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Line, spiral, dense

Neil DosBs

Abstract. Exponential of exponential of almost every line in the complex plane is dense in
the plane. On the other hand, for lines through any point, for a set of angles of Hausdorff
dimension one, exponential of exponential of a line with angle from that set is not dense
in the plane. The third iterate of an oblique line is always dense.

Mathematics Subject Classification (2010). Primary: 33B10.

Keywords. Elementary, dense curve, analytic curve.

1. Introduction

In 1914, Harald Bohr and Richard Courant showed that for the Riemann zeta
function, if o € (%, 1], then ¢(o +iR) = C, i.e., the image of any vertical line
with real part in (%, 1] is dense [Boh, §4, p.271]. One hundred years on, we ask
what happens under the exponential map.

One may picture the exponential map, exp : z > e” € C, as mapping Cartesian
coordinates onto polar coordinates, since exp(x + iy) = e*e” . It maps vertical
lines to circles centred on 0 and maps horizontal lines to rays emanating from
0. The map is infinite-to-one and 2xi -periodic; preimages of a point lie along a
vertical line. Oblique (slanted) lines get mapped to logarithmic spirals.

Applying exponential a second time, what happens? See Figure 1. Circles
are compact, so their images are compact. Rays are subsets of lines, so they
get mapped into circles, rays or logarithmic spirals. Intriguingly, the image of a
logarithmic spiral under exponential is not obvious, and for good reason.

For p e C, «a e R, let Ly(p) = {p+t(i+a):t € R}. Set L(p) =
{Lq(p) : @ € R}, the family of non-horizontal lines through a point p € C,
parametrised by o € R. With this parametrisation, there is a natural one-
dimensional Lebesgue measure on the set £(p). It is equivalent to the measure
obtained when parametrising the family by angle (points on the half-circle).
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Ficure 1
Line, spiral, what?

Theorem 1. Given p € C, for Lebesgue almost every a € R,

expoexp (Ly(p)) = C.

From the topological perspective, a property is generic in some space if it
holds for all points in a residual set, that is, a set which can be written as a
countable intersection of open, dense sets.

Theorem 2. For each p € C, the set {& € R : expoexp (La (p)) = C} is residual
in R.

Theorem 3. The image of an oblique line under expoexpoexp is dense in C.

In other words, for each p € C, for every « € R \ {0},

expoexpoexp (La(p)) = C.

Of course, every subsequent iterate of an oblique line is also dense.

In general, it is hard to determine whether a given line will have dense image
or not under expoexp. Certain ones do, however, and we obtain a concisely
defined, explicit, analytic dense curve. Let a € (0, 1) be the binary Champernowne
constant (with binary expansion 0.11011100101...) or any other number whose
binary expansion contains all possible finite strings of zeroes and ones. Let

P« =log(2ma) + Zi and oy = L

2

Theorem 4. expoexp (Lq, (p+)) = C.

In Theorem 1 we obtained a full-measure set of parameters with dense image.
One may be tempted to think that all oblique lines would have dense image under
expoexp. However, this is not true, and to Theorem 1 there is the following
complementary statement.

Theorem 5. For each p € C and each open set X C R, the set

{oe € X :expoexp (La(p)) e C}

has Hausdorff dimension 1.
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Let Y denote the set of 6 € (1,00) for which (Qk)kzo is not dense modulo 1.
Kahane [Kah] proved that ¥ € R has Hausdorff dimension 1; however, in any
bounded interval, he only obtained dimension close to 1. In Lemma 8, we establish
a connection between intersections of a logarithmic spiral with the imaginary axis
and density of the image of the spiral under exponential. This allows us to improve
Kahane’s result a little.

Corollary 6. For each open interval 1 C (1,00), the set of 6 € I for which
(6%) k=0 is not dense modulo 1 has Hausdorf{f dimension 1.

Remark: The above-described phenomena are not unique to the exponential map,
the most fundamental of transcendental maps. Once one understands exponential,
extensions to maps such as z > sin(z),exp(z"),expoexp(z) are not hard to
devise, but what of a general statement?

