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Fuchsian groups and compact hyperbolic surfaces

Yves Bewnoist and Hee On

Abstract. We present a topological proof of the following theorem of Benoist-Quint: for a
finitely generated non-elementary discrete subgroup I'; of PSL(2,R) with no parabolics,
and for a cocompact lattice I'> of PSL(2,R), any I'y orbit on T'>\PSL(2,R) is either
finite or dense.

Mathematics Subject Classification (2010). Primary: 11N45, 37F35, 22E40.
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1. Introduction

Let T'; be a non-elementary finitely generated discrete subgroup with no
parabolic elements of PSL(2,R). Let I'; be a cocompact lattice in PSL(2,R).
The following is the first non-trivial case of a theorem of Benoist-Quint [BQI].

Theorem 1.1. Any T'y-orbit on T';\ PSL(2,R) is either finite or dense.

The proof of Benoist-Quint is quite involved even in the case as simple as
above and in particular uses their classification of stationary measures [BQ2]. The
aim of this note is to present a short, and rather elementary proof.

We will deduce Theorem 1.1 from the following Theorem 1.2. Let

e Hy = H, :=PSL(2,R) and G := H; x Hy;
o H:={(h,h):hePSL,(R)} and T :=T7 xI';.

Theorem 1.2. For any x € I'\G, the orbit xH is either closed or dense.

Our proof of Theorem 1.2 is purely topological, and inspired by the recent
work of McMullen, Mohammadi and Oh [MMO] where the orbit closures of the
PSL(2,R) action on I'g\ PSL(2,C) are classified for certain Kleinian subgroups
o of infinite co-volume. While the proof of Theorem 1.2 follows closely the
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sections 8-9 of [MMO], the arguments in this paper are simpler because of
the assumption that I'> is cocompact. We remark that the approach of [MMO]
and hence of this paper is somewhat modeled after Margulis’s original proof of
Oppenheim’s conjecture [Mar]. When I'; is cocompact as well, Theorem 1.2 also
follows from [Rat].

Finally we remark that according to [BQI], both Theorems 1.1 and 1.2 are
still true in presence of parabolic elements, more precisely when I'; is any non-
elementary discrete subgroup and I'; any lattice in PSL(2,R). The topological
method presented here could also be extended to this case.

2. Horocyclic flow on convex cocompact surfaces

In this section we prove a few preliminary facts about unipotent dynamics
involving only one factor H;.

The group PSL,(R) := SL,(R)/{%e} is the group of orientation-preserving
isometries of the hyperbolic plane H? := {z € C : Imz > 0}. The isometry

2) € PSLy(R) is z > 2Fb. It is

implicit in this notation that the matrices g stand for their equivalence class +g
in PSL,(R). This group PSL,(R) acts simply transitively on the unit tangent
bundle T!(H?) and we choose an identification of PSL,(R) and T!(H2) so
that the identity element e corresponds to the upward unit vector at . We will
also identify the boundary of the hyperbolic plane with the extended real line
dH? = R U {oo} which is topologically a circle.

s a
corresponding to the element g = (C

We recall that I'; is a non-elementary finitely generated discrete subgroup
with no parabolic elements of the group H; = PSL,(R), that is, I'; is a convex
cocompact subgroup. Let S; denote the hyperbolic orbifold I';\H?, and let
Ar, C dH? be the limit set of T';. Let 4; and U; be the subgroups of H;
given by '

avmta =7 O )ireryand vyi= =L f)irer
1= {at = 0 e_r/z it e } an 1= {u; = 0 1 = }

Since the subgroup I'; is convex cocompact, the set
2.1) Qr, :={x € I''\H; : x4, is bounded}
is a compact A;-invariant subset and one has the equality

Qr, = {[h] € T1\H : h(0), h(co) € Ar, }.



Fuchsian groups and compact hyperbolic surfaces 191

In geometric words, seen as a subset of the unit tangent bundle of S;, the set

Qr, is the union of all the geodesic lines which stays inside the convex core of
Si.

Definition 2.2. Let K > 1. A subset 7 C R is called K -thick if, for any ¢ > 0,
T meets [—Kt,—t] U [t, Kt].

Lemma 2.3. There exists K > 1 such that for any x € Sr,, the subset
T(x):={teR:xu; € Qr,} is K-thick.

Proof. Using an isometry, we may assume without loss of generality that x = [e].
Since the element e corresponds to the upward unit vector at i, and since x
belongs to Qr,, both points 0 and oo belong to the limit set Ar,. Since
u;(00) = oo and u,(0) = ¢, one has the equality

Tx)={teR:teAr}

Write R — Ar, as the union UJ; where J;’s are maximal open intervals. Note
that the minimum hyperbolic distance between the convex hulls in H?

