{2}}(\omega \delta)\right] \\
& =x_{\tilde{\alpha}(-\bar{t})}
\end{aligned}
$$

for all $t \in E$. Let T be the trace of the extension E / K and let

$$
X=\left\{(t, u) \in E^{2} \mid \quad T(u)+\omega \delta N(t)=0\right\} .
$$

It follows from (11.10) and (11.20) that for all $(t, u) \in X$, the element

$$
g_{t, u}:=x_{\alpha_{2}}(t) x_{w_{0}\left(\alpha_{2}\right)}(\omega \bar{t}) x_{\tilde{\alpha}}(u)
$$

is centralized by $\hat{\Omega}$.
The roots of Σ cutting Δ_{1} are the roots in $\Phi \cap\left\langle\alpha_{1}, \alpha_{3}, \ldots, \alpha_{6}\right\rangle$. All the other positive roots of Φ contain $\Delta_{1} \cap \Sigma$. In particular, $\alpha_{2}, w_{0}\left(\alpha_{2}\right)$ and $\tilde{\alpha}$ all contain $\Delta_{1} \cap \Sigma$. The root group U of $\Delta^{\langle\hat{\Omega}\rangle}$ fixing the $\langle\hat{\Omega}\rangle$-chamber Δ_{1} is isomorphic
to the centralizer of $\hat{\Omega}$ in the group generated by all the positive roots of Φ containing $\Delta_{1} \cap \Sigma$. For each $t \in E$, there exist $u_{t} \in E$ such that $\left(t, u_{t}\right) \in X$. Applying the identities [TW, 2.2], we see that

$$
\left[g_{s, u_{s}}, g_{t, u_{t}}\right]=x_{\tilde{\alpha}}(\delta \omega(\bar{t}-\bar{s} t))
$$

for all $s, t \in E$. Thus not all of the elements $g_{t, u_{t}}$ commute with each other. Therefore the root group U is non-abelian.

Theorem 13.12. Let $\Lambda=(K, V, Q)$ be a quadratic space of type E_{7}. Then there exists a separable quadratic extension E / K such that Q_{E} is hyperbolic and for each such extension E / K, there exists a Galois involution Ω of the building $\Delta=\mathrm{E}_{7}(E)$ such that the Tits index of the group $\Gamma=\langle\Omega\rangle$ is

and the fixed point building Δ^{Γ} is isomorphic to $\mathrm{B}_{2}^{\mathcal{E}}(K, V, Q)$.
Proof. By 5.5, we can choose a separable quadratic extension E / K such that Q_{E} is hyperbolic and assume that $V=E^{4}$ and that there exists $\eta_{1}, \ldots, \eta_{4} \in K$ such that

$$
Q\left(u_{1}, \ldots, u_{4}\right)=\eta_{1} N\left(u_{1}\right)+\cdots+\eta_{4} N\left(u_{4}\right)
$$

for all $\left(u_{1}, \ldots, u_{6}\right) \in V$, where N is the norm of the extension E / K, and

$$
\eta_{1} \eta_{2} \eta_{3} \eta_{4} \notin N(E)
$$

Let σ be the non-trivial element in $\operatorname{Gal}(E / K)$, let $\Delta=\mathrm{E}_{7}(E)$, let Σ be an apartment of Δ and let c be a chamber of Σ. Let Φ be the root system and let $\alpha_{1}, \ldots, \alpha_{7}$ be as in [Bou, Plate VI]. We identify Φ with the set of roots of Σ as in 4.1 and choose a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ. Let A be the unique subset of S spanning a subdiagram of Π of type $A_{1} \times D_{4}$, let w_{0} denote the longest element in the Coxeter group W_{A} with respect to the generating set A and let R denote the unique A-residue of Δ containing c. Let R_{1} and R_{2} be the unique residues of type D_{6} and $A_{1} \times D_{5}$ containing c, let R_{3} be the unique residue of R_{2} of type D_{5} containing c and let ξ be the restriction of $\Omega \cdot \operatorname{proj}_{R_{3}}$ to R_{3}.

Let $\lambda_{1}, \ldots, \lambda_{6}$ be as in 13.6. We set $\kappa_{1}=\eta_{1}, \kappa_{2}=-\lambda_{5}, \kappa_{3}=-\lambda_{6}$, $\kappa_{4}=-\lambda_{4}, \kappa_{5}=-\lambda_{3}, \kappa_{6}=\delta \lambda_{2}$ and $\kappa_{7}=\lambda_{1}$. We then set

$$
\Omega=g_{w_{0}, \kappa_{1}, \ldots, \kappa_{7}, \sigma},
$$

where $g_{w_{0}, \kappa_{1}, \ldots, \kappa_{7}, \sigma}$ is as in 4.13. Finally, we set $\Gamma=\langle\Omega\rangle$.

By 4.11 with R_{3} in place of R and 13.5 , we can assume that the coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ was chosen so that there are two isomorphisms, one from R_{1} to the building Δ in 13.1 carrying the restriction of Ω to R_{1} to the automorphism $\hat{\Omega}$ in 13.6 and the other from R_{3} to the building Δ_{0} in 10.3 with $n=5$ carrying the map ξ to the automorphism Ω_{0} defined in (10.2).

By 13.8, Ω^{2} centralizes $U_{\alpha_{i}}$ for all $i \in[2,7]$ and R is a Γ-chamber. By 3.11 and $10.6, \Omega^{2}$ centralizes $U_{\alpha_{1}}$. Thus Ω^{2} centralizes $U_{\alpha_{i}}$ for all $i \in[1,7]$. Hence Ω is a Galois involution. By 6.5, therefore, Γ is a descent group of Δ. By 6.11 and 6.12 (iii), Δ^{Γ} is a building of type B_{2}, and thus by 6.12 (iv), Δ^{Γ} is a Moufang quadrangle. Let \mathbb{M}_{1} and \mathbb{M}_{2} be as in 5.16 applied to Δ^{Γ}. By 6.15, 10.4 and 13.11, one of these two Moufang sets is isomorphic to $\mathrm{B}_{1}^{\mathcal{Q}}\left(K, E^{4}, Q\right)$ and the other has non-abelian root groups. By 5.16(a), it follows that $\Delta^{\Gamma} \cong B_{2}^{\mathcal{E}}(\Lambda)$.

14. The quadrangles of type E_{6}

Our goal in this section is to prove 14.11.
Notation 14.1. Let $\Delta=A_{5}(E)$, let Φ be the root system of type A_{5}, let $\alpha_{1}, \ldots, \alpha_{5}$ and $\tilde{\alpha}$ be as in [Bou, Plate I], let S be the set of reflections $s_{\alpha_{i}}$ for $i \in[1,5]$, let $W=\langle S\rangle$, let $S_{1}=\left\{s_{\alpha_{2}}, s_{\alpha_{3}}, s_{\alpha_{4}}\right\}$, let $W_{1}=\left\langle S_{1}\right\rangle$, let Φ_{1} denote the root system $\left\langle\alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle \cap \Phi$ of type D_{3} and let Δ_{1} denote the unique residue of type D_{3} containing c.