Remark: For a generic entire function of the complex plane, the image of the real
line is dense. Indeed, Birkhoff! [Bir] showed the existence of an entire function f
whose translates 7, f : x + f(x —n) approximate polynomials in Q[x] + i Q[x]
arbitrarily well (on compacts). In particular, (7}, f)nez is dense in the (Fréchet)
space of entire functions with the topology of uniform convergence on compacts.
Hence, given an open set U of entire functions, there is some N € Z with
Ty f € U. Since the translation operators 7, are continuous, | J,.z T,U is an
open dense set. Now let &/ be a countable basis of open sets for the topology.

The set
Xy =) | @

Uel neZ

is residual. Consider g € Xz,. One readily checks that the translates (7,g)nez
enter each set in the basis and hence are dense in the space of entire functions.
In particular, the translates approximate all constant functions. Hence gR)=C,
as required. The fact that a generic curve has dense image does not tell one what
happens for a particular map or for a subfamily (for example, no logarithmic
spiral is dense). Besides Birkhoff-style constructions and curves coming from
things resembling ¢-functions, we are unaware of other previously-known dense
analytic curves.

One can also ask (in the spirit of [BJI, BJ2]) about the distributions
of the curves considered, in the following sense. Given o, p, let p : t
expoexp(p + t(i + «)), so p parametrises expoexp of the line L,(p). For
every measurable set A and 7 > 1, let ur(A4) := %m({t e[-T,T]: p() € A}),
where m denotes Lebesgue measure. Then pr is a probability measure. With

I'The author thanks P. Gauthier for a helpful conversation in this regard.
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the weak*-topology on the space of probability measures on C, we obtain the
following unilluminating result.

Theorem 7. For every oblique line Ly(p), the corresponding measures | satisfy

; 50 81 0
1 . T T -
im pur 1 -+ ,

where &, denotes the Dirac mass at the point z.

We shall use Re(z) and Im(z) to denote the real and imaginary parts of a
complex number z. We denote one-dimensional Lebesgue measure by m and
denote the length of an interval 7 by m(/) orby |I|.If Z: ¢+ exp(p+t(i+a)),
then %E(t) = X (¢)(i +«). Therefore the spiral ¥ has tangent of slope —@ when
it intersects the imaginary axis.

The proofs are provided in linear fashion.

2. Dense analytic curves
In this section we prove Theorems 1-3.

Proof of Theorem 1. Let f denote expoexp. Fix p and write L, for Ly(p).
Let

(1) Xy :={a: f(La) NU # ).

Given a sequence (gn)5>; dense in C and a decreasing sequence of positive
reals (8,)52, with 8, — 0T, let U := {B(gn,8n) : n > 1}. Then a set is dense
in C if and only if it has non-empty intersection with each U € U{. Since U is
countable, if for each U € U, Xy has full measure, then Xo 1=y Xu has
full measure as a countable intersection of full-measure sets. Of course, for each
@ € Xoo, f(Lg) is dense in C.

Thus proving Theorem 1 reduces to showing that for any open ball U, Xy
has full measure. We say a point x is an e-density point for a set X C R if
lim, _,y+ %ﬁ%;” > ¢. By the Lebesgue density point theorem, almost every
point of X is a 1-density point for X . On the other hand, if ¢ > 0 and almost
every point in R is an e-density point for a set X C R, then the set of 1-density
points for the complement of X has zero measure, so the complement has zero
measure, so X must have full measure. It therefore suffices to prove that, given
a ball U, there exists ¢ > 0 such that each oy € R\ {0} is an e-density point

for Xy . So let us do this.
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Ficure 2
An open ball U, V =exp~!(U), a vertical line H passing through V,
S =exp ! (H) and the projection ¢ onto a component Sx of S.

Let V :=exp 1 (U). Then V is an open set. Let H be a vertical line, with
real part i % 0, which intersects V', see Figure 2. Since exp is 2xi-periodic,
H NV contains an open interval / and all 2xi-translates of /. In particular,
for any subinterval 7 C H of length at least 27w,

(2) m(T NV)/m(T) > m(l)/4n.

