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Note on the distortion of (2, q) -torus knots

Luca Studer

Abstract. We show that the distortion of the (2,q) -torus knot is not bounded linearly from

below.
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1. Introduction

The notion of distortion was introduced by Gromov [GPL]. If y is a rectifiable

simple closed curve in R3, then its distortion 8 is defined as

<5(y) sup
dy(v, w)

jey |u - w\
'

where dy(v,w) denotes the length of the shortest arc connecting v and w in

y and | • | denotes the euclidean norm on R3. For a knot K, its distortion

8(K) is defined as the infimum of <5(y) over all rectifiable curves y in the

isotopy class K. Gromov [Gro] asked in 1983 if every knot K has distortion

8{K) <100. The question was open for almost three decades until Pardon gave
a negative answer. His work [Par] presents a lower bound for the distortion of
simple closed curves on closed PL embedded surfaces with positive genus. Pardon

showed that the minimal intersection number of such a curve with essential discs

of the corresponding surface bounds the distortion of the curve from below. In
particular for the (p, q) -torus knot he showed that 8(TPtq) > min(/?, q)/\60. By
considering a standard embedding of TPtP+\ into a torus of revolution one obtains

S(TP.p+i) < const p, hence for q p + 1 Pardon's result is sharp up to a

constant.

An alternative proof for the existence of families with unbounded distortion
was given by Gromov and Guth [GG], In both works the answer to Gromov's

question was obtained by estimating the conformai length, which is up to a
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constant a lower bound for the distortion of rectifiable closed curves. However,
the conformai length is in general not a good estimate for the distortion. For

example, one finds easily an embedding of the (2, q) -torus knot with conformai
length < 100 and distortion > q by looking at standard embeddings into a

torus of revolution with suitable dimensions. In particular, neither Pardon's nor
Gromov and Guth's arguments yield lower bounds for 8(T2,q). While Pardon

conjectures that lim^oo 8{T2<q) oo and that there are to his knowledge no
known embeddings of T2,q with sublinear distortion [Par, p. 638], Gromov and

Guth [GG, p. 2588] write that the distortion of T2,q appears to be approximately

q. In this article we show that the growth rate of 8(T2,q) is in fact sublinear

in q.

Theorem. Let q > 50. Then 8(T2q) < lq/\ogq. In particular the distortion of
the (2, q)-torus knot is not bounded linearly from below.

With the same technique as used in this article and somewhat more effort
one can give an embedding yq of T2<q with 8(yq) ~ f Moreover, a more
technical proof yields that this asymptotical upper bound for 8{T2<q) is sharp for
those embeddings of T2,q that project orthogonally onto a standard knot diagram.
This leads to the following question.

Question. Is 8(T2qi) up to a constant asymptotically equal to q/ log q And if
yes, is the constant equal to nil?

2. Proof of the Theorem

In order to prove the Theorem we need to give for every odd integer q > 50

an embedding y of the (2, q) -torus knot with distortion smaller or equal to

Iq/ log q. The idea is to use a logarithmic spiral. Let S be a logarithmic spiral
of unit length starting at its center 0 R3 and ending at some u 6 R3. An
elementary calculation shows that its distortion is equal to l/\u\. For another

path a C R3 of unit length and diameter < 2|w| with endpoints {v, w} 3a we

get

Sf w da(v,w) 1 1 3(5)
ö(a) > r r — ~~r~r •

|u — w\ ju — tu I 2|w| 2

Hence up to at most a factor 2 the logarithmic spiral has the smallest distortion

among all paths for a prescribed pathlength-pathdiameter-ratio. It seems therefore

natural to pack the q windings of the (2, q)-torus knot into a logarithmic spiral
in order to minimize distortion.
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Figure 1

The embedding y for q 7

We define the embedding y as the union of a segment of the logarithmic
spiral S with slope k \og(q)/2nq and a piecewise linear part L, see Figure 1.