Notation 14.2. Let $\tilde{\Delta}, \tilde{\Sigma}, \tilde{c}, \tilde{\alpha}_{1}, \tilde{\alpha}_{2}, \tilde{\alpha}_{3}$ and $\left\{\tilde{x}_{\beta}\right\}_{\beta \in \Phi_{1}}$ be the building, the apartment, the chamber, the set of roots and the coordinate system called Δ, $\Sigma, c, \alpha_{1}, \alpha_{2}, \alpha_{3}$ and $\left\{x_{\beta}\right\}_{\beta \in \Phi_{1}}$ in 8.3 and 8.4 with $n=3$. There exists an isomorphism v from $\tilde{\Delta}$ to Δ_{1} mapping $\tilde{\Sigma}$ to Σ_{1}, \tilde{c} to c and the root $\tilde{\alpha}_{i}$ to $\alpha_{\pi(i)}$ for all $i \in[1,6]$, where π is the map sending the sequence $1,2,3$ to the sequence $3,2,4$. Let $x_{\beta}=v^{-1} \cdot \tilde{x}_{\beta} \cdot v$ for all $\beta \in \Phi_{1}$. Then $\left\{x_{\beta}\right\}_{\beta \in \Phi_{1}}$ is a coordinate system for Δ_{1}. By 4.11, we can extend this coordinate system to a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ.

The pair (W, S) is a Coxeter system of type A_{5} and the pair $\left(W_{1}, S_{1}\right)$ is a Coxeter system of type D_{3}. Let w_{1} denote the longest element of W_{1} with respect to the set of generators S_{1}.

We have $w_{1}=\left(s_{2} s_{4} s_{3}\right)^{2}$, from which it follows that

$$
w_{1}\left(\alpha_{1}\right)=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}
$$

and

$$
w_{1}\left(\alpha_{5}\right)=\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}
$$

Now let π be as in 2.9 with Φ a root system of type A_{5} and let $\hat{w}=\pi \cdot w_{1}$. Then

$$
\begin{equation*}
\hat{w}\left(\alpha_{1}\right)=\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}=\tilde{\alpha}-\alpha_{1} \tag{14.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{w}\left(\alpha_{5}\right)=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=\tilde{\alpha}-\alpha_{5} \tag{14.4}
\end{equation*}
$$

as well as $\hat{w}\left(\alpha_{i}\right)=-\alpha_{i}$ for all $i \in[2,4]$.
By 4.16 and 7.2 , there exist $\delta_{1}, \delta_{5} \in\{1,-1\}$ such that

$$
\begin{equation*}
\hat{\Omega}_{1}:=g_{\hat{w}, \delta_{1},-1,-1,-1, \delta_{5}, \mathrm{id}} \tag{14.5}
\end{equation*}
$$

is an involution, where $g_{\hat{w}, \delta_{1},-1,-1,-1, \delta_{5}, \text { id }}$ is as in 4.13.
Notation 14.6. Let $\lambda_{1}=\eta_{1}, \lambda_{2}=\eta_{2}^{-1} \eta_{3}, \lambda_{3}=\eta_{1}^{-1} \eta_{2}, \lambda_{4}=\eta_{2}^{-1} \eta_{3}^{-1}$ and $\lambda_{5}=\eta_{2}$, so

$$
\begin{equation*}
\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5}=1 \tag{14.7}
\end{equation*}
$$

and let

$$
\hat{\Omega}=g_{\lambda_{1}, \ldots, \lambda_{5}, \sigma} \cdot \hat{\Omega}_{1}=g_{\hat{w}, \delta_{1} \lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}, \delta_{5} \lambda_{5}, \sigma}
$$

where $\hat{\Omega}_{1}, \delta_{1}$ and δ_{5} are as in (14.5), σ is as in 8.15 and $g_{\lambda_{1}, \ldots, \lambda_{5}, \sigma}$ is as in 4.7(i).

Notation 14.8. Let $\tilde{\Delta}$ and v be as in 14.2 , let $\tilde{\Omega}$ be the automorphism of $\tilde{\Delta}$ defined in (9.6) with $n=3$ and $\eta_{1}, \eta_{2}, \eta_{3}$ as in 14.6 and let $\Omega=v^{-1} \cdot \tilde{\Omega} \cdot v$.

Theorem 14.9. Suppose that the quadratic form Q defined in 9.4 is anisotropic. Let $\hat{\Omega}$ be as in 14.6 and let Δ_{1} be the unique S_{1}-residue containing the chamber c. Then $\hat{\Omega}$ is a Galois involution of Δ stabilizing Δ_{1} but not any proper residue of Δ_{1}.

Proof. We have

$$
x_{\alpha_{1}}^{\hat{\Omega}}(t)=x_{\hat{w}\left(\alpha_{1}\right)}\left(\delta_{1} \lambda_{1} \bar{t}\right)
$$

for all $t \in E$. Since $\hat{\Omega}_{1}$ is an involution, we have

$$
x_{\hat{w}\left(\alpha_{1}\right)}(t)^{\hat{\Omega}_{1}}=x_{\alpha_{1}}\left(\delta_{1} t\right)
$$

for all $t \in E$. By 4.7(ii), therefore,

$$
\begin{aligned}
x_{\hat{w}\left(\alpha_{1}\right)}(t)^{\hat{\Omega}} & =x_{\hat{w}\left(\alpha_{1}\right)}\left(\lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5} \bar{t}\right)^{\hat{\Omega}_{1}} \\
& =x_{\alpha_{1}}\left(\delta_{1} \lambda_{2} \lambda_{3} \lambda_{4} \lambda_{5} \bar{t}\right)
\end{aligned}
$$

for all $t \in E$. By (14.7), therefore, $\hat{\Omega}^{2}$ centralizes $U_{\alpha_{1}}$. Similarly, $\hat{\Omega}^{2}$ centralizes $U_{\alpha_{5}}$.

Since \hat{w}_{1} stabilizes $\Sigma \cap \Delta_{1}, \hat{\Omega}$ stabilizes Δ_{1}. By 9.7, the restriction of $\hat{\Omega}$ to Δ_{1} is the automorphism Ω defined in 14.8. Since Ω is an involution, it follows that $\hat{\Omega}^{2}$ centralizes U_{i} for all $i \in[2,4]$ (and thus for all $i \in[1,5]$ by the conclusion of the previous paragraph). We conclude that $\hat{\Omega}$ is a Galois involution and that by 9.5 (iii), $\hat{\Omega}$ does not stabilize any proper residues of Δ_{1}.

Proposition 14.10. Suppose the quadratic form Q in 9.4 is anisotropic. Then $\Delta^{\langle\hat{\Omega}\rangle}$ is a Moufang set with non-abelian root groups.