Now consider S = exp~!(H). If h > 0 then one connected component of §, Sg
say, can be parametrised by

1 t
Vi it > 3 log(t* 4+ h*) + i arctan 5

with y4(R) = So. If 7 <0 then Sy can be parametrised by y_ : ¢ > i +y4.(f).
Taking the derivative of y; and y_,
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t h
3 V0 =V = g tigs,
so the slope of y4 tends to O as |f{| - oo. For k € Z, if ap > 0 let
St = So + 2kni; otherwise let S; := So — 2kmi. Then S; for k € Z are
the connected components of .

Let Wy := Sy Nexp~! (V). The absolute value of the derivative of exp on S
is bounded below by |h| > 0, so any segment of S of length at least 27/|h|
gets mapped onto a segment of H of length at least 2. The distortion of exp
(by distortion, we mean the ratio of the absolute value of the derivative at any
two points) is bounded by e**/!*| on each vertical strip of width 4x/|h|. By the
distortion bound and (2), for any segment B of Sy of length between 2n/|h|
and 4x/|h|,

m(B N W) _ m(exp(B)NV) __m)

) m(B) = m(exp(B))e* /M = dmetr/Il

Any segment B of Si of length at least 27/|h| can be divided into segments
of length between 2x/|h| and 4m/|h|, so (4) continues to hold for all segments
B of S of length at least 2x/|h|.

Let £:a—> p+i+a. Let g € R\ {0} and let ro = |ap|/2. For r € (0,rp),
let J, := &(B(xo,r)) be the open line segment joining the points p +i +ag—r
and p+i+ao+r. For some K > 1, for every k > K, for each a € B(wo,r0), La
intersects Sy transversely (twice). For k£ > K, let ¢ denote the central projection
with respect to p from J,, to S (taking the first point of intersection). For
some Ko > K and each k > Ky, ¢x(Jr,) is almost horizontal and the distortion
of ¢r on J,, is close to 1, in particular it is bounded by 2. Now simple
geometry entails that m(¢x(J,))/mkr — 1 as k — oc so, for each r € (0,r¢),
there exists k, > Ko with m(¢, (J;)) > 2n/|h|. Let X, 1= J, 0 ¢ (W,).
From (4) and the distortion bound of 2, we deduce that m(X,)/m(J,) > ¢, for
g :=m(I)/8me* /M For o € £71(X;), La N Wi, # @ so f(Le) NU # @. In
particular, £~!1(X,) C Xy and

m(g_l(Xr)) -
m(B(ao,r)) -

Noting that ¢ depends only on U and %, we have shown that «y is an e-density
point for Xy for each ap € R\ {0}. (1

Proof of Theorem 2. Fix p € C. Let (g,)5°, be a dense sequence in C and

n=1
let (8,)32, be a decreasing sequence of positive reals with §, — 0. Let

U :={B(qn,d0n) :n = 1}. As per (1), given an open set U, let

Xy :={a :expoexp (Lq(p)) NU # @}.
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Since exp is continuous (so exp 2(U) is open) and the central projection is an
open map, Xy is open. By Theorem 1, Xy has full measure and thus is dense
and open for each open set U. Consequently, Xoo := ( |yey Xv is a countable
intersection of open, dense sets. As in the proof of Theorem 1, each point o € X
satisfies expoexp(Ly(p)) is dense. [

Proof of Theorem 3. We wish to show that the image of an oblique line under
expoexpoexp is dense. Let us reprise the notation of the preceding proof, so U
is an open set, V = exp~!(U), H a vertical line (not containing 0) intersecting
V, S =exp !(H) and S the connected components of S. Let vy be a point
in HNV and let vj :=vo+2jmi,so v; € HNV forall j € Z. Let wj.‘ denote
the preimage of v; in S, and write w; for the real part of w¥, noting that this
is independent of k. As j — oo, w; tends to 4oo. Therefore the slope of the
line segment ZJ’.‘ joining w;‘ to w}‘_,_l tends to 0 as j — oo (cf. (3)). Since H
is a vertical line, Sk lies in a horizontal strip of height 7, and so

