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Line, spiral, dense

Neil Dobbs

Abstract. Exponential of exponential of almost every line in the complex plane is dense in

the plane. On the other hand, for lines through any point, for a set of angles of Hausdorff

dimension one, exponential of exponential of a line with angle from that set is not dense

in the plane. The third iterate of an oblique line is always dense.

Mathematics Subject Classification (2010). Primary: 33B10.

Keywords. Elementary, dense curve, analytic curve.

1. Introduction

In 1914, Harald Bohr and Richard Courant showed that for the Riemann zeta

function, if a 6 (^, 1], then 'Ç(o + z'R) C, i.e., the image of any vertical line
with real part in (i, 1] is dense [Boh, §4, p.271j. One hundred years on, we ask

what happens under the exponential map.
One may picture the exponential map, exp : z i-» ez e C, as mapping Cartesian

coordinates onto polar coordinates, since exp(x + iy) exe'y. It maps vertical
lines to circles centred on 0 and maps horizontal lines to rays emanating from
0. The map is infinite-to-one and 2ni -periodic; preimages of a point lie along a

vertical line. Oblique (slanted) lines get mapped to logarithmic spirals.

Applying exponential a second time, what happens? See Figure 1. Circles

are compact, so their images are compact. Rays are subsets of lines, so they

get mapped into circles, rays or logarithmic spirals. Intriguingly, the image of a

logarithmic spiral under exponential is not obvious, and for good reason.

For p e C, a e R, let La(p) := {p + t(i + a) : t e M}. Set C{p) \=
{La(p) : a e E}, the family of non-horizontal lines through a point p e C,
parametrised by a e R. With this parametrisation, there is a natural one-
dimensional Lebesgue measure on the set £,{p). It is equivalent to the measure
obtained when parametrising the family by angle (points on the half-circle).
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Figure 1

Line, spiral, what?

Theorem 1. Given p e C, for Lebesgue almost every beI,
exp o exp (La(p)) — C.

From the topological perspective, a property is generic in some space if it
holds for all points in a residual set, that is, a set which can be written as a

countable intersection of open, dense sets.

Theorem 2. For each p e C, the set {a e : expo exp (La(p)) C} is residual
in M.

Theorem 3. Tire image of an oblique line under exp o exp o exp is dense in C.

In other words, for each p e C, for every a e R \ {0},

Of course, every subsequent iterate of an oblique line is also dense.

In general, it is hard to determine whether a given line will have dense image

or not under expo exp. Certain ones do, however, and we obtain a concisely
defined, explicit, analytic dense curve. Let a e (0,1) be the binary Champernowne
constant (with binary expansion 0.11011100101...) or any other number whose

binary expansion contains all possible finite strings of zeroes and ones. Let

p* log(27ra) + ji and a* :=

Theorem 4. exp o exp (La<1 (p*)) C.

In Theorem 1 we obtained a full-measure set of parameters with dense image.
One may be tempted to think that all oblique lines would have dense image under

expo exp. However, this is not true, and to Theorem 1 there is the following
complementary statement.

Theorem 5. For each p e C and each open set X cl, the set

exp o exp o exp (La (p)) C.

{a e X : expo exp (La(p)) C}

has Hausdorff dimension 1.
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Let Y denote the set of 9 e (l,oo) for which {9k)k>o is not dense modulo 1.

Kahane [Kah] proved that Fcl has Hausdorff dimension 1 ; however, in any
bounded interval, he only obtained dimension close to 1. In Lemma 8, we establish

a connection between intersections of a logarithmic spiral with the imaginary axis

and density of the image of the spiral under exponential. This allows us to improve
Kahane's result a little.

Corollary 6. For each open interval I C (l,oo), the set of 9 e I for which

(ekh>0 is not dense modulo 1 has Hausdorff dimension 1.

Remark: The above-described phenomena are not unique to the exponential map,
the most fundamental of transcendental maps. Once one understands exponential,
extensions to maps such as z b sin(z), exp(z"), exp o exp(z) are not hard to

devise, but what of a general statement?

