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Kodaira-Saito vanishing and applications

Mihnea Popa

Abstract. The first part of the paper contains a detailed proof of M. Saito's generalization of
the Kodaira vanishing theorem, following the original argument and with ample background.

The second part contains some recent applications, and a Kawamata-Viehweg-type statement

in the setting of mixed Hodge modules.

Mathematics Subject Classification (2010). Primary: 14F17; Secondary: 14F10, 14D07.
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1. Introduction

This article was originally the outcome of a lecture delivered at the Clay
workshop on mixed Hodge modules, held at Oxford University in August 2013.

The main goal was to explain in detail the proof of Morihiko Saito's extension of
the Kodaira-Nakano vanishing theorem to mixed Hodge modules, discuss various

special cases, and give a guide to recent applications. This is done in the first
and main part of the paper, Sections 2-9, which also includes ample background.
Since then I have also included some new applications. One is a proof of weak

positivity for the lowest graded piece of a Hodge module obtained jointly with
C. Schnell (which also appears in [Sch3]). Another is a Hodge module version
of the Kawamata-Viehweg vanishing theorem, likely not in its final form.1

M. Saito's vanishing theorem is stated and proved as Theorem 28 below. It was

obtained in [Sail, §2.g]; the proof provided here is a detailed account of Saito's

original argument, which in turn is a generalization of Ramanujam's topological
approach to vanishing. C. Schnell [Sch4] has recently found a different proof of
the theorem, this time extending the Esnault-Viehweg approach to vanishing via
the degeneration of the Hodge-to-de Rham spectral sequence on cyclic covers.

1 Added during revision: in the meanwhile, in the case of Cartier divisors a stronger Kawamata-
Viehweg-type vanishing theorem was indeed proved by Suh [Suh] and Wu [Wu],
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In order to make the underlying approach of Saito clear, I will first recall the

proof of the Kodaira-Nakano vanishing theorem based on the weak Lefschetz

theorem, the Hodge decomposition, and cyclic covering constructions. In the proof
of Theorem 28, the corresponding roles will be played by the Artin-Grothendieck

vanishing theorem for constructible sheaves and by M. Saito's generalization of
the standard results of Hodge theory to the setting of mixed Hodge modules.

There are however significant new difficulties that are resolved with the use of the

interaction between the Hodge filtration and the Kashiwara-Malgrange V -filtration
established in [Sail], recalled in the preliminaries; the background discussion will
survey this and other facts about filtered D -modules in Hodge theory, with
references for all the statements needed in the paper.

Many of the standard vanishing theorems involving ample line bundles are

special cases of Saito vanishing. This will be reviewed in Section 9, where I will
also mention its use to generic vanishing theory. When passing to big and nef line

Q -divisors however, the situation is more complicated. In Section 111 prove a first
version of Kawamata-Viehweg for mixed Hodge modules - roughly speaking,

it assumes that the Hodge module is a variation of mixed Hodge structure over
the augmented base locus of a nef and big line bundle. Another application,
provided in Section 10, is a proof together with Schnell of an extension of a weak

positivity theorem of Viehweg to the lowest graded piece of the Hodge filtration
on a Hodge £> -module. Arguing along the lines of Kollâr's approach to weak

positivity provides a very quick argument, once Kodaira vanishing and adjunction
have been extended to setting of mixed Hodge modules.

As a good part of the paper is expository, my main goal is to make these

very useful statements and techniques more accessible to algebraic geometers; the

viewpoint is that of cohomological methods in birational geometry. The reader

interested in a more general overview of the theory of mixed Hodge modules is

encouraged to consult the recent [Sch2], besides of course the original [Sail] and

[Sai2],

2. The topological/Hodge theoretic approach to Kodaira vanishing

In this section I will recall the approach to the Kodaira vanishing theorem
based on topological and Hodge theoretic methods, which also gives the more

general Nakano vanishing. It was first observed by Ramanujam that one can use

such methods, Kodaira's original proof being of a differential geometric nature.

I will follow the treatment in [Laz, §4.2]; this is intended to be an introduction
to the strategy used by Saito in order to prove the more general result for Hodge
modules.
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Theorem 1 (Kodaira-Nakano Vanishing Theorem). Let X be a smooth complex

projective variety, and L an ample line bundle on X. Then

Hq{X, £2f <g> L) 0 for p + q > n,

or equivalently
Hq{X, Llpx <g> L~l) 0 for p + q <n.

Before proving the theorem, let's review some useful technical tools. First,

recall the following well-known cyclic covering construction, needed in order to

"take m-th roots" of divisors D e \mL\, with L some line bundle. For a proof
of this and other covering constructions see [Laz, §4.1.B],

Proposition 2. Let X be a variety over an algebraically closed field k, and let

L be a line bundle on X. Let 0 s e H°(X,L®m) for some m > 1, with
D — Z{s) e \mL\. Then there exists a finite flat morphism f : Y —> X, where Y

is a scheme over k such that if L' — f*L, there is a section

s' G H°(Y,L') satisfying (s')m f*s.

Moreover:

• if X and D are smooth, then so are Y and D' Z(s').

• the divisor D' maps isomorphically onto D.

• there is a canonical isomorphism f*Oy — Ox © © ••• ©

Furthermore, recall that if X is a smooth variety, and D is a smooth effective

divisor on X, then the sheaf of 1-forms on X with log-poles along D is

i i tlf
£2^. (log D) — Q,f < — >, / local equation for D.