§i= ,gi;elf d(hull(J¢), hull(Jy,))

is positive, as 2§ is the length of the shortest closed geodesic of the double of
the convex core of S;. Choose the constant K > 1 so that for # > 0, one has

d(hull[—Kt, —¢], hull]z, Kt]) = 8/2.

Note that this choice of K is independent of . If T'(x) does not intersect
[-Kt,—t]U][t, Kt] for some ¢ > 0, then the intervals [—K¢,—¢] and [¢, Kf] must
be included in two distinct intervals J; and J,, since 0 € Ar, . This contradicts
the choice of K. O

Lemma 2.4. Let K > 1 and let T be a K -thick subset of R. For any sequence
h, in Hy ~ Uy converging to e, there exists a sequence t, € T such that the
sequence uU_, hpuy, has a limit point in Uy ~ {e}.

Proof. Write h, = (a" b”). We compute
cn dy

Gn = U Bty = ap — Cply  (an — dp — Cptp)ty + by
n - —ty MnUygy, e dy + Cpty .
Since the element /4, does not belong to Ui, it follows that the (1,2)-entries

P, (ty) := (an —dn — cnty)ty + b, are non-constant polynomial functions of ¢, of
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degree at most 2 whose coefficients converge to 0. Hence, by Lemma 2.5 below,
we can choose f, € T going to oo so that k < |P,(¢,)| < 1, for some constant
k > 0 depending only on K. Since the entry P,(7,) is bounded and since #,
converges to e, the product c,t, must converge to 0 and the sequence g, has
a limit point in U; — {e}. Il

We have used the following basic lemma :

Lemma 2.5. For every K > 1 and d > 1, there exists k > 0 such that, for
every non-constant polynomial P of degree d with |P(0)| < k, and for every
K -thick subset T of R, there exists t in T such that k < |P(t)| < 1.

Proof. Using a suitable homothety in the variable ¢, we can assume with no loss
of generality that P belongs to the set P; of polynomials of degree at most d
such that P(1) = [max] |P(t)| = 1.

1,1

Assume by contradiction that there exists a sequence P, of polynomials in Py

and a sequence of K -thick subsets 7,, of R such that sup |P,(¢)| converge
to 0. After extraction, the sequence 7; converges to a K -thick subset 7., and

the sequence P, converges to a polynomial Py, € P; which is equal to 0 on
the set T N [—1,1]. This is not possible since this set is infinite. O

We record also, for further use, the following classical lemma :

Lemma 2.6. Let U be the semigroup {u, : t > 0}. If the quotient space
X1 :=T1\H; is compact, any U; -orbit is dense in Xi.

Proof. For x € Xy, set x, := xu,. We then have xnu_nUl‘" = xUl'". Hence if z

is a limit point of the sequence x, in X;, we have zU C xUIJr . By Hedlund’s
theorem [Hed], zU is dense. Hence the orbit )CU1+ is also dense. Ul

3. Proof of Theorems 1.1 and 1.2

In this section, using minimal sets and unipotent dynamics on the product
space I'\G, we provide a proof of Theorem 1.2.

3.1. Unipotent dynamics. We recall the notation G := PSL;(R) x PSL,(R) and
IMi= F] X Fz. Set

o Hi={(he), Hy={(e.h)}. H={(hh)):
e U = {(”t,e)}s U = {(e,ut)}a U= {(“r,ur)};
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o A = {(a,,e)}, Ax = {(eaat)}s A= {(at,a,)};
° X1 =F1\H1, X2=F2\H2, X=F\G =X1 XX2.

Recall that T'; is a non-elementary finitely generated discrete subgroup of H,
with no parabolic elements and that I'; is a cocompact lattice in H,.

For simplicity, we write wu, for (u;,u;) and @a; for (a;,a;). Note that the
normalizer of U in G is AU U,.

Lemma 3.1. Let g, be a sequence in G~ AUU, converging to e, and let T be
a K -thick subset of R for some K > 1. Then for any neighborhood Go of e in
G, there exist sequences s, € T and t, € R such that the sequence U_s, g, Uy,
has a limit point q # e in AUz N Gy.

b o o (a® b®
Proof Fix 0 <e < 1. Write g, = (g, 2?) with g = o d’zi) . Then
cn n

the products ¢, := W_s, g, Uy, are given by

0=y gl a? _F,gi)sn 0% —dé")%) _tn(cr(zi)sn —a®
n —Sndn Yin C'(ll) d,g‘)—i—c,g’)tn :

Set
B - s,

I A
cMsp —al

The differences ¢, — e are now rational functions in s, of the form

1
e Sy —ap O
where P,(s) is a polynomial function of s of degree at most 2 with values
in M>(R) x M»(R). Since the elements g, do not belong to AU;U,, these
polynomials P, are non-constants. In particular, the real valued polynomial
functions s > || P,(s)||*> are non-constant of degree at most 4.