Remark: For a generic entire function of the complex plane, the image of the real

line is dense. Indeed, Birkhoff1 [Bir] showed the existence of an entire function /
whose translates Tnf :rh> f(x — n) approximate polynomials in Q[jc] + i Q [x]

arbitrarily well (on compacts). In particular, (Tnf)nez is dense in the (Fréchet)

space of entire functions with the topology of uniform convergence on compacts.
Hence, given an open set U of entire functions, there is some Ne Z with

Tn f eU. Since the translation operators Tn are continuous, Unez^«^ is an

open dense set. Now let W be a countable basis of open sets for the topology.
The set

UizlA IIE.Z

is residual. Consider g e Xu One readily checks that the translates (Tng)neZ
enter each set in the basis and hence are dense in the space of entire functions.

In particular, the translates approximate all constant functions. Hence g(M) C,
as required. The fact that a generic curve has dense image does not tell one what

happens for a particular map or for a subfamily (for example, no logarithmic
spiral is dense). Besides Birkhoff-style constructions and curves coming from

things resembling £-functions, we are unaware of other previously-known dense

analytic curves.

One can also ask (in the spirit of [BJ1, BJ2]) about the distributions
of the curves considered, in the following sense. Given a,p, let p : t m>-

expoexp(/? + t(i -I-a)), so p parametrises expoexp of the line La(p). For

every measurable set A and T > 1, let ßr(A) jfin({t e [-T, T] : p(t) e A}),
where m denotes Lebesgue measure. Then ßr is a probability measure. With

1 The author thanks P. Gauthier for a helpful conversation in this regard.
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the weak*-topology on the space of probability measures on C, we obtain the

following unilluminating result.

Theorem 7. For every oblique line La(p), the corresponding measures jir satisfy

where 8Z denotes the Dirac mass at the point z.

We shall use Re(z) and Im(z) to denote the real and imaginary parts of a

complex number z. We denote one-dimensional Lebesgue measure by m and

denote the length of an interval I by m(I) or by |/|. If S : t exp(p+t(i +«)),
then j-t E(t) £(O0 + a). Therefore the spiral S has tangent of slope —a when

it intersects the imaginary axis.

The proofs are provided in linear fashion.

2. Dense analytic curves

In this section we prove Theorems 1-3.

Proof of Theorem 1. Let / denote exp o exp. Fix p and write La for La (p).
Let

(1) Xu := : /(£«) n U ^ 0}.

Given a sequence (qn)^Li dense in C and a decreasing sequence of positive
reals (Sn)f=l with 8n -> 0+, let U : {B(qn,8n) : n > 1}. Then a set is dense

in C if and only if it has non-empty intersection with each U e Z7. Since U is

countable, if for each U eU, Xu has full measure, then := f]UsU Xu has

full measure as a countable intersection of full-measure sets. Of course, for each

a Xoo, /(La) is dense in C

Thus proving Theorem 1 reduces to showing that for any open ball U, Xu
has full measure. We say a point x is an e -density point for a set I c M if
limr^0+ - fi- By the Lebesgue density point theorem, almost every
point of X is a 1 -density point for X. On the other hand, if e > 0 and almost

every point in M is an s -density point for a set X Cl, then the set of 1-density

points for the complement of X has zero measure, so the complement has zero

measure, so X must have full measure. It therefore suffices to prove that, given
a ball U, there exists e > 0 such that each b0eI \ {0} is an e-density point
for Xu So let us do this.
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Figure 2

An open ball U, V exp"1^), a vertical line H passing through V,
S exp~l(H) and the projection <pk onto a component S/c of S.

Let V := exp"1 (U). Then V is an open set. Let H be a vertical line, with
real part h ^ 0, which intersects V, see Figure 2. Since exp is 2ni -periodic,
Hi2 V contains an open interval I and all 2ni -translates of I. In particular,
for any subinterval T c H of length at least 2k

(2) m(T (T V)/m(T) > m{I)/An.