Proof. By (14.3), we have $\tilde{\alpha}=\hat{w}\left(\alpha_{1}\right)+\alpha_{1}$. Hence there exists $\omega \in\{1,-1\}$ such that

$$
\left[x_{\alpha_{1}}(t), x_{\hat{w}\left(\alpha_{1}\right)}(s)\right]=x_{\tilde{\alpha}}(\omega s t)
$$

for all $s, t \in E$. Setting $s=\omega$ and conjugating by $\hat{\Omega}$, we deduce that

$$
\begin{aligned}
x_{\tilde{\alpha}}(t)^{\hat{\Omega}} & =\left[x_{\hat{w}\left(\alpha_{1}\right)}\left(\delta_{1} \lambda_{1} \bar{t}\right), x_{\alpha_{1}}\left(\delta_{1} \lambda_{2} \cdots \lambda_{5} \omega\right)\right] \\
& =x_{\tilde{\alpha}}(-\bar{t})
\end{aligned}
$$

for all $t \in E$. Let T be the trace of the extension E / K and let

$$
X=\left\{(t, u) \in E^{2} \mid \quad T(u)+\omega \delta_{1} \lambda_{1} N(t)=0\right\} .
$$

For all $(t, u) \in X$, the element

$$
g_{t, u}:=x_{\alpha_{1}}(t) x_{\hat{w}\left(\alpha_{1}\right)}\left(\delta_{1} \lambda_{1} \bar{t}\right) x_{\tilde{\alpha}}(u)
$$

is centralized by $\hat{\Omega}$.
The roots of Σ cutting Δ_{1} are the roots in $\Phi \cap\left\langle\alpha_{2}, \alpha_{3}, \alpha_{4}\right\rangle$. All the other positive roots of Φ contain $\Delta_{1} \cap \Sigma$. In particular, $\alpha_{1}, \hat{w}\left(\alpha_{1}\right)$ and $\tilde{\alpha}$ all contain $\Delta_{1} \cap \Sigma$. The root group U of $\Delta^{\langle\hat{\Omega}\rangle}$ fixing the $\left\langle\Omega_{0}\right\rangle$-chamber Δ_{1} is isomorphic to the centralizer of $\hat{\Omega}$ in the group generated by all the positive roots of Φ containing $\Delta_{1} \cap \Sigma$. For each $t \in E$, there exists $u_{t} \in E$ such that $\left(t, u_{t}\right) \in X$. Applying the identities [TW, 2.2], we see that

$$
\left[g_{s, u_{s}}, g_{t, u_{t}}\right]=x_{\tilde{\alpha}}\left(\omega \delta_{1} \lambda_{1}(s \bar{t}-\bar{s} t)\right)
$$

for all $s, t \in E$. Thus not all of the elements $g_{t, u_{t}}$ commute with each other. Therefore the root group U is non-abelian.

Theorem 14.11. Let (K, V, Q) be a quadratic space of type E_{6}. Then there exists a separable quadratic extension E / K such that Q_{E} is hyperbolic and for each such extension E / K, there exists a Galois involution Ω of the building $\Delta=\mathrm{E}_{6}(E)$ such that the Tits index of the group $\Gamma:=\langle\Omega\rangle$ is

and the fixed point building Δ^{Γ} is isomorphic to $\mathrm{B}_{2}^{\mathcal{E}}(K, V, Q)$.
Proof. By 5.5, we can choose a separable quadratic extension E / K such that Q_{E} is hyperbolic and assume that $V=E^{3}$ and that for some $\eta_{1}, \eta_{2}, \eta_{3} \in K$,

$$
Q\left(u_{1}, u_{2}, u_{3}\right)=\eta_{1} N\left(u_{1}\right)+\eta_{2} N\left(u_{2}\right)+\eta_{3} N\left(u_{3}\right)
$$

for all $\left(u_{1}, u_{2}, u_{3}\right) \in V$, where N is the norm of the extension E / K.
Let $\Delta=\mathrm{E}_{6}(E)$, let Σ be an apartment of Δ and let c be a chamber of Σ. Let Φ be the root system of type E_{6} and let $\alpha_{1}, \ldots, \alpha_{6}$ be as in [Bou, Plate V]. We identify Φ with the set of roots of Σ and $\operatorname{Aut}(\Phi)$ with a subgroup of $\operatorname{Aut}(\Sigma)$ as in 4.1 and choose a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ. Let A be the unique subset of S spanning a subdiagram of Π of type D_{3} that is stabilized by $\operatorname{Aut}(\Pi)$, let w_{1} denote the longest element in the Coxeter group W_{A} with respect to the generating set A, let R denote the unique A-residue of Δ containing c, let R_{1} be the unique residue of type A_{5} containing R and let R_{2} be the unique residue of type D_{4} containing R. Let π be as in 2.9 and let $\hat{w}=\pi w_{1}$.

Let $\lambda_{1}, \ldots, \lambda_{5}, \delta_{1}, \delta_{5}$ be as in 14.6. We set $\kappa_{1}=\delta_{1} \lambda_{1}, \kappa_{2}=\eta_{1}, \kappa_{3}=-\lambda_{2}$, $\kappa_{4}=-\lambda_{3}, \kappa_{5}=-\lambda_{4}$ and $\kappa_{6}=\delta_{5} \lambda_{5}$. We then set

$$
\Omega=g_{\hat{w}, \kappa_{1}, \ldots, \kappa_{6}, \sigma},
$$

where σ is the non-trivial element in $\operatorname{Gal}(E / K)$ and $g_{\hat{w}, \kappa_{1}, \ldots, \kappa_{6}, \sigma}$ is as in 4.13. Finally, we set $\Gamma:=\langle\Omega\rangle$.

By 4.11 with R_{2} in place of R and 14.2 , we can assume that the coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ was chosen so that there are two isomorphisms, one from R_{1} to the building Δ in 14.1 carrying the automorphism $\hat{\Omega}$ in 14.6 to the restriction of Ω to R_{1} and the other from R_{2} to the building Δ_{0} in 10.3 with $n=3$ carrying the automorphism Ω_{0} defined in (10.2) to the restriction of Ω to R_{2}. By $10.6, \Omega^{2}$ centralizes $U_{\alpha_{i}}$ for all $i \in[2,5]$ and R is a Γ-chamber. By $14.9, \Omega^{2}$ also centralizes $U_{\alpha_{1}}$ and $U_{\alpha_{6}}$. Thus Ω is a non-type-preserving Galois involution. By 6.5, therefore, Γ is a descent group of Δ. By 6.11 and 6.12 (iii), Δ^{Γ} is a building of type B_{2}, and thus by $6.12(\mathrm{iv}), \Delta^{\Gamma}$ is a Moufang quadrangle. Let \mathbb{M}_{1} and \mathbb{M}_{2} be as in 5.16 applied to Δ^{Γ}. By $6.15,10.4$ and 14.10 , one of these two Moufang sets is isomorphic to $\mathrm{B}_{1}^{\mathcal{Q}}\left(K, E^{3}, Q\right)$ and the other has non-abelian root groups. By 5.16(a), it follows that $\Delta^{\Gamma} \cong B_{2}^{\mathcal{E}}(\Lambda)$.

15. Non-pseudo-split buildings of type $\boldsymbol{F}_{\mathbf{4}}$

In this section, we construct all buildings of type F_{4} that are not pseudo-split (as defined in 15.3) and the exceptional buildings of type C_{3} (see [Tit2, 9.1-9.3])
as the fixed point buildings of Galois involutions of buildings of type E_{6}, E_{7} and E_{8}. Our main result is 15.4.

