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Some noncoherent, nonpositively curved Kiahler groups

Pierre Py

Abstract. If T' is any nonuniform lattice in the group PU(2, 1), let T be the quotient of T
obtained by filling the cusps of I' (i.e. killing the center of parabolic subgroups). Assuming
that such a lattice T" has positive first Betti number, we prove that for any sufficiently
deep subgroup of finite index I'; < T, the group T'; is noncoherent. The proof relies on
previous work of M. Kapovich as well as of C. Hummel and V. Schroeder.

Mathematics Subject Classification (2010). Primary: 20F67, 32QI5.

Keywords. Dehn filling, coherence, complex hyperbolic lattices.

1. Introduction

A group G is called coherent if every finitely generated subgroup of G is
finitely presented. This notion has been studied within various classes of groups
and has a long history. For instance, it is easy to see that the fundamental group
of a closed orientable surface is coherent, and Scott proved that the fundamental
group of any 3-manifold is also coherent [Sco]. On the other hand, it has been
known for a long time that the direct product of two non-Abelian free groups is
not coherent, see [Gru]. This implies for instance that SL,(Z) is not coherent if
n > 4 whereas the coherence of SL3(Z) is an old open problem, first raised by
Serre, see [Cos, Wal]. For other examples of incoherent groups the reader can
consult Wise’s article [Wis].

In [Kap2], Kapovich conjectured that any lattice I" in a semisimple Lie group
not locally isomorphic to SL,(R) or SL,(C) is not coherent (the conjecture for
lattices in the isometry group of real hyperbolic spaces of dimension at least
4 is due to Wise). Kapovich proved this conjecture for many rank 1 lattices,
see [Kap2] for a precise statement as well as [BM, KP, KPV, Pot] for earlier
results which motivated the conjecture. He proved in particular the following
statement:
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If T is a cocompact lattice in the isometry group of the complex hyperbolic
plane and if vby(T") is positive, then T is noncoherent.

Here vb;(I') denotes the virtual first Betti number of I', i.e. the supremum
of the first Betti numbers of finite index subgroups of I'. This result implies
in particular that any cocompact arithmetic lattice of the simplest type in the
group PU(n, 1) of holomorphic isometries of the complex hyperbolic space of
dimension n > 2 is noncoherent.

In this note we will see that the arguments of Kapovich can be used to give
other examples of aspherical complex surfaces with noncoherent fundamental
groups. The fundamental groups of the surfaces we will be dealing with are
closely related to, but different from, complex hyperbolic lattices (and hence we
will say nothing new about Kapovich’s conjecture). Before stating our result, we
recall classical facts concerning non-uniform lattices in the group PU(2,1) and
their parabolic subgroups. We will use freely the notions of elliptic, parabolic and
hyperbolic isometries for elements of PU(2,1). For a definition of these notions
in the context of CAT(0) spaces, which applies in particular to symmetric spaces
of noncompact type, we refer the reader to [BH, 11.6].

So let I' ¢ PU(2,1) be a non-uniform lattice. Let § be a point in the
boundary of the complex hyperbolic plane HZ. and let Hg be a fixed horosphere
centered at § inside HZ . Recall that H can be identified with the 3-dimensional
Heisenberg group, that we will simply denote by N . Under this identification,
and using the embedding

He ~ N — HZ,

the metric of HZ induces a left-invariant metric on N. The isometry group
Iso(Hg) of this metric is isomorphic to a semidirect product of the form N x K
where K is a compact group. The point £ is called a parabolic point for I' if
the stabilizer I'(§) of & inside I' contains a parabolic isometry. In this case, any
element in I'(§) — {id} is parabolic or elliptic, the group I'(§) is a lattice in
the group Iso(Hg) and is called a parabolic subgroup of I'. For all of this, we
refer the reader to [GR, HS]. It is known that the intersection of I'(§) with the
normal subgroup N <Iso(Hg) has finite index in I'(§) [Aus].

Definition 1. We will say that the lattice I' has nice cusps if each parabolic
subgroup [I'(¢) is actually contained in the normal subgroup N < Iso(Hg)
(following the terminology of [Hum], we also say that the parabolic isometries
of T" have no rotational part).