7= U 7
izjo
is a curve, contained in a strip of height x, joining wJ’?O to oo.
For some r € (0,1), B(vj,r) C V. Estimating via the derivative of
exp, we obtain B(w}‘,#jl) C exp (V) for all large j, and similarly that
]wJ’.‘Jrl —wji-‘| < 2m/|vj| < 1. Setting § := r/4nw, we deduce that

BY = B(wk, §|wk,, —wk|) c exp™(V).

Simple geometry then entails that if p is a smooth curve with slope bounded in
absolute value by 4/2 which intersects the line segment Z Jk and whose projection
onto the real line contains (w;,w;4+1), then p intersects BJ’.‘ . This holds for all
J = jo, for some large jj, independent of k.

Now any curve in the half-plane {Re(z) > wj,} whose imaginary part has
range at least 37 long must intersect a curve y}f) for some k. From this we
deduce that if p’ is a smooth curve contained in {Re(z) > wj,}, with slope lying
in (§/4,6/2) and of horizontal length at least 2 + 127/§, then p’ must intersect
some BJ’.‘. Indeed, there is a subcurve whose projection is (wj,,w;,) (say) and
has horizontal length at least 127 /§. By the slope estimate, the range of its
imaginary part is at least 37 long, so it intersects some yJ’.‘; , SO it intersects some
ZJ’F, with j; < j < ja, and so it intersects B]’.‘.

Given an oblique line, under exponential it gets mapped to a spiral X, say.
Every revolution, the spiral has two stretches where the slope lies in (§/4,5/2),
one in the right half-plane, one in the left half-plane. Let (X,),ez denote
the sequence of those stretches lying in the right half-plane, ordered so that the
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distance of X, from 0 increases with n. For n large enough, Re(X,) C (wj,, c0)
and the horizontal length of X, is arbitrarily large, in particular it can be taken
bigger than 2 + 12z /4. Therefore it intersects some BJ’-‘.

Since exp of the line intersects BJ"F , expoexpoexp of the line intersects U .
This holds for every open set U so the theorem is proven. O

3. An explicit dense curve

Given R > 1, let Ag denote the annulus B(0,R) \ B(0,1/R), the image of
the vertical strip Hg := {z : Re(z) € [-log R,log R)} under exp.

Lemma 8. Let X be a logarithmic spiral whose intersections with the imaginary
axis occur at points (Wi )rez, ordered by distance from 0. Then exp(X) is dense
in C if and only if (wi/27i)k>o are dense modulo 1.

Proof. Denote by Xj; the connected component of the £ N Hr containing wy.
There exists ko for which, for all k < ko, ¥ = Xi,, which spirals all the way
in to 0. The set exp(X,) has finite length and is not dense anywhere. Of course
this then holds for exp(Xx) for each k, so we only need to consider positive k.

If ¥ =exp(Lqy(p)) say, denote by Z; the intersection of Hg and the line
which passes through wy with slope —«. Then the Hausdorff distance of X to
Z decreases to 0 as k — +o0.

Taken sequentially, the following statements are (clearly) equivalent.

o (wr/2mi)k>o is dense modulo 1.

e the union of all 27i-translates of {Zj}x>o is dense in Hg.

o the union of all 2ni -translates of {Z}x>o is dense in Hp.

o Urso€xp(Zg) is dense in Ag.

e exp(X) is dense in C.
This completes the proof of the lemma. Ol
Proof of Theorem 4. Let a € (0,1) have a binary expansion containing all
possible strings of zeroes and onmes; let p := log(2ra) + 5i and « :=log2/2m
as per Theorem 4. By choice of «, each time the imaginary part of the line
Ly(p) increases by 2m, the real part increases by log2. Thus the intersections
of the spiral ¥ := exp(Ly(p)) with the positive imaginary axis (iR*) occur at
values 2ma2ki, ke Z.