Now consider S exp" '(//). If h > 0 then one connected component of S, 50

say, can be parametrised by

y+ : t - log(t2 + h2) + i arctan -2 h

with y+(M) S0- If h < 0 then So can be parametrised by y_ : t h* ni +y+{t).
Taking the derivative of y+ and y_,
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so the slope of y± tends to 0 as \t\ -» oo. For k e Z, if a0 > 0 let

Sk := So + 2kni ; otherwise let Sk := S0 - 2kni. Then Sk for k e Z are

the connected components of S.
Let Wk Sk n exp~' (V). The absolute value of the derivative of exp on S

is bounded below by \h\ > 0, so any segment of Sk of length at least 2n/\h\
gets mapped onto a segment of H of length at least 2n. The distortion of exp
(by distortion, we mean the ratio of the absolute value of the derivative at any
two points) is bounded by e47r/lftl on each vertical strip of width 47r/|/r|. By the

distortion bound and (2), for any segment B of Sk of length between 2n/\h\
and in:/\h\,

m(B IT Wk) m(exp(B)fTF)
^ m(I)

m(B) ~~
m(exp(B))e47IBh\ — 4neAnkh\

Any segment B of Sk of length at least 2n/\h\ can be divided into segments
of length between 27t/\h\ and 4n/\h\, so (4) continues to hold for all segments
B of Sk of length at least 2ti/\h\.

Let £ : a t-r p + i + a. Let a0 e M \ {0} and let r0 |ao 1/2. For r e (0, r0),
let Jr := Ç(B(u0, r)) be the open line segment joining the points p + i + a0 — r
and p + i +<xo + r. For some K > 1, for every k > K, for each a e B(ao, ro), La
intersects Sk transversely (twice). For k > K, let cpk denote the central projection
with respect to p from Jr<) to Sk (taking the first point of intersection). For

some Ko > K and each k > Kq, <pk(Jr()) is almost horizontal and the distortion
of 4>k on J,-0 is close to 1, in particular it is bounded by 2. Now simple

geometry entails that m((pk(Jr))/^kr -> 1 as k -» oo so, for each r e (0, r0),
there exists kr > K0 with m(0^.(/r)) > 2ji/\h\. Let Xr := Jr (T cp^(Wk,.).
From (4) and the distortion bound of 2, we deduce that m(Xr)/m(Jr) > e, for
e := m(I)/8ne47l/W. For a e f_1(Xr), La n Wkr ^ 0 so f(La) n U + 0. In

particular, £~1(Xr) c Xu and

m(rl(Xr)) >̂ £.
m(B(a0,r))

Noting that s depends only on U and h, we have shown that a0 is an e-density

point for Xu for each a0 el\{0}.
Proof of Theorem 2. Fix p e C. Let (^„)^=1 be a dense sequence in C and

let (5„);tjt=1 be a decreasing sequence of positive reals with 8n -» 0+. Let
U := {B(q„,8n) : n > 1}. As per (1), given an open set U, let

Xu '= {a : exp o exp (La(p)) C\ U f 0}.
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Since exp is continuous (so exp_2(t/) is open) and the central projection is an

open map, Xy is open. By Theorem 1, Xjj has full measure and thus is dense

and open for each open set U. Consequently, Aqo := fju&a^-u is a countable

intersection of open, dense sets. As in the proof of Theorem 1, each point a g Xœ
satisfies expoexp(Lœ(p)) is dense.