Concretely, if z\,..., zn are local coordinates on X, chosen such that D (zn

0), then £2^(log D) is locally generated by dz\,...,dzn-This is a free

system of generators, so £2^, (log D) is locally free of rank n. For any integer

p, we define

£2f (log D) := /\(^x(log £>)).

Using local calculations and the residue map, it is standard to verify the following
statements (see [EV, §2] or [Laz, Lemma 4.2.4]):

Lemma 3. There are short exact sequences:

(i) 0 —> £2f —> Q,x (log D) —» £2£-1 —> 0.

(ii) 0 —» £2^(log £))(—£)) QPD ^0.
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Lemma 4. Let f : Y -* X be the m-fold cyclic cover branched along D, as

in Proposition 2. Let D' be the divisor in Y such that f*D mD', mapping
isomorphically onto D. Then

(log D) ~ L>£(log D').

Sketch of proof of Theorem 1. By Serre duality it suffices to show the second part
of the statement. For m» 0, let De \mL\ be a smooth divisor. One can assume

by induction on n dim X that we already know Kodaira-Nakano vanishing on

D, so that

Hq(D, O^,-1 (8) Lj^1) 0 for p + q < n.

Using this and passing to cohomology in the sequence in Lemma 3(i), it suffices

then to prove that

Hq(X, ß£(log D) (8) L"1) 0 for p + q <n.

Let now / : Y -> X be the /«-fold cyclic cover branched along D as in

Proposition 2, with f*D — mD' and L' — Oy(D'). Proposition 2 says that Y

and D' can be chosen to be smooth; also, D' is obviously ample. Since / is a

finite cover, using Lemma 4 what we want is equivalent to showing that

Hq(Y, Q£(log D') 8) 0y (-£>')) 0 for p+q <n.

One can now appeal to the exact sequence in Lemma 3(ii). Using this, our desired

statement is equivalent to the fact that the restriction maps

rp,q :Hq(Y,n?)—>Hq(D',^,)
are isomorphisms for p + q < n — 2, and injective for p + q n — 1. But this

follows immediately from the weak Lefschetz theorem, as the restriction maps

H'(Y, C) — HfD'X)
are morphisms of Hodge structures.

Saito's generalization of Theorem 1 is stated and proved in Section 8, while

important special cases are explained in Section 9. Before being able to do this

we need a lengthy review of background material. The reader may already visit
those sections however, for a first encounter with the main topic.

3. Filtered X) -modules and de Rham complexes

In this section I will recall some filtered D -module terminology and facts used

in the paper. Excellent introductions to the subject are for instance the book by
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Hotta-Takeuchi-Tanisaki [HTT] and the lecture notes of Maisonobe-Sabbah [MS],
In what follows the standard language is that of right 0 -modules; as emphasized

in [Sail], this is often more appropriate in the theory of mixed Hodge modules, for
instance due to the fact that it is the natural setting for considering direct image

or duality functors. Occasionally however left ID-modules will be necessary, in
which case I will state explicitly that we are considering that setting and are

performing the left-right transformation described below.

Definitions. Let X be a smooth complex variety. A filtered right <0 -module

on I is a fDx -module with an increasing filtration F F.M by coherent

Ox -modules, bounded from below and satisfying

FiM Fk£>x Q Fk+iM for all k, I e Z.

In addition, the filtration is good if the inclusions above are equalities for k !» 0.
This condition is equivalent to the fact that the total associated graded object

Grf M 0Grf M 0 FkM/Fk_xM
k k

is finitely generated over Grf S)x — Sym Tx, i.e. induces a coherent sheaf on
the cotangent bundle T*X. Assuming that such a good filtration exists (in which

case M is also called coherent), the closed subset

Char(A!) := Supp Grf M ç T*X

is called the characteristic variety of X. A well-known result of Bernstein says

that dimCh(AI) > dim A, and M is called holonomic if this is actually an

equality. The 0-modules we consider later will only be of this kind.

Left-right rule. The canonical bundle œx is naturally endowed with a right
0^-module structure. Concretely, if z\,...,zn are local coordinates on X, for

any / e Ox and any P e £>x >
the action is

(/ • dz\ A • • • A dzn) • P ' P(f) dz\ A • A dzn.

Here, if P ^Zaga^a, then ' P J2a(—d)aga is its formal adjoint.

Using this structure, as one often needs to switch between the two, let's recall
the one-to-one correspondence between left and right £>x -modules given by

J\f i-> M N ® &xMx and M h» Xf — /Hom0x(a>x, M).

In terms of filtrations, the left-right rule is

FpJf Fp-nJA (k>x •
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de Rham complex. While we will consider right £>x -modules when talking
about Hodge modules, one naturally associates the de Rham complex to the

corresponding left <0* -module Af:

DR* (A/*) [M —> ® M • • • —> Q'x ® A/*],

which is a C -linear complex placed in degrees 0with maps induced by
the corresponding integrable connection V : A/" —> Af <g) Œj.. It turns out that the

natural de Rham complex to consider for the right £> -module A4 (sometimes
called a Spencer complex; see [MS, 1.4.2]) satisfies

DR* (A4) ~ DR* (AO M •

By definition the filtration F,M is compatible with the 0* -module structure on

A4 and therefore, using the left-right rule above, this induces a filtration on the

de Rham complex of A4 by the formula

n n—1

Fk DR*(A4) [/\ TX ® Fk-nM -» /\ Tx ® Fk+1.nM FkM][n\.

