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Kodaira—-Saito vanishing and applications

Mihnea Popa

Abstract. The first part of the paper contains a detailed proof of M. Saito’s generalization of
the Kodaira vanishing theorem, following the original argument and with ample background.
The second part contains some recent applications, and a Kawamata—Viehweg-type statement
in the setting of mixed Hodge modules.
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1. Introduction

This article was originally the outcome of a lecture delivered at the Clay
workshop on mixed Hodge modules, held at Oxford University in August 2013.
The main goal was to explain in detail the proof of Morihiko Saito’s extension of
the Kodaira—Nakano vanishing theorem to mixed Hodge modules, discuss various
special cases, and give a guide to recent applications. This is done in the first
and main part of the paper, Sections 2-9, which also includes ample background.
Since then I have also included some new applications. One is a proof of weak
positivity for the lowest graded piece of a Hodge module obtained jointly with
C. Schnell (which also appears in [Sch3]). Another is a Hodge module version
of the Kawamata—Viehweg vanishing theorem, likely not in its final form.!

M. Saito’s vanishing theorem is stated and proved as Theorem 28 below. It was
obtained in [Sail, §2.g]; the proof provided here is a detailed account of Saito’s
original argument, which in turn is a generalization of Ramanujam’s topological
approach to vanishing. C. Schnell [Sch4] has recently found a different proof of
the theorem, this time extending the Esnault—Viehweg approach to vanishing via
the degeneration of the Hodge-to-de Rham spectral sequence on cyclic covers.

! Added during revision: in the meanwhile, in the case of Cartier divisors a stronger Kawamata—
Viehweg-type vanishing theorem was indeed proved by Suh [Suh] and Wu [Wu].
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In order to make the underlying approach of Saito clear, I will first recall the
proof of the Kodaira-Nakano vanishing theorem based on the weak Lefschetz
theorem, the Hodge decomposition, and cyclic covering constructions. In the proof
of Theorem 28, the corresponding roles will be played by the Artin-Grothendieck
vanishing theorem for constructible sheaves and by M. Saito’s generalization of
the standard results of Hodge theory to the setting of mixed Hodge modules.
There are however significant new difficulties that are resolved with the use of the
interaction between the Hodge filtration and the Kashiwara-Malgrange V -filtration
established in [Sail], recalled in the preliminaries; the background discussion will
survey this and other facts about filtered £ -modules in Hodge theory, with
references for all the statements needed in the paper.

Many of the standard vanishing theorems involving ample line bundles are
special cases of Saito vanishing. This will be reviewed in Section 9, where I will
also mention its use to generic vanishing theory. When passing to big and nef line
@ -divisors however, the situation is more complicated. In Section 11 I prove a first
version of Kawamata—Viehweg for mixed Hodge modules — roughly speaking,
it assumes that the Hodge module is a variation of mixed Hodge structure over
the augmented base locus of a nef and big line bundle. Another application,
provided in Section 10, is a proof together with Schnell of an extension of a weak
positivity theorem of Viehweg to the lowest graded piece of the Hodge filtration
on a Hodge $-module. Arguing along the lines of Kolldr’s approach to weak
positivity provides a very quick argument, once Kodaira vanishing and adjunction
have been extended to setting of mixed Hodge modules.

As a good part of the paper is expository, my main goal is to make these
very useful statements and techniques more accessible to algebraic geometers; the
viewpoint is that of cohomological methods in birational geometry. The reader
interested in a more general overview of the theory of mixed Hodge modules is
encouraged to consult the recent [Sch2], besides of course the original [Sail] and
[Sai2].

2. The topological/Hodge theoretic approach to Kodaira vanishing

In this section I will recall the approach to the Kodaira vanishing theorem
based on topological and Hodge theoretic methods, which also gives the more
general Nakano vanishing. It was first observed by Ramanujam that one can use
such methods, Kodaira’s original proof being of a differential geometric nature.
I will follow the treatment in [Laz, §4.2]; this is intended to be an introduction
to the strategy used by Saito in order to prove the more general result for Hodge
modules.
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Theorem 1 (Kodaira—Nakano Vanishing Theorem). Ler X be a smooth complex
projective variety, and L an ample line bundle on X . Then

HY(X, QY ®L)=0 for p+qg>n,

or equivalently
HI(X, Q8 @ L ")y =0 for p+q <n.

Before proving the theorem, let’s review some useful technical tools. First,
recall the following well-known cyclic covering construction, needed in order to
“take m-th roots" of divisors D € |[mL|, with L some line bundle. For a proof
of this and other covering constructions see [Laz, §4.1.B].

Proposition 2. Let X be a variety over an algebraically closed field k, and let
L be a line bundle on X. Let 0 # s € H°(X,L®™) for some m > 1, with
D = Z(s) € |mL|. Then there exists a finite flat morphism [ :Y — X, where Y
is a scheme over k such that if L' = f*L, there is a section

s' € HO(Y, L) satistying (s))" = f*s.
Moreover:

e if X and D are smooth, then so are Y and D' = Z(s').
e the divisor D' maps isomorphically onto D.

e there is a canonical isomorphism fyOy ~Ox @ L1 @--- @ L=,

Furthermore, recall that if X is a smooth variety, and D is a smooth effective
divisor on X, then the sheaf of 1-forms on X with log-poles along D is

d
Q)lf(log D) = Qy < —J]:— >, f local equation for D.

Concretely, if zy,...,z, are local coordinates on X, chosen such that D = (z, =
0), then Q}(log D) is locally generated by dzy,...,dzs—, %. This is a free

system of generators, so Q3 (log D) is locally free of rank n. For any integer

p, we define
?

Q% (log D) := /\(Qx(log D)).

Using local calculations and the residue map, it is standard to verify the following
statements (see [EV, §2] or [Laz, Lemma 4.2.4]):

Lemma 3. There are short exact sequences:
(i) 0 — Q2 — Q2(log D) — Q&' — 0.
(i) 0 — Q%(log D)(—D) Q5 o 0.




52 M. Popa

Lemma 4. Let f :Y — X be the m-fold cyclic cover branched along D, as
in Proposition 2. Let D' be the divisor in Y such that f*D = mD’, mapping
isomorphically onto D. Then

f*Q%(log D) ~ Q¥ (log D).

Sketch of proof of Theorem 1. By Serre duality it suffices to show the second part
of the statement. For m > 0, let D € |mL| be a smooth divisor. One can assume
by induction on n = dim X that we already know Kodaira-Nakano vanishing on
D, so that

HI(D, Q5 '@ Lp)=0 for p+q <n.

Using this and passing to cohomology in the sequence in Lemma 3(i), it suffices
then to prove that

Hi(X,Q%(og D)® L") =0 for p+q <n.

Let now f : Y — X be the m-fold cyclic cover branched along D as in
Proposition 2, with f*D =mD’ and L’ = Oy(D’). Proposition 2 says that Y
and D’ can be chosen to be smooth; also, D’ is obviously ample. Since f is a
finite cover, using Lemma 4 what we want is equivalent to showing that

H(Y, Q% (log D) ® Oy(—D")) =0 for p+gq <n.

One can now appeal to the exact sequence in Lemma 3(ii). Using this, our desired
statement is equivalent to the fact that the restriction maps

rpq: HU(Y, QL) — HI(D', QD)

are isomorphisms for p +¢ <n —2, and injective for p + g = n — 1. But this
follows immediately from the weak Lefschetz theorem, as the restriction maps

H'(Y,C) — H*(D',C)
are morphisms of Hodge structures. O

Saito’s generalization of Theorem 1 is stated and proved in Section 8, while
important special cases are explained in Section 9. Before being able to do this
we need a lengthy review of background material. 'The reader may already visit
those sections however, for a first encounter with the main topic.

3. Filtered O -modules and de Rham complexes

In this section I will recall some filtered £ -module terminology and facts used
in the paper. Excellent introductions to the subject are for instance the book by
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Hotta—Takeuchi—Tanisaki [HTT] and the lecture notes of Maisonobe—Sabbah [MS].
In what follows the standard language is that of right O -modules; as emphasized
in [Sail], this is often more appropriate in the theory of mixed Hodge modules, for
instance due to the fact that it is the natural setting for considering direct image
or duality functors. Occasionally however left £ -modules will be necessary, in
which case I will state explicitly that we are considering that setting and are
performing the left-right transformation described below.

Definitions. Let X be a smooth complex variety. A filtered right O -module
on X is a Dy-module with an increasing filtration F = F,M by coherent
Ox -modules, bounded from below and satisfying

FIM - FrOx C FryyM for all k,] € Z.

In addition, the filtration is good if the inclusions above are equalities for k£ > 0.
This condition is equivalent to the fact that the total associated graded object

Gl M = P Gry M =P FrM/Fea M
k k

is finitely generated over Grf Dy >~ Sym Ty, i.e. induces a coherent sheaf on
the cotangent bundle 7*X . Assuming that such a good filtration exists (in which
case M is also called coherent), the closed subset

Char(M) := Supp Grf M c T*X

is called the characteristic variety of X . A well-known result of Bernstein says
that dim Ch(M) > dim X, and M is called holonomic if this is actually an
equality. The £ -modules we consider later will only be of this kind.

Left-right rule. The canonical bundle wy is naturally endowed with a right
Dy -module structure. Concretely, if zq1,...,z, are local coordinates on X, for
any f € Ox and any P € Dy, the action is

(f-dzy A+ Adzg)- P ="P(f)-dzyi A+ Adzy.