Proof of Theorem 3. We wish to show that the image of an oblique line under

exp o exp o exp is dense. Let us reprise the notation of the preceding proof, so U
is an open set, V exp-1 (17), H a vertical line (not containing 0) intersecting
V, S exp-1 (/7) and Sk the connected components of S. Let v0 be a point
in H n V and let vj := v0 + 2jni, so vj g H IT V for all je Z. Let Wj denote

the preimage of vj in Sk, and write (Oj for the real part of Wj noting that this

is independent of k. As j —> oo, coj tends to +oo. Therefore the slope of the

line segment Zj joining Wj to Wj+1 tends to 0 as j —> oo (cf. (3)). Since H
is a vertical line, Sk lies in a horizontal strip of height n, and so

rl U Z1
j>j()

is a curve, contained in a strip of height n, joining WjQ to oo.
For some r G (0,1), B{vj,r) c V. Estimating via the derivative of

exp, we obtain c exp""' (V) for all large j, and similarly that

\wj+i — Wj I < 2n/\vj\ < 1. Setting S := r/An, we deduce that

Bj := B(w^S\w^+1 - Wj\) c exp"1 (7).

Simple geometry then entails that if p is a smooth curve with slope bounded in
absolute value by 8/2 which intersects the line segment ZJ/ and whose projection
onto the real line contains (coj,coj+1), then p intersects B1/ This holds for all

j > j0, for some large j0, independent of k.
Now any curve in the half-plane {Re(z) > coJO} whose imaginary part has

range at least 3n long must intersect a curve for some k. From this we
deduce that if p' is a smooth curve contained in (Re(z) > o>ju}, with slope lying
in (5/4,8/2) and of horizontal length at least 2+ \2n/8, then p' must intersect

some Bj Indeed, there is a subcurve whose projection is ((Ojl, &j/2) (say) and

has horizontal length at least 12n/8. By the slope estimate, the range of its

imaginary part is at least 3n long, so it intersects some so it intersects some

Zj with ji < j < j2, and so it intersects Bj
Given an oblique line, under exponential it gets mapped to a spiral E, say.

Every revolution, the spiral has two stretches where the slope lies in (8/4,8/2),
one in the right half-plane, one in the left half-plane. Let (E„)nsz denote

the sequence of those stretches lying in the right half-plane, ordered so that the
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distance of £„ from 0 increases with n. For n large enough, Re(£„) c (a>j0, oo)
and the horizontal length of £„ is arbitrarily large, in particular it can be taken

bigger than 2+ 127t/<5. Therefore it intersects some Bk.
Since exp of the line intersects Bk exp o exp o exp of the line intersects V.

This holds for every open set U so the theorem is proven.

3. An explicit dense curve

Given R > 1, let Ar denote the annulus ß(0, R) \ ß(0,1 /R), the image of
the vertical strip Hr {z : Re(z) e [— log R, log R)} under exp.

Lemma 8. Let £ be a logarithmic spiral whose intersections with the imaginary
axis occur at points (wk)k&z, ordered by distance from 0. Then exp(£) is dense

in C if and only if (wk/2ni)k>o are dense modulo 1.

Proof. Denote by £^ the connected component of the £ n Hr containing Wk

There exists k0 for which, for all k <k0, £^ £^0, which spirals all the way
in to 0. The set exp(£fc0) has finite length and is not dense anywhere. Of course
this then holds for exp(£&) for each k, so we only need to consider positive k.

If £ exp(La(p)) say, denote by Z& the intersection of Hr and the line
which passes through Wk with slope —a. Then the Hausdorff distance of £& to

Zjk decreases to 0 as k -> +oo.
Taken sequentially, the following statements are (clearly) equivalent.

• (Wk/2ni)k>o is dense modulo 1.

• the union of all 2ni -translates of {Zk}k>o is dense in Hr.
• the union of all 2ni -translates of {Z,k}k>o is dense in Hr.
• Ufc>0exp(£fc) is dense in Ar.
• exp(£) is dense in C.

This completes the proof of the lemma.

Proof of Theorem 4. Let a e (0,1) have a binary expansion containing all

possible strings of zeroes and ones; let p := log(27ra) + ~i and a := log2/27r
as per Theorem 4. By choice of a, each time the imaginary part of the line

La(p) increases by 2n, the real part increases by log 2. Thus the intersections

of the spiral £ := exp(La(p)) with the positive imaginary axis (/R+ occur at

values 2jta2ki, k eZ.
By choice of a, for all k0 the set {2ka}k>k0 is dense modulo 1. Now apply

Lemma 8.
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4. Hausdorff dimension of the complementary set of parameters

In this section we prove Theorem 5 and Corollary 6. The Mass Distribution

Principle is a standard source of lower bounds for the Hausdorff dimension. It is

infused into the following lemma.