Hie associated graded complexes for the filtration above are

n n—l

Grjf DR*(A4) [ /\ TX®Grf_„ M -> /\ 7*<g>Gr£+1_„ A4 ••• -> Grf m][h],

which are now complexes of coherent Ox -modules in degrees —nand
provide objects in Dft(X), the bounded derived category of coherent sheaves on

X.
We will be particularly interested in the lowest non-zero graded piece of a

filtered 0-module. For one such right ID*-module (A4, F) define

(5) F (A4) := min {p | FPM 0} and A (A4) := Fp(M)M.

For the associated left 5)*-module we then have

p{J\f) F (A4) + n and A (AO A(A4) <8> &>*'.

Pushforward. Let / : X ->• Y be a morphism of smooth complex varieties. We

consider the associated transfer module

0X-»y Ox

It has the structure of a (0*, /-10*)-bimodule, and it has a filtration given by

f*Fk£>Y. For a right 0*-module A4, one can define a naive pushforward as

f*M := f*(M ®£>x T>x^y),
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where on the right hand side /* is the usual sheaf-theoretic direct image. However,
the appropriate pushforward is in fact at the level of derived categories, namely

/+ : D(<0*) —* D(Dy), AT* R/*(AT* ®£>x £>x^Y)-

This is due to the left exactness of /* versus the right exactness of ®. See

[HTT, §1.5] for more details; in loc. cit. this last functor is denoted by fj-.
Given a proper morphism of smooth varieties / : X —Y, S ai to has also

constructed in [Sail, §2.3] a filtered direct image functor

/+ : D*(FM(2Dy)) -* Db(FM(DY)).

Here the two categories are the bounded derived categories of filtered 3) -modules

on X and Y respectively. Without filtration, it is precisely the functor above. The

filtration requires more work; I will include a few details below for the special
D-modules that we consider in this paper.

Strictness. A special property that is crucial in the theory of filtered 3) -modules

underlying Hodge modules is the strictness of the filtration. Let

/ : (M, F) -> (Af, F)

be a morphism of filtered £>x -modules, i.e. such that /(FfcAT) ç FkÄf for all
k. Then / is called strict if

f(FkM) FkJ\f n f(M) for all k.

Similarly, a complex of filtered £>x -modules (M°, F.M') is called strict if all of
its differentials are strict. It can be easily checked that an equivalent interpretation
is the following: the complex is strict if and only if, for every i,k eZ, we have

that the induced morphism

FL'iFkM') —> FL'M'

is injective. It is only in this case that the cohomologies of AT* can also be seen

as filtered £>x -modules.

Via a standard argument, the notion of strictness makes sense more generally
for objects in the derived category Dè(FM(£>x)) of filtered 3)x -modules. In
the next sections, a crucial property of the filtered 3) -modules we consider is
the following. If / : X —>• Y is a proper morphism of smooth varieties, and

(M,F) is one such filtered right 3)x -module, then f+(M, F) is strict as an
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object in Dè(FM(<£)y)) ; here /+ is the filtered direct image functor mentioned
above. Given the previous discussion, this means that

F)) -* H' f+(M, F)

is injective for all integers i and k. Finally, Saito's definition of the filtration on
the direct image implies that this is equivalent to the injectivity of the mapping

R' ®£>x ->• Rl f*(M ®£>x £>x^y)-

Up to a choice of representatives, the image is the filtration F^H1 f+(M, F).
Thus in the strict case, one has a reasonably good grasp of the filtration on
direct images, and the cohomologies of direct images are themselves filtered 5) -
modules. Even more is true in case (M, F) underlies a Hodge module, as we

will see in the next section.

4. Hodge modules and variations of Hodge structure

Starting with this section, and up to §7, I will recall the objects that are the

main focus of the paper. In the next section I will give several important examples.
The main two references for the theory of Hodge modules are Morihiko Saito's

papers [Sail] in the pure case, and [Sai2] in the mixed case. A quite gentle but

comprehensive overview of the theory was recently provided by Schnell [Sch2].
Here I will give a brief review of the information needed for understanding the

statement and proof of Saito's vanishing theorem; the reader is encouraged to
consult the references above for further information.

Let us first recall the notion of a variation of Hodge structure, which is the

"smooth" version of a Hodge module. If I is a smooth complex variety, a

variation of Q-Hodge structure of weight I on X is the data

V (V, F', Vq)

where:

• Vq is a Q-local system on X.
• V — Vq ®q Ox is a vector bundle with flat connection V, endowed with

a decreasing filtration with subbundles Fp FPV satisfying the following
two properties:

• for all x e X, the data Vx (Vx, F'. Vq;X) is a Hodge structure of weight
I.

• Griffiths transversality: for each p, V induces a morphism

V : Fp — F"-1 <g>
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Considering the Tate twist Q(—t) (2ni) a polarization on V is a

morphism
Q :Vq®VQ—»Q(-)

inducing a polarization of the Hodge structure Yx for each x e X. We say that

V is polarizable if one such polarization exists.

In order to generalize this notion, consider now X to be a smooth complex

algebraic variety of dimension n, and let Z be an irreducible closed subset. Let
V (V, F',Yq) be a polarizable variation of Q -Hodge structure of weight t
on an open set U in the smooth locus of Z. Following [Sail], one can change

terminology and call it a smooth pure Hodge module of weight dim Z +1 on U,
whose main constituents are:

(i) The right <0-module M — V <g> cou with filtration FPM F~p~nV <g> cojj

(ii) The Q-perverse sheaf P — Vq[«].