It is well-known that any nonuniform lattice I" < PU(2, 1) has a finite index
subgroup with nice cusps; the reader will find a proof of this fact in [Hum] for
instance. If such a lattice I' is torsion-free and has nice cusps, the ends of the
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manifold HZ /I" are diffeomorphic to the product of an interval by a nilmanifold.
In this case we will denote by I' the quotient of I" by the normal subgroup
generated by the centers of all parabolic subgroups of I'. The group I' is the
fundamental group of the natural toreidal compactification of the open complex
surface HZ/I'. We will spend some time describing this compactification in
Section 2. We will sometimes informally refer to the group T' as the filling of
the lattice I". We can now state the:

Main Theorem. Let I' < PU(2,1) be a torsion-free nonuniform lattice with nice
cusps. Assume that b;(I") is positive. Then, there exists a finite set ¥ C I' of
parabolic isometries such that for any finite index normal subgroup I'y <" with
I' N ¥ = @, the group T'; is not coherent.

As the reader will see, the strategy of the proof is very similar to the one
used by Kapovich to prove the result mentioned earlier about cocompact lattices
in PU(2,1). The main new ingredients we will need are a result of Hummel and
Schroeder saying that the filling T, appearing in the theorem is the fundamental
group of a nonpositively curved Riemannian manifold, and Poincaré’s reducibility
theorem for Abelian varieties.

Let us also mention that every arithmetic nonuniform lattice in PU(2,1) has
positive virtual first Betti number according to a theorem by Shimura [Shi].
Hence every such lattice has finite index subgroups satisfying the hypothesis of
the theorem. One can obtain other examples in a more geometric manner thanks
to the work of Deligne and Mostow [DM]; indeed among the lattices constructed
by them, one can find nonunifom lattices in PU(2, 1) for which the corresponding
complex hyperbolic orbifold admits a holomorphic map to a hyperbolic Riemann
surface and thus has positive first Betti number. We refer the reader to [Der] for
a study of certain holomorphic maps between Deligne-Mostow quotients.

The text is organized as follows. In Section 2, we recall classical facts
concerning the compactification of finite volume quotients of the complex
hyperbolic space and in particular we recall the results from [HS]. In Section 3,
we describe Kapovich’s strategy to study the coherence of fundamental groups of
aspherical Kdhler surfaces with positive first Betti number. Finally, we conclude
the proof in Section 4, using the description of Abelian subgroups of rank 2 of
the fillings of nonuniform lattices in PU(2, 1), as well as Poincaré’s reducibility
theorem.
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2. Cusp closing after Hummel and Schroeder

We first state some classical results concerning cusps of complex hyperbolic
manifolds of finite volume and their compactification by Abelian varieties. All the
results that we will discuss in this section remain true for non-uniform lattices in
PU(n, 1) for any n > 2; however we only state them in the case n = 2 since this
is the case we are dealing with in this article. These results are well-known and
can be found for instance in [HS] or [Mok]. One important point here is that this
discussion is independent of the arithmeticity of the lattices under consideration.
We follow the presentation and notations from [HS].

We recall briefly the definition of the complex hyperbolic plane ]HI%. We
consider the vector space C> endowed with the Hermitian form defined by:

(Z, w) = le—1+ Zzw_z— Z3w_3.

The space HZ is the open subset of P(C?) made of lines which are negative for
the form (-,-); its boundary dHZ. is the subset of P(C?) made of isotropic lines.
The space ]HI%: carries a PU(2, 1)-invariant Kihler metric of negative curvature
for which the visual boundary is naturally identified with dHZ . We assume that
the metric is normalized to have constant holomorphic sectional curvature equal
to —4.