Lemma 9. Let J be a non-degenerate interval, let Y C J and let n be a

measure with p(Y) > 0. For each n>\, let Vn be a finite partition of J into

intervals, each of length at most 2~n. Let e e (0,1), let ß > 1 and suppose

(5) p(P) < ß(l + e)n\P\

for every P e Vn- Then the Hausdorff dimension of Y is at least 1 — 2e.

Proof. For r e (0,1), let n := [~— log2r~]. Let x e J. If P e Vn then

IPI < 2~n < r, so if Pfl B(x, r) f 0 then P c B(x, 2r). The total length
of elements of Vn intersecting B(x,r) is thus at most 4r. Summing (5) over
such elements, we deduce that

p(B(x,r))/ß < 4r(l + e)n < 4r(l + e)e-tog(i+>)logr/log2 < 8ri-iog(i+£)/iog2_

Now log 2 and log(l + e) < e, so

p(B{x,r))ßß <rl~2E.

If U\,Ü2, is any countable cover of Y by balls of radius at most 1, then

J2\uj\1~2s > ^ KY)ßß > 0.

j>1 ;>1

Since this positive lower bound does not depend on the cover, the Hausdorff
dimension of Y is at least 1 — 2e, as required.

Together with the following lemma, one can glean an insight into the means

of proving Theorem 5.

Lemma 10. Let I be an open subinterval of the imaginary axis and let
1 {JkeZ(2kni + 7) be the union of all 2ni -translates of I. Suppose I
is disjoint from 5(0,1). Let p e C. Let Y be a compact subset of M and

suppose that exp(La(p)) fl 1=0 for every a e Y. Liren there is an open set U
with exp o exp(La(j>)) DU 0 for each a e Y.

Proof Differentiating t m- exp(p + t(i +a)) gives (i +a) exp(p + t(i +«)). Thus

exp(La(p)) has slope —a at each intersection with the imaginary axis. Moreover,
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since Y is bounded, there is a constant C > 1 such that the slope of exp(La(p))
is bounded in absolute value by C in the region

z : |Re(z)| < ^,|Im(z)| > ^

Let D denote the body of the rhombus with diagonal I and sides of slope ±C,
and D the union of all 2ni -translates of D. Then exp(La(p)) n D 0
for each a e Y. Let x be the midpoint of 7 and denote by U the open set

exp(5(x, |/|/4C). By construction, B(x, |/|/4C) c D so exp_1(C7) c D Thus

exp o exp(La(p)) n U — 0 for each a e Y, as required.

Now we can prove Theorem 5, which states that for each p e C and each open
set Ici, the set {a e X : exp o exp(La(p)) 7^ C} has Hausdorlf dimension I.

Proof of Theorem 5. We can assume 0 ^ X. Writing a for the map sending

points to their complex conjugates, expo a no exp and o(La(p)) L-a(cr(p))
so, without loss of generality (replacing p by o(p) and X by —X, if necessary),

one can assume X c Ä+.
Given X and p, let X' — («y, be a non-degenerate subinterval of X

with 0 < ao < <*i Let £ : a h»- p + i + a and let J be the line segment £(^').
For k e Z, let := (k + \)ni +R. Then exp(Sk) is a vertical ray leaving 0,

heading up if k is even and down if k is odd. Let <pk be the central projection
with respect to p from J to Sk, so

fkiP + i + a) Re(p) + (^(k + ijjr - Im(p)j a + i (^{k + - Im(p)j

In particular, as a map from J to Sk, fk is affine with derivative

D</>k(z) (k + ^7r-Im(p)

for every z e J. There exists a (possibly negative) k0 e Z such that, for all
k < ko, <pk(J) C {z : Re(z) < 0}, and thus, for k < ko, expofk(J) c 5(0.1).
Writing fk expo0fe on J, maps J onto a subinterval of the imaginary
axis, see Figure 3. As <pk is affine, the distortion of fk on an interval W C J
is bounded by exp(|0fc(W)|).