By choice of a, for all ko the set {Zka}kzko is dense modulo 1. Now apply
Lemma 8. O
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4. Hausdorff dimension of the complementary set of parameters

In this section we prove Theorem 5 and Corollary 6. The Mass Distribution
Principle is a standard source of lower bounds for the Hausdorfl dimension. It is
infused into the following lemma.

Lemma 9. Let J be a non-degenerate interval, let Y C J and let © be a
measure with (Y) > 0. For each n > 1, let P, be a finite partition of J into
intervals, each of length at most 27". Let ¢ € (0,1), let B > 1 and suppose

&) m(P) = (1 +¢)"|P|

for every P € P,. Then the Hausdorff dimension of Y is at least 1 —2¢.

Proof. For r € (0,1), let n := [—log,r]. Let x € J. If P € P, then
|[P| <27" <r,soif PN B(x,r) # @ then P C B(x,2r). The total length
of elements of P, intersecting B(x,r) is thus at most 4r. Summing (5) over
such elements, we deduce that

,u(B(x,r))/ﬁ < 4r(1 + 8)" < 4)‘”(1 + S)e—log(l+e)logr/log2 = 8r1—log(1+e)/log2.
Now log2 > L and log(l + ¢) < &, so

2
w(B(x,r))/88 < r'™?°.

If U;,U,,... is any countable cover of Y by balls of radius at most 1, then

ST = " u(U;) /88 = w(Y)/88 > 0.

izl izl

Since this positive lower bound does not depend on the cover, the Hausdorff
dimension of Y is at least 1 —2e, as required. O

Together with the following lemma, one can glean an insight into the means
of proving Theorem 5.

Lemma 10. Let I be an open subinterval of the imaginary axis and let

= Ureg Qkmi + 1) be the union of all 2ri-translates of I. Suppose I
is dzs;omt from B(0,1). Let p € C. Let Y be a compact subset of R and
suppose that exp(Lq(p)) N [=o for every a € Y. Then there is an open set U
with expoexp(Ly(p)) NU = @ for each x € Y.

Proof. Differentiating ¢ +— exp(p +1t(i +«)) gives (i +«)exp(p+1t(i +«)). Thus
exp(Lq(p)) has slope —a at each intersection with the imaginary axis. Moreover,
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since Y is bounded, there is a constant C > 1 such that the slope of exp(Ly(p))
is bounded in absolute value by C in the region

{z : |Re(2)| < %, [Im(z)| > %}

Let D denote the body of the rhombus with diagonal / and sides of slope £C,
and D the union of all 27i-translates of D. Then exp(Lqy(p)) N D =02
for each o € Y. Let x be the midpoint of / and denote by U the open set
exp(B(x,|I|/4C). By construction, B(x,|/|/4C) C D so exp ' (U) C D . Thus
expoexp(Ly(p)) NU = @ for each « € Y, as required. L]

Now we can prove Theorem 5, which states that for each p € C and each open
set X C R, the set {« € X : expoexp(Ly(p)) # C} has Hausdorfl dimension 1.

Proof of Theorem 5. We can assume 0 ¢ X. Writing o for the map sending
points to their complex conjugates, expoo = ooexp and o(Ly(p)) = L_g(o(p))
so, without loss of generality (replacing p by o(p) and X by —X, if necessary),
one can assume X C RT.

Given X and p, let X' = (xp,21) be a non-degenerate subinterval of X
with 0 <@g <. Let §E:a+ p+i+a and let J be the line segment §(X’).
For k € Z, let Sx .= (k + %)m’ + R. Then exp(Sg) is a vertical ray leaving O,
heading up if £ is even and down if k£ is odd. Let ¢ be the central projection
with respect to p from J to Sg, so

or(p+i+a)=Re(p)+ ((k + %)n —Im(p)) o+ ((k + %)n —Im(p)) .