Let £ € JHZ be a point in the boundary of the complex hyperbolic plane
HZ. Let ¢’ be the gradient flow of the negative of any Busemann function
associated to &. Concretely, for p € ]HI% and ¢ € R, the point ¢’(p) is the
point at distance ¢ from p on the oriented geodesic going from p to £. Finally,
let N be the unipotent radical of the stabilizer of & in the group PU(2,1);
this is a simply connected nilpotent Lie group isomorphic to the real Heisenberg
group. A down-to-earth description of N can be obtained as follows. Pick a basis
(v1,v2,v3) of C? such that:

(1) the vector v; spans the line &,
(2) the vectors vy and v, are isotropic and satisfy (vi,v2) =1,
(3) the vector vs satisfy (vs,v;) = d;3 for i =1,2,3.

Representing linear transformations of C3* by their matrices in the basis
(v1,v2,v3), one checks that the group N can be identified with the group
of 3 x 3 matrices with complex entries of the form:

—v
0
1

ey

OO
S = ™
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where B and v are complex numbers satisfying 2Re(B) + |v|> = 0. Hence for

s € R and v € C we will denote by g(s,v) the matrix above with g = %’”2%—1' 5
1.8,

1 %”'2 +is —v
(2) gw,s)=1 0 1 0

0 v 1

The center of N is the group of matrices of the form g(0,s) for s € R. We will
denote by n the Lie algebra of N.
We now fix a base point o in IHI%. The map

(3) R x N — HZ

sending (¢,n) to ¢’(n-o) is a diffeomorphism. We will often identify Hé and
Rx N using this map. Let pu be the scalar product on n induced by the embedding
n+—n-o, let 3 be the Lie algebra of the center of N and v the orthogonal of 3
for w. If a and b are positive real numbers, let u,; be the scalar product on
n which also makes 3 and v orthogonal, coincides with @ on t x v and with
b2u on 3 x 3. The pull-back of the metric of ]HI(Z: to R x N has the form:

dt* @ He—t g—21.

In this expression, the scalar product p,—r 2 on n is identified with a left-
invariant metric on N .

The following well-known proposition describes the structure of the quotient
of HZ (or of a horoball of HZ centered at §) by a cyclic subgroup of the center
of N. We refer the reader to [Mok] for instance for its proof.

Proposition 1. Let ¢ be a positive real number. The quotient R x (g(0,€))\N is
biholomorphic to the open subset O of C? defined as follows:

2 —7'¢'|v|2
0={(v,w)eC,O<\w|<e ¢ }

This identification can be chosen so that the following properties hold:

(1) The projections of horoballs centered at § in R x (g(0,£))\N corresponds

lvl?

to subsets of the form Oc := {(v,w) € C2,0 < |w| < Ce— ¢ _} for some
constant C € (0,1).

(2) The action of an element g(vo,so) by translation on N corresponds to the
Jollowing diffeomorphism of O :

2insg—nlvgl2—2mv-Tg
£ w)

(4) (v,w) — (U+v0,e
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We also add that the foliation defined by v = cst in the coordinate system
(v,w) above has an intrinsic meaning: if one lifts this foliation to ]I-]I%, then
the leaf through a point p is the complex geodesic containing the real geodesic
[p.§].

Consider now a lattice A < N. Let £ > 0 be such that the center Z(A)
of A is generated by g(0,£). Identify the quotient HZ/Z(A) with the open
set O C C? appearing in Proposition 1. The group A/Z(A) acts on O, the
projection of an element g(vo,sp) acting by formula (4). This group also projects
injectively into N/[N, N] ~ C, its image is a lattice denoted by A. The quotient
Op of O by this action admits a submersion onto the elliptic curve C/A, whose
fibers are punctured discs. One can complete Op by considering the open set

0 = {(v,w),|w| <e 0 }. The action of A/Z(A) on O extends to an action
on O ; the quotient O of O by this action is a disc bundle over the elliptic
curve C/A. One can do the same construction replacing Hé at the beginning
by a horoball and replacing the open set O by the open set O¢ appearing in
Proposition 1 for a suitable constant C .

Until the end of Section 2, all the lattices of PU(2,1) that we consider are
assumed to be torsion-free. Let now I' < PU(2,1) be a nonuniform lattice with
nice cusps. By compactifying each cusp of IHI% /" by the process described above,
one obtains a compact complex surface that we will denote by Xr, which is the
disjoint union of HZ /T and finitely many elliptic curves. This compactification
is canonical. Moreover, the fundamental group of Xr is naturally isomorphic to
the group T defined in the introduction.

