
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 62 (2016)

Heft: 1-2

Artikel: Fuchsian groups and compact hyperbolic surfaces

Autor: Benoist, Yves / Oh, Hee

DOI: https://doi.org/10.5169/seals-685361

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-685361
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


L'Enseignement Mathématique (2) 62 (2016), 189-198 DOI 10-4171/LEM/62-1/2-11

Fuchsian groups and compact hyperbolic surfaces

Yves Benoist and Hee Oh

Abstract. We present a topological proof of the following theorem of Benoist-Quint: for a

finitely generated non-elementary discrete subgroup Fx of PSL(2,R) with no parabolics,

and for a cocompact lattice r2 of PSL(2,R), any Tx orbit on r2\PSL(2,R) is either

finite or dense.

Mathematics Subject Classification (2010). Primary: 11N45, 37F35, 22E40.
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1. Introduction

Let Fx be a non-elementary finitely generated discrete subgroup with no

parabolic elements of PSL(2,R). Let T2 be a cocompact lattice in PSL(2, R).
The following is the first non-trivial case of a theorem of Benoist-Quint [BQ1],

Theorem 1.1. Any Tx -orbit on F2\ PSL(2, R) is either finite or dense.

The proof of Benoist-Quint is quite involved even in the case as simple as

above and in particular uses their classification of stationary measures [BQ2]. The

aim of this note is to present a short, and rather elementary proof.
We will deduce Theorem 1.1 from the following Theorem 1.2. Let

• Hi H2 := PSL(2,R) and G := Hi x H2\

• H {(h, h) : h e PSL2(R)} and T := Tj x T2.

Theorem 1.2. For any x e T\G, the orbit xH is either closed or dense.

Our proof of Theorem 1.2 is purely topological, and inspired by the recent
work of McMullen, Mohammadi and Oh [MMO] where the orbit closures of the

PSL(2,R) action on Fo\PSL(2,C) are classified for certain Kleinian subgroups

r0 of infinite co-volume. While the proof of Theorem 1.2 follows closely the
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sections 8-9 of [MMO], the arguments in this paper are simpler because of
the assumption that T2 is cocompact. We remark that the approach of [MMO]
and hence of this paper is somewhat modeled after Margulis's original proof of
Oppenheim's conjecture [Mar], When Ti is cocompact as well, Theorem 1.2 also

follows from [Rat],

Finally we remark that according to [BQ1], both Theorems 1.1 and 1.2 are

still true in presence of parabolic elements, more precisely when Ti is any non-
elementary discrete subgroup and V2 any lattice in PSL(2,R). The topological
method presented here could also be extended to this case.

In this section we prove a few preliminary facts about unipotent dynamics
involving only one factor H\.

The group PSL2(R) := SL2(R)/{±e} is the group of orientation-preserving
isometries of the hyperbolic plane H2 := {z e C : Imz > 0}. The isometry

implicit in this notation that the matrices g stand for their equivalence class ±g
in PSL2(R). This group PSL2(R) acts simply transitively on the unit tangent
bundle T1}!!2) and we choose an identification of PSL2(R) and T^H2) so

that the identity element e corresponds to the upward unit vector at i. We will
also identify the boundary of the hyperbolic plane with the extended real line
9IHI2 R U {oo} which is topologically a circle.

We recall that ri is a non-elementary finitely generated discrete subgroup
with no parabolic elements of the group H\ PSL2(R), that is, Ti is a convex

cocompact subgroup. Let Si denote the hyperbolic orbifold ri\H2, and let

Art C 9H2 be the limit set of Pi. Let A\ and U\ be the subgroups of H\
given by

2. Horocyclic flow on convex cocompact surfaces

corresponding to the element

Ai := {at

Since the subgroup f, is convex cocompact, the set

(2.1) f2pj := {j e ri\//i \ xA\ is bounded}

is a compact A i -invariant subset and one has the equality

£2ri {[h] e Ti\Hi : A(0),A(oo) e ApJ.
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In geometric words, seen as a subset of the unit tangent bundle of Si, the set

£2n is the union of all the geodesic lines which stays inside the convex core of
Si.

Definition 2.2. Let K > 1. A subset T C R is called K -thick if, for any t > 0,
T meets [—Kt,—t] U[t,Kt],

Lemma 2.3. There exists K > 1 such that for any x e £2^, the subset

T(x) := {t 6 R : xut e £2ri} is K-thick.