According to Saito's theory, this extends uniquely to a pure polarizable Hodge
module M of weight dim Z+< onl, whose support is Z. This has an underlying

perverse sheaf, which is the intersection complex ICz(Vq) pj\*Y<q associated

to the given local system. For this reason one sometimes uses the notation

M := j!*V. It also has an underlying 0-module, namely the minimal extension

of M, corresponding to ICz(Vc) via the Riemann-Hilbert correspondence.2 Its
filtration is (nontrivially) determined by the Hodge filtration on U, as we will
see in §7.

More generally, in [Sail] Saito introduced an abelian category of HM(A, £) of

pure polarizable Hodge modules on X of weight I. The main two constituents

of one such Hodge module M are still:

(i) A filtered (regular) holonomic 0x -module (M,F), where F F,M is a

good filtration by Ox -coherent subsheaves, so that Grf M is coherent over

Grf S)x.

(ii) A Q-perverse sheaf P on X whose complexification corresponds to M
via the Riemann-Hilbert correspondence, so that there is an isomorphism

a : DRx (M) —» P <8»Q C.

These are subject to a list of conditions, which are defined by induction on
the dimension of the support of M. If X is a point, a pure Hodge module is

simply a polarizable Hodge structure of weight t. In general, it is required that
the nearby and vanishing cycles associated to M with respect to any locally
defined holomorphic function are again Hodge modules, now on a variety of

2 A direct construction can be given, though this requires quite a bit of work and will not be used
here. The reader interested in details can consult [HIT, §3.4].
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smaller dimension. This will not play a key role here, but a nice discussion can
be found in [Sch2, §12],

The definition of a polarization on M is quite involved, but in any case

involves an isomorphism DP ~ P(l), where DP is the Verdier dual of the

perverse sheaf P (together of course with further properties compatible with the

inductive definition of Hodge modules suggested above); more details in §6.

One of the fundamental results of Saito [Sail], [Sai2] clarifies the picture
considerably; it says that we mainly need to think of the examples described

above as extensions of variations of Hodge structure. Indeed, the existence of
polarizations makes the category HM(X, i) semi-simple: each object admits a

decomposition by support, and simple objects with support equal to an irreducible

subvariety Z ç X (called pure Hodge modules with strict support Z, i.e. with
no nontrivial subobjects or quotient objects whose support is Z) are obtained

from polarizable variations of Hodge structure on Zariski-open subsets of Z.
Formally,

(6) HM(X, I) © HMZ(X, I),
ZÇAT

with HMz(X,£) the subcategory of pure Hodge modules of weight i with strict

support Z. In other words:

Theorem 7 (Simple objects, [Sai2, Theorem 3.21]). Let X be a smooth complex

variety, and Z an irreducible closed subvariety of X. Then:

(1) Every polarizable variation of Hodge structure of weight i — dimZ defined

on a nonempty open set of Z extends uniquely to a pure polarizable Hodge
module of weight I with strict support Z.

(2) Conversely, every pure polarizable Hodge module of weight k with strict

support Z is obtained in this way.

Furthermore, M. Saito introduced in [Sai2] the abelian category MHM(X) of
(graded-polarizable) mixed Hodge modules on X. In addition to data as in (i)
and (ii) above, in this case a third main constituent is:

(iii) A finite increasing weight filtration W.M of M by objects of the same kind,
compatible with a, such that the graded quotients Gr^ M WfMfi Wi-\M
are pure Hodge modules in HM(X,I).

Again, if X is a point a mixed Hodge module is a graded-polarizable
mixed Hodge structure, while in general these components are subject to several

conditions defined by induction on the dimension of the support of M, involving
the graded quotients of the nearby and vanishing cycles of M. For a further
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discussion of the definition see also [Sch2, §20]. I do not insist on giving more

background on mixed Hodge structures and modules, as they will be used in
what follows only by reduction to pure Hodge modules. There is however one

important class of examples worth pointing out.

Let D be a divisor in X with complement U, and assume that we are

given a variation of Hodge structure V on [/. Besides the pure Hodge module

extension whose underlying perverse sheaf is the intersection complex ICz(Vq),
it is also natural to consider a mixed Hodge module extension, denoted j*j~lM
in [Sai2], whose underlying perverse sheaf is simply the direct image j*Vq.
More precisely,

((V(*0),F);;*VQ),
where V(*D) is the localization of the flat bundle V underlying V along D,
endowed with a meromorphic connection (see, e.g., [HTT, §5.2]). Further details

are given in Example 14.

Returning to the general theory, one of the most important results is M. Saito's

theorem on the behavior of direct images of pure polarizable Hodge modules via

projective morphisms. (I am only stating part of it here.)

Theorem 8 (Stability Theorem, [Sail], Théorème 5.3.1). Let f : X -> Y be

a projective morphism of smooth complex varieties, and h C\(H) for a line

bundle H on X which is ample relative to f. If M e HM(X, £) is a polarizable
Hodge module, then

(i) The filtered direct image f+{M, F) is strict, and H' f+M underlies a

polarizable Hodge module Mi e HM(K, I + /

(ii) For every i one has an isomorphism of pure Hodge modules

hl : M-t —> Miii).