Theorem 15.1. Let Δ be a simply laced and split building of type Π, let S be the vertex set of Π, let $J=S \backslash\{i\}$ for some $i \in S$, let Π_{J} be the subdiagram of Π spanned by J, let Δ_{1} be a J-residue, let Ω_{1} be a Galois involution of Δ_{1} and let $\left(\Pi_{J}, \Theta_{1}, A\right)$ be the Tits index of $\Gamma_{1}:=\left\langle\Omega_{1}\right\rangle$. Suppose that i is adjacent in Π to a unique element of J. Then there exist an extension of Θ_{1} to an automorphism Θ of Π and an extension of Ω_{1} to a Galois involution Ω of Δ such that the Tits index of $\Gamma:=\langle\Omega\rangle$ is (Π, Θ, A).

Proof. By [MPW, 24.36], Ω_{1} has an extension to an involution Ω of Δ and by [MPW, 29.28], Ω is a Galois involution. By 6.5, therefore, $\Gamma:=\langle\Omega\rangle$ is a descent group of Δ. Let Θ denote the image of Γ in $\operatorname{Aut}(\Pi)$. The restriction of Θ to Π_{J} is Θ_{1} and by 6.12(ii), a Γ_{1}-chamber is also a Γ-chamber. Thus (Π, Θ, A) is the Tits index of Γ.

Buildings of type F_{4} are all of the form $\mathrm{F}_{4}(D, K)$, where (D, K) is a composition algebra; see [Tit2, Thm. 10.2] and [Wei2, 30.14 and 30.15].

Notation 15.2. Let $\Lambda=(D, K)$ be a composition algebra. As in [Wei2, 30.17], we say that Λ is of type (i) if D / K is an inseparable extension in characteristic 2 such that $D^{2} \subset K$ but D^{2} equals neither K nor K^{2}. We say that Λ is of type (ii) if $D=K$ is a field. We say that Λ is of type (iii) if D / K is a separable quadratic extension fields; its standard involution in this case is the unique non-trivial element in $\operatorname{Gal}(D / K)$. We say that Λ is of type (iv) if D is a quaternion division algebra over K and we say that Λ is of type (v) if D is an octonion division algebra over K. In cases (iv) and (v), the standard involution σ is as defined in [TW, 9.6 and 9.10]. In case (v), the triple (D, K, σ) is an honorary involutory set as defined in [TW, 38.11] and the Moufang quadrangle $\mathrm{B}_{2}^{\mathcal{I}}(D, K, \sigma)$, which appears in 15.4(iii) below, is defined in [TW, 38.13].

Definition 15.3. A building $\mathrm{F}_{4}(D, K)$ is split, respectively, pseudo-split, if the composition algebra (D, K) is of type (ii), respectively, of type (i) or (ii), as defined in 15.2.

Theorem 15.4. Let D / K be composition algebra of type (x) for $x=$ iii, iv or v , let σ be the standard involution of D / K and let E be a subfield of D containing K such that E / K is a separable quadratic extension. Then the following hold:
(i) If $x=\mathrm{iii}$, then there exists a Galois involution Ω of the building $\Delta=\mathrm{E}_{6}(E)$ such that the Tits index of the group $\Gamma:=\langle\Omega\rangle$ is

and the fixed point building Δ^{Γ} is isomorphic to $\mathrm{F}_{4}(D / K)$.
(ii) If $x=\mathrm{iv}$, then there exists a Galois involution Ω of the building $\Delta=\mathrm{E}_{7}(E)$ such that the Tits index of the group $\Gamma:=\langle\Omega\rangle$ is

and the fixed point building Δ^{Γ} is isomorphic to $\mathrm{F}_{4}(D / K)$.
(iii) If $x=\mathrm{v}$, then there exists a Galois involution Ω of the building $\Delta=\mathrm{E}_{8}(E)$ such that the Tits index of the group $\Gamma:=\langle\Omega\rangle$ is

and the fixed point building Δ^{Γ} is isomorphic to $\mathrm{F}_{4}(D / K)$ and there exists a residue Δ_{1} of type E_{7} of Δ stabilized by Ω such that the restriction Γ_{1} of Γ to Δ_{1} has Tits index

and the fixed point building $\Delta_{1}^{\Gamma_{1}}$ is isomorphic to $C_{3}^{\frac{I}{3}}(\Lambda)$, where Λ is the honorary involutory set (D, K, σ).

Proof. Suppose that $x=$ iii, let $\Delta=\mathrm{E}_{6}(E)$ and let Δ_{1} be a residue of type A_{5}. We identify Δ_{1} with the building Δ in $\S 7$ with $n=5$ and let Ω_{1} be the non-type-preserving Galois involution of Δ_{1} obtained by composing the involution in 7.3 with the involution which maps $x_{\alpha_{i}}(t)$ to $x_{\alpha_{i}}\left(t^{\sigma}\right)$ for all $i \in[1,5]$ and all $t \in E$. Next let Ω be a Galois involution of Δ obtained by applying 15.1 to Ω_{1}. By 7.4, Ω_{1} fixes a chamber of Δ. It follows that the Tits index of $\Gamma=\langle\Omega\rangle$ is as in (i). By 6.11, therefore, Δ^{Γ} is a building of type F_{4}. Let J be the unique subset of S spanning a subdiagram of Π of type A_{3} that is stabilized by the non-trivial automorphism of Π, let R be a J-residue stabilized by Ω and let Γ_{R} denote the restriction of Γ to R. By 8.17, we have

$$
R^{\Gamma_{R}} \cong \mathrm{~B}_{2}^{\mathcal{Q}}(K, E, N)
$$

By [MPW, 22.39], $R^{\Gamma_{R}}$ is a residue of Δ^{Γ}. If (E^{\prime}, K^{\prime}) is a composition algebra with norm N^{\prime} such that

$$
\mathrm{B}_{2}^{\mathcal{Q}}(K, E, N) \cong \mathrm{B}_{2}^{\mathcal{Q}}\left(K^{\prime}, E^{\prime}, N^{\prime}\right)
$$

then by [TW, 20.28 and 35.7], there is an isomorphism from E to E^{\prime} mapping K to K^{\prime}. Therefore

$$
\Delta^{\Gamma} \cong \mathrm{F}_{4}(E, K)
$$

Thus (i) holds.
Now suppose that $x=\mathrm{iv}$, let $\Delta=\mathrm{E}_{7}(E)$ and let Δ_{1} be a residue of type D_{6}. We identify Δ_{1} with the building Δ in 8.3 with $n=6$ and let Ω_{1} be a Galois involution of Δ_{1} obtained by applying 8.16. The Tits index of $\left\langle\Omega_{1}\right\rangle$ is as in (ii) with the rightmost vertex deleted. We can thus apply 15.1 to Ω_{1} to obtain a Galois involution Ω of Δ such that the Tits index of $\Gamma:=\langle\Omega\rangle$ is as in (ii). Therefore Δ^{Γ} is a building of type F_{4} (by 6.11). By [MPW, 22.39] and 8.16, Δ^{Γ} has residues isomorphic to $\mathrm{A}_{2}(D)$. It follows from [TW, 35.6] that

$$
\Delta^{\Gamma} \cong \mathrm{F}_{4}(D, K)
$$

Thus (ii) holds.
Suppose, finally, that $x=\mathrm{v}$. Let Ω_{1} be the Galois involution of $\mathrm{E}_{6}(E)$ in 12.11 . Applying 15.1 once and then a second time, we obtain extensions of Ω_{1} to Galois involutions of $\mathrm{E}_{7}(E)$ and then of $\mathrm{E}_{8}(E)$ generating groups whose Tits indices and fixed point buildings are as in (iii).