We have \Dfk\ \D e.xp(<pk)\\D4>k\ \D</>k\exp(Re(^)), so

(6) \Dfk{p + i+a)\

Thus for k > \lm(p)\/n,

(k + (P) aRe(p) kit a

(V) \Dfk+i{p + i +a)/Dfk(p + i +«)| > ean,
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Figure 3

Two logarithmic spirals (exp(Lao(/>)) and exp(Lai(p)), drawn with p 0) and the

increasing (in length) subintervals fk(J),fk+\(J),fk+2{J) of the imaginary axis.

so the derivatives grow exponentially. Moreover, there exists C e (0,1) such that,

for each k > k0 with p £ Sp,

(8) \Dfk\ > C.

Remark: Choice of the constant N : If a > 0 is small, then there is not much

expansion at each revolution. We shall consider blocks of N (half-) revolutions at

a time, for large integers N. Let I be small open sub-interval of the imaginary
axis and let I := [jkeZ(2kni + I). Let e > 0 and suppose that V is a

subinterval of J, that fj (V) fl 7 0 for j < nN and that Vbiiv(V) > s. We

shall obtain estimates for the points in V not meeting I for j < (n + I)N.
To continue by induction, we will need to regain the starting condition length
> e. By (7), \\fnN+j{V)\ > e->a°Ke, and for j < N the length is bounded by
L := \ f(n+\)N{V)\- Note L > eNa°ne. The number of connected components
of the set of points z eV with iJsnN+j(z) <£ I for j I,N is bounded
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by N(L + 2) [if L > 2n, one can improve the bound to NL/2n + 1]. The

proportion of points z e V with fnN+j(z) fi I for j I,N is at least
1 — 2N\I\/s, if one assumes bounded distortion giving a factor of 2. If we

remove ail connected components whose image under 4'(n+\)N is less than e,
the remaining proportion is at least 1 — 2N\I\/s — 2sN(L + 2)/L. If one takes

e N~2, |/| N~4 and N large, then L > 1 and the proportion is at least
1 — 8/At, which can be made as close to 1 as we desire. To get good starting
conditions for a forthcoming induction argument, N may need to be taken larger

again, and |/| slightly smaller.

Let an integer At > 2|k0| + 8;r be large enough that

• Nn > 2|Im(p)| ;

• eNna0/2 > jy4.

• NeRe^ > 1;

• 1 /N2 < |/|.
By (6) and choice of At, for all z p + i + a J,

(9) \DfN{z)\ > (Njt/2)emp)eN7Ca°12 > N4.

From (7) and choice of At, we obtain

(10) \Dfin+1)N(z)/DfnN(z)\ > N4

for each n > 1 and z e J.
Let M := supz6/ \DfN(z)\, so for any subinterval J' c J, \^n(J')\ <

M\J'\. Let I be an open subinterval of the imaginary axis of length N~4C/M
whose 2ni -translates are disjoint from exp(p) and from B(0,1). Let I :

U/tszC2kni + I). For k < ko, fk{J) C B{0,1), so ^k(J) n / 0.
Let /' be a subinterval of J of length 1/At2. Let Jn be the set of points

z e J' for which ijfk(z) ^ / for all k < n. Note that J^0 J'.
We now deal with the steps from ko to At, to get a good starting interval. We

shall later use induction to pass from nN to {n + l)At. For k — ko + 1,..., At,

\<Pk(J')\ < \J'\ [(N + l~)n - lm{p)j < At-2 ((At + 1)tt/2) < n/N.