Proof. Using an isometry, we may assume without loss of generality that x [e].
Since the element e corresponds to the upward unit vector at i, and since x
belongs to £2rt, both points 0 and oo belong to the limit set Aiq Since

ut(oo) oo and ut(0) t, one has the equality

T(x) {t el : t Apj}•

Write R — Arl as the union U Ji where Ji s are maximal open intervals. Note
that the minimum hyperbolic distance between the convex hulls in H2

8 := inf J(hull(^),hull(/m))
l^m

is positive, as 28 is the length of the shortest closed geodesic of the double of
the convex core of Si. Choose the constant K > 1 so that for t > 0, one has

<i(hull[-AX -r],hull[r, Kt]) 8/2.

Note that this choice of K is independent of t. If T(x) does not intersect

[—Kt, —t] U [t, Kt] for some t > 0, then the intervals [—Kt, —t] and [t, Kt] must
be included in two distinct intervals Jt and Jm, since 0 A r,. This contradicts
the choice of AT.

Lemma 2.4. Let K > 1 and let T be a K-thick subset of R. For any sequence
h„ in Hi \ U\ converging to e, there exists a sequence tn e T such that the

sequence u-tnhnutn has a limit point in Ui ^ {e}.

Proof. Write hn — \
n j" | • We compute

\cn "n J

j I &n Cn^n (ßn dn Cntn^)tn + bn\

c„d„+c„,„
Since the element hn does not belong to U\, it follows that the (1,2)-entries
Pn(in) (an — dn —cntn)tn +bn are non-constant polynomial functions of tn of
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degree at most 2 whose coefficients converge to 0. Hence, by Lemma 2.5 below,

we can choose tn e T going to oo so that k < Pn(tn)\ < 1, for some constant
k > 0 depending only on K. Since the entry Pn(tn) is bounded and since hn

converges to e, the product cntn must converge to 0 and the sequence qn has

a limit point in U\ — {e}.

We have used the following basic lemma :

Lemma 2.5. For every K > 1 and, d > 1, there exists k > 0 such that, for
every non-constant polynomial P of degree d with |P(0)| < k, and for every
K-thick subset T of R, there exists t in T such that k < \P(t)\ < 1.

Proof. Using a suitable homothety in the variable t, we can assume with no loss

of generality that P belongs to the set Vc( of polynomials of degree at most d
such that P(l) max |P(0| 1

•

I-i.i]
Assume by contradiction that there exists a sequence Pn of polynomials in V<i

and a sequence of A"-thick subsets Tn of R such that sup \Pn(t)\ converge
r„n[-i,i]

to 0. After extraction, the sequence Tn converges to a Ai-thick subset Too and

the sequence Pn converges to a polynomial Pro e V(i which is equal to 0 on
the set Too H [—1,1]. This is not possible since this set is infinite.

We record also, for further use, the following classical lemma :

Lemma 2.6. Let TJ^~ be the semigroup {ut : t > 0}. If the quotient space
X\ := T\\FI\ is compact, any U^~ -orbit is dense in X\.

Proof For x e X\, set xn := xu„. We then have xnU-nUj+ xU^~. Hence if z

is a limit point of the sequence x„ in X\, we have zU c xU^ By Hedlund's
theorem [Hed], zU is dense. Hence the orbit xU,+ is also dense.

3. Proof of Theorems 1.1 and 1.2

In this section, using minimal sets and unipotent dynamics on the product

space T\G, we provide a proof of Theorem 1.2.

3.1. Unipotent dynamics. We recall the notation G := PSL2(R) xPSL2(R) and

r := Fi X r2. Set

Hi {(h,e)}, H2 {(e,h)}, H {(h,h)};

• Ui {(ut,e)}, U2 {(e,ut)}, U {(ut,u,)};
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• Ai {(at,ej), A2 {(e,at)}, A {(at,at)};

• xr - TA//!, z2 r2\H2, i r\G i1xi2.
Recall that Tj is a non-elementary finitely generated discrete subgroup of Hx

with no parabolic elements and that r2 is a cocompact lattice in Ii2
For simplicity, we write ut for (ut, ut) and 7ft for (at,at). Note that the

normalizer of U in G is AU\U2.

Lemma 3.1. Let gn be a sequence in AU\U2 converging to e, and let T be

a K-thick subset of E for some K > 1. Then for any neighborhood Go of e in

G, there exist sequences sn e T and tn e M such that the sequence u-Sngnutn
has a limit point q A e in AU2r\ G0.