We now state some of the main results from [HS]:

(1) First, the complex surface Xr admits a Kidhler metric, see Theorem 7 in [HS].

(2) Second, if T" is fixed, there exists a finite set ¥ of parabolic isometries of T"
such that if T'; is a finite index normal subgroup of I" whose intersection
with ¥ is empty, then X, admits a Riemannian metric & of nonpositive
curvature, which has moreover the following property. The sectional curvature
of i along any 2-plane P C TxXr, is negative if x does not lie on one
of the compactifying elliptic curves; these elliptic curves are flat and totally
geodesic. See [HS, §3], in particular Proposition 3.3 and Remark 1 on pages
293-294.

Remark 1. As for the original surface Xr, it always carries the structure of a
nonpositively curved orbifold, see [HS]. Note also that Xr need not be aspherical
if one does not replace at first I' by a deep enough finite index subgroup,
see [DiCS, Hir].
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Remark 2. If I'; is a finite index normal subgroup of I' with ¥ NI'; = &, and
if I'y < I’y is a subgroup of finite index, not necessarily normal, then the proof
of Hummel and Schroeder also shows that Xr, carries a metric of nonpositive
curvature with the same properties as above. Consequently, if b (I") is positive,
the result of our main theorem will also apply to the filling T, .

We will say that a lattice I'; < PU(2, 1) has very nice cusps if it has nice cusps
as in Definition 1 and if Xr, carries a nonpositively curved Riemannian metric
with all the properties from the paragraph above. Using the residual finiteness of
lattices, it is easy to see that any nonuniform lattice in PU(2,1) has finite index
subgroups which are lattices with very nice cusps.

Let us say a word about the proof of these results: any horoball of HZ is
diffeomorphic to (a,b]x N. Hummel and Schroeder consider in [HS] Riemannian
metrics on (a,b] x N of the form (-,+)s, := dt* & pru) ¢y Where f and g are
smooth positive functions. Recall here that py) () is the left-invariant metric
on N obtained by rescaling p by f(t)*> on 3 and by g(¢)*> on t. If f and
g coincide with one of the model functions ae™ and a?e 2! near { = b, one
can glue isometrically (a,b] x N endowed with this metric to the exterior of a
horoball. This metric is also invariant by left translations on the N factor, one can
thus consider it as a metric on any (truncated) cusp of the form (a, b] x A\N for
a lattice A < N. One can then impose conditions on f and g first to guarantee
that this metric extends smoothly to the compactified cusp and then to guarantee
that it is either Kahler or nonpositively curved (but one cannot do both at the
same time). We refer the reader to [HS, §3] for more details.

The only consequences of Hummel and Schroeder’s result that we will need is
that if I" has very nice cusps, then Xt is aspherical and the Abelian subgroups
of its fundamental group are understood, as shown by the following proposition:

Proposition 2. Let T' < PU(2,1) be a lattice with very nice cusps. Let
i :7? = m(Xr) ~ T be an injective homomorphism. Then i(Z?) is conjugated
to a subgroup of the fundamental group of one of the totally geodesic elliptic
curves in Xr —HZ/T.

Proof. Consider the action of T on the universal cover Xr of Xr, endowed
with the lift of a nonpositively curved Riemannian metric as above. By [BH,
I1.6.10], every element of T is a semisimple isometry of Xr . By the flat
torus Theorem [BH, I1.7.1], the group i(Z?) must preserve a totally geodesic flat
R? <> Xr . But since Hummel and Schroeder’s Riemannian metric has negative
curvature in the open set H%/ I' C Xr, this flat must be contained in the inverse
image of one of the elliptic curves from X — HZ/I'. This gives the desired
result. O
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Remark 3. The fundamental groups of complex surfaces such as Xy fit into
the study of groups acting on CAT(0) spaces with isolated flats or of relatively
hyperbolic groups as in [Gro, HK] or [GM, Osi] for instance.

The following result is well-known.