Hence the distortion of ifa is bounded by en^N < 2. For k ko + 1, N,
\tk{J')\ < Wn(J')\ and by (9), |^(/0I > N4/N2 - At2. For k < At,
the number of connected components of I intersecting tyk(J') is bounded by

\x//N(J')\ - it follows that m(î (IxJ/kiJ')) < 1^(^011^1- Using (8) and then choice

of M and /,



Line, spiral, dense 103

N

m{JN) \J'\-m{j' n [J V^Cü)
k=k0+l

> \ J'\ - (N -ko)\fN(J')\\I\/C
> \ J'\ - (N -k0)\J'\N~4
> \J'\/2,

say. Meanwhile, Jn has at most (N - &o)IV9v(7')| connected components.
Therefore, at least one connected component V of Jn must satisfy

\V\ > \J'\/3(N -k0)\fN(J')\

and, more importantly (by the distortion bound of 2),

\fN(V)\ > l/2(N-k0) > l/N2.

Let Wi := {V}.
Now we repeat the argument for general intervals. Let us define Wn inductively

as follows. For W 6 W„, let Aw denote the (finite) collection of connected

components A of J(n+i)N n W for which [\/f(n+l)N(A)\ > l/N2. Let

Wn+l := UWeWn-A-W-

Note Wi — {V} is non-empty. The set

A:=f| u w
n> 1 WeWn

is a closed subset of /, as a countable intersection of finite unions of closed

sets. For z e A, z e for all k, so the image of the line passing through p
and z is a spiral which avoids I. We shall show that A is non-empty and has

dimension at least 1 — 10/A.
For W e Wn, let W+ := UagAwA- In order to apply Lemma 9, we will

need to show that m(W+)/m(W) is close to 1 ; in particular it will be at least

1-4/N.
Since W eW„, Whn(W)\ A l/N2. Let k satisfy nN < k{n + 1)N. By (7),

V7/t (IF) has length at least 1/A2. Hence

(11) m(înfk(W))/\fk(W)\ <N2\I\.

Now

\D<pk\/\D(j)nN\ -Im(p)j / nN + - Infi»^ < 4.

Since Vhn(W) n / 0, one obtains \fnN(W)\ < 2tt and 4>hn{W) has length

(crudely) bounded by 1/8. Hence \(pk(W)\ is bounded by 1/2. Therefore the
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Figure 4

A schematic drawing of Z W \ UjtJ^v+i showing

multiple copies of W. Connected components of W are tiny,
so most of Z will consist of relatively large connected components.

distortion of i//> on W is bounded by e1?1 < 2. We deduce from this and (11)

(N times, for k nN + 1,...,(« + l)N) that the set Z := J(n+\)N H W satisfies

m(Z)/\W\ > l-2N3\I\. Meanwhile, by (10),

|^«+i)jv(^)l > A^4|^(W)| > NA/N2 N2.

[As an aside, note that the image is long and therefore contains many components
of I, so elements of Aw will have length much less than | W|/2.] Hie set Z (see

Figure 4) has at most Nconnected components. Those of length at

least 2\W\/\^(nJr\)M{W)\N2 get mapped by ifr(n+i)N onto an interval of length
at least 1/A2, by bounded distortion, so they are contained in Aw- Knowing a

bound for the number of connected components, we deduce that those of length at

most 2|fF|/|i/r(„+i)7v(W/)|A2 have measure bounded by 2\W\/N. Consequently,

m(W+)/m{W) > 1 -2N3\I\-2/N
> 1 - 4/N,

noting 171 < 1/A4.
Since \J'\ 1/A2, |F| < 1/2 for (the unique interval) V e Wi. It follows

that for each W e Wn, \W\ < 2~n.

