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Note on the distortion of (2,q)-torus knots

Luca STUuDER

Abstract. We show that the distortion of the (2, g)-torus knot is not bounded linearly from
below.
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1. Introduction

The notion of distortion was introduced by Gromov [GPL]. If y is a rectifiable
simple closed curve in R3, then its distortion § is defined as

5(}/) = sup M

vwey |V — W

bl

where d, (v, w) denotes the length of the shortest arc connecting v and w in
y and |-| denotes the euclidean norm on R?. For a knot K, its distortion
8(K) 1is defined as the infimum of 4§(y) over all rectifiable curves y in the
isotopy class K. Gromov [Gro] asked in 1983 if every knot K has distortion
8(K) < 100. The question was open for almost three decades until Pardon gave
a negative answer. His work [Par] presents a lower bound for the distortion of
simple closed curves on closed PL. embedded surfaces with positive genus. Pardon
showed that the minimal intersection number of such a curve with essential discs
of the corresponding surface bounds the distortion of the curve from below. In
particular for the (p,q)-torus knot he showed that (7, ,) > min(p, g)/160. By
considering a standard embedding of 7, ,.; into a torus of revolution one obtains
8(Tp,p+1) =< const - p, hence for ¢ = p + 1 Pardon’s result is sharp up to a
constant.

An alternative proof for the existence of families with unbounded distortion
was given by Gromov and Guth [GG]. In both works the answer to Gromov’s
question was obtained by estimating the conformal length, which is up to a
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constant a lower bound for the distortion of rectifiable closed curves. However,
the conformal length is in general not a good estimate for the distortion. For
example, one finds easily an embedding of the (2, ¢)-torus knot with conformal
length < 100 and distortion > g by looking at standard embeddings into a
torus of revolution with suitable dimensions. In particular, neither Pardon’s nor
Gromov and Guth’s arguments yield lower bounds for 6(7%,). While Pardon
conjectures that lim, ., d(72,4) = co and that there are to his knowledge no
known embeddings of 7, , with sublinear distortion [Par, p. 638], Gromov and
Guth [GG, p. 2588] write that the distortion of 75, appears to be approximately
q- In this article we show that the growth rate of 6(72,) is in fact sublinear
in ¢q.

Theorem. Let g > 50. Then §(T2,4) < 7q/logq. In particular the distortion of
the (2,q)-torus knot is not bounded linearly from below.

With the same technique as used in this article and somewhat more effort
one can give an embedding y, of T,, with 6(y,) ~ 127—10‘; 5 Moreover, a more
technical proof yields that this asymptotical upper bound for 6(73 4) is sharp for
those embeddings of 7, , that project orthogonally onto a standard knot diagram.

This leads to the following question.

Question. Is §(T»4) up to a constant asymptotically equal to q/logq? And if
yes, is the constant equal to w/27?

2. Proof of the Theorem

In order to prove the Theorem we need to give for every odd integer g > 50
an embedding y of the (2,q)-torus knot with distortion smaller or equal to
7q/loggq. The idea is to use a logarithmic spiral. Let S be a logarithmic spiral
of unit length starting at its center 0 € R® and ending at some u € R3>. An
elementary calculation shows that its distortion is equal to 1/|u|. For another
path o C R? of unit length and diameter < 2|u| with endpoints {v,w} = da we
get

do(v,0) 1 _ 1 &)

lv—w|  |Jv—w| = 2u] 2

$(a) =

Hence up to at most a factor 2 the logarithmic spiral has the smallest distortion
among all paths for a prescribed pathlength-pathdiameter-ratio. It seems therefore
natural to pack the ¢ windings of the (2, ¢)-torus knot into a logarithmic spiral
in order to minimize distortion.
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FiGure 1
The embedding y for ¢ =7

We define the embedding y as the union of a segment of the logarithmic
spiral S with slope k = log(q)/2mwgq and a piecewise linear part L, see Figure 1.
The segment of the logarithmic spiral S is contained in the vertical (x,z) plane
and parametrized by

. R2 — ks, COS(S)

¢ :[0,mq] > R%, g(s) =e (Sin(s) :

see Figures 1 and 2. The segment of the piecewise linear part L is in the horizontal
(x,y) plane, see Figures 1 and 3. Note that

lp(rq)| = ™ = /g and |p(0)| = 1,

hence the lengths defining L in Figure 3 are chosen such that the union y of
S and L is the simple closed curve illustrated in Figure 1. The linear segments
L1 and L, indicated in Figure 3 are named because of their special role in the
following computations.