16. Pseudo-split buildings of type F_{4}

The results of this section will be required in $\S 17$. They are completely parallel to the results in $\S 4$, but we formulate them separately for the sake of clarity.

Notation 16.1. Let $\Delta=\mathrm{F}_{4}(L, E)$, where L / E is a field extension such that $\operatorname{char}(E)=2$ and $L^{2} \subset E$. We assume that $L \neq E$ (but we do not assume that L / E is finite dimensional). Let Φ be a root system of type F_{4}, let Σ be an apartment of Δ and let c be a chamber of Σ. Let $\alpha_{1}, \ldots, \alpha_{4}$ be as in [Bou, Plate VIII], let S be the set of reflections $s_{\alpha_{i}}$ for $i \in[1,4]$ and let $W=\langle S\rangle$ be the Weyl group of Φ. We identify Φ with the set of roots of Σ and $\operatorname{Aut}(\Phi)$ with a subgroup of $\operatorname{Aut}(\Sigma)$ as in 4.1 so that $\alpha_{1}, \ldots, \alpha_{4}$ are the four roots of Σ containing c but not some chamber of Σ adjacent to c.

Theorem 16.2. There exists a collection of isomorphisms $x_{\beta}: E \rightarrow U_{\beta}$, one for each long root β of Φ, and a collection of isomorphisms $x_{\beta}: L \rightarrow U_{\beta}$, one for each short root, such that for all $\alpha, \beta \in \Phi$ such that $\alpha \neq \pm \beta$ and for all $s \in E$ if α is long, all $s \in L$ if α is short, all $t \in E$ if β is long and all $t \in L$ if β is short, the following hold:
(i) $\left[x_{\alpha}(s), x_{\beta}(t)\right]=x_{\alpha+\beta}(s t)$ if α and β have the same length and $\alpha+\beta \in \Phi$.
(ii) $\left[x_{\alpha}(s), x_{\beta}(t)\right]=x_{\alpha+\beta}(s t) x_{\alpha+2 \beta}\left(s t^{2}\right)$ if α is long, β is short and $\alpha+\beta \in \Phi$, in which case also $\alpha+2 \beta \in \Phi$.
(iii) $\left[x_{\alpha}(s), x_{\beta}(t)\right]=1$ if α is orthogonal to β.
(iv) $U_{\alpha}^{x-\alpha(s)}=U_{-\alpha}^{x_{\alpha}\left(s^{-1}\right)}$ if $s \neq 0$.

Proof. Assertions (i)-(iii) hold by [Ste, (R2) on p. 30] (or [Car, Thm. 5.2.2]) and [Tit2, 10.3.2]. Assertion (iv) holds by [Ste, (R7) on p. 30 and Lemma 59 on p. 160].

Remark 16.3. We call a set $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ satisfying the four conditions in 16.2 a coordinate system for Δ. The assertions 4.6, 4.9 (with both τ and τ^{\prime} identically equal to 1) and 4.11 all hold with the word "equivalent" replaced by "equal" in our present setting and with virtually the same proofs (but without concerns over minus signs since we are now in characteristic 2).

From now on we fix a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ.
Theorem 16.4. Let $\gamma \in \operatorname{Aut}(\Phi)$, let λ_{1}, λ_{2} be non-zero elements of E, let λ_{3}, λ_{4} be non-zero elements of L and let σ be an element of $\operatorname{Aut}(L)$ stabilizing E. Then the following hold:
(i) There exists a unique automorphism

$$
g=g_{\gamma, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \sigma}
$$

of Δ that stabilizes the apartment Σ such that

$$
x_{\alpha_{i}}(t)^{g}=x_{\gamma\left(\alpha_{i}\right)}\left(\lambda_{i} t^{\sigma}\right)
$$

for all $i \in[1,2]$ and all $t \in E$ and

$$
x_{\alpha_{i}}(v)^{g}=x_{\gamma\left(\alpha_{i}\right)}\left(\lambda_{i} v^{\sigma}\right)
$$

for all $i \in[3,4]$ and all $v \in L$.
(ii) If

$$
\beta=\sum_{i=1}^{4} c_{i} \alpha_{i} \in \Phi
$$

then

$$
x_{\beta}(t)^{g}=x_{\gamma(\beta)}\left(\lambda_{\beta} t^{\sigma}\right)
$$

for all $t \in E$ if β is long, respectively, for all $t \in L$ if β is short, where

$$
\lambda_{\beta}=\prod_{i=1}^{4} \lambda_{i}^{c_{i}} .
$$

Proof. The existence assertion in (i) holds by [Ste, Lemma 58 on p. 158] (and the existence of field automorphisms) applied to $F_{4}(L)$ and restriction of scalars to E in the long root groups; uniqueness holds by [Weil, 9.7]. Assertion (ii) follows by induction from 16.2(i)-(ii) and [Hum, §10.2, Cor. to Lemma A] once it is established that it holds for $\beta=-\alpha_{i}$ for all $i \in[1,4]$. This can be done exactly as in the proof of 4.7 (ii).

Definition 16.5. A Galois involution of Δ is an element of order 2 in the coset $g_{\lambda_{1}, \ldots, \lambda_{4}, \sigma} G^{\dagger}$ for some $\lambda_{1}, \ldots, \lambda_{4}, \sigma$ with $\sigma \neq 1$, where G^{\dagger} is as in 3.1. This is a special case of the notion of a Galois involution of an arbitrary Moufang building given in [MPW, 31.1].

Theorem 16.6. If Ω is an isotropic Galois involution of Δ, then $\Gamma:=\langle\Omega\rangle$ is a descent group of Δ.

Proof. This is a special case of [MPW, 32.27].

17. The quadrangles of type $\boldsymbol{F}_{\mathbf{4}}$

In this section we construct the Moufang quadrangles of type F_{4} as fixed point buildings of Galois involutions of pseudo-split buildings of type F_{4}; see 15.3 and 17.14. Our construction is essentially the same as the construction given in [MM1] except that we construct the initial anisotropic Galois involution of a pseudo-split Moufang quadrangle and verify that it is anisotropic in a simpler fashion.