Here, if P =), g4,0%, then ‘P =), (—0)*gy is its formal adjoint.
Using this structure, as one often needs to switch between the two, let’s recall
the one-to-one correspondence between left and right Dy -modules given by

N> M=N®g,ox and M >N = Home, (wx, M).
In terms of filtrations, the left-right rule is

FoN = Fpup M @y, 0y
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de Rham complex. While we will consider right Dy -modules when talking
about Hodge modules, one naturally associates the de Rham complex to the
corresponding left Dy -module N :

DRY(N) =[N = Q3 ®N — -+ — Q% @ V],

which is a C-linear complex placed in degrees 0,...,n, with maps induced by
the corresponding integrable connection V: N'— N ® Q)l( It turns out that the
natural de Rham complex to consider for the right &£ -module M (sometimes
called a Spencer complex; see [MS, 1.4.2]) satisfies

DRy (M) >~ DRy (NV)[n].

By definition the filtration F, M is compatible with the Dy -module structure on
M and therefore, using the left-right rule above, this induces a filtration on the
de Rham complex of M by the formula

n n—1
Fy DRx(M) = [/\ Tx ® FryM — /\ Tx ® Fry1-nM —> -+ — FkM][n]-

The associated graded complexes for the filtration above are

n n—1
Grf DRy (M) = [ A\ Tx®Cr{_, M — /\ Tx®Crf,,_, M — - = Grf M|in],

which are now complexes of coherent Oy-modules in degrees —n,...,0, and
provide objects in D?(X), the bounded derived category of coherent sheaves on
X.

We will be particularly interested in the lowest non-zero graded piece of a
filtered O -module. For one such right Dy -module (M, F) define

(5) p(M) :=min {p | F,, M #0} and S(M) := FrianM.
For the associated left Oy -module we then have

pN) = p(M) +n and SW) = SIM) ® wx".

Pushforward. Let f: X — Y be a morphism of smooth complex varieties. We
consider the associated transfer module

Dy sy 1= 0x Rr-10y f_li)y.

It has the structure of a (Dy, f~!Dy)-bimodule, and it has a filtration given by
f*F Dy . For a right Dx-module M, one can define a naive pushforward as

fM = (M Qoy Dx-y),
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where on the right hand side f. is the usual sheaf-theoretic direct image. However,
the appropriate pushforward is in fact at the level of derived categories, namely

f_|_ . D(Qx) — D(@Y), M® Rf*(M. é@x @Xﬁy).

This is due to the left exactness of f. versus the right exactness of ®. See
[HTT, §1.5] for more details; in loc. cit. this last functor is denoted by f I’z

Given a proper morphism of smooth varieties f : X — Y, Saito has also
constructed in [Sail, §2.3] a filtered direct image functor

f+ : D?(FM(Dx)) — D? (FM(Dy)).

Here the two categories are the bounded derived categories of filtered £ -modules
on X and Y respectively. Without filtration, it is precisely the functor above. The
filtration requires more work; I will include a few details below for the special
P -modules that we consider in this paper.

Strictness. A special property that is crucial in the theory of filtered D -modules
underlying Hodge modules is the strictness of the filtration. Let

f:iWM,F)— WN,F)

be a morphism of filtered Dy -modules, i.e. such that f(FM) C Fp N for all
k. Then f is called strict if

f(ExM) = FREN N f(M)  for all k.

Similarly, a complex of filtered Ox -modules (M*®, F, M*) is called strict if all of
its differentials are strict. It can be easily checked that an equivalent interpretation
is the following: the complex is strict if and only if, for every i,k € Z, we have
that the induced morphism

H (FeM®) — HIM®

is injective. It is only in this case that the cohomologies of M® can also be seen
as filtered Dy -modules.

Via a standard argument, the notion of strictness makes sense more generally
for objects in the derived category D? (FM(JDX)) of filtered Dy -modules. In
the next sections, a crucial property of the filtered £ -modules we consider is
the following. If f : X — Y is a proper morphism of smooth varieties, and
(M, F) is one such filtered right Dy -module, then fy (M, F) is strict as an
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object in D? (FM(i)y)); here f, is the filtered direct image functor mentioned
above. Given the previous discussion, this means that

H'(Fi f+(M, F)) = H' f+(M, F)

is injective for all integers i and k. Finally, Saito’s definition of the filtration on
the direct image implies that this is equivalent to the injectivity of the mapping

; L ; L
le*(Fk(M ®§DX c(DX—>Y)) — R’ f*(M ®§DX O(DX—>Y)-

Up to a choice of representatives, the image is the filtration FyH' fi (M, F).
Thus in the strict case, one has a reasonably good grasp of the filtration on
direct images, and the cohomologies of direct images are themselves filtered D -
modules. Even more is true in case (M, F') underlies a Hodge module, as we
will see in the next section.

4. Hodge modules and variations of Hodge structure

Starting with this section, and up to §7, I will recall the objects that are the
main focus of the paper. In the next section I will give several important examples.
The main two references for the theory of Hodge modules are Morihiko Saito’s
papers [Sail] in the pure case, and [Sai2] in the mixed case. A quite gentle but
comprehensive overview of the theory was recently provided by Schnell [Sch2].
Here I will give a brief review of the information needed for understanding the
statement and proof of Saito’s vanishing theorem; the reader is encouraged to
consult the references above for further information.

Let us first recall the notion of a variation of Hodge structure, which is the
“smooth" version of a Hodge module. If X is a smooth complex variety, a
variation of (Q-Hodge structure of weight £ on X is the data

V=, F*Vg)

where:
e Vg is a Q-local system on X.

e V = Vg ®qg Ox is a vector bundle with flat connection V, endowed with
a decreasing filtration with subbundles F? = FP?V satisfying the following
two properties:

e for all x € X, the data V, = (Vx, I}, Vg,x) is a Hodge structure of weight
L.

e Griffiths transversality: for each p, V induces a morphism

V:FP — FP1leQl.
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Considering the Tate twist Q(—£) = (27i)~*Q, a polarization on V is a
morphism
Q:Vog® Vg — Q(—)

inducing a polarization of the Hodge structure V, for each x € X. We say that
V is polarizable if one such polarization exists.

In order to generalize this notion, consider now X to be a smooth complex
algebraic variety of dimension n, and let Z be an irreducible closed subset. Let
V = (V, F*,Vg) be a polarizable variation of Q-Hodge structure of weight ¢
on an open set U in the smooth locus of Z. Following [Sail], one can change
terminology and call it a smooth pure Hodge module of weight dimZ 4 £ on U,
whose main constituents are:

(i) The right D-module M =V ® wy with filtration F, M = F7P7"V Q@ wy .
(i) The Q-perverse sheaf P = Vg[n].

According to Saito’s theory, this extends uniquely to a pure polarizable Hodge
module M of weight dim Z+£ on X, whose support is Z. This has an underlying
perverse sheaf, which is the intersection complex ICz(Vg) = # i« Vg associated
to the given local system. For this reason one sometimes uses the notation
M := j1,.V. It also has an underlying £ -module, namely the minimal extension
of M, corresponding to ICz(V¢) via the Riemann-Hilbert correspondence.? Its
filtration is (nontrivially) determined by the Hodge filtration on U, as we will
see in §7.

More generally, in [Sail] Saito introduced an abelian category of HM(X, {) of
pure polarizable Hodge modules on X of weight £. The main two constituents
of one such Hodge module M are still:

(i) A filtered (regular) holonomic Dy -module (M, F), where F = F, M is a
good filtration by Oy -coherent subsheaves, so that Grf M is coherent over
Grl Dy.

(ii) A Q-perverse sheaf P on X whose complexification corresponds to M
via the Riemann-Hilbert correspondence, so that there is an isomorphism

@ : DRy(M) — P ®¢ C.

These are subject to a list of conditions, which are defined by induction on
the dimension of the support of M. If X is a point, a pure Hodge module is
simply a polarizable Hodge structure of weight £. In general, it is required that
the nearby and vanishing cycles associated to M with respect to any locally
defined holomorphic function are again Hodge modules, now on a variety of

2 A direct construction can be given, though this requires quite a bit of work and will not be used
here. The reader interested in details can consult [HTT, §3.4].
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smaller dimension. This will not play a key role here, but a nice discussion can
be found in [Sch2, §12].

The definition of a polarization on M is quite involved, but in any case
involves an isomorphism DP ~ P({), where DP is the Verdier dual of the
perverse sheaf P (together of course with further properties compatible with the
inductive definition of Hodge modules suggested above); more details in §6.

One of the fundamental results of Saito [Sail], [Sai2] clarifies the picture
considerably; it says that we mainly need to think of the examples described
above as extensions of variations of Hodge structure. Indeed, the existence of
polarizations makes the category HM(X,{) semi-simple: each object admits a
decomposition by support, and simple objects with support equal to an irreducible
subvariety Z € X (called pure Hodge modules with strict support Z, i.e. with
no nontrivial subobjects or quotient objects whose support is Z) are obtained
from polarizable variations of Hodge structure on Zariski-open subsets of Z.
Formally,

(6) HM(X,£) = @D HMz (X, 0),
zZCcX

with HMz (X, £) the subcategory of pure Hodge modules of weight £ with strict
support Z. In other words:

Theorem 7 (Simple objects, [Sai2, Theorem 3.21]). Let X be a smooth complex
variety, and Z an irreducible closed subvariety of X. Then:

(1) Every polarizable variation of Hodge structure of weight { —dim Z defined
on a nonempty open set of Z extends uniquely to a pure polarizable Hodge
module of weight £ with strict support Z.

(2) Conversely, every pure polarizable Hodge module of weight k with strict
support Z is obtained in this way.

Furthermore, M. Saito introduced in [Sai2] the abelian category MHM(X) of
(graded-polarizable) mixed Hodge modules on X . In addition to data as in (i)
and (ii) above, in this case a third main constituent is:

(iii) A finite increasing weight filtration WM of M by objects of the same kind,
compatible with «, such that the graded quotients Gr}{V M=WM/W;_ M
are pure Hodge modules in HM(X, £).