In particular, as a map from J to Sy, ¢ is affine with derivative

Deu(z) = (k + %)n —Im(p)

for every z € J. There exists a (possibly negative) ko € Z such that, for all
k < ko, ¢r(J) C {z : Re(z) < 0}, and thus, for k < kg, expo¢gp(J) C B(0,1).
Writing v :=expo¢r on J, Y maps J onto a subinterval of the imaginary
axis, see Figure 3. As ¢ is affine, the distortion of ¥ on an interval W C J
is bounded by exp(|¢x (W)]).

We have [Dy| = |D exp(¢r)||Ddr| = | Dor| exp(Re(¢)), so

1 x
(6) | DY (p+i +a)| = ‘(k + E)n — Im(p) | eReP)(Z7Im(PNex phmar

Thus for k > |Im(p)|/x,

(7) [DYisr(p +i + )/ DYi(p +i +a)| > &7,
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Ficure 3
Two logarithmic spirals (exp(Lqo(p)) and exp(Lg, (p)), drawn with p = 0) and the
increasing (in length) subintervals V¥ (J), Y +1(J), ¥x42(J) of the imaginary axis.

so the derivatives grow exponentially. Moreover, there exists C € (0, 1) such that,
for each k > ko with p ¢ Sj,

(8) |1 D] > C.

Remark: Choice of the constant N : If o« > 0 is small, then there is not much
expansion at each revolution. We shall consider blocks of N (half-) revolutions at
a time, for large integers N . Let I be small open sub-interval of the imaginary
axis and let [ := |J,cz(2kni +I). Let ¢ > 0 and suppose that V is a
subinterval of J, that vy; (V) N I =@ for j <nN and that ¥,y (V) > s. We
shall obtain estimates for the points in V not meeting / for j < (n 4+ 1)N.
To continue by induction, we will need to regain the starting condition length
>¢e. By (7), [Yun+;(V)| > e/%7¢, and for j < N the length is bounded by
L = |[Yuinn(V)|. Note L > eN*7T¢, The number of connected components
of the set of points z € V with Y,n4;(2z) ¢ [ for j =1,...,N is bounded
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by N(L +2) [if L > 2x, one can improve the bound to NL/2m + 1]. The
proportion of points z € V' with Yun4;(2) ¢ [ for j =1,...,N is at least
1 —2N|I|/e, if one assumes bounded distortion giving a factor of 2. If we
remove all connected components whose image under ¢(,41)ny is less than e,
the remaining proportion is at least 1 —2N|/|/e —2eN(L + 2)/L. If one takes
e=N"2,|I|=N"* and N large, then L > 1 and the proportion is at least
1 —8/N, which can be made as close to 1 as we desire. To get good starting
conditions for a forthcoming induction argument, N may need to be taken larger
again, and |/| slightly smaller.
Let an integer N > 2|kg| 4+ 87 be large enough that

e Nn > 2[Im(p)|;

o eNmeo/2 5 N4,
o NeRelP) > 1:
e 1/N%2 < |J]|.
By (6) and choice of N, forall z=p+i+ael,

©) DyN(2)| > (Nr/2)eRe@NTo0/2 5 N4,
From (7) and choice of N, we obtain

(10) | DY+1n (2)/ DYn (2)| > N*

foreach n>1 and z € J.

Let M := sup,.; |D¥n(z)|, so for any subinterval J' C J, |Yyn(J)| <
M|J'|. Let I be an open subinterval of the imaginary axis of length N=*C/M
whose 2mi-translates are disjoint from exp(p) and from B(0,1). Let I =
Upeg ki +1). For k < ko, ¥x(J) C B(0,1), so yp(J)NT = @.

Let J’ be a subinterval of J of length 1/N?. Let J, be the set of points
z € J' for which v (z) ¢ I for all k <n. Note that I = .

We now deal with the steps from ko to N, to get a good starting interval. We
shall later use induction to pass from nN to (n+ 1)N. For k =ko+1,...,N,

e (J)] < || ((N n %)n — Im(p)) < N72((N + )r/2) < n/N.