To see that the obtained curve is an embedded (2, ¢g)-torus knot, we perturb
¥, see Figure 4. This simple closed curve is ambient isotopic in R® to y and
if we project it onto the (x,y) plane, we see a well known diagram of the
(2, g)-torus knot, see Figure 5.

We now estimate the distortion of y. One has to show that

dy (v, w) - 7q
lv—w| ~ logg
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(gn) 0 ¢(0)

FiGure 2
The logarithmic spiral S in the (x,z) plane

plgm) 0 ¢ 2./9
L, N Ly
i || 1 2/
FiGure 3

The linear part L in the (x,y) plane

for all pairs of points v, w € y. An easy computation shows that

1 2mq Tq
— - v/ 2k? = ——-+2( 2ng)?+1< ——
PRRCL il v v2(logq/2mq)* + < foa7

for all integers > 2. Therefore, it suffices to show that

d,(v,w) 2kZ2+1
Y 2 -

lv—w| — k

In order to do this, we distinguish four cases.
Case I: vyweS. Let 0 <s <t <mq, v=¢(s),w = @(). From

ot |fcos(r) —sin(r) (ke*T\| _|[kek")| _ 2=
vl = (sin(r) cos(r) ) (ek” )‘ N (ek" )‘ =vki+l-e

we get
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FiGure 4
Perturbation of y

FIGURE 5
Projection onto the (x,y) plane

. (o, 1) = ds (v, 1)
t
— f ' ()dr
S
t
— JBT1 f e dr
)

_ ~Nk2+1 (ekt _ek.S‘)

;-

= YL (|o@)| - |o(s)])

k241
= YLl (lw| — |v)).

Since |w —v| > |w|— |v|, we conclude that
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FiGure 6
Visualization of Case 2

dy(,w) _Vk2+1 (w[—)) _vk2+1
v—w| =k (lw] = Jv]) ko

Case 2: ve LiUL,, weS. We consider the case where v € L;. The idea
is to find the maximum of d,(v,w)/|v — w| for fixed w and varying v. Let
t =v—90)], a = |p0) —w|, and b = ds(¢(0),w), see Figure 6. Note that
v —w| = V1?2 +a? and d,(v,9(0)) = [v—(0)| =¢t. We get

dy(v,w) _dy(v,0(0)) +ds(p(0).w)  r+b _ 70
lv—w| ~ v — w| V2 t+az .

Deriving f with respect to ¢ yields a unique critical point at t = a2/b:

a? — bt

— w2
@1 o)" < t=a"/b.

0= f'(e) =
Since a?/b is the only critical point, f(oc0) =1 <h/a = f(0) and
va? +b? ‘-’bz +b

T J@rte

a?/b must be a global maximum. Consequently we get

dy, (v, w) va? + b?
14 <

lv—w| a

b 2
)

a
B ds(p(0), w)
= \/”( 9(0) — w] )

= f(a*/b),
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Ca;el \/1 4 (\/ﬁ2_+_)

_ A2k2 41
B k

In the case where v € L,, we make the estimate with the path that connects v
with w through ¢(rq). It works exactly the same and yields the same estimate.

Case 3: v,w € L. Consider Figure 3 and note that all pairs of points v, w € L of
euclidean distance < 1 are either on the same linear segment or on neighboring
linear segments of L. It is easy to see that such pairs of points cannot cause
distortion > ~/2. For the pairs of points v,w € L of euclidean distance > 1 we
get

0L < 4y (0, o) = 11yG +1.

v —w|
A direct calculation shows that

2 2mq 1

11 ] < = —
Va+ _logq k

for g > 50.

Case 4: ve L\ (L1 ULy),w e S. Note that for these pairs of points we have
|lv —w| > |w|. We estimate d, (v, w) using results of Cases 1 and 3:

dy(v,w) < dr(v, (p(O)) + ds(¢(0), w)
<1 + YE2HL (|| — 1)

2.
S%-lwl-

We conclude that

dy(v,w) _ e /=

v —w| ~ le -k

which finishes the proof.
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