/ (0 t (i)\
Proof Fix 0 < e < 1. Write gn (gnKg^) with 4° ün(i) "(i) Then

rK ' dK
t Ln un

the products qn := u_Sngn utn are given by

Set

(i) _ „ (f) _ 4° - 4°S„ (b{n] - d^Sn) - tn(cil)Sn - 4°)
U-s„Sn U'n 1 (i) ,(i) (/)

\ Ln un 't

" — (ï> 07ci - ai
The differences qn — e are now rational functions in sn of the form

Çn ~ e ~~Tp; 7JT Pn (pn)i
Cn Sn - a„

where Pn(s) is a polynomial function of s of degree at most 2 with values

in M2(M) x M2(E). Since the elements gn do not belong to AU\U2, these

polynomials Pn are non-constants. In particular, the real valued polynomial
functions s |F„(.y)||2 are non-constant of degree at most 4.

Since ||P„(0)|| -* 0 as n —> oo, it follows from Lemma 2.5 that for any 0 < e,
we can choose sn e T going to oo so that ke < || A (.?« || < £ for some constant

k > 0 depending only on K. Moreover we can deduce 1/2 < I c^Sn -4° I < 2

from the condition ||Pn(s„)|| < e by looking at the (1,1) and (2,2) entries of
the first component of Pn{sn).

Therefore

ke/2 < ||qn —e\\ < 2e.

By construction, when e is small enough, the sequence qn has a limit point
q A e in AxA2U2GGo
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We claim that this limit q (g(1), #(2)) belongs to the group AU2 It suffices

to check that the diagonal entries of q(V) and <y(2) are equal. If not, the two

sequences c„\sn converge to real numbers with ^ c®, and a simple
calculation shows that the (1,2)- entries of qïf* are comparable to sn

which tends to oo, yielding a contradiction. Hence q belongs to AU2.

3.2. H -minimal and U -minimal subsets. Let

£2 := £2ri x X2

where fin C Ii is defined in (2.1). Note that, since F2 is cocompact, one has

the equality Q. r2 X2.
Let x (xi,x2) e T\G and consider the orbit xH. Note that xH intersects

Q, non-trivially. Let Y be an //-minimal subset of the closure xH with respect
to £2, i.e., Y is a closed H -invariant subset of xH such that Y D £2 ^ 0 and

the orbit yH is dense in Y for any y e Y n Q. Since any H orbit intersects

Q, it follows that yH is dense in Y for any y e Y. Let Z be a U -minimal
subset of Y with respect to Q. Since £2 is compact, such minimal sets Y and

Z exist. Set

r-ynfl and Z* znf2.
In the following, we assume that

the orbit xH is not closed

and aim to show that xH is dense in X.

Lemma 3.2. For any y e Y, the identity element e is an accumulation point of
the set {g e G \ H : yg e xH}.

Proof. If y does not belong to xH, there exists a sequence hn e H such that

xhn converges to y. Hence there exists a sequence gn e G converging to e

such that xhn ygn. These elements gn do not belong to H ; hence proving
the claim.

Suppose now that y belongs to xH. If the claim does not hold, then for
a sufficiently small neighborhood Go of e in G, the set y Go n Y is included
in the orbit yH. This implies that the orbit yH is an open subset of Y. The

minimality of Y implies that Y yH, contradicting the assumption that the

orbit yH xH is not closed.
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Lemma 3.3. There exists an element v e U2 ^ {e} such that Zv C xH.

Proof. Choose a point z (zi,z2) e Z*. By Lemma 3.2, there exists a sequence
in G \ TI converging to e such that zgn e xll. We may assume without

loss of generality that gn belongs to H2.
Suppose first that at least one gn belongs to U2. Set v gn be one of those

belonging to U2, so that the point zv belongs to xH. Since v commutes with
U and Z is U-minimal with respect to Q, one has the equality Zv zvU,
hence the set Zu is included in xH.

Now suppose that gn does not belong to U2. Then, since the set T(z\) is

K -thick for some K > 1 by Lemma 2.3, it follows from Lemma 2.4 that there

exists a sequence tn -* 00 in T{z{) such that, after extraction, the products

u-tngnutn converge to an element 1 e U2 \ {e}.
Since the points zut„ belong to S2, this sequence has a limit point z' e Z*.

Since one has the equality

z'v lim zïïtn(ïï-tngnUtn) lim (zgn)ïïtn,
>OÛ /!-> OO

the point z'v belongs to xH. We conclude as in the first case that the set

Zv z'vU is included in xH.

Lemma 3.4. For any z e Z*, there exists a sequence gn in G ^ U converging
to e such that zgn e Z for all n.

Proof. Since the group r2 is cocompact, it does not contain unipotent elements

and hence the orbit zU is not compact. By Lemma 2.3, the orbit zU is recurrent
in Z*, hence the set Z*\zt/ contains at least one point. Call it z'. Since the orbit
z'U is dense in Z, there exists a sequence utn e U such that z lim z'utn.
Hence one can write z'utn zgn with gn in G ~~~ U converging to e.