Hence the distortion of vy is bounded by e™¥ < 2. For k = ko+1,...,N,
V(I < [¥w ()] and by (9), |[¥n(J)| > N*/N> = N?. For k < N,
the number of connected components of I intersecting Y (J’) is bounded by
v (J)]; it follows that m(I Ny (J") < |¥n(J)||I]. Using (8) and then choice
of M and I,
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N
mw) =1 1-m('0 | vt d)
k=ko+1

> |J'] = (N = ko)lyn(J)I|I]/C

> |J| = (N —ko)|J'|N~*

% /2,
say. Meanwhile, Jy has at most (N — ko)|¥~n(J')| connected components.
Therefore, at least one connected component V' of Jy must satisfy

V> |J'|/3(N = ko)|[¥w (J)]
and, more importantly (by the distortion bound of 2),
[yn (V)] > 1/2(N — ko) > 1/N?.

Let W := {V}.

Now we repeat the argument for general intervals. Let us define W, inductively
as follows. For W € W,, let Ay denote the (finite) collection of connected
components A of Jy4y N W for which |Yg+1)n(4)| > 1/N2. Let

Wn+1 = UWEWn .AW

Note W, = {V'} is non-empty. The set

A=) U W
n>=1Wew,
is a closed subset of J, as a countable intersection of finite unions of closed
sets. For z € A, z € J; for all k, so the image of the line passing through p
and z is a spiral which avoids /. We shall show that A is non-empty and has
dimension at least 1 —10/N .

For W € Wy, let WT := Ugea, A. In order to apply Lemma 9, we will
need to show that m(W™)/m(W) is close to 1; in particular it will be at least
1—4/N.

Since W e W,, |[Y¥mn(W)| > 1/N?. Let k satisfy nN < k(n+ 1)N. By (7),
Y (W) has length at least 1/N?2. Hence

(11) m(I 0y (W) /|y (W)| < N?|I].
Now

|Ddicl /| Dun| = ((k S %)n —Im(p)) / ((nN ot %)n - Im(p)) <4

Since Y,y (W) N I = &, one obtains |y (W)| <27 and ¢,n (W) has length
(crudely) bounded by 1/8. Hence |¢x(W)| is bounded by 1/2. Therefore the



104 N. DoBBs

o 0 1 0 0 {) n i
v T \ \f U' \ Y

\ \ /
wn 1l’(nx+l)N(1)
\U \U \ /\l_ 1 / \f . \U 17
wn 1/r(n+1)N—1 (1)

i
7

— W

—H \H\l\l 1/ {H) / {r / {Hr {} {Hh i {H)
n(N+1) 2

zZ= W\Uk 11N+11/fk_1(1)

FiGuURE 4

A schematic drawing of Z = W\ U,((”:;:[)Vﬁl 1,!fk_l(f ) showing

multiple copies of W. Connected components of W Ny, () are tiny,
so most of Z will consist of relatively large connected components.

distortion of ¥ on W is bounded by e!/? < 2. We deduce from this and (11)
(N times, for k =nN +1,...,(n+1)N) that the set Z := Ju 1. yn NW satisfies
m(Z)/|W|>1-2N3|I|. Meanwhile, by (10),

|V mtyn (W) = N*an (W)| > N*/N? = N2.

[As an aside, note that the image is long and therefore contains many components
of I, so elements of Ay will have length much less than |W|/2.] The set Z (see
Figure 4) has at most N|{/(,+1)~(W)| connected components. Those of length at
least 2|W|/|¥m+nn (W)|N? get mapped by ¥(+1ny onto an interval of length
at least 1/N?, by bounded distortion, so they are contained in Ap . Knowing a
bound for the number of connected components, we deduce that those of length at
most 2|W|/|¥m+1n(W)|N? have measure bounded by 2|W|/N . Consequently,

m(Wt)/m(W)>1—-2N3I1|-2/N
>1—4/N,

noting || < 1/N*4,

Since |J'| = 1/N?, |V| < 1/2 for (the unique interval) ¥V € W;. It follows
that for each W e W,, |W| <27".