Again, if X is a point a mixed Hodge module is a graded-polarizable
mixed Hodge structure, while in general these components are subject to several
conditions defined by induction on the dimension of the support of M, involving
the graded quotients of the nearby and vanishing cycles of M. For a further
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discussion of the definition see also [Sch2, §20]. I do not insist on giving more
background on mixed Hodge structures and modules, as they will be used in
what follows only by reduction to pure Hodge modules. There is however one
important class of examples worth pointing out.

Let D be a divisor in X with complement U, and assume that we are
given a variation of Hodge structure V on U. Besides the pure Hodge module
extension whose underlying perverse sheaf is the intersection complex ICz(Vg),
it is also natural to consider a mixed Hodge module extension, denoted j*;j 1M
in [Sai2], whose underlying perverse sheaf is simply the direct image j«Vg.
More precisely,

JjxJ 7'M = ((V(xD), F); j:Vq),

where V(D) is the localization of the flat bundle V' underlying V along D,
endowed with a meromorphic connection (see, e.g., [HTT, §5.2]). Further details
are given in Example 14.

Returning to the general theory, one of the most important results is M. Saito’s
theorem on the behavior of direct images of pure polarizable Hodge modules via
projective morphisms. (I am only stating part of it here.)

Theorem 8 (Stability Theorem, [Sail], Théoréme 5.3.1). Let f : X — Y be
a projective morphism of smooth complex varieties, and h = c;(H) for a line
bundle H on X which is ample relative to f. If M € HM(X, £) is a polarizable
Hodge module, then

(i) The filtered direct image f+(M,F) is strict, and H'fi M underlies a
polarizable Hodge module M; € HM(Y,{ +i).

(ii) For every i one has an isomorphism of pure Hodge modules
Ko M_; — M;(0).

As alluded to in the paragraph on strictness in §3, the statement in (i) is
a key property of £ -modules underlying Hodge modules that is not shared by
arbitrary filtered O -modules; for more on this see, e.g., [Sch2, §26-28]. One
important consequence is Saito’s formula [Sail, 2.3.7] giving the commutation of
the graded quotients of the de Rham complex with direct images:

R f. Grf DRy (M) ~ Grf DRy (H' fy M).

A fundamental consequence of the theorem above deduced in [Sail] is the
analogue of the decomposition theorem for pure polarizable Hodge modules,
obtained formally from the above as an application of Deligne’s criterion for the
degeneration of the Leray spectral sequence in terms of the Lefschetz operator.
This result extends the well-known BBD-decomposition theorem; here I state the
filtered &D-modules version, which is crucial for the applications presented later.
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Theorem 9 (Saito Decomposition Theorem). Let f : X — Y be a projective

morphism of smooth complex varieties, and let M € HM(X, £), with underlying
filtered D -module (M, F). Then

f+M, F) = D H' f+(M, F)[—i]

IEZ

in Db (FM(Dy)).

Remark 10. As we are working in the algebraic category and all mixed Hodge
modules will be polarizable (cf. [Sai2, §4.2]), I will implicitly assume that all
objects are polarizable in what follows and ignore mentioning this condition.

5. Examples

This section reviews the main examples that will be of interest in view of
Saito’s vanishing theorem. I will use freely the notation of the previous sections.

Example 11 (The canonical bundle). If X is smooth of dimension » and
V = Qy is the constant variation of Hodge structure, we have that P = Qx|[n],
M = wy with the natural right Dy -module structure, and Frwy = wy for
k = —n, while Frwx =0 for k < —n. The associated Hodge module is usually
denoted Qf [n], and called the trivial Hodge module on X . The de Rham complex
of M is

DRy (wx) = DRy (Ox)[n] = [@X S QL s 93}][111.

Note that
Grf, DR(wx, F) = Q%[n —k] for all k.

Finally, in this example we have p(M) = —n and S(M) = wy .

Example 12 (Direct images). Let f : X — Y be a projective morphism with
X smooth of dimension n and Y of dimension m, and let V be a polarizable
variation of (Q-Hodge structure of weight & on an open dense subset U C X,
inducing a pure Hodge module M of weight n+k on X as in the previous section.
If (M, F) is the underlying filtered Dy -module, Theorem 9 gives a decomposition

f+(M, F) =~ PM;, F)[-i]

in the derived category of filtered £y -modules. According to Theorem 8, each
(M;, F) underlies a pure Hodge module M; = H* f,M on Y, of weight n+k+i .
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I

Furthermore, fy (M, F) satisfies the strictness property, a particular case of which
is the isomorphism

(13) R f2S(M) = Fpon (f+M) = @ FppMil—i]

in the bounded derived category of coherent sheaves on Y.
For instance, in the case when V = Qyx is the constant variation of Hodge
structure, by Example 11 p(M) = —n and S(M) = wy . This implies for all i that

p(M;) =—n and F_,M; = R fowyx.
Note that for the corresponding left £ -modules A; this means
pN)=m—n and Fp ,N; = Rif*wX/Y-

Finally, formula (13) specializes to

R fiwx ~ PR frwx[-i],

which is the well-known Kolldr decomposition theorem [Kol2]. Moreover, we
will see in Corollary 37 and Theorem 55 below that R £, S(M) satisfy other
important properties known from [Koll] in the case of canonical bundles, like
vanishing and torsion-freeness.

Example 14 (Localization). Let M be a right Oy -module and D an effective
divisor on a smooth variety X, given locally by an equation f. One can define
a new Dy -module M(xD) by localizing M at f; in other words, globally we
have

M(D) = jujT' M,

where j : U < X is the inclusion of the complement U = X ~ D.

A standard characterization of those £ -modules which do not change under
localization will be useful later.

Proposition 15. Let X be a smooth complex variety, D an effective divisor in
X, and denote j : U — X the inclusion of the complement U = X ~ D . Then the
restriction functor j* induces an equivalence between the following categories:

(i) Regular holonomic Dx -modules M such that the natural morphism M —
M(xD) is an isomorphism.

(ii) Regular holonomic Dy -modules.
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Proof. A quick argument is to apply the Riemann-Hilbert correspondence for
regular holonomic P -modules, see, e.g., [HTT, Theorem 7.2.5], as the condition
defining the category in (i) says that for the perverse sheaf K associated to M
one has K ~ j,j 'K, ie. K can be recovered from its restriction to U. ]

Assume now that M underlies a mixed Hodge module M. By the formula
above, M(*D) underlies the corresponding mixed Hodge module j,;j~'M, and
so continues to carry a natural Hodge filtration F. This is in general very
complicated to compute; the case M = wy, where wy(x*D) is the sheaf of
meromorphic n-forms on X that are holomorphic on U and the corresponding
Hodge module is j*Qg [n], is already very relevant. I will say a few words below,
and more later.

We always have Fpoyx(xD) - FpDx C Fryewx(xD), since the filtration is
compatible with the order of differential operators, while by [Sai3]*Proposition 0.9
we have
(16)  Fiwx(xD) C Peox (+D) = {“’X((” *ElR) I B2

0 if k<-—n,
i.e., the Hodge filtration is contained in the filtration by pole order. Furthermore,
in [Sai3, Corollary 4.3] it is shown that if D is smooth, then

Frox(xD) = Prowx(xD) for all k.

In general, a detailed analysis of the Hodge filtration on wx (D) is given in the
upcoming [MP].

We will see in Section 9 that the first nontrivial step in the filtration is always
related to the V -filtration along D, and that this provides a useful relationship
with multiplier ideals. For this purpose it is more convenient to write things in
terms of left O -modules. In fact, for the left O -module Ox(xD) associated to
wx (xD) (recall that F,Ox(xD) = Fp_pwx(*D) ® w;l), one has the formula

S(Ox(*D)) = FoOx (*D) = V'0x - Ox(D).

The V -filtration on M and M(xD) is discussed in §7, and provides further
insight into the process of localization.

6. Duality

For later use, a few words are in order about duality for polarized Hodge
modules, on a smooth projective variety X of dimension n. Further discussion
and references can be found for instance in [Sch2, §13 and §29].
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As mentioned earlier, a polarization on a pure Hodge module M =
((M,F );P) of weight £ involves an isomorphism P({) ~ DP, where DP
is the Verdier dual of the perverse sheaf P, compatible with the filtration F.
This means that for the dual holonomic right Dy -module

DM = Ext" (M, wx ®oy Dx)

we have DM ~ M, but furthermore the natural induced filtration on DM should
satisfy

(DM, F) ~ (M, Fu_y).

It is necessary therefore for the filtration on DM to be strict. In fact, it is standard
that this strictness property is equivalent to Grf M being Cohen-Macaulay as
a Grf Dyx -module; this last statement holds by [Sail, Lemma 5.1.13] for filtered
D -modules underlying Hodge modules. A consequence is that one can define
a dual Hodge module DM, and in fact DM ~ M({), with underlying filtered
D -module (M, Fe_y).

Moreover, by [Sail, §2.4.11] the filtered de Rham complex commutes with the
duality functor. Given the discussion above, a useful consequence is:

Lemma 17. If X is a smooth projective variety of dimension n and (M, F) is
the filtered D -module underlying a pure Hodge module M € HM(X, ), then

RA Gr{ DRy (M) =~ Grf,_, DRy (M),

where RA = RHome, (-, wx)[n] is the Grothendieck duality functor.

7. The V -filtration

In this section I will recall some key definitions and results regarding the
V -filtration with respect to a hypersurface, and its interaction with the Hodge
filtration. T am mostly following [Sail, §3], which is a complete reference for all
the definitions and results recalled here.