The segment of the logarithmic spiral S is contained in the vertical (x, z) plane
and parametrized by

see Figures 1 and 2. The segment of the piecewise linear part L is in the horizontal

(x, y) plane, see Figures 1 and 3. Note that

hence the lengths defining L in Figure 3 are chosen such that the union y of
S and L is the simple closed curve illustrated in Figure 1. The linear segments

Li and L2 indicated in Figure 3 are named because of their special role in the

following computations.
To see that the obtained curve is an embedded (2,q)-torus knot, we perturb

y, see Figure 4. This simple closed curve is ambient isotopic in R3 to y and

if we project it onto the (x,y) plane, we see a well known diagram of the

(2, q) -torus knot, see Figure 5.

We now estimate the distortion of y. One has to show that

\(p{jtq)\ eknq - Jq and |<p(0)| 1,

dy(y, w) ^
7q

|u — ir| logg
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Figure 2

The logarithmic spiral S in the (x,z) plane

<to(qn)

L2 V?

m
u

2 Vq

Figure 3

The linear part L in the (x,y) plane

for all pairs of points v,w y. An easy computation shows that

- • y/2k2 + 1 - • s/2(\ogq/2jzq)2 + 1 < ^
k log q log q

for all integers > 2. Therefore, it suffices to show that

dy(v,w) ^
y/2k2 + 1

I ti — m I k

In order to do this, we distinguish four cases.

Case 1: v, w e S. Let 0 < s < t < nq, v (p(s), w <p(t). From

Wir) [

/cos(r) — sin(r)\ (kekr^

ysin(r) cos(r) J I ekr V^TT • ekr

we get
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Figure 4

Perturbation of y

Figure 5

Projection onto the (x,y) plane

dy(v, w) < ds(v, w)
t

f \<p'(r)\dr
S

t

V£2TT J ekrdr
S

VÇ+i _ e^)

"hF • (WOI - IPCOI)

VÇ+Ï (]u;| - M).

Since |iu — u| > |u)| — |u|, we conclude that
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Figure 6

Visualization of Case 2

dY{v,w) <
VFTT (|to| —|u|) _

VA:2 + 1

|u — w| k (I if I — I u I) k

Case 2: v e L\ U L2, w e S. We consider the case where v e L\. The idea

is to find the maximum of dY(v,w)/\v — w\ for fixed w and varying v. Let
t |u — <p(0)|, a — V(0) — w|, and b ds(<p(0),w), see Figure 6. Note that

|u — tu| s/t2 + a2 and dy(v,<p(0)) |u — <p(0)| t. We get

dy(v,w) <
dy(v,<p(0)) + ds(<p(0), w)

_
t + b

__
|u-tu| ~ \v-w\ Vt2 + a2

Deriving / with respect to t yields a unique critical point at t a2/b\^ « '=°1/b

Since a2/b is the only critical point, /(oo) — \ <b/a /(0) and

/(0) =i < V+" /(«VI»,
a a I,a2^)2+a2

a2/b must be a global maximum. Consequently we get

dY(v,w) Va2 + b2

u — w\

1/1 + 1-
b-2

f Vs(<K0),W)n2

V V |^(0) — it;I
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_
V2k2 + 1

k

In the case where v e L2, we make the estimate with the path that connects v

with w through <p(nq). It works exactly the same and yields the same estimate.

Case 3: v,w e L. Consider Figure 3 and note that all pairs of points v,w e L of
euclidean distance < 1 are either on the same linear segment or on neighboring
linear segments of L. It is easy to see that such pairs of points cannot cause

distortion > ~Jl. For the pairs of points v,w e L of euclidean distance > 1 we

get

dy(v, w)
< dL(<p(0),<p(jrq)) ll«/q + 1.

|u — w I

A direct calculation shows that

2Jtq 1

livï + 1-i^ t
for q > 50.

Case 4: v e L \ (L\ U L2), w e S. Note that for these pairs of points we have

|u — u;| > |iü|. We estimate dy(v,w) using results of Cases 1 and 3:

dY(v,w) < dL(v,(p(0)) + ds((p(0), w)

<2£&±L.\w\.

We conclude that

dy(v,w) VkT+l
<

In — in| |m|

which finishes the proof.
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