Notation 17.1. Let L / E be as in 16.1, let M denote the direct sum of six copies of E and let $V=M \oplus L$, which we think of as a vector space over E. Let

$$
\mathcal{B}=\left\{e_{1}, e_{2}, e_{3}, f_{1}, f_{2}, f_{3}\right\}
$$

be a basis of the subspace $\{(u, 0) \mid u \in M\}$ of V, let L be identified with its image under the map $v \mapsto(0, v) \in L$ and let $q: V \rightarrow E$ be the quadratic form given by

$$
q\left(x_{1} e_{1}+y_{1} f_{1}+x_{2} e_{2}+y_{2} f_{2}+x_{3} e_{3}+y_{3} f_{3}+v\right)=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+v^{2}
$$

for all $x_{1}, \ldots, y_{3} \in E$ and all $v \in L$.
Notation 17.2. Let Δ_{0} denote the building of type B_{3} whose chambers are the maximal flags of subspaces of V that are totally isotropic with respect to q and let q_{0} denote the restriction of q to $L=(0, L) \subset V$. Thus q_{0} is anisotropic and totally singular and by 3.4 ,

$$
\Delta_{0} \cong \mathrm{~B}_{3}^{\mathcal{Q}}\left(E, L, q_{0}\right)
$$

Notation 17.3. For each ordered pair (i, j) of distinct integers i, j in the interval $[1,3]$ and each $t \in E$, let $x_{i j}(t)$ denote unique element of $\mathrm{O}(q)$ that sends e_{j} to $e_{j}+t e_{i}$ and f_{i} to $f_{i}+t f_{j}$, fixes all other elements of \mathcal{B} and acts trivially on L. For each unordered pair $\{i, j\}$ of distinct integers i, j in $[1,3]$ and each $t \in E$, let $y_{i j}(t)$ denote the unique element of $\mathrm{O}(q)$ that sends f_{j} to $f_{j}+t e_{i}$ and f_{i} to $f_{i}+t e_{j}$, fixes all other elements of \mathcal{B} and acts trivially on L and let $z_{i j}(t)$ denote the unique element of $\mathrm{O}(q)$ that sends e_{j} to $e_{j}+t f_{i}$ and e_{i} to $e_{i}+t f_{j}$, fixes all other elements of \mathcal{B} and acts trivially on L. For each $i \in[1,3]$ and each $v \in L$, let $x_{i}(v)$ denote the unique element of $\mathrm{O}(q)$ that maps f_{i} to $f_{i}+v^{2} e_{i}+v$, fixes all other elements of \mathcal{B} and acts trivially on L and let $y_{i}(v)$ denote the unique element of $\mathrm{O}(q)$ that maps e_{i} to $e_{i}+v^{2} f_{i}+v$, fixes all other elements of \mathcal{B} and acts trivially on L.

Remark 17.4. Let Σ_{0} be the apartment of Δ_{0} whose chambers contain only subspaces spanned by subsets of \mathcal{B}. Let Φ_{1} denote a root system of type B_{3} and let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ be as in [Bou, Plate II] with $n=3$, so that $\alpha_{1}=\varepsilon_{1}-\varepsilon_{2}, \alpha_{2}=\varepsilon_{2}-\varepsilon_{3}$ and $\alpha_{3}=\varepsilon_{3}$. For each $\beta \in \Phi_{1}$, we set $u_{\beta}=x_{i j}$ if $\beta=\varepsilon_{i}-\varepsilon_{j}$ for some $i, j \in[1,3], u_{\beta}=y_{i j}$ if $\beta=\varepsilon_{i}+\varepsilon_{j}$ for some $i, j \in[1,3]$, $u_{\beta}=z_{i j}$ if $\beta=-\varepsilon_{i}-\varepsilon_{j}$ for some $i, j \in[1,3], u_{\beta}=x_{i}$ if $\beta=\varepsilon_{i}$ for some $i \in[1,3]$ and $u_{\beta}=y_{i}$ if $\beta=-\varepsilon_{i}$ for some $i \in[1,3]$, where $x_{i j}, y_{i j}$, etc. are as in 17.3. Then $u_{\beta}(E)$ for β long and $u_{\beta}(L)$ for β short are root groups of Δ_{0} and $\left\{u_{\beta}\right\}_{\beta \in \Phi_{1}}$ is a coordinate system for Δ_{0}.

Notation 17.5. Let σ be an involution in $\operatorname{Aut}(L)$ stabilizing E, let $F=\operatorname{Fix}_{L}(\sigma)$ and let $K=\operatorname{Fix}_{E}(\sigma)$. We will usually write \bar{x} in place of x^{σ} for $x \in L$. Let N be the norm of the extension L / F. Thus F / K is a purely inseparable extension such that $F^{2} \subset K$ and the restriction of N to E is the norm of the extension E / K.

Notation 17.6. Let η_{1}, η_{2} be non-zero elements of K, let $T=E \oplus E \oplus F$ considered as a vector space over K, let $Q_{0}: T \rightarrow K$ denote the quadratic form over K given by

$$
Q_{0}\left(y_{1}, y_{2}, u\right)=\eta_{1} N\left(y_{1}\right)+\eta_{2} N\left(y_{2}\right)+u^{2}
$$

for all $\left(y_{1}, y_{2}, u\right) \in T$ and let $Q: K \oplus K \oplus T \rightarrow K$ denote the quadratic form over K given by

$$
Q(s, t, z)=s t+Q_{0}(z)
$$

for all $(s, t, z) \in T$.

Proposition 17.7. Let V, \mathcal{B}, q, etc., be as in 17.1, let V_{0} denote the subspace spanned by $\left\{e_{2}, e_{3}, f_{2}, f_{3}\right\} \cup L$, let $q_{0}: V_{0} \rightarrow E$ denote the restriction of q to V_{0}, let $x \mapsto \bar{x}$ and F be as in 17.5, let η_{1}, η_{2} and Q and Q_{0} be as 17.6 and let $\Omega=\Omega_{\eta_{1}, \eta_{2}}$ be the σ-linear automorphism of V given by

$$
\begin{aligned}
\Omega\left(\sum_{i=1}^{3}\left(x_{i} e_{i}+y_{i} f_{i}\right)+v\right)=\overline{x_{1}} e_{1}+\overline{y_{1}} f_{1}+\eta_{1} \overline{y_{2}} e_{2} & +\eta_{1}^{-1} \overline{x_{2}} f_{2} \\
& +\eta_{2} \overline{y_{3}} e_{3}+\eta_{2}^{-1} \overline{x_{3}} f_{3}+\bar{v}
\end{aligned}
$$

for all $x_{1}, x_{2}, x_{3}, x_{1}, y_{2}, y_{3} \in E$ and all $v \in L$. Then the following hold:
(i) $q(\Omega(x))=\overline{q(x)}$ for all $x \in V$ and $\Omega^{2}=1$.
(ii) $q \cong Q \otimes_{K} E$.
(iii) If the quadratic form Q_{0} is anisotropic, then there are no non-zero Ω invariant subspaces of V_{0} that are totally isotropic with respect to q_{0}.