Recall we wish to construct a measure on A = Ny>1 Uwew, W, in order
to estimate its dimension using Lemma 9. For each n > 1, let us introduce
a measure [, On UWEW” W. Let pu; be Lebesgue measure restricted to the

unique interval V' € W, . Define inductively u,, for n > 2, as follows. For each
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. m(W)
Mn = m(W+) Hn—1
on Wt, and pu, =0 on W\ W, As defined, pu,(W™') = pn—1(W) for each

W € Wy—1, whence uz(W) = u,(W) for all £k > n and each W € W,. Since
also maxwew, |W| < 27", there exists a unique (weak) limit measure

(12)

= M iy

n—>00

and u is supported on A with pw(A) = w,(J) = |V|. We need to check the limit
measure is well-behaved. In particular, it should not have atoms. By induction
using (12),

pn(W) < [W(L—4/N)™""

for W € W,. Thus for z € A and n > 1, there are at most two elements
Wy, W € W, intersecting all tiny neighbourhoods of z, and

pa(Wi) < [Wi|(1 — 4/N)™"H1 < 277/

for i = 1,2. Hence ugx(W;) <2721 for all k > n, and so u({z}) < 277/2+2
for each n; therefore u is continuous (i.e. it has no atoms). Since p is continuous,
uw(W) = puxp(W) for each W eW, and k > n.

We are nearly at a stage where we can apply Lemma 9. For each n, let Q,
denote a finite partition of J'\ |Jp ey, W into intervals such that each Q € Q,
has |Q| <2™. For each Q € Q,, ux(Q) =0 for all k > n, hence u(Q) =0
(using continuity of ). Let

Prn = On UWy,
so P, is a partition of J'. From the construction,
p(P) < |P|(1—4/N)™" <|P|(1 +5/N)"

for each n > 1 and P € P,. By Lemma 9, the Hausdorff dimension of A is at
least 1—10/N. Recalling A C J', set Y := £§71(A) C X’. Applying Lemma 10
to Y, we obtain that for each o € ¥, expoexp(Lq(p)) is not dense. As £ is a
translation it preserves Hausdorff dimension, and the dimension of Y is at least
1—10/N. But N could be taken arbitrarily large (of course, / and therefore Y
depend on choice of N ). Noting that any set with subsets of dimension arbitrarily
close to 1 has dimension at least 1, the proof of Theorem 5 is complete. ]

Proof of Corollary 6. Taking p = 2mi, the intersections of the spiral with the
positive imaginary axis occur at points exp(2mwak)2ri, k € Z. From Theorem 5
and Lemma 8, we deduce that the set of « in any open interval X for which
exp(2mwak) is not dense modulo 1 has dimension 1, from which the result follows
(taking X = (log1)/2m). ]
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Remark: One could use Lemma 8 to prove Theorem 1 (using Koksma’s
theorem [Kok]), however the lemma cannot be used to prove Theorem 3, neither
does Theorem 3 provide information about distributions of sequences modulo 1.

5. Distribution

Given «, p and the corresponding spiral X : ¢ > exp(p + (i + «)), we set
p = expo2, a parametrisation of expoexp of the line Ly,(p). We now study
the distribution of p(z). For every measurable set 4 and 7 > 1, let

1
ur(4) == =m({t € [FT.T1: pl0) € 43),
where m denotes Lebesgue measure. Then pr is a probability measure.

Proof of Theorem 7. We can assume without loss of generality that o > 0. Since
lim; oo |2(t)| =0,
Aim p(r) = 1.

Let us define intervals
IF:=2nm + [_ w/2+ 1/n—Im(p),n/2+ 1/n —Im(p)].
The intervals are chosen so that for ¢ € /7 and n large,
Re(Z (1)) > sin(1/n) exp (Re(p) + 2nwa — /2 —Im(p)) > 1,

SO
lim_|p(1;1)] = +o0.
n—00

Setting I, := I} + 7, we similarly obtain that
lim [p(Z)] = 0.
n—00

Noting that the intervals I have length approaching =, and the spaces between
them have length ~ 2/n, it follows that

4 ’

T—o0
as required. U
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