Let X be a complex manifold or smooth complex variety of dimension #,
and let Xy be an smooth divisor on X defined locally by an equation 7. We
first consider a rational filtration on Dy, given by

VaDx ={P €Dy | P-Tj C T, ™} fora eQ,

where Ty, is the ideal of X, in Ox, with the convention that I)J(.O = Oy for
Jj <0.
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Definition 18 (V -filtration). Let M be a coherent right Dy -module. A rational
V -filtration (a slight refinement of the Kashiwara-Malgrange filtration) of M
along X, is an increasing filtration V, M with o € Q satisfying the following
properties:

e The filtration is exhaustive, i.e. | J, VoM = M, and each V, M is a coherent
Vo Dy -submodule of M.

o VM - ViDx C VyqiM for every @ € Q and i € Z; furthermore

VaM 'l' - Va—lM fOI' o < 0.

e The action of rd; —«a on Gr}x/ M is nilpotent for each o, where 9, is a
vector field such that [d;,7] = 1. (One defines Grg M as VyM/VgM,
where Veg M = UgoVgM.)

It is known that if a V -filtration exists, then it is unique. In addition, D -
modules underlying mixed Hodge modules also come by definition with a Hodge
filtration, and it is important to compare the two. Note first that on each Grz M
one considers the filtration induced by that on M, i.e.,

FpM N Vg M
FoMN VegM'

F,Gry M :=

Definition 19 (Regular and quasi-unipotent). In the situation above, assume that
M is endowed with a good filtration F. We say that (M, I') is quasi-unipotent
(or strictly specializable) along X, if M admits a rational V -filtration along
Xo and the following conditions are satisfied:

o (FpVeM) -t = FVop M for a<0.
o (F,Gry M)-0; = Fpy1Grl ;M for a>—1.

One says that (M, F') is regular and quasi-unipotent along X, if in addition
the filtration F, Gr! M is a good filtration for —1 < & < 0.

Let now f : X — C be a holomorphic function, and denote by
i=ipf:X;>Xx(C=Y

the embedding of X as the graph of f. Denote by ¢ the coordinate on C, so
that in the notation above we have Xy = X x {0} = ¢71(0). If M is a coherent
right Dy -module, denote (M, F) = i.(M, F). One says that (M, F) is strictly
specializable along f if (M, F) is so along Xo, and the same for regular and
quasi-unipotent along f . One important feature of mixed Hodge module theory
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is that all & -modules underlying Hodge modules are required to satisfy this last
property with respect to any holomorphic function.

The following technical result on the behavior of regular and quasi-unipotent
filtered O -modules is a key step in extending Kashiwara’s theorem on closed
embeddings to the setting of Hodge D -modules. This will be very useful when
stating Saito’s vanishing theorem on singular varieties in Section 8.

Lemma 20 ([Sai2], Lemma 3.2.6). Let f : X — C be a holomorphic function,
and (M, F) a filtered coherent Dx -module. Assume that Supp(M) € f~1(0).
Then the following are equivalent:

(i) (M, F) is regular and quasi-unipotent along f .
(ii) GrfM-f =0 for all p.
(iii) (M, F) ~ j«(M, F), where j : X x {0} — X x C.
We will also need a transversality notion for a filtered O -module with respect

to a morphism (or a submanifold) introduced in [Sail, 3.5.1], under which filtered
inverse images become particularly simple.

Definition 21 (Non-characteristic morphism). Let f : X — Y be a morphism
of complex manifolds, and let (M, F) be a filtered coherent Dy -module. One
says that f is non-characteristic for (M, F) if the following two conditions are
satisfied:

: 1
e H(fT'Grf M ®s-19, Ox) =0 for i #0.3
e 'The natural morphism
df* : p;*(Char(M)) — T*X
is finite, where p; : X xy T*Y — T*Y is the second projection and

df* X xy T*Y - T*X, (x,0)—df*w forall xe X, w € T*Y.

If f is a closed immersion, we say that X is non-characteristic for (M, F)
if f is so.

If f is non-characteristic for (M, F) and d = dimX —dimY, then as in

[Sail, §3.5] one has the filtered pullback u*(M, F) = (M, F)[—d] given by the
formula

M=pu"tM ®,-10, Wy;x and FPM — /.L_le+dM ®u-10y OY/X-

3In terms of the individual graded pieces, which are coherent sheaves of Y, this simply says that
Lif*Grf M =0 forall i #0 and all k.
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In other words we can define the inverse image to be, up to shift, the naive
filtration on the naive pullback, and this again gives a holonomic Dy -module if
M is so; see [Sail, Lemma 3.5.5]. If (M, F) underlies a pure Hodge module
M of weight m on Y, pu*(M, F) then underlies a pure Hodge module p*M
of weight m +d on X .4

Example 22. The most basic examples of this notion are:

(i) If f is smooth, then it is non-characteristic for any (M, F), as df™ is
injective and f is flat.

(ii) If (M, F) underlies a variation of Hodge structure, any f is non-
characteristic for it, as Char(M) is the zero section, while each Gr,f M
is locally free.

As a combination of the two, if f is smooth outside of the locus where
(M, F) underlies a variation of Hodge structure, then f is non-characteristic for
(M, F).

The following lemmas are important in what follows; they show that under
the non-characteristicity assumption one can perform concrete calculations with
the V -filtration.

Lemma 23 ([Sail], Lemma 3.5.6). Let i : D < X be an inclusion of a smooth
hypersurface in a smooth complex variety. Let (M, F) be a filtered coherent
right Dy -module for which D is non-characteristic. Then

(1) (M, F) is regular and quasi-unipotent along D .
(2) The V -filtration on M is given by

VoM = M-Ox(—iD) for —i—1 <a < —i, i >0 and VM = M for a > 0.
Lemma 24 ([Sail], Lemma 3.5.7). With the notation of Lemma 23, we have that
(1) The V -filtration on M(xD) satisfies
VeM(xD) = M-0Ox(—iD) for —i —1 <o < —i.

(2) There is a filtration F on M(xD) which makes it a filtered coherent right
Dyx -module, such that there is an exact sequence of filtered D -modules

0 —> (M, F) —> (M(xD), F) —> i4i'(M, F)[1] — 0.

In addition, (M(*D), F) is regular and quasi-unipotent along D .

4This is a non-trivial result, using the fact that pure Hodge modules with strict support come from
generic variations of Hodge structure; see, e.g., [Sch2, §30] for an explanation.
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It will also be crucial, under suitable hypotheses, to be able to recover the
Hodge filtration from its restriction over the complement of a hypersurface. 'This
is one of the key points of the interaction between the Hodge filtration and the
V -filtration in the case of filtered O -modules underlying Hodge modules.

Lemma 25 ([Sail], Proposition 3.1.8). With the notation of Lemma 23, and
U=X-~D, let M" be the smallest sub-object of M such that M|y = M?U.
Then:

1) M = VoM. Dy for a <0.
(2) M/M' ~i,Coker (can = 3, : Gr’; M — Grg M).

In particular, M = VyM - Dx for o <0 if can is surjective.

Lemma 26 ([Sail], Proposition 3.2.2). With the notation of Lemma 25, and
j : U — X the natural inclusion, we have that:

(1) The first condition in Definition 19 is equivalent to
FpVeoM = VoM N juj ' FyM for all p.

2) If M = VoM - Dx, or equivalently if can = 0, : GrKI M — Gr(T,/M is
surjective, the second condition in Definition 19 for o > —1° is equivalent
to

FyM =) (FpiV<oM) -9, for all p.

i>0

8. Kodaira-Saito vanishing

We now come to the main goal, M. Saito’s vanishing theorem. Before stating
and proving the theorem, it is important to emphasize the following point: this is
a result that works on singular varieties by embedding them into smooth ambient
spaces. It is known that the objects considered are independent of the embedding.

It is therefore important to have a way of thinking about mixed Hodge
modules and filtered £ -modules on singular varieties, compatible with the
material developed for smooth varieties. In general this can only be done be
locally embedding X into smooth ambient spaces, and then using a gluing
procedure (see [Sai2, §2.1]).

However, on projective varieties we can use the embedding of X into some
PV If X < PV is one such, then one defines the category of mixed Hodge

SThere is an extra point here, for which I am grateful to C. Sabbah: in Definition 19 one only

considers « > —1, while in the lemma o = —1 appears as well. However, the property we want for

a = —1 follows from Hodge theory conditions on Gr”, and Grj ; in our application they will be
trivially satisfied since both terms will be 0.
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modules on X to be that of mixed Hodge modules on PV with support contained
in X, ie.
MHM(X) = MHMy (PV).

One can do the same with any embedding X C Z into a smooth variety; at least
when Z is projective, the fact that the resulting MHM(X ) is independent of
the embedding follows by extending Kashiwara’s equivalence theorem for closed
embeddings to the setting of Hodge modules.

Indeed, recall that Kashiwara’s theorem says that for a closed embedding
h:Z < W one has

Modcon (D7) =~ Modcon, z (Dw ),

where the category on the right is that of coherent Dy -modules with support
contained in Z . This correspondence restricts on both sides to the subcategories of
objects with support contained in X . The equivalence does not extend in general to
filtered O -modules; however, those underlying mixed Hodge modules are regular
and quasi-unipotent (Definition 19) along the zero-locus of any holomorphic
function.

In the regular and quasi-unipotent case, one can use Lemma 20 for each local
defining equation f for Z inside W (or global equations when W = P¥V) in
order to deduce that for every (M, F) on W with support in Z, there exists
(Mz,F) on Z such that (M, F) >~ hy(Mgz, F). Thus Kashiwara’s theorem
extends to these special filtered holonomic £ -modules, which is the key step in
extending it to mixed Hodge modules. Once this is established, it is not too hard
to deduce that MHM( X)) is independent of the embedding; formally

Q27) HM(X, £) = HMy(Z,£) and MHM(X) = MHMy (Z)

for any smooth Z containing X . Further details can be found in [Sail, Lemma
5.1.9] and [Sai2, 2.17.5]; see also [Sch4, §6 and 7].