Proof. Assertion (i) is clear and assertion (ii) follows from 9.3. Suppose that U is a non-zero totally isotropic Ω-invariant subspace of V_{0}. Thus $q(v)=0$ for all $v \in U$. Let u be a non-zero element of U. The sum $v:=u+\Omega(u)$ is fixed by Ω. Replacing u by $t u$ for some $t \in E \backslash F$ if necessary, we can assume that v is non-zero. We have

$$
v=x_{2} e_{2}+y_{2} f_{2}+x_{3} e_{3}+y_{3} f_{3}+s
$$

for some $x_{2}, x_{3}, y_{2}, y_{3} \in E$ and some $s \in L$ not all zero. Since v is fixed by Ω, we have $x_{i}=\eta_{i-1} \overline{y_{i}}$ for $i \in[2,3]$ and $\bar{s}=s$. Therefore the elements y_{2}, y_{3}, s are not all zero, $s \in F$ and

$$
Q_{0}\left(y_{2}, y_{3}, s\right)=\eta_{1} y_{2} \overline{y_{2}}+\eta_{2} y_{3} \overline{y_{3}}+s^{2}=q(v)=0
$$

Thus (iii) holds.
Notation 17.8. Let $\Delta, \Sigma, c, \Phi, \alpha_{1}, \ldots, \alpha_{4},(W, S)$, the identification of Φ with the set of roots of Σ and the identification of $\operatorname{Aut}(\Phi)$ with a subgroup of $\operatorname{Aut}(\Sigma)$ be as in 16.1. Let $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ be as 16.2 , let Δ_{1} denote the unique $\left\{s_{\alpha_{1}}, s_{\alpha_{2}}, s_{\alpha_{3}}\right\}$-residue of Δ containing c, let Σ_{1} denote the apartment $\Sigma \cap \Delta_{1}$ of Δ_{1} and let Φ_{1} denote the root system $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle \cap \Phi$ of type B_{3}, which we think of as the root system Φ_{1} in 17.4. There exists an isomorphism v from the building Δ_{0} defined in 17.2 to Δ_{1} mapping Σ_{0} to Σ_{1} and sending each root $\beta \in \Phi_{1} \subset \Phi$ of Σ_{0} to the root $\beta \cap \Sigma_{1}$ of Σ_{1}. Let $\left\{u_{\beta}\right\}_{\beta \in \Phi_{1}}$ be as in 17.4 and let $x_{\beta}=v^{-1} \cdot u_{\beta} \cdot v$ for each $\beta \in \Phi_{1}$. Then $\left\{x_{\beta}\right\}_{\beta \in \Phi_{1}}$ is a coordinate system for Δ_{1} and by 16.3, it extends to a coordinate system $\left\{x_{\beta}\right\}_{\beta \in \Phi}$ for Δ. We set $\Omega_{0}=v^{-1} \cdot \Omega \cdot v$, where $\Omega=\Omega_{\eta_{1}, \eta_{2}}$ is as in 17.7.

Notation 17.9. Let w_{1} be the longest element in the Coxeter group W_{J} with respect to the set of generators $J:=\left\{s_{\alpha_{2}}, s_{\alpha_{3}}\right\}$. Thus $w_{1}=\left(s_{\alpha_{2}} s_{\alpha_{3}}\right)^{2}$, from which it follows that

$$
w_{1}\left(\alpha_{1}\right)=\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}
$$

and

$$
w_{1}\left(\alpha_{4}\right)=\alpha_{2}+2 \alpha_{3}+\alpha_{4}
$$

as well as $w_{1}\left(\alpha_{i}\right)=-\alpha_{i}$ for both $i \in\{2,3\}$.
Proposition 17.10. Let $\left\{x_{\beta}\right\}_{\phi \in \Phi}$ and Ω_{0} be as in 17.8. Then

$$
x_{\alpha_{i}}(t)^{\Omega_{0}}=x_{w_{1}\left(\alpha_{i}\right)}\left(\lambda_{i} \bar{t}\right)
$$

for $i \in[1,2]$ and all $t \in E$ and

$$
x_{\alpha_{3}}(v)^{\Omega_{0}}=x_{w_{1}\left(\alpha_{3}\right)}\left(\lambda_{i} \bar{v}\right)
$$

for all $v \in L$, where $\lambda_{1}=\eta_{1}, \lambda_{2}=\eta_{1}^{-1} \eta_{2}$ and $\lambda_{3}=\eta_{2}^{-1}$.
Proof. This follows from 17.4, 17.7, 17.9 and some computation.

Notation 17.11. Let Δ_{2} be the unique $\left\{s_{\alpha_{2}}, s_{\alpha_{3}}\right\}$-residue of Δ_{1} containing c.
Theorem 17.12. Suppose that $\eta_{1} \eta_{2}=\lambda_{4}^{2}$ for some $\lambda_{4} \in F$ and that the quadratic from Q_{0} in 17.6 is anisotropic. Let

$$
\hat{\Omega}=g_{w_{1}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \sigma}
$$

be as in 16.4(i) with σ as in 17.5, w_{1} as in 17.9 and $\lambda_{1}, \lambda_{2}, \lambda_{3}$ as in 17.10, and let Δ_{2} be as in 17.11. Then $\hat{\Omega}$ is a Galois involution stabilizing Δ_{2} but no proper residue of Δ_{2}.

Proof. Since w_{1} stabilizes $\Delta_{2} \cap \Sigma, \hat{\Omega}$ stabilizes Δ_{2}. By 16.4(ii) and 17.9, we have

$$
\begin{aligned}
x_{\alpha_{4}}(v)^{\hat{\Omega}^{2}} & =x_{w_{1}\left(\alpha_{4}\right)}\left(\lambda_{4} \bar{v}\right)^{\hat{\Omega}} \\
& =x_{\alpha_{4}}\left(\lambda_{2} \lambda_{3}^{2} \lambda_{4}^{2} v\right)=x_{\alpha_{4}}(v)
\end{aligned}
$$

for all $v \in L$. By 16.4(i) and 17.10, the restriction of $\hat{\Omega}$ to Δ_{1} coincides with Ω_{0}. Since Ω_{0} is an involution, we conclude that $\hat{\Omega}^{2}$ centralizes $U_{\alpha_{i}}$ for all $i \in[1,4]$. Therefore $\hat{\Omega}$ is a Galois involution and by 17.7(iii), $\hat{\Omega}$ does not stabilize any proper residues of Δ_{2}.

Proposition 17.13. Suppose that the quadratic form Q_{0} in 17.6 is anisotropic and that $\eta_{1} \eta_{2} \in F^{2}$. Let $\hat{\Omega}$ be as in 17.12, let $\Gamma=\langle\hat{\Omega}\rangle$, let Δ_{1} and Δ_{2} be as in 17.8 and 17.11 and let R be the Γ-panel containing Δ_{2} other than Δ_{1}. Then

$$
\Delta_{1}^{\Gamma} \cong \mathrm{B}_{1}^{\mathcal{Q}}\left(K, E \oplus E \oplus F, Q_{0}\right)
$$

and

$$
R^{\Gamma} \cong \mathrm{B}_{1}^{\mathcal{Q}}(F, M, \hat{Q})
$$

for some anisotropic quadratic space (F, M, \hat{Q}) defined over F whose defect is non-trivial and has co-dimension 4.