Since || P,(0)|| — 0 as n — oo, it follows from Lemma 2.5 that for any 0 < ¢,
we can choose s, € T going to oo so that ke < || P,(s,)| < & for some constant
k > 0 depending only on K. Moreover we can deduce 1/2 < |c,(11)s,, — a,(,l)l =2
from the condition ||P,(s,)|| < & by looking at the (1,1) and (2,2) entries of
the first component of P, (s,).

Therefore

ke/2 < |lgn —e|| < 2e.

By construction, when ¢ is small enough, the sequence ¢, has a limit point
q 75 e in A1A2U2 N G().
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We claim that this limit ¢ = (¢‘V, ¢‘®) belongs to the group AU,. It suffices
to check that the diagonal entries of ¢(!) and ¢@® are equal. If not, the two
sequences c\’s, converge to real numbers ¢® with ¢® # ¢@ | and a simple
calculation shows that the (1,2)- entries of q,(f) are comparable to %Sn

which tends to oo, yielding a contradiction. Hence g belongs to AU,. U

3.2. H -minimal and U -minimal subsets. Let
Q:=Qr, xX»

where Qr, C X; is defined in (2.1). Note that, since I'; is cocompact, one has
the equality Qr, = X>.

Let x = (x1,x2) € '\G and consider the orbit xH . Note that xH intersects
Q non-trivially. Let ¥ be an H -minimal subset of the closure xH with respect
to Q, ie., Y is a closed H -invariant subset of xH such that Y N Q # @ and
the orbit yH is dense in Y for any y € ¥ N Q. Since any H orbit intersects
2, it follows that yH is dense in ¥ for any y € Y. Let Z be a U -minimal
subset of ¥ with respect to Q. Since €2 is compact, such minimal sets ¥ and
Z exist. Set

Y*=YNQ and Z*=ZnNQ.

In the following, we assume that
the orbit xH is not closed

and aim to show that xH is dense in X.

Lemma 3.2. For any y € Y, the identity element e is an accumulation point of
the set {ge€ G~H :ygexH).

Proof. If y does not belong to xH, there exists a sequence h, € H such that
xh, converges to y. Hence there exists a sequence g, € G converging to e
such that xh, = yg,. These elements g, do not belong to H; hence proving
the claim.

Suppose now that y belongs to xH . If the claim does not hold, then for
a sufficiently small neighborhood Gy of e in G, the set yGo N Y is included
in the orbit yH . This implies that the orbit yH is an open subset of Y. The
minimality of Y implies that ¥ = yH, contradicting the assumption that the
orbit yH = xH is not closed. [
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Lemma 3.3. There exists an element v € U, ~ {e} such that Zv C xH.

Proof. Choose a point z = (z1,22) € Z*. By Lemma 3.2, there exists a sequence
gn in G ~ H converging to e such that zg, € xH. We may assume without
loss of generality that g, belongs to H,.

Suppose first that at least one g, belongs to U,. Set v = g, be one of those
belonging to U, so that the point zv belongs to xH . Since v commutes with
U and Z is U-minimal with respect to £, one has the equality Zv = zvU,
hence the set Zv is included in xH .

Now suppose that g, does not belong to U,. Then, since the set 7T'(zy) is
K -thick for some K > 1 by Lemma 2.3, it follows from Lemma 2.4 that there
exists a sequence t, — oo in 7(zy) such that, after extraction, the products
W_y, gn Uy, converge to an element v € Uy ~ {e}.

Since the points zu;, belong to 2, this sequence has a limit point z' € Z*.
Since one has the equality

Z'v= lim z%,,(U_s,gnls,) = lim (zg,) U,
n—00 n—co
the point z’v belongs to xH. We conclude as in the first case that the set
Zv = z/vU is included in xH . O

Lemma 3.4. For any z € Z*, there exists a sequence g, in G ~U converging
to e such that zg, € Z for all n.