Proposition 3. Let I' < PU(2,1) be a nonuniform lattice with nice cusps. The
Kdihler surface Xr constructed above is algebraic.

Proof. The reader will find a proof of this fact in [DiC, §2], based on the
classification of surfaces. A different proof, applying also in higher dimensions,
goes as follows. Mok [Mok] proved that there exists a holomorphic map Xr — P¥
(for some N) which is an embedding on the open set HZ/I' C Xr and which
contracts the elliptic curves in Xr — HZ /T to points. This implies that Xr is
Moishezon. But a Kihler manifold which is also Moishezon is projective. O

3. Coherence and homomorphisms to Abelian groups for Kihler groups

In this section we recall a result essentially due to Kapovich [Kap2], which
was used in his proof of the noncoherence of cocompact arithmetic lattices of the
simplest type in PU(n, 1). The result concerns fundamental groups of compact
aspherical Kdéhler surfaces X with positive first Betti number. Recall that for
a Kihler manifold, the first Betti number is even. If 5{(X) > 0, one can thus
consider surjective homomorphisms from m;(X) to Z2.

In the following we will say that a compact complex surface is a Kodaira
surface if it admits a holomorphic submersion onto a compact hyperbolic Riemann
surface with connected hyperbolic fibers. Although this definition is not completely
standard (see the discussion in [Kot]), we will use it here. Such a surface is
necessarily aspherical, as follows from the homotopy exact sequence of a fibration.
Actually, one can deduce from Bers’ simultaneous uniformization theorem that
the universal cover of such a surface is homeomorphic to R*.

Theorem 4. (Kapovich) Let X be an aspherical Kdihler surface with positive
first Betti number. Assume that w1(X) has no finitely generated Abelian subgroup
whose normalizer has finite index in m(X). Then, at least one of the following
three cases occurs:

(1) The group m(X) is not coherent.

(2) The surface X has a finite cover which is a Kodaira surface.

(3) For every surjective homomorphism ¢ : w(X) — Z?, the kernel of ¢ is
isomorphic to the fundamental group of a closed Riemann surface.
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The proof of this theorem has several ingredients that we now list.

(1) One of them is Delzant’s alternative [Del2], stating the following: if X is
a closed Kihler manifold and if ¢ : m1(X) — A is a homomorphism to an
Abelian group, then the kernel of ¢ is finitely generated unless X admits
a holomorphic fibration onto a hyperbolic 2-dimensional orbifold. Here a
fibration means a surjective holomorphic map with connected fibers. We
refer the reader to [Del2] for a more precise statement and for the definition
of hyperbolic 2-dimensional orbifolds; here we will only need this weak
form of Delzant’s Theorem.

(2) We will use the fact that Poincaré duality groups of dimension 2 are
fundamental groups of closed Riemann surfaces, as follows from the work
of Eckmann together with Bieri, Linnel and Miiller, see [Eck] and the
references there. For the definition of Poincaré duality groups, we refer the
reader to [Bro, VIILIO].

(3) It G is a Poincaré duality group of dimension 4 and if one has a a short
exact sequence

1 H G 71(S) — 1

where H is finitely presented and S is a closed Riemann surface, then H is
a Poincaré duality group of dimension 2. This result is due to Hillman, see
Theorem 1.19 in [Hil2] (which is more general). Combined with the previous
result, Hillman’s result implies that H is the fundamental group of a closed
Riemann surface.

(4) Let X be an aspherical Kihler surface whose fundamental group fits into a
short exact sequence

1 H; m(X) =~ H, 1

where both H; and H, are fundamental groups of closed Riemann surfaces
of genus greater than one. Then the homomorphism = is induced by a
holomorphic submersion onto a closed Riemann surface, with connected
fibers. This result, or slight variations on it, has been proved independently
by several people at the end of the 90’s, see for instance [Hill, Kapl, Kot].
We refer the reader to [Kot] for a short elegant proof.

We now turn to the proof of Theorem 4, based on the above ingredients.
Although this proof is essentially contained in [Kap2], we will explain it for the
reader’s convenience. We start with the:
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Proposition 5. Let X be an aspherical Kihler surface with coherent fundamental
group. Let ¢ : m(X) — Z? be a homomorphism with finitely generated kernel.
Then, the kernel of ¢ is isomorphic to the fundamental group of a closed Riemann
surface.