Theorem 28 (M. Saito, [Sai2], §2.g). Let X be a complex projective variety,
and L an ample line bundle on X . Consider an integer m > 0 such that L®™
is very ample and gives an embedding X € PN. Let (M, F) be the filtered
D -module underlying a mixed Hodge module M on PN with support contained
in X, i.e. an object in MHM(X). Then:

)] Gr,f DRpn (M) is an object in DP(X) for each k, independent of the
embedding of X in PV ¢

6In fact, based on the discussion above it can be shown that each Gr,f DRp~ (M) is independent
of the embedding of X into any smooth complex variety.
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(2) We have the hypercohomology vanishing
H'(X,Grf DRpny (M) ® L) = 0 for all i > 0.

and
H'(X,Grf DRpy (M) @ L) =0 for all i <0.

Proof. Step 1 This step addresses (1) and a number of useful reductions towards
(2). For the first statement in (1), due to the definition of Gr,f DRpn (M), it is
enough to have that each Gr,f M is an Oy -module. But note that by Lemma 20,
if for a holomorphic function f the support of M is contained in f~!(0), the
condition of (M, F) being regular and quasi-unipotent along f is equivalent to
having

Grf./\/l-f=0 for all p.

Now our (M, F) satisfies this for any f, as it underlies a Hodge module, and
applying it for the defining equations of X inside PV we obtain the conclusion.

Note that the independence on the embedding of the definition MHM(X) =
MHMy (PY) follows from the discussion preceding the statement of the theorem.
However here strictly speaking one only needs to know independence of embed-
dings X < P¥ by various powers L®™ . Thus the Kashiwara-type statement (27)
actually suffices, as any two such can be compared inside a common Veronese
embedding.

Along the same lines, the independence of the embedding for the complex of
(Ox -modules Gr,f DRpwn (M) follows then from the remark above and the fact
that if 4 : Z <— W is a closed embedding of two smooth varieties containing
X,and (M, F) >~ h,(Mz,F) on W, then one has the easily checked formula

Grf DRy (M, F) =~ hy Grf DRz(Mgz, F).

Based on the fact that our objects do not depend on the embedding X < PV, to
attack (2) we may assume furthermore that m > 2. This will come up later, as
we will need to produce non-integral rational numbers with denominator m.

A standard reduction is that it is enough to assume that M is a polarized
pure Hodge module with strict support X, of some weight 4. First, once we
have reduced to the case of pure Hodge modules, we can apply the strict support
direct sum decomposition (6) to reduce to this case. On the other hand, if M
is in MHM(X), recall that it has a finite weight filtration W,M by objects
in MHM(X), such that the graded quotients Gry/M = WyM/W;_1M are in
HM(X,¢) = HMy (PN, £). To reduce to the pure case, we simply use the fact
that the functor Gr,f oDR is exact by construction.

Given this last reduction, we also see that it is enough to check only the second
statement in (2). This follows from Grothendieck-Serre duality and Lemma 17.
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Step 2. Let Y be a general hyperplane in PV, chosen to be non-characteristic for
(M, F). Denote D = X NY, the zero locus of some section s € H%(X, L®™).
Let f:X — X be the m-fold cyclic cover branched along D as in Proposition
2, with f*D =mD’ and L' = O5(D’).
Denote now
U=P¥~Y and j:U <PV

the natural inclusion of the (affine) complement of Y. Denoting also by
i : Y < PN the inclusion of Y, by Lemma 24 there is a filtered short exact
sequence

(29) 0 —> (M, F) — (M(xY), F) — (H'i'M,F) — 0

(Note that here H'i'M simply means M ® wy/pn .)
For each k, we apply the exact functor Gr,f oDRp~ to (29) to obtain a
distinguished triangle of complexes of coherent sheaves on X :

Gr{ DRpnx (M) ® L™! — Grf DRpy (M(*Y)) @ L' —
—> Gr{ DRpy (H'i'M) ® L™ — Grf DRp~y (M) ® L71].

The claim is that
(30) H'(X,Gr{ DRpny (M(xY)) ® L™') =0 for all i # 0.

This will be proved in Step 4. Assuming it for now, by the long exact sequence
on cohomology we are reduced to showing

H'(X,Grf DRpy (H'i'M)® L™') =0 for all i <—1.

But in fact the statement is true even for i < 0 by induction on n = dim X,
since (H'i'M, F) is supported on D and, again by non-characteristic pullback
as in Section 7, it underlies a Hodge module in HMp(Y,d + 1).

Step 3. Note first that we can extend the cover f : X — X ramified over D to
a cover still denoted f : PN — PV ramified over Y it is enough to do this
locally since Hodge modules are local by construction. Fix a point x € X . The
claim is that there exists a neighborhood x € U, € PV such that the restriction
of f: X — X over U, N X can be extended to a finite cover fx : Vx — Uy,
ramified over Y N U,. If x € Y, it is clear that there is such an extension.
On the other hand, if x € Y, then one uses a local holomorphic trivialization
(Ux, Uy N X) >~ (U, NY, U, N D) x D2, considering a contractible neighborhood
of x in Y such that the contraction is compatible with D.

This new [ is non-characteristic for (M, F') by our choice of ¥, and so
the filtered pullback (f*M, F) on PV can be defined as in the remarks after
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Definition 21. It underlies a pure Hodge module f*M of weight d, as the
relative dimension is zero. By Theorem 8 we then obtain fi f*M € HMy (PV,d);
note that this is a single Hodge module since f is finite. There is a natural
monomorphism M — f, f*M, and we define M as its cokernel, so that there
is an exact sequence

(31) O—s3 M —3 LI —5 8 —30,

in the abelian category HMy (PV,d), i.e. M is a new pure polarized Hodge
module of weight d with support contained in X . Note that by Saito’s fundamental
result mentioned in Section 4, all the Hodge modules in the exact sequence above
are uniquely extended from the open subset of U on which they are variations
of Hodge structure; in particular they coincide with the strict support extension
of their restriction to U.

We denote by P the Q-perverse sheaf associated to M , so that DRpy (M) =~
Pc := P ® C. Since as mentioned above M is the unique extension with strict
support X of its restriction to U, we have

P~ j.j7'P,
i.e., P is the extension of its restriction to the affine open set U as well. By the

Artin-Grothendieck vanishing theorem (see, e.g., [Laz, Theorem 3.1.13]), we then
have

H'(X,Pc)~ H' (U, j~'Pc) =0 for all i > 0.

Since M is polarized, as in Section 17 we have that DP ~ P(d), where DP is
the Verdier dual. By Verdier duality we then also get

HY(X,Pc)=0 forall i <0.
In conclusion, we have verified that
(32) H'(X,DRp~ (M)) =0 for all i # 0.
The main assertion in this step is that
(33) H'(X,Grf DRpn (M)) = 0 for all k and all i # 0.

To this end we need to use stability under projective morphisms, Theorem 8;
applied to the absolute case P — pt, the strictness in the statement amounts to
the degeneration at E; of the natural Hodge-to-de Rham spectral sequence

Ef”q — HP+‘1(X, Grfq DRPN(.A;[)) — Hp+q(X,DRPN(M)).

Note that here we are using the identification f,M ~ RT DRpn (M) (which is
a special case of the definition of push-forward via smooth morphisms). Given
(32), this degeneration immediately implies (33).
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Step 4. We are left with proving (30), which will be done in this step. More
precisely, for each & we will prove the isomorphism

(34) Gry M~Grf M(xY)® L,

where
L :=Coker(Ox > m0g) ~ L' @ @ L—(m=1)

the last isomorphism coming from Proposition 2. The isomorphism (34) implies
what we want in combination with (33); it is proved using the interaction between
the Hodge filtration and the V -filtration along Y .

To this end, note first that by definition there is a canonical isomorphism of
filtered right Dy -modules

(/\;[, F)|U ~ (M,F) Roy EIU-

Indeed, this follows from (31) and the definition of the filtration on f*M given
after Definition 21; passing to the filtration on the D-modules underlying (31)
is, on the open set U on which f is étale, the same as the split short exact
sequence

0— F,M— F,M® fiOpy — F,M® L — 0.

Here and in what follows we consider . as a left £ -module with trivial filtration.
On the open set U it is by definition an integrable connection, underlying the
complement of Qu in fiQg-1(y). On the other hand, we know from [EV,
§6] that globally each L™ is the Deligne canonical extension of LI_I}’ whose
meromorphic connection has residue i/m along Y. The direct sum L is the
D -module underlying the canonical extension of this complement. The tensor
product M ® L becomes a right £-module,” with the induced tensor product
filtration.

The statement follows if we show that the isomorphism on U above can be
extended uniquely to an isomorphism of filtered right £ -modules

(35) (M, F) > (M(xY),F) ®o,y L.

Both sides of (35) are regular holonomic; moreover, they are isomorphic to their
localization along Y, i.e., a local equation of ¥ acts on them bijectively. Forgetting
about the filtration, the isomorphism in (35) then follows from Proposition 15.
As for the filtration F', we need to compare it to the V -filtration along the
divisor Y . The first claim is that (M (xY), F) ® L is regular and quasi-unipotent

7Recall that if M is a right Dx -module, and A a left Dy -module, the tensor product M ®ep, N
has a natural right Dy -module structure; see, e.g., [HTT, Proposition 1.2.9(ii)].
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along Y ; see Definition 19. To this end, note first that the summand M(*Y)® L™
of M(xY)® L, with i ranging from 1 to m—1, coincides with M(xY) on U,
and so their V -filtrations along Y are the same for « < 0. On the other hand, if
t is a local equation for Y, then multiplication by L™ coincides with the action
of t// and so by the definition of the V -filtration we obtain for each «:

(36) Va(M*Y) ® L) = VyyismM(xY) ® L.
This gives in particular
FpVa(M(HY) ® L7') = (FpVasi/mM(+Y)) ® L™

for all possible indices. Using this, the fact that (M (xY), F) ® L is regular and
quasi-unipotent is an immediate consequence of the fact that M (xY) is so (as it
underlies a mixed Hodge module), together with Lemma 24(1).