Proof. Since the group I'; is cocompact, it does not contain unipotent elements
and hence the orbit zU is not compact. By Lemma 2.3, the orbit zU is recurrent
in Z*, hence the set Z*~zU contains at least one point. Call it z’. Since the orbit
z'U is dense in Z, there exists a sequence u;, € U such that z = limz"u,, .
Hence one can write z'%,;, = zg, with g, in G ~U converging to e. []

Proposition 3.5. There exists a one-parameter semi-group L+ C AU, such that
ZLt C Z.

Proof. Tt suffices to find, for any neighborhood Gy of e, an element g # e in
AU, N Gy such that the set Zg is included in Z; then writing ¢ = expw for
an element w of the Lie algebra of G, we can take L™ to be the semigroup
{exp(sweo) : § = 0} where wyo is a limit point of the elements m when the
diameter of Gg shrinks to 0.

Fix a point z = (z1,22) € Z*. According to Lemma 3.4 there exists a sequence
gn € G ~ U converging to e such that zg, € Z.

Suppose first that g, belongs to AU U, for infinitely many 7 ; then one can
find %;, € U such that the product ¢, := g, u;, belongs to AU, ~{e} and zg,
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belongs to Z. Since g, normalizes U and since Z is U -minimal with respect
to Q, one has the equality Zg, = zUg, = zq,U , hence the set Zg, is included
in Z.

Now suppose that g, is not in AU;U,. By Lemmas 2.3 and 3.1, there exist
sequences s, € T(z;) and #, € R such that, after passing to a subsequence, the
products u_g, g, U;, converge to an element ¢ # e in AU, N Gq. Since the
elements zu;, belong to Z*, they have a limit point z’ € Z*. Since we have

Z'qg = lim zUs, (U_s,gn¥y,) = lim (zgn) Uy,
n—oo n—oo

the element z'q belongs to Z. We conclude as in the first case that the set
Zgq = z’qU is included in Z. L]

Proposition 3.6. There exist an element z € xH and a one-parameter semi-group
U,” C Uy such that zU;F C xH .

Proof. By Proposition 3.5 there exists a one-parameter semigroup LT C AU,
such that ZL* c Z. This semigroup LT is equal to one of the following:
U,-, AT or vytAtvy for some element vy € Uy ~ {e}, where U,” and AT are
one-parameter semigroups of U, and A respectively.

When Lt = U2+ , our claim is proved.

Suppose now LT = A*. By Lemma 3.3 there exists an element v € U, ~ {e}
such that Zv C xH . Then one has the inclusions

ZATvAC ZvAC xHA C xH.

Choose a point z/ € Z* and a sequence d,, € A" going to co. Since z'd,,
belong to 2, after passing to a subsequence, the sequence z’@,, converges to a
point z € xH N . Moreover, since the Hausdorff limit of the sets ?z'_tnA+ is
A, one has the inclusions

~

zAvA C lim /@, (d—, A )vA =z’ ATvAd C xH.

H—>0Q
Now by a simple computation, we can check that the set AvA contains a one-
parameter semigroup U2+ of U,, and hence the orbit zUZ,Jr is included in xH
as desired.

Suppose finally L* = vy'A%vy for some vo in U, ~ {e}. We can write
AT = {dey :t > 0} with ¢ = £1 and vg = (e,us) with s # 0. A simple
computation shows that the set U, := {(e,ug) : 0 <t < 1} is included in
vy ! ATvgA. Hence one has the inclusions

ZUy C Zvg'AtvgA C ZA C xH.
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Choose a point z’ € Z* and let z € xH be a limit of a sequence z'@_,, with ,
going to +oo. Since the Hausdorff limit of the sets @;,U;d—;, is the semigroup
U2+ ;= {(e, ugs) 1t > 0}, one has the inclusions

zU, © Mim (2'a_,)@,,U;d-, C ZU;A C xH.

3.3. Conclusion.

Proof of Theorem 1.2. Suppose that the orbit xH is not closed. By Proposition
3.6, the orbit closure xH contains an orbit zU," of a one-parameter subsemigroup
of U,. Since I'; is cocompact in H,, by Lemma 2.6, this orbit zU2+ is dense
in zH,. Hence we have the inclusions

X =zG =zH,H C zU;tH C xH.
This proves the claim. ]

Proof of Theorem 1.1. Let x = [g] be a point of X, = I';\ H,. By replacing T
by g7 'I'1g, we may assume without loss of generality that g = e. One deduces
Theorem 1.1 from Theorem 1.2 thanks to the following equivalences:

The orbit [e]H is closed (resp. dense) in '\G <=

The orbit I'[e] is closed (resp. dense) in G/H <<=

The product I';I'; is closed (resp. dense) in PSL,(R) <=

The orbit [e]I"; is closed (resp. dense) in I\ PSL,(R). O
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