As alluded to in the paragraph on strictness in §3, the statement in (i) is

a key property of d)-modules underlying Hodge modules that is not shared by

arbitrary filtered <0-modules; for more on this see, e.g., [Sch2, §26-28]. One

important consequence is Saito's formula [Sail, 2.3.7] giving the commutation of
the graded quotients of the de Rham complex with direct images:

R' f* Grf DRZ(7W) ~ Gif DRY (H' f+M).
A fundamental consequence of the theorem above deduced in [Sail] is the

analogue of the decomposition theorem for pure polarizable Hodge modules,
obtained formally from the above as an application of Deligne's criterion for the

degeneration of the Leray spectral sequence in terms of the Lefschetz operator.
This result extends the well-known BBD-decomposition theorem; here I state the

filtered 0-modules version, which is crucial for the applications presented later.
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Theorem 9 (Saito Decomposition Theorem). Let f : X -» Y be a projective
morphism of smooth complex varieties, and let M e HM(I,£), with underlying
filtered D -module (M,F). Then

f+(M, F) ~ 0 Wf+(M, F)[-i]
ieZ

in Dè (FM(JDy)).

Remark 10. As we are working in the algebraic category and all mixed Hodge
modules will be polarizable (cf. [Sai2, §4.2]), I will implicitly assume that all

objects are polarizable in what follows and ignore mentioning this condition.

5. Examples

This section reviews the main examples that will be of interest in view of
Saito's vanishing theorem. I will use freely the notation of the previous sections.

Example 11 (The canonical bundle). If X is smooth of dimension n and

Y Qx is the constant variation of Hodge structure, we have that P Qx [n],
M — cox with the natural right S)x -module structure, and F^cox o:x for
k > —n, while Fkoox =0 for k < —n. The associated Hodge module is usually
denoted Qx M >

anc' called the trivial Hodge module on X. The de Rham complex
of M is

DRxM DRz(0*)[n] [Ox -* «i ••• ^ nnx][n\.

Note that

Gr^k DR(cux> F) — Llx[n — k] for all k.

Finally, in this example we have p(M) — —n and S(M) cox

Example 12 (Direct images). Let / : X -> Y be a projective morphism with
X smooth of dimension n and Y of dimension m, and let V be a polarizable
variation of Q -Hodge structure of weight k on an open dense subset U c X,
inducing a pure Hodge module M of weight n+k on X as in the previous section.

If (M, F) is the underlying filtered £)x -module, Theorem 9 gives a decomposition

/+(A4,E)~0(M',E)H]
i

in the derived category of filtered STy -modules. According to Theorem 8, each

(Mi, F) underlies a pure Hodge module M,- Hl f*M on 7, of weight n+k+i.
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Furthermore, f+(M, F) satisfies the strictness property, a particular case of which
is the isomorphism

(13) Rf*S(M) - Fp(m)(J+M) ~ 0 Fp(M)Mil-i]
i

in the bounded derived category of coherent sheaves on Y.
For instance, in the case when V Qx is the constant variation of Hodge

structure, by Example 11 p(M) —n and S(M) cox This implies for all i that

p(Mi) -n and F~nMi Rlf*coX-

Note that for the corresponding left <D-modules H this means

p(H) m-n and Fm-nH Rl f*cox/Y.

Finally, formula (13) specializes to

Rf*o)X — 0 R' f*Mx[—i]'
i

which is the well-known Kollâr decomposition theorem [Kol2]. Moreover, we

will see in Corollary 37 and Theorem 55 below that Rl f*S{M) satisfy other

important properties known from [Koll] in the case of canonical bundles, like
vanishing and torsion-freeness.

Example 14 (Localization). Let M be a right £>x -module and D an effective

divisor on a smooth variety X, given locally by an equation /. One can define

a new Dx -module M(*D) by localizing M at / ; in other words, globally we
have

M(*D) j*j~1M,

where j : U X is the inclusion of the complement U X ^ D.

A standard characterization of those D -modules which do not change under
localization will be useful later.

Proposition 15. Let X be a smooth complex variety, D an effective divisor in

X, and denote j : U X the inclusion of the complement U — X \D. Then the

restriction functor j * induces an equivalence between the following categories:

(i) Regular holonomic £>x -modules M such that the natural morphism M
M_(*D) is an isomorphism.

(ii) Regular holonomic S)u -modules.
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Proof. A quick argument is to apply the Riemann-Hilbert correspondence for

regular holonomic 0 -modules, see, e.g., [HTT, Theorem 7.2.5], as the condition

defining the category in (i) says that for the perverse sheaf K associated to M
one has K ~ j^j~1K, i.e. K can be recovered from its restriction to U.

Assume now that M underlies a mixed Hodge module M. By the formula
above, M(*D) underlies the corresponding mixed Hodge module j*j~lM, and

so continues to carry a natural Hodge filtration F. This is in general very
complicated to compute; the case M u>x, where cox(*D) is the sheaf of
meromorphic «-forms on X that are holomorphic on U and the corresponding
Hodge module is j*Qu [n], is already very relevant. I will say a few words below,
and more later.

We always have Fta>x(*D) • F/^Dx ç F^+icoxi*D), since the filtration is

compatible with the order of differential operators, while by [Sai3]*Proposition 0.9

we have

[coxUn + k + 1)D) if k > —n
(16) Fka>x(*D) ç Pkcox(*D) <

T ' '
(0 if k < -n,

i.e., the Hodge filtration is contained in the filtration by pole order. Furthermore,
in [Sai3, Corollary 4.3] it is shown that if D is smooth, then

FkU>x(*D) — PkWx{*D) for all k.