From (36) we also obtain that

Gry, (M(Y)® L) =~ Gry 4/ (MGY)) ® L7
We see however from Lemma 24(1) that
Grg./\/[(*Y) =0 for o & 7Z,
and therefore
Gr, (M(*Y)® L) =0 fora+i/mé¢Z.

The bottom line is that in order to have Gr) (M(*Y) ® L) # 0, one must have
a+i/meZ forall 1 <i <m-—1, and consequently « cannot be an integer
(recall that we are working with m > 2).

Let us now denote M’ = M(xY) ® L for simplicity. Using this last remark,

by Lemma 25 we deduce that M’ is generated as a £ -module by the negative
part of its V -filtration, i.e.

M, ™ V<0M’ . @PN .
The next thing to note is that, again since the jumps in the V -filtration do not
happen at integers, according to Lemma 26(2) the second condition in Definition
19 is equivalent to the fact that
FpM' =" (FpiVao M) - 0
i>0
for all p. Consequently, the Hodge filtration is determined by its restriction to
the negative part of the V -filtration. Finally, this restriction is determined by the

corresponding filtration on the open complement U since according to Lemma
26(1) for all p we have

FPV<0M, - V<0M, ﬂ j*j_leMI.

As (M, F) and (M(xY), F)® L coincide on U, and as (M, F) was defined by
extension from U, the two filtered D -modules must then agree everywhere. [J



74 M. Pora
9. Particular cases

In this section I will explain how M. Saito’s vanishing theorem can be used
to deduce many of the standard vanishing theorems. In the next sections I will
make the point however that the abstract version is equally valuable for concrete
applications.

Kodaira-Nakano vanishing. Let X be a smooth projective complex variety of
dimension n. We consider the trivial Hodge module M = Q}I({ [7]. According to
Example 11, the corresponding right O -module is wy , with filtration Fyox = wx
if p>-n and F,wy =0 if p < —n, so that

Gr”, DRy (wx) = Q% [n — p] for all p.
Theorem 28 gives
HI(X,Qy®L)=0 for p+q>n

and the dual statement, for any L ample, i.e., Kodaira—-Nakano vanishing.

If we restrict to the Kodaira vanishing theorem, which corresponds to the
lowest non-zero piece of the filtration on wy, then we can see it as an example
of the following more easily stated special case of Theorem 28; it is useful to
record this for applications.

Corollary 37. If (M, F) is a filtered D -module underlying a mixed Hodge

module M on a projective variety X, and L is an ample line bundle on X,
then
H'(X,S(M)® L) =0 for all i > 0.

Kollar vanishing. The following theorem of Kolldr is a natural generalization of
Kodaira vanishing to higher direct images of canonical bundles.

Theorem 38 ([Koll], Theorem 2.1(iii)). Let f : X — Y be a morphism between
complex projective varieties, with X smooth, and let L be an ample line bundle
on Y. Then

H'(X,R’ fowx ® L) =0 for all i >0 and all .

To deduce the statement from Theorem 28, we consider the push-forward
M= f*Qg [n] of the trivial Hodge module on X, with » = dim X. According
to Example 12, for the underlying £ -modules we have

filox, F) = M, F)[-i]



Kodaira—Saito vanishing and applications 75

in the derived category of filtered Dy -modules (so compatible with inclusions
into smooth varieties), and for each i we have S(M;) = R fywy . Theorem 38
then follows from Corollary 37. More generally, the same argument shows the
following vanishing theorem due to Saito: the statement of Theorem 38 holds for
R! f.S(M), where M corresponds to the unique pure Hodge module with strict
support X extending a polarized variation of Hodge structure on an open set
UCX.

Nadel vanishing. To deduce Nadel vanishing, one needs a more subtle rela-
tionship between multiplier ideals, the V -filtration on the structure sheaf, and
the Hodge filtration on localizations, combining results of [BS] and [Sai5]. As
mentioned in Example 14, this is one place where it is more convenient to have
the initial discussion in terms of left O -modules.

Let X be a smooth projective variety, and D an effective Cartier divisor on
X . Recall that Ox (xD) is equipped with a natural Hodge filtration F, as the left
D -module associated to the Hodge module j*Qg [7], where j : U = X~D — X
is the inclusion; see Example 14. Looking at the first step in this filtration, one
can recognize multiplier ideals from the formula

(39) FoOx (D) = J((1 - £)D) - Ox (D).

where 0 < ¢ < 1, and in general [7(B) stands for the multiplier ideal of a
Q-divisor B (see [Laz, Ch. 9]). Indeed, [Sai5, Theorem 0.4] says that

FoOx (*D) ~ V'0x - Ox (D),
while [BS, Theorem 0.1] says that for any « € Q one has
Ve0x ~ J((e — &) D).

Here the V -filtration notation means the following: assume that D is given
locally by an equation f, and consider the graph embedding iy : X — X x C.
One can consider the V -filtration on the left £ -module iy Ox = Ox ®c C[0;]
along X, = X x {0}. The notation V*Oy stands for the filtration induced on
Ox =0x Q1.

This allows us to deduce the Nadel vanishing theorem (see, e.g., [Laz, Theorem
0.4.8]), at least when D is a Cartier divisor.

Theorem 40. With the notation above, if L is a line bundle on X such that
L — D is ample, then

H"(X, wx ® L®J((1- e)D)) — 0 for all i > 0.
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Proof. From the discussion above it follows that for the left O -module Ox (xD)
the lowest graded piece for the filtration F is

Gr§ Ox(*D) = J((1 —¢)D) - Ox (D),
so for the associated right £ -module we have
S(M) = wx ® Ox (D) ® J((1 —¢)D).
Corollary 37 implies that if A is ample, then
H' (X, 0x ® A® Ox (D) ® J((1—€)D) =0 for all i > 0.

But by assumption we can write L >~ A ® Ox (D) with A ample. L]

Remark 41 (Arbitrary Q-divisors). The Nadel vanishing theorem for arbitrary
Q@-divisors B is not in general a vanishing theorem for the lowest graded piece
of the Hodge filtration corresponding to a mixed Hodge module; it is however a
consequence of the same result. Roughly speaking one can reduce to the situation
studied above after performing a Kawamata covering construction to arrive at
a Cartier divisor, using a bistrictness property of Hodge modules which allows
us to deduce vanishing for the push-forward to the base, and finally passing to
an eigensheaf of the push-forward. In other words multiplier ideals are naturally
direct summands of Hodge theoretic objects, while Theorem 28 also applies to
filtered direct summands of £ -modules underlying mixed Hodge modules, again
since the functor Gr,l: oDR is exact. I thank N. Budur for this observation.

On the other hand, it is perhaps most natural to try and prove an analogue
of the Kawamata—Viehweg vanishing theorem for Q-divisors in the context of
mixed Hodge modules. This will be done in Theorem 52 below. An analogous
extension of Nadel vanishing is then an immediate consequence; see Corollary 54.

Abelian varieties. In the case of abelian varieties it turns out that Theorem 28
holds directly for the graded pieces of a filtered £ -module (M, F) underlying
a Hodge module itself, rather than those of its de Rham complex.

Proposition 42 ([PS1], Lemma 2.5). Let A be a complex abelian variety, (M, F)
the filtered D -module underlying a mixed Hodge module on A, and let L be
an ample line bundle. Then for each k € 7., we have

H'(A,Grf M® L) =0 for all i > 0.

Proof. Denote g = dim A. Consider for each k € Z the complex of coherent
sheaves
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F — F 1 F g F
Grf DR4(M) = [ Grf M — @} ® Grf |, M — - > ® Grf,, M|

supported in degrees —g,...,0. According to Theorem 28, this complex has the
property that, for i > 0,

H'(A,Grf DR4(M) ® L) = 0.

Using the fact that Q} ~ (9;95' , one can deduce the asserted vanishing theorem
for the individual sheaves Grf: M by induction on k. Indeed, since Gr,f M=0
for k <« 0, inductively one has for each k a distinguished triangle

Eg — Grf DR4(M) — Grf, , M — Eg[l],
with Ej; an object satisfying H'(A4, Ex ® L) = 0. O

This observation is one of the key points towards showing that, under the
above assumptions, all graded pieces Gr}: M satisfy the analogues of the generic
vanishing theorems of [GL1], [GL2], [Hac], [PP]. In view of the examples in
Section 5, besides recovering these results the statement leads to new applications,
for instance to Nakano-type generic vanishing (see [PSI, Theorem 1.2]).

Theorem 43 ([PS1], Theorem 1.1). Under the assumptions of Proposition 42, each
Grffvl is a GV -sheaf on A, i.e.

codimp, 0.4, {o € Pic’(4) | H'(4,Gry M @a) # 0} =i, forall i >0.

A stronger generic vanishing statement was proved in [PS1] for the total
associated graded object

Grl' M = P Gy M,
k

seen as a coherent sheaf on T*A4 ~ A x H%(A4,Q)); this was useful in proving
that all holomorphic 1-forms on varieties of general type have zeros [PS2].