Proof. Since m1(X) is coherent the kernel of ¢ is finitely presented. Now by
Hillman’s theorem mentioned above, the kernel of ¢ must be a Poincaré duality
group of dimension 2 (for short: a PD(2) group). The characterization of PD(2)
groups then implies that the kernel of ¢ is the fundamental group of a closed
Riemann surface. (]

Proof of Theorem 4.. We assume that the fundamental group of X is coherent
and prove that it must satisfy the second or the third possibility from the
theorem. If every homomorphism ;(X) — Z? has finitely generated kernel, then
Proposition 5 implies that 71(X) satisfies the third possibility of the theorem.

Now if there exists one homomorphism ¢g : m1(X) — Z*> whose kernel is
not finitely generated, then Delzant’s Theorem implies that there is a holomorphic
fibration = : X — % onto a 2-dimensional hyperbolic orbifold. Such a fibration
induces a surjective homomorphism

m(X) = 78 (%)

with finitely generated kernel, where n{" b(%) is the orbifold fundamental group
of X; note that we implicitly assume here that the orbifold structure on X is
given by the multiplicities of the singular fibers of = . See [Dell, §4.1] for all of
this. There exists a finite cover X; — X and a finite orbifold cover ¥; — X such
that ¥, is a manifold and such that = lifts to a holomorphic map 7; : X; — %,
inducing a surjective homomorphism

(1) 1 w1(X1) = w1 (Z1).

The kernel of (m;)« is also finitely generated. Since m;(X) is assumed to be
coherent (and since 7;(X;) is a subgroup of m;(X)), the kernel of (7;), must
be finitely presented. Using Hillman’s result again, we obtain that Ker((m1)«)
is the fundamental group of a closed Riemann surface F. The hypothesis on
Abelian subgroups of m;(X) implies that the genus of F is greater than 1.
Then the fourth result recalled above implies that X is a Kodaira surface. Hence
the surface X satisfies the second possibility of the theorem. This concludes the
proof. Ul



Some noncoherent, nonpositively curved Kihler groups 181

4. Flats and Poincaré’s theorem

We now prove the main theorem. So let I' C PU(2,1) be a torsion-free
nonuniform lattice with nice cusps and such that »;(I") is positive. We have seen
in Section 2 that there exists a finite set ¥ of parabolic isometries of I' such
that any finite index normal subgroup I'; of I' with trivial intersection with
¥ has very nice cusps, which means by definition that the compactified surface
Xr, admits a nonpositively curved Riemannian metric enjoying all the properties
described in Section 2. We take exactly this set ¥ as the set appearing in the
statement of our theorem. We now fix a finite index normal subgroup I'y of I’
such that I't N F = @. We also endow once and for all the surface Xt, with
one of the nonpositively curved Riemannian metrics constructed by Hummel and
Schroeder, whose properties were listed in Section 2. We start with the following
proposition.

Proposition 6. The group T does not contain any finitely generated Abelian
group A whose normalizer has finite index in T1. No finite cover of the surface
Xt, is a Kodaira surface.

Proof. We denote by }?1:; the universal cover of Xr,. Suppose that A is a
finitely generated Abelian group of Tj ~ m1(Xr,). For g € Ty, considered as an
isometry of Xr, , let

Min(g) = {x € Xr, .d(x,g(x)) = min(g)}

where min(g) is the translation length of g. Let Min(4) = Nge4Min(g). It
is known that Min(A4) is a convex subset of 5(?; which splits as a product
Y x R" where r is the rank of A, see [BH, IL.7]. If r > 2 or if Y is not
reduced to a point, one sees, using that the curvature is negative on the open set
]HI% /Tt C Xr,, that Min(4) must be contained in a connected component E of
the inverse image of an elliptic curve E C Xr,. Since the normalizer N(A4) of
A in T preserves Min(4) by [BH, IL.7], this actually implies that N(A4) must
preserve the flat E. Any element g of N(A) acts on E as a translation (being
semisimple and orientation preserving). This implies that N(A) is free Abelian
of rank at most 2, hence it cannot be of finite index in ;. If r =1 and Y
is a point, the proof is similar (and simpler): Min(A4) is then made of a single
geodesic, which must be N(A)-invariant, preventing N(A) from being of finite
index.