Recall we wish to construct a measure on A H„>i Uwew„ W, in order

to estimate its dimension using Lemma 9. For each n > 1, let us introduce

a measure jin on [jWew ^ Let /ii be Lebesgue measure restricted to the

unique interval V e Wi. Define inductively /x„, for n > 2, as follows. For each

W e Wn-1, set
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m(W)
(12) /X„ :==

/jjr_i_\ Vn-lm(W+)

on W+, and /x„ := 0 on W \ W+. As defined, ßn(W+) /x„_i(lL) for each

W e W„-i, whence /Xfc(fF) /x„(IT) for all k >n and each W eWn. Since

also maxWeWn W\ — 2~n, there exists a unique (weak) limit measure

fi : lim /x„
n—>oo

and /x is supported on A with /x(A) /x„(/') \V\. We need to check the limit
measure is well-behaved. In particular, it should not have atoms. By induction

using (12),

ltn(W) < \W\(l — 4/N)~n+1

for W e W'n. Thus for z e A and n > 1, there are at most two elements

JLi, Wi e W„ intersecting all tiny neighbourhoods of z, and

Pn(Wt) < \Wi\(l -4/A)-"+1 < 2""/2+1

for i 1,2. Hence /Zfc(W;) < 2~"^2+1 for all k >n, and so /u.({z}) < 2~n^2+2

for each n ; therefore /x is continuous (i.e. it has no atoms). Since /x is continuous,

n(W) /Xfc(fk) for each W e W„ and k >n.
We are nearly at a stage where we can apply Lemma 9. For each n, let Qn

denote a finite partition of J' \ Uwew,, ^ into intervals such that each Q e Qn

has |ß| < 2~~n. For each Q e Qn, ßk(Q) 0 for all k >n, hence ß(Q) 0

(using continuity of /x). Let

Vn QnUWn,

so Vn is a partition of J'. From the construction,

ft(F) < |P|(l-4/JV)-" < |P|(1 +5/N)n

for each n > 1 and P eVn- By Lemma 9, the Hausdorff dimension of A is at

least 1 — 10/A. Recalling A c set Y := £-1(A-) C X'. Applying Lemma 10

to Y, we obtain that for each a e Y, expoexp(La(p)) is not dense. As £ is a

translation it preserves Hausdorff dimension, and the dimension of Y is at least
1 — 10/A'. But N could be taken arbitrarily large (of course, I and therefore Y

depend on choice of N Noting that any set with subsets of dimension arbitrarily
close to 1 has dimension at least 1, the proof of Theorem 5 is complete.

Proof of Corollary 6. Taking p 2jtI the intersections of the spiral with the

positive imaginary axis occur at points exp(2jrak)2ni, k e Z. From Theorem 5

and Lemma 8, we deduce that the set of a in any open interval X for which

exp(2jrak) is not dense modulo 1 has dimension 1, from which the result follows

(taking X (log/)/27r).
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Remark: One could use Lemma 8 to prove Theorem 1 (using Koksma's
theorem [Kok]), however the lemma cannot be used to prove Theorem 3, neither
does Theorem 3 provide information about distributions of sequences modulo 1.

5, Distribution

Given a, p and the corresponding spiral exp(/j + t(i + a)), we set

p := expoS, a parametrisation of expoexp of the line La(p). We now study
the distribution of p(t). For every measurable set A and T > 1, let

Rt{A) := ~m({t g [-T, T] : p(t) e T}),

where m denotes Lebesgue measure. Then \xt is a probability measure.

Proof of Theorem 7. We can assume without loss of generality that a > 0. Since

lim^-oo |E(f)| - 0,

lim p(t) 1.
t—*~ OO

Let us define intervals

iff := 2nn + \ — n/2 + \/n — Im(/?), jr/2 + 1 /n — Im(/?)].

The intervals are chosen so that for t G if and n large,

Re(S(t)) > sin(l/«) exp (Re(/?) + 2hjto! — n/2 — Im(p)) 1,

so

lim [p(/„+)| +oo.
OO

Setting Iff If + n, we similarly obtain that

lim \p(Iff)\ 0.
n—>oo

Noting that the intervals if have length approaching n, and the spaces between

them have length % 2/n, it follows that

So + <5oo

lim pLr oi/2 +
T—>oo 4

as required.
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