In general, a detailed analysis of the Hodge filtration on <x>x(*D) is given in the

upcoming [MP],
We will see in Section 9 that the first nontrivial step in the filtration is always

related to the V -filtration along D, and that this provides a useful relationship
with multiplier ideals. For this purpose it is more convenient to write things in
terms of left <0 -modules. In fact, for the left 0-module Ox(*D) associated to

a>x(*D) (recall that FpOx(*D) Fp-ncox(*D) <g> cof1), one has the formula

S(Ox(*D)) F0Ox(*D) V10X- Ox{D).

The F-filtration on M and M(*D) is discussed in §7, and provides further

insight into the process of localization.

6. Duality

For later use, a few words are in order about duality for polarized Hodge
modules, on a smooth projective variety X of dimension n. Further discussion
and references can be found for instance in [Sch2, §13 and §29].
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As mentioned earlier, a polarization on a pure Hodge module M
((M,F)\P) of weight I involves an isomorphism P(i) ~ BP, where DP
is the Verdier dual of the perverse sheaf P, compatible with the filtration F.
This means that for the dual holonomic right <0* -module

DM := £xtn(M,cox ®ox ®x)

we have DM ~ M, but furthermore the natural induced filtration on DAI should

satisfy

(DAI, F) ~ (M, F._£).

It is necessary therefore for the filtration on BM to be strict. In fact, it is standard

that this strictness property is equivalent to Grf M being Cohen-Macaulay as

a Grf £>x -module; this last statement holds by [Sail, Lemma 5.1.13] for filtered

D -modules underlying Hodge modules. A consequence is that one can define

a dual Hodge module BM, and in fact BM ~ M(I), with underlying filtered

0 -module (AL F,-f).
Moreover, by [Sail, §2.4.11] the filtered de Rham complex commutes with the

duality functor. Given the discussion above, a useful consequence is:

Lemma 17. If X is a smooth projective variety of dimension n and (A4, F) is
the filtered 0-module underlying a pure Hodge module M e HM(A, I), then

RA Grf DR* (Al) - G*-k-i DRx(A(),

where RA RHomox(- ,cox)[n] is the Grothendieck duality functor.

7. The V -filtration

In this section I will recall some key definitions and results regarding the

V -filtration with respect to a hypersurface, and its interaction with the Hodge
filtration. I am mostly following [Sail, §3], which is a complete reference for all
the definitions and results recalled here.

Let A be a complex manifold or smooth complex variety of dimension n,
and let X0 be an smooth divisor on X defined locally by an equation t. We

first consider a rational filtration on £>x, given by

VaDx {P e £>x I P Tfo ç lJx~[a]} for a e Q,

where X*0 is the ideal of X0 in Ox, with the convention that 1jXq Ox for

7—0.
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Definition 18 V -filtration). Let Al be a coherent right Dx -module. A rational
V -filtration (a slight refinement of the Kashiwara-Malgrange filtration) of At
along X0 is an increasing filtration VaM with a e Q satisfying the following
properties:

• The filtration is exhaustive, i.e. (Jœ VaM AT, and each VaM is a coherent

V0 £>x -submodule of At.

• VaM Vi£>x Ç Va+iM for every a e Q and i e Z; furthermore

VaM t Va-iAT for a < 0.

• The action of tdt — a on Gr^ At is nilpotent for each a, where 3t is a

vector field such that [3t,t]
where V<aM — Uß<aVßM.)
vector field such that [3t,t] 1. (One defines Gr^ M as VaM/V<aM,

It is known that if a V -filtration exists, then it is unique. In addition, £>-

modules underlying mixed Hodge modules also come by definition with a Hodge
filtration, and it is important to compare the two. Note first that on each Gr^ M
one considers the filtration induced by that on M, i.e.,

Frr FpMn VaM
Fn Gr„ M :=

FpM n V<aM

Definition 19 (Regular and quasi-unipotent). In the situation above, assume that

M is endowed with a good filtration F. We say that (AT, F) is quasi-unipotent
(or strictly specializable) along Xq if At admits a rational V -filtration along
X0 and the following conditions are satisfied:

• (FpVaM) t FpVa-\M for a <0.

• (Fp Gr^ M) de Fp+1 Gr^+1 M for a > -1.

One says that (At, F) is regular and quasi-unipotent along Xo if in addition
the filtration F. Gr^ At is a good filtration for —1 < ot < 0.

Let now / : X ->• C be a holomorphic function, and denote by

i iTf : X ^ X x C Y

the embedding of X as the graph of /. Denote by t the coordinate on C, so

that in the notation above we have X0 X x {0} t_1(0). If At is a coherent

right £>x -module, denote (At, F) i*(M,F). One says that (M,F) is strictly
specializable along f if (At, F) is so along Z0, and the same for regular and

quasi-unipotent along f. One important feature of mixed Hodge module theory
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is that all <0-modules underlying Hodge modules are required to satisfy this last

property with respect to any holomorphic function.
The following technical result on the behavior of regular and quasi-unipotent

filtered 0-modules is a key step in extending Kashiwara's theorem on closed

embeddings to the setting of Hodge 0 -modules. This will be very useful when

stating Saito's vanishing theorem on singular varieties in Section 8.