For the second claim of the proposition, suppose that a finite cover X; of Xr,
is a Kodaira surface, i.e., that there exists a closed hyperbolic Riemann surface
S and a holomorphic submersion 7 : X; — § with connected hyperbolic fibers.
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Let E C X; be a totally geodesic elliptic curve. Note that we have seen that such
curves exist in Xt, ; hence they also exist in any finite cover of Xr, . Since S is
Kobayashi hyperbolic, the restriction of 7 to E is constant; hence E C 77 !(%)
for some point * € S. Since 77!(*) is smooth and connected, this implies that
E = n~1(*). This contradicts the fact that = has hyperbolic fibers. O

We will also need the following observation:
Lemma 7. The groups Ty and Ty have the same first Betti number.

Proof. Since the first Betti number can only decrease by passing to a quotient, it
is enough to show that b;(I';) < b;(T';). But the kernel of the map I'y — T is
normally generated by the centers of parabolic subgroups of I'y. If g is a generator
for the center of a parabolic subgroup A < I'; then g has a power which is a
product of commutators in A hence in T'y. Hence any homomorphism f : 'y — R
vanishes on g and must descend to T. This proves that by(T';) > b1(T)). O

To prove that I'; is not coherent, we will now apply Theorem 4. Note that T’y
indeed satisfies the hypothesis of that theorem: the first Betti number b;(I") of
I" was assumed to be positive hence b;(I';) is also positive. Moreover I'; and
T, have the same first Betti number as shown by the previous lemma. Hence
b1(T'}) > 0. Also, by Proposition 6, the group I'; satisfies the hypothesis on
Abelian subgroups appearing in Theorem 4.

Observe that I'; cannot satisfy the second possibility appearing in Theorem 4,
thanks to Proposition 6. We assume that I'; satisfies the third possibility given
by Theorem 4 and prove that T'; is not coherent in this case. This implies that
T is not coherent in all cases. Pick any surjective homomorphism f : T; — Z2.
We know that there is a short exact sequence

| — > 7,(S5) L 72 1

where § is a closed Riemann surface. The surface S is necessarily of genus greater
than 1 by Proposition 6. This short exact sequence determines a homomorphism

W Z* — Out(mi(S)).

Here Out(m1(S)) is the group of outer automorphisms of 7;(S), also known as
the mapping class group of S. From this situation, we can construct an embedding
i : Z* — T such that the composition of i with the projection f : T} — Z2
has rank one image. Let us explain this construction.

e If W is not faithful, we pick x € I'; such that W(f(x)) =1 and f(x) # 1.

This means that for any y € m;(S) C Ty, xyx~! and y are conjugated in
m1(S). So for any y € m((S) — {1} there exists A, € m1(S) such that



Some noncoherent, nonpositively curved Kihler groups 183
(5) xyx ! = hyyh;l.

Then, for any y € m;(S)—{1}, h;lx and y generate a free Abelian subgroup
of rank 2 of T'; whose image under f is infinite cyclic.

e We now suppose that W is faithful. As in [Kap2], we use the fact that a
rank 2 Abelian subgroup of the mapping class group of S must contain a
reducible element, see [BLM]. Recall that a reducible element in the mapping
class group is an element which preserves the isotopy class of a finite disjoint
union of essential simple closed curves. So let x € T'; such that f(x) is
nontrivial and such that W(f(x)) is reducible. After maybe replacing x by
one of its powers, this means precisely that Equation (5) holds for at least
one nontrivial element y in 7{(S). This is enough to construct the desired
embedding i : Z?> — T'; as before.