10. Weak positivity

This section contains a proof of an extension of Viehweg’s weak positivity
theorem for direct images of relative canonical sheaves, based on Theorem 28
and found jointly with C. Schnell; see also [Sch3]. The general strategy follows
Kollar’s approach to semipositivity via vanishing theorems in [Koll, §3]. The
shortness of the proof is due to the fact that one can apply the machinery of
vanishing theorems to abstract Hodge modules.
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Definition 44. A torsion-free coherent sheaf ¥ on a (quasi-)projective variety
X is weakly positive on a non-empty open set U C X if for every ample line
bundle A on X and every a € N, the sheaf $9?% ® A®? is generated by global
sections at each point of U for b sufficiently large. (Here SP# denotes the
reflexive hull of the symmetric power S7¥% .)

Before proving the main result, let’s record a standard global generation
consequence of Theorem 28.

Corollary 45. Let X be a smooth projective complex variety of dimension n,
and (M, F) a filtered D -module on X underlying a mixed Hodge module M .
Then for any ample and globally generated line bundle L on X, the sheaf

SIM) ® [®@+1)

is globally generated.

Proof. Denoting ¥ = S(M) ® L®"+1 | Corollary 37 implies that
H'(X,¥ @ L® ) =0 for all i > 0.

The result is then an immediate consequence of the Castelnuovo-Mumford Lemma;
see [Laz, Theorem 1.8.5]. O

We also need the following simplification of what is needed in order to check
weak positivity under our hypotheses.

Lemma 46. Let ¥ be a torsion-free sheaf on a smooth (quasi-)projective variety
X, and L a line bundle on X . Then ¥ is weakly positive on an open set U C X
on which ¥ is locally free if ¥®* ® L is generated by global sections over U
for all a > 0.

Proof. 'This is well known, so I will only sketch the proof. First, it is standard that
one can reduce to checking the definition for only one (not necessarily ample)
line bundle L, and all a > 0; see [Vie, Remark 1.3(ii)]. Now a torsion-free sheaf
is locally free and therefore coincides with its reflexive hull outside of a closed
set of codimension at least 2. On the other hand, its global sections inject into
those of the reflexive hull. So it is enough to reduce the definition to the usual
symmetric powers, which in turn are quotients of the tensor powers. 0l

Viehweg’s theorem in [Vie] saying that fiwz,x is weakly positive for any
surjective morphism f : Z — X of smooth projective varieties is a special case
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of the following result.® The statement and proof are more conveniently phrased
in terms of left O -modules.

Theorem 47. Let X be a smooth projective complex variety, and (N, F) the
filtered left D -module on X underlying a mixed Hodge module M which is a
variation of mixed Hodge structure on a non-empty open set U C X. Then S(N)
is weakly positive over U .

Proof. Step 1 First, as M is a variation of mixed Hodge structure generically
over X, it is well known that S(N) is a torsion-free sheaf on X. Fix now a
positive integer m, and consider the diagonal embedding

it X —>Xx---xX,

where the product is taken m times. On this product, consider the box product
mixed Hodge module
ME" =M KK M.

As the filtration on M®™ is the convolution of the filtrations on the individual
factors, it is not hard to see that p(N®™) = m - p(N) and moreover

i*S(NZIm) - S(_N’)®m_

Denoting by r = (m — 1)n the codimension of X via the diagonal embedding,
in the derived category of coherent sheaves on X we have a natural morphism

(48) Fp\y—r i WBM, F) — Li*S(WE™)[—r],

which is an isomorphism over the open set U where M is a variation of mixed
Hodge structure. This follows for instance from [Schl, Lemma 2.17] (see also
[Sch3, Lemma 3.2]).

Step 2. We can specialize formula (48) by passing to the cohomology sheaves in
degree r, in order to obtain a natural sheaf homomorphism

(49) S(Q) = Fnpiny—r @ —> S(M®m

which is an isomorphism on U ; here (Q, F) is another filtered left £ -module
on X, underlying the object i*M ™™ in MHM(X).

Fix now a very ample line bundle L on X. In order to deduce that S(N)
is weakly positive over U, using Lemma 46 it suffices then to show that
S(Q) ® wy ® L®"+D is globally generated, where n = dimX. But this a
consequence of Corollary 45, recalling that S(Q) ® wy is the lowest non-zero
graded piece of the right £ -module associated to Q. U

8 We apply it to the left £-modules A; corresponding to M; in the decomposition fi(wz, F) =~
D; (M;, F)[—i]; see Example 12.
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Remark 50. A more general result, involving kernels of Kodaira-Spencer mor-
phisms associated to the de Rham complex of M, was recently proved in [PW].
The method of proof is however different, and does not rely on vanishing theorems.

In [Vie], Viehweg proved that if f : Z — X is a surjective morphism of
smooth projective varieties, then f*wg’;"X is weakly positive for m > 2 as well.

A natural question to ask in this direction is the following:

Question 51. Let f : Z — X be a surjective morphism of smooth projective
varieties, and (M, F) the filtered left £ -module underlying a mixed Hodge
module M which is a variation of mixed Hodge structure on a non-empty open
set in Z. Is

fe (S0 ® 0275

weakly positive for all m > 17?

Assuming a positive answer to this question, the exact same method of proof
as in Theorem 47 would imply for all m > 2 the weak positivity of

S (S( o ® w?}"x) ;

It is worth noting that it is indeed now possible to give a proof of Viehweg’s
statement on f*wg;"X using cohomological methods a la Kolldr; see [PS3].

11. Kawamata-Viehweg-type vanishing

In this section I will show that the Kawamata—Viehweg vanishing theorem
for Q-divisors continues to hold for the lowest graded piece of a mixed Hodge
module as long as its singular locus does not intersect the augmented base
locus B4 (L) of a big and nef line bundle (in particular always for variations of
mixed Hodge structure). The proof follows quite closely the original one, with
modifications permitted by Saito’s study of non-characteristic pullbacks. I expect
a stronger version to hold, at least under certain non-characteristicity hypotheses
with respect to B4 (L).?

9 Added during revision: since this was written, in the case when L is a big and nef line bundle
the most general version of Kawamata—Viehweg-type vanishing was proved by Suh [Suh] and Wu [Wul].
Further results for Q-divisors were also obtained in [Wu].
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Theorem 52. Let (M, F) be the filtered right D -module underlying a mixed
Hodge module M on a smooth projective variety X, and let L be a line bundle
on X with L ~g A+ A, where A is a big and nef Q-divisor on X and (X, A)
is a kit pair. Assume that B4 (A) U Supp A is contained in the smooth locus of
M . Then

HY(X,S(M)® L) =0 for all i > 0.

Remark 53. In particular we have the vanishing above if L is a big and nef line
bundle such that B (L) is contained in the smooth locus of M . Note that one
does not have a similar statement for other associated graded pieces Gr,f DR (M)
of the filtered de Rham complex, as in the case of Kodaira—Saito vanishing. This
is already well known for the trivial Hodge module M = Q)Ig [#]. In this case, by
Example 11 the graded pieces are Q;‘( [n — k] with n = dim X . Simple examples
show however that for k < n the Nakano extension of Kodaira vanishing does
not usually hold for twists by big and nef line bundles; see [Laz, Example 4.3.4].

In order to understand the statement and proof, we need to review a few
more definitions and results. Before doing this, let’s note that an immediate
consequence of the theorem above is the following generalization of the Nadel
vanishing theorem; see also Section 9.

Corollary 54. Let X be a smooth projective variety, and D an effective Q-
divisor on X with associated multiplier ideal (D). Let L be a line bundle
in X such that L — D is big and nef, and assume that B (L — D) U Supp D
is contained in the smooth locus of a mixed Hodge module M with underlying
filtered D -module (M, F). Then

HY(X,S(M)® LQ®I(D)) =0 for all i > 0.

Higher direct images of the lowest Hodge piece. Let X be a smooth variety.
Recall that according to M. Saito’s theory [Sai2], for a mixed Hodge module
M with strict support equal to X, there exists a maximal non-empty open set
U C X on which M is variation of mixed Hodge structure, denoted say by V;
we call this the smooth locus of M . Note that the lowest Hodge piece S(M) is
a locally free sheaf on U.

As the functor S(-) is exact, we can often restrict our study to the case when
M is a pure Hodge module which is a polarized variation of Hodge structure on
U . In this case, in response to a conjecture of Kolldr, Saito proved (among other
things) the following, the second part of which can be seen as a generalization
of the Grauert-Riemenschneider vanishing theorem.



82 M. Popa

Theorem 55 (Saito, [Said]). Let f : X — Y be a surjective projective morphism
(with Y possibly singular), and let (M, F) be the filtered D -module underlying a
pure Hodge module with strict support X that is generically a polarized variation
of Hodge structure V. For each i >0, one has

R fuS(M) = S(¥, V),

the lowest Hodge piece of the variation of Hodge structure V' on the intersection
cohomology of V along the fibers of f. Consequently, R' f,S(M) are torsion-
free, and in particular

R f,.S(M) =0 for i >dimX —dimY.

Augmented base loci. We start by recalling the definition and some basic results
on augmented base loci of divisors.

Definition 56 ([ELMNP], §1). Let D be a Q-divisor on a normal complex
projective variety X . The augmented base locus of L is

B (D) :=B(D — ¢H),

where H is any ample divisor on X, 0 <€ « 1 is rational, and B(D —€H)
denotes the stable base locus of the Q-divisor D —eH, i.e., the base locus of
|m(D —eH)| for m > 0. If L is a line bundle, we define By (L) similarly. It
is not hard to check (see [ELMNP, Proposition 1.5]) that equivalently one has

(57) B.(D)= () Supp E,
D=A+4+E

where the intersection is taken over all Q-divisor decompositions of D such that
A is ample and E is effective.

We have that B4 (L) # X if and only if L is big. When L is a big and nef,
according to Nakamaye’s theorem [Nak], one has the following description

B, (L) = Null(V),

where Null(V) is the union of all subvarieties ¥V C X such that 4™V .} =0,
or equivalently Ly is not big.