Proposition 3.5. There exists a one-parameter semi-group L+ c AU2 such that
ZL+ C Z.

Proof. It suffices to find, for any neighborhood G0 of e, an element q f e in

AU2 fl G0 such that the set Zq is included in Z; then writing q exp w for
an element w of the Lie algebra of G, we can take L+ to be the semigroup
{exp(siUoo) : s > 0} where lUoo is a limit point of the elements ^ when the

diameter of G0 shrinks to 0.

Fix a point z (zi,z2) e Z*. According to Lemma 3.4 there exists a sequence

gn e G \ U converging to e such that zgn e Z.
Suppose first that gn belongs to AU\U2 for infinitely many n\ then one can

find utn e V such that the product qn := gnut„ belongs to AU2*^{e) and zqn
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belongs to Z. Since qn normalizes U and since Z is U -minimal with respect
to £2, one has the equality Zqn zUqn zqnJJ, hence the set Zqn is included
in Z.

Now suppose that gn is not in AU\U2. By Lemmas 2.3 and 3.1, there exist

sequences sn g T{zf) and tn e M such that, after passing to a subsequence, the

products u-Sng„utn converge to an element q ^ e in Aif2 IT Go. Since the

elements zuSn belong to Z*, they have a limit point z' e Z*. Since we have

z'q lim zïïSn(û-Sngn û,n) lim (zg„)utn,
n->oo n—>oo

the element z'q belongs to Z. We conclude as in the first case that the set

Zq z'qU is included in Z.

Proposition 3.6. There exist an element z e xH and a one-parameter semi-group
U2 C U2 such that z U2 C xH.

Proof. By Proposition 3.5 there exists a one-parameter semigroup L+ c AU2
such that ZL+ c Z. This semigroup L+ is equal to one of the following:
U2 A+ or UgM+uo for some element v0 e U2^{e}, where U2 and A+ are

one-parameter semigroups of U2 and A respectively.
When L+ U2 our claim is proved.

Suppose now L+ A+. By Lemma 3.3 there exists an element v e U2 \ {e}
such that Zv c xH. Then one has the inclusions

ZA+vA c ZvA c xH A C xH.

Choose a point z' e Z* and a sequence TTtn e A+ going to oo. Since z'7Ttn

belong to £2, after passing to a subsequence, the sequence z'7Ttn converges to a

point z e xH n £2. Moreover, since the Hausdorff limit of the sets TT-tnA+ is

A, one has the inclusions

zAvA c lim z'~atn (af~t„ A+)vA — z'A+vA c xH.
n-* oo

Now by a simple computation, we can check that the set AvA contains a one-

parameter semigroup U2 of U2, and hence the orbit zU2 is included in xH
as desired.

Suppose finally L+ — UgM+uo for some v0 in U2-^{e}. We can write
A+ {Txet : t > 0} with e ±1 and v0 - (e,us) with ï / 0. A simple

computation shows that the set U2 := {(e,usst) : 0 < t < 1} is included in

Vq1A+v0A. Hence one has the inclusions

ZU2C Zv^A+vqA C ZA C xH.
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Choose a point z' e Z* and let z e xH be a limit of a sequence z'7i-tn with tn

going to +00. Since the Hausdorff limit of the sets 'atnU!^a-tn is the semigroup
U2 : {(e,u£St) : t > 0}, one has the inclusions

zU+ c lim {z''a-tn)'atnU'1'a-tn C ZU2A c xH.
72—>00

3.3. Conclusion.

Proof of Theorem 1.2. Suppose that the orbit xH is not closed. By Proposition
3.6, the orbit closure xH contains an orbit zU2 of a one-parameter subsemigroup
of U2 Since T2 is cocompact in H2, by Lemma 2.6, this orbit z{/2+ is dense

in zH2. Hence we have the inclusions

X zG zH2H c zU2 H c JÏÏ.

This proves the claim.

Proof of Theorem 1.1. Let x [g] be a point of X2 T2\H2. By replacing r 1

by g^Tjg, we may assume without loss of generality that g e. One deduces

Theorem 1.1 from Theorem 1.2 thanks to the following equivalences:
The orbit [e]H is closed (resp. dense) in T\G
The orbit T[e] is closed (resp. dense) in G/H
The product r2Ti is closed (resp. dense) in PSL2(M)
The orbit [e]Ti is closed (resp. dense) in T2\PSL2(M).
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