Lemma 20 ([Sai2], Lemma 3.2.6). Let f : X -* C be a holomorphic function,
and (A4, F) a filtered coherent fOx -module. Assume that Supp(.VI) ç f~l (0).
Then the following are equivalent:

(i) (M, F) is regular and quasi-unipotent along f.
(ii) Grp A4 f — 0 for all p.
(iii) (M, F) ~ j*(A4, F), where j : X x {0} <-> X x C.

We will also need a transversality notion for a filtered 0 -module with respect
to a morphism (or a submanifold) introduced in [Sail, 3.5.1], under which filtered
inverse images become particularly simple.

Definition 21 (Non-characteristic morphism). Let f : X ^ Y be a morphism
of complex manifolds, and let (A4,F) be a filtered coherent 0y-module. One

says that / is non-characteristic for (A4, F) if the following two conditions are

satisfied:

• Hff-1 GrF A4 kf-iQy Ox) 0 for i ± 0.3

• The natural morphism

df* : pfl(CharCM)) -> T*X

is finite, where p2 : X xy T*Y —> T*Y is the second projection and

df* : X xy T*Y -> T*X, (.x,ca) ^ df*co for all jc e X, œ e T*Y.

If / is a closed immersion, we say that X is non-characteristic for (A4, F)
if / is so.

If / is non-characteristic for (A4, F) and d dim L - dim Y, then as in

[Sail, §3.5] one has the filtered pullback p.*(A4, F) — (A4, F)[—d] given by the

formula

M pTlA4 coy/x and FPM p~lFp+dA4 ®ß-i0x oy/x-
3 In terras of the individual graded pieces, which are coherent sheaves of Y, this simply says that

L'f* Gr^ M 0 for all i ^ 0 and all k.
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In other words we can define the inverse image to be, up to shift, the naive

filtration on the naive pullback, and this again gives a holonomic F>x -module if
M is so; see [Sail, Lemma 3.5.5]. If (M, F) underlies a pure Hodge module

M of weight m on Y, then underlies a pure Hodge module p*M
of weight m + d on X .4

Example 22. The most basic examples of this notion are:

(i) If / is smooth, then it is non-characteristic for any (M,F), as df * is

injective and / is flat.

(ii) If (M, F) underlies a variation of Hodge structure, any / is non-
characteristic for it, as Char(A4) is the zero section, while each Grf M
is locally free.

As a combination of the two, if / is smooth outside of the locus where

(M, F) underlies a variation of Hodge structure, then / is non-characteristic for

(M, F).

The following lemmas are important in what follows; they show that under
the non-characteristicity assumption one can perform concrete calculations with
the V -filtration.

Lemma 23 ([Sail], Lemma 3.5.6). Let i : D X be an inclusion of a smooth

liypersurface in a smooth complex variety. Let (M, F) be a filtered coherent

right £>x -module for which D is non-characteristic. Then

(1) (M, F) is regular and quasi-unipotent along D.

(2) The V -filtration on M is given by

VaM M-Ox(—'D) for — i—1 < a < —i, i > 0 and VaM M for a > 0.

Lemma 24 ([Sail], Lemma 3.5.7). With the notation of Lemma 23, we have that

(1) The V -filtration on M(*D) satisfies

VaM(*D) M &x(—iD) for — i — 1 < a < —i.

(2) There is a filtration F on M(*D) which makes it a filtered coherent right
Dx -module, such that there is an exact sequence of filtered ID -modules

0 —» (M, F) (.M(*D), F) iJ-(M, F)[l] —* 0.

In addition, F) is regular and quasi-unipotent along D.
4 This is a non-trivial result, using the fact that pure Hodge modules with strict support come from

generic variations of Hodge structure; see, e.g., [Sch2, §30] for an explanation.
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It will also be crucial, under suitable hypotheses, to be able to recover the

Hodge filtration from its restriction over the complement of a hypersurface. This

is one of the key points of the interaction between the Hodge filtration and the

F-filtration in the case of filtered <£> -modules underlying Hodge modules.

Lemma 25 ([Sail], Proposition 3.1.8). With the notation of Lemma 23, and

U X ^ D, let M' be the smallest sub-object of M such that M\u M'^v.
Then:

(1) M' VaM £>x for a < 0.

(2) M/M! ~ z'*Coker (can dt : Gr^ M -> Gro M).
In particular, M — VaM L>x for a. < 0 if can is surjective.

Lemma 26 ([Sail], Proposition 3.2.2). With the notation of Lemma 25, and

j : U —> X the natural inclusion, we have that:

(1) The first condition in Definition 19 is equivalent to

FPV<0M F<0M G j*j~lFpM for all p.

(2) If M V<0M £>x, or equivalently if can dt : Gr^ M Gr^ M is

surjective, the second condition in Definition 19 for a > — 15 is equivalent
to

FPM Ylipp-i V<oM) d\ for all p.
/> o

8. Kodaira-Saito vanishing

We now come to the main goal, M. Saito's vanishing theorem. Before stating
and proving the theorem, it is important to emphasize the following point: this is

a result that works on singular varieties by embedding them into smooth ambient

spaces. It is known that the objects considered are independent of the embedding.
It is therefore important to have a way of thinking about mixed Hodge

modules and filtered ID -modules on singular varieties, compatible with the

material developed for smooth varieties. In general this can only be done be

locally embedding X into smooth ambient spaces, and then using a gluing
procedure (see [Sai2, §2.1]).