We will use the following birational interpretations of the augmented base
locus; slightly more general statements can be found for instance in [BBP, Lemma
2.2 and Proposition 2.3].1°

10T thank Angelo Lopez for pointing out this reference.
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Lemma 58. If D is a Q-divisor on X, then

B, (D)= (") f (Supp E),

f’A!E

where the intersection is taken over all projective birational morphisms f :Y — X
with Y normal, and all decompositions f*D ~g A+ E, with A ample and E
effective.

Lemma 59. Let f : Y — X be a birational morphism of smooth projective
varieties, and Exc(f) € Y its exceptional locus. If D is a Q-divisor on X,
then

B, (f*(D)) = /7 (B4(D)) UExe(f).

Proof of Theorem 52. First, just as in the proof of Saito’s vanishing theorem,
due to the exactness of the functor S() we can reduce to assuming that M is a
pure Hodge module. I will divide the proof into a few steps which loosely follow
the standard steps in the proof of the Kawamata—Viehweg theorem. In the first
three steps we will assume that L is a big and nef line bundle, and A = 0. The
last two will deal with the general case.

The line bundle case. Note to begin with that since L is big, in general there
exist an m > 0, an ample line bundle A, and an effective divisor £, such that

(60) L®" ~ A ® Ox(E).

Step 1 'This is a Norimatsu-type statement (see [Laz, Lemma 4.3.5]): we show that
if A is an ample line bundle, and E C X is a reduced simple normal crossings
divisor on X contained in the smooth locus of M, then

H'(X,S(M)® A® Ox(E)) =0 for all i > 0.

Let’s assume first that E is a smooth divisor. As S(M) is locally free in a
neighborhood of E, we have a short exact sequence

0—> SM)® 4 —> S(M)® A® Ox(E) — S(M)z ® Az ® O (E) —> 0

Passing to cohomology and applying Corollary 37, we see that is is enough to
show that

H'(E,S(M)g ® Op(E) ® Ajg) =0 for all i > 0.

Again by Corollary 37, it suffices then to note that S(M)g ® Op(E) =~ S(M'),
for some filtered O -module underlying a mixed Hodge module M’ on E. We
can in fact take
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(M, F) := (H'i'M, F).

On one hand, this filtered £ -module underlies a Hodge module, as
(H'i'M, F) ~i'(M, F)[1]

by [Sail, Lemma 3.5.6]. On the other hand, since E is contained in the smooth
locus of M, using [Schl, Lemma 2.17] (as in the proof of Theorem 47) we see
that there is an isomorphism S(N') ~ S(N) g, where N is again notation for
the associated left £ -modules. This is equivalent to what we want by adjunction.

In general we have E = E; + ---+ Ej, where E; are smooth divisors with
transverse intersections. The statement can be easily proved by induction on k,
using exact sequences similar to the one above, and the fact that M continues
to be a variation of mixed Hodge structure when restricted to the log-canonical
centers of E.

Step 2. In this step we show that we can reduce the general statement to the
case where in (60) we have that E has simple normal crossings support, and
this support is contained in the smooth locus of M . Consider the notation of
Definition 56, so that

B (L) = B(L—eH) = Bs (L ® Ox (~keH)),

for k sufficiently large and divisible, and Bs(-) stands for the usual base locus.
We consider p: Y — X a log-resolution of the linear series |L®* ® Ox(—keH)|,
so that

w* (L®k ® Oy (—kEH)) ~ My ® Oy (Fy),

where M} is the moving part of the pullback, a big and basepoint-free line
bundle, and Fj is its fixed divisor. From Lemma 59 we have that

By (L) = ™' (B4 (L)) UExe(w) = Supp(Fi) U Exe(u).

which is a divisor with simple normal crossings support on Y.

By assumption B (L) is contained in the smooth locus of M . Choosing the
log-resolution to be an isomorphism outside of B (L), by Example 22 we have
that u is non-characteristic for (M, F). Recall that this implies that the filtered
inverse image p*(M, F) = (M, F) is given by the formula

M = M—IM Pu-10y PY/X and Fp./\;[ = M*FPM ® wy/x,

and this underlies the Hodge module pw*M. We see then that S(pu*M) =~
w*S(M) ® wy,x, and so

HaS(u*M) 2= S(M),
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as oy x ~ Oy . Assuming that we proved that
(61) H' (Y, S(W*M)® p*L) =0 for all i >0,

this implies the vanishing we want on X as Ru.S(u*M) = 0, which is a
consequence of Theorem 55.
Let’s now write

Fk = ZajEj,
J

with the convention that a; > 0, so that we may assume that the sum contains
all the exceptional divisors of x among the E;. By construction we have that
B (u*L) is contained in the smooth locus of w*M ; equivalently, this statement
holds for all E; in the sum above.

Finally, note that by construction we have

WL ~ *Ox (keH) ® My @ Oy (Fy),

and the line bundle u*Ox(keH) ® M is still big and nef. To conclude, one
appeals to a version of the Negativity Lemma, stating that for such a £ > 0,
there exist b; > 0 such that

W*Ox (keH) ® Oy (— Y b; Fy)
j
is ample, where the sum runs over the exceptional divisors of w (and so with
the same convention as above we can assume that it runs over all E;); see, e.g.,
[Laz, Corollary 4.1.4]. But now we can write

prLB ~ (u*Ox (keH) ® Oy (= Y b F)) ® Oy (D _(aj + b)) Fy),
J j

which is of the form required at the beginning of this reduction step.

Step 3. In this last step we conclude the proof assuming that £ in (60) has
simple normal crossings support contained in the smooth locus of M, which
is the outcome of Step 2. By standard arguments using Kawamata covers, it is
known that there exists a finite cover f : Y — X with ¥ smooth projective,
such that

f¥L~ A ®Oy(E"),

with A’ ample and E’ a reduced simple normal crossings divisor; see, e.g.,
[Laz, p. 255]. Moreover, f can be chosen to be non-characteristic with respect
to (M, F).

This last statement requires some discussion; recall that Kawamata covers can
be constructed in two steps (see [Laz, Proposition 4.1.12]). The first is a Bloch—
Gieseker type cover g : Z — X, where for some component £; of E one can
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write g*E = kE;, for a given k and some FE; not necessarily effective. In this
step one can assume that E is very ample by writing it as the difference of two
very ample line bundles, and then g can be constructed so as to be ramified
along a generic union of hyperplane sections of X in the embedding given by E;
see the proof of [Laz, Theorem 4.1.10]. From this genericity it follows that g is
non-characteristic with respect to (M, F). On the other hand, the second step is
to consider a cyclic cover 4 : Y — Z, which is ramified along f*E;; since this
is contained in the smooth locus of f*M, this cover is also non-characteristic.
One then applies this procedure inductively for all components of E.

Going back to the proof, we can now consider the filtered inverse image
f*(M, F) underlying the pullback Hodge module just as in Step 2. Note that we
have E’ = f~!(Supp E), and so E’ is contained in the smooth locus of f*M .
By Step 1, we then have

H'(Y,S(f*M)® f*L) =0 for all i > 0.
But precisely as in Step 2 we have that

SeS(f*M) >~ S(IM) ® fawy,x.

As Ox is a direct summand of fiwy,x via the trace map, we obtained the
desired vanishing using the projection formula.

The Q-divisor case. We do this in two further steps which reduce us to the line
bundle case discussed above. We first reduce to the case when Supp A is a
simple normal crossings divisor.

Step 4. Let w:Y — X be a log-resolution of (X, A), and write
Ky —pu*(Kx + A)=P —N,

where P and N are effective Q-divisors with simple normal crossings support,
without common components, and such that P is exceptional and all the
coefficients in N are strictly less than 1. We then have

Ky +N+[P]—P+u*A=u*(Kx + A+ A) + [P],

and so there exists a line bundle L’ on Y such that L' ~g u*A + A’, where
A" =N + [P]— P, a strictly boundary divisor with normal crossings support.
Note that u*A is still big and nef, and in fact by Lemma 59 we have

B (1" 4) = 1} (B4 (4)) UExe(w).

We can choose p such that it is an isomorphism outside the support of A. It
follows that both B4 (u*A4) and Supp A’ are contained in the smooth locus of
w*M . Note finally that it is enough to show that
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H (Y, S(uW*M)® L') =0 for all i >0,
Indeed, we have observed before that

UsS(* M) ~ S(M) and R puS(u*M) =0 for i > 0.

Step 5. It is enough to assume then that A is a divisor with simple normal
crossings, support, say A = Zle a;D;, with 0 <a; <1 and D; smooth.

The strategy is to prove the statement by induction on k. The case k = 0
is the line bundle case proved above. Assume now that & > 0, and let’s write
a, = g. Note that 0 < p < g — 1. Just as in Step 3, one considers a Kawamata
cover associated to the divisor Dj; concretely, there exists a finite morphism
f:Y — X, with ¥ smooth projective, such that on Y the divisor D; becomes
divisible by . In other words, we have

k
L' := f*L ~o A'+cDj+ ) a:D],
i=2
where A" = f*A and D] = f*D;, still satisfying the fact that ) D; has simple
normal crossings. Moreover, this morphism can be chosen to be non-characteristic
for (M, F), so we can deal with f*M as in the previous proof.
By induction we can now assume that the line bundle L' ® Oy (—cD]) satisfies

H (Y, S(f*M)® L' ® Oy(—cD})) =0 for all i > 0.

Recall that due to the definition of the filtration under non-characteristic inverse
image we have S(f*M) >~ f*S(M) ® wy;x. On the other hand, it is standard
that in the covering construction above we have that f, (L’ ® Oy (—cD}) ® wy, X)
contains L as a direct summand. The desired vanishing follows from the projection
formula.
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