According to Proposition 2, and up to conjugacy, any embedding i : Z? — I'y
has its image contained into the image of the map

m(E) = m(Xry) =Tt

induced by the inclusion of a totally geodesic elliptic curve E in Xr,. This
implies:

Proposition 8. If the third possibility of Theorem 4 occurs, there exists a totally
geodesic elliptic curve E — Xr, such that the holomorphic map

h:E — Alb(Xr,)

obtained by composition of the inclusion of E in Xr, and the Albanese map of
Xr, is nontrivial.

Recall that the Albanese variety Alb(Y) of a compact Kidhler manifold Y
is a compact complex torus of real dimension equal to b;(Y) endowed with a
holomorphic map alb(Y) : Y — Alb(Y) which induces an isomorphism

alb(Y)* : H'(AIb(Y),R) — H'(Y,R)

between the first cohomology groups of Y and Alb(Y). The map alb(Y) is
canonical up to translation. The torus Alb(Y) is algebraic if Y is (see [Voi]). In
the proposition above, we can assume that A(E) is a subtorus of Alb(Xr,), up
to composing the map alb(Xr,) with a translation. We will make this assumption
below.

We now continue the proof. Since the surface Xr, is algebraic, so is Alb(Xr,).
We apply Poincaré’s reducibility theorem to Alb(Xt,). Recall that this theorem
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states that if A is an Abelian variety and B a subtorus of A, there exists another
subtorus C C A such that there is an isogeny B x C — A; see [Deb, VL8]
for a proof. We apply Poincaré’s theorem to A = Alb(Xr,) and B = h(E)
the image of the elliptic curve appearing in Proposition 8. Hence there exists
an Abelian variety C of dimension one less than Alb(Xr,) and an isogeny
h(E) x C — Alb(Xr,) which itself gives rise to an isogeny

u: ExC — Alb(XT,).

Let m : X, — X, be a finite cover of Xr, such that the map alb(Xr,)omw :
X, — Alb(Xr,) lifts to E x C i.e. such that there exists a holomorphic map
g : X» — E x C making the following diagram commutative:

g

X, ExC
lﬂ.’ lu
alb(Xrl)
Xr, Alb(XT,)

Denote by g, the composition of g with the first projection from E xC to E.
We are now going to repeat the previous line of arguments, but considering the
homomorphism

(g2) : m1(X2) —» m(E) =~ Z*

induced by g». The main difference is that we now know that this homomorphism
is induced by a holomorphic map. We apply again Theorem 4, this time to X,
instead of Xr, . If m1(X2) is not coherent, the same is true for T;. So we must
exclude the second and third possibilities of the theorem for X,. The fact that
X5, has not finite cover which is a Kodaira surface follows from Proposition 6.
Assume now that the third possibility of Theorem 4 holds and consider the
homomorphism (g2)x«. Its kernel is then a non-Abelian surface group. As before
the image of the homomorphism Z? — Out(Ker((g2)«) induced by g, must
have rank < 2 or must contain a reducible element, thus giving rise to a rank 2
Abelian subgroup
A~7Z% < m(Xs)

such that the restriction of (g2)« to A has rank 1 image and rank 1 kernel.
But now we can assume again that, up to conjugacy, A is contained in the
fundamental group of a certain elliptic curve i : £y — X,. We thus obtain a
homomorphism

(g20i1)x : m1(E1) = mi(E)

between the fundamental groups of two elliptic curves which has rank 1 image
and is induced by a holomorphic map. This is a contradiction. Hence the groups
m1(X5) and T'; are not coherent. This completes the proof of our main theorem.
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Let us make one final remark, valid in any dimension, concerning nonuniform
lattices in PU(n, 1), and their fillings. If T' < PU(n, 1) is a torsionfree nonuniform
lattice with nice cusps (i.e., whose parabolic elements have no rotational part)
the positivity of the first Betti number of I' is equivalent to that of b;(Xr).
Similarly, the group I' surjects onto a non-Abelian free group if and only if
m1(Xr) does. This should motivate the study of the spaces Xr and of their
fundamental groups, since the positivity of the first Betti number as well as the
largeness of lattices in PU(n, 1) are well-known open problems.

Acknowledgements. I would like to thank Yves de Cornulier for his comments
on a preliminary version of this text, as well as the referees for their useful
remarks.
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