Proof. First note that by 17.12 , the restrictions of $\hat{\Omega}$ to Δ_{1} and to R are both Galois involutions. Let V, q and Ω be as in 17.7 and let $\hat{V}=\operatorname{Fix}_{V}(\Omega)$. It follows from [MPW, 2.40] (as in the proof of 10.4) that the map $W \mapsto W \cap \hat{V}$ is an inclusion- and dimension-preserving bijection from the set of all Ω-invariant subspaces of V to the set of all subspaces of \hat{V}, and an Ω-invariant subspace W of V is totally isotropic with respect to q if and only if $W \cap \hat{V}$ is totally isotropic with respect to Q. Since Q_{0} is anisotropic, the first claim holds by 3.4. Since

$$
R \cong \mathrm{~B}_{3}^{\mathcal{Q}}\left(L, E^{1 / 2}, x \mapsto x^{2}\right)
$$

the second claim holds by [MPW, 35.13].
In the following $E F$ denotes the composite of the fields E and F. Thus $E F / E$ is an extension such that $(E F)^{2} \subset E$.

Theorem 17.14. Let (K, V, φ) be a quadratic space of type F_{4} and let F be as in 5.9. Then there exists a separable quadratic extension E / K such that φ_{E} is pseudo-split and for each such extension E / K, there exists a Galois involution Ω of the building $\Delta=\mathrm{F}_{4}(E F / E)$ such that the Tits index of the group $\Gamma=\langle\Omega\rangle$ is

and the fixed point building Δ^{Γ} is isomorphic to $\mathrm{B}_{2}^{\mathcal{F}}(K, V, \varphi)$.
Proof. By 5.12, there exist separable quadratic extensions E / K such that φ_{E} is pseudo-split and letting E / K be any one of them, we can assume that $V=E \oplus E \oplus F$ and that for some $\eta_{1}, \eta_{2} \in K$,

$$
\varphi\left(y_{1}, y_{2}, u\right)=\eta_{1} N\left(y_{1}\right)+\eta_{2} N\left(y_{2}\right)+u^{2}
$$

for all $\left(y_{1}, y_{2}, u\right) \in V$, where N is the norm of the extension E / K, and

$$
\eta_{1} \eta_{2} \in F^{2}
$$

Let $L=E F$, let $\Delta=\mathrm{F}_{4}(L, E)$, let Ω be the Galois involution called $\hat{\Omega}$ in 17.12 and let $\Gamma=\langle\Omega\rangle$. By 16.6, Γ is a descent group of Δ. By 17.12, there exist Γ-chambers of type B_{2}. By 6.11 and 6.12 (iii), it follows that Δ^{Γ} is a building of type B_{2}, and thus by 6.12 (iv), Δ^{Γ} is a Moufang quadrangle. Let \mathbb{M}_{1} and \mathbb{M}_{2} be as in 5.16 applied to Δ^{Γ}. By 6.15 and 17.13 , one of these two Moufang sets is isomorphic to $B_{1}^{\mathcal{Q}}(\Lambda)$ and the other is as in 5.16(b). By 5.16, therefore, we have $\Delta^{\Gamma} \cong B_{2}^{\mathcal{F}}(\Lambda)$.

Acknowledgment. This collaboration was partially supported by DFG-Grant MU 1281/5-1. The work of the second author was also partially supported by NSA-Grant H982301-15-1-0009.

References

[Bou] N. Bourbaki, Elements of Mathematics: Lie Groups and Lie Algebras, Chapters 4-6. Springer 2002. Zbl 0983.17001 MR 1890629
[CdM] E. Callens and T. De Medts, Moufang sets of mixed type F_{4}. Math. Nachr. 288 (2015), 366-388. MR 3320453
[Car] R.W. Carter, Simple Groups of Lie Type. John Wiley \& Sons 1972. Zbl 0248.20015 MR 0407163
[CP] B. Conrad and G. Prasad, Characterization of Pseudo-Reductive Groups. Annals of Math. Studies 191, Princeton Univ. Press 2016.
[dMed] T. De Medts, A characterization of quadratic forms of type E_{6}, E_{7} and E_{8}. J. Algebra 252 (2002), 394-410. Zbl 1012.11029 MR 1925144
[dMSW] T. De Medts, Y. Segev and R.M. Weiss, Tits endomorphisms and buildings of type F_{4}. Submitted.
[Die] J. Dieudonné, La Géométrie des Groupes Classiques. Springer 1955. Zbl 0067.26104 MR 0072144
[Hum] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory. Springer 1972. Zbl 0254.17004 MR 0323842
[Mue] B. Mühlherr, A geometric approach to non-embeddable polar spaces of rank 3. Bull. Soc. Math. Belg. A 42 (1990), 577-594. Zbl 0732.51011 MR 1316212
[MPW] B. Mühlherr, H.P. Petersson and R.M. Weiss, Descent in Buildings. Annals of Math. Studies 190, Princeton Univ. Press 2015. Zbl 1338.51002 MR 3364836
[MM1] B. Mühlherr and H. Van Maldeghem, Exceptional Moufang quadrangles of type F_{4}. Canad. J. Math. 51 (1999), 347-371. Zbl 0942.51002 MR 1697148
[MM2] B. Mühlherr and H. Van Maldeghem, Moufang sets from groups of mixed type. J. Alg. 300 (2006), 820-833. Zbl 1101.51003 MR 2228223
[RT] M. Ronan and J. Tits, Building buildings. Math. Ann. 278 (1987), 291-306. Zbl 0628.51001 MR 0909229
[Ste] R. Steinberg, Lectures on Chevalley Groups. Yale Univ. 1968. Zbl 1196.22001 MR 0466335
[Tit1] J. Tits, Classification of algebraic semi-simple groups, in: Algebraic Groups and Discontinuous Groups, Boulder, 1965. Proc. Symp. Pure Math. 9, Amer. Math. Soc. (1966), pp. 33-62. Zbl 0238.20052 MR 0224710
[Tit2] J. Tits, Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Math. 386, Springer 1974. Zbl 0295.20047 MR 0470099
[Tit3] J. Tirs, Cours 1994-1995, in: Résumés des Cours au Collège de France, 19732000. Documents Mathématiques, Soc. Math. France 2013, pp. 257-273. Zbl 1286.01001 MR 3235648
[TW] J. Tits and R. M. Weiss, Moufang Polygons. Springer Monographs in Math., Springer 2002. Zbl 1010.20017 MR 1938841
[Wei1] R.M. Weiss, The Structure of Spherical Buildings. Princeton Univ. Press 2004. Zbl 1061.51011 MR 2034361
[Wei2] R.M. Weiss, The Structure of Affine Buildings. Annals of Math. Studies 168, Princeton Univ. Press 2009. Zbl 1166.51001 MR 2468338
[Wei3] S. Weiss, Integrability of Moufang foundations. Dissertation, Univ. of Giessen, 2014, 212 pp.; arXiv:1410.5211.
(Reçu le 3 juillet 2015)
Bernhard Mühlherr, Mathematisches Institut,
Universität Gießen, 35392 Gießen, Germany
e-mail: bernhard.m.muehlherr@math.uni-giessen.de

Richard M. Weiss, Department of Mathematics, Tufts University, Medford, MA 02155, USA
e-mail: rweiss@tufts.edu