However, on projective varieties we can use the embedding of X into some
P v. If X <—* PA' is one such, then one defines the category of mixed Hodge

5 There is an extra point here, for which I am grateful to C. Sabbah: in Definition 19 one only
considers a > — 1, while in the lemma a — 1 appears as well. However, the property we want for
a — 1 follows from Hodge theory conditions on Gr!1 and GrJ' ; in our application they will be

trivially satisfied since both terms will be 0.
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modules on X to be that of mixed Hodge modules on PjV with support contained

in X, i.e.

MHM(Z) MHM*(P*).

One can do the same with any embedding X c Z into a smooth variety; at least

when Z is projective, the fact that the resulting MHM( X is independent of
the embedding follows by extending Kashiwara's equivalence theorem for closed

embeddings to the setting of Hodge modules.

Indeed, recall that Kashiwara's theorem says that for a closed embedding
h : Z ^-> W one has

ModCOh(<0z) — Modcühz (c£hj/).

where the category on the right is that of coherent £>w -modules with support
contained in Z. This correspondence restricts on both sides to the subcategories of
objects with support contained in X. The equivalence does not extend in general to

filtered 3d -modules; however, those underlying mixed Hodge modules are regular
and quasi-unipotent (Definition 19) along the zero-locus of any holomorphic
function.

In the regular and quasi-unipotent case, one can use Lemma 20 for each local

defining equation / for Z inside W (or global equations when W P^) in
order to deduce that for every (M, F) on W with support in Z, there exists

(Mz,F) on Z such that (M,F) ~ h*(Mz, F). Thus Kashiwara's theorem

extends to these special filtered holonomic 3d -modules, which is the key step in

extending it to mixed Hodge modules. Once this is established, it is not too hard

to deduce that MHM(Z) is independent of the embedding; formally

(27) HM(X,£) HM*(Z,f) and MHM(Z) MHM^(Z)

for any smooth Z containing X. Further details can be found in [Sail, Lemma

5.1.9] and [Sai2, 2.17.5]; see also [Sch4, §6 and 7],

Theorem 28 (M. Saito, [Sai2], §2.g). Let X be a complex projective variety,
and L an ample line bundle on X. Consider an integer m > 0 such that L®m

is very ample and gives an embedding X ç P/V. Let (M, F) be the filtered
3d -module underlying a mixed Hodge module M on P'v with support contained

in X, i.e. an object in MHM(Z). Then:

(1) Gr^7 DRp v (M.) is an object in iV' (X for each k, independent of the

embedding of X in PjV.6

6 In fact, based on the discussion above it can be shown that each Gr^ DRpv (M) is independent
of the embedding of X into any smooth complex variety.
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(2) We have the hypercohomology vanishing

H!'(V,Gr£ DRpAr(7W) ® L) 0 for all i > 0.

and
H1 (X, Grf DRpA' (.M) <g> L"1) 0 for all i < 0.

Proof. Step 1. This step addresses (1) and a number of useful reductions towards

(2). For the first statement in (1), due to the definition of Gxk DRP,\ (A4), it is

enough to have that each Gr[ M is an &x -module. But note that by Lemma 20,

if for a holomorphic function / the support of M is contained in /_1(0), the

condition of (M, F) being regular and quasi-unipotent along / is equivalent to

having
GrJ M f 0 for all p.

Now our (M,F) satisfies this for any /, as it underlies a Hodge module, and

applying it for the defining equations of X inside PiV we obtain the conclusion.

Note that the independence on the embedding of the definition MHM(X)
MHMv(P'v) follows from the discussion preceding the statement of the theorem.

However here strictly speaking one only needs to know independence of embed-

dings X ^ PA' by various powers L®m Thus the Kashiwara-type statement (27)
actually suffices, as any two such can be compared inside a common Veronese

embedding.

Along the same lines, the independence of the embedding for the complex of
Ox -modules Gr£ DRP,v (A4) follows then from the remark above and the fact

that if h : Z W is a closed embedding of two smooth varieties containing

X, and (M,F) ~ h*(Mz,F) on W, then one has the easily checked formula

Grf DRw(M, F) ~ K Grf DRZ(XZ, F).

Based on the fact that our objects do not depend on the embedding X c Pw, to

attack (2) we may assume furthermore that m > 2. This will come up later, as

we will need to produce non-integral rational numbers with denominator m.
A standard reduction is that it is enough to assume that M is a polarized

pure Hodge module with strict support X, of some weight d. First, once we
have reduced to the case of pure Hodge modules, we can apply the strict support
direct sum decomposition (6) to reduce to this case. On the other hand, if M
is in MHM(V), recall that it has a finite weight filtration W.M by objects
in MHM(V), such that the graded quotients Gr^ M IT)M/ W^M are in
HM(V, I) — HMv (P^, I) To reduce to the pure case, we simply use the fact

that the functor GrA oDR is exact by construction.
Given this last reduction, we also see that it is enough to check only the second

statement in (2). This follows from Grothendieck-Serre duality and Lemma 17.
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Step 2. Let F be a general hyperplane in P,v, chosen to be non-characteristic for

(M, F). Denote D X n 7, the zero locus of some section s e H®(X,L®m).
Let / : X -»• X be the m -fold cyclic cover branched along D as in Proposition
2, with f*D mD' and L'

Denote now
U PN ^ Y and j :U <^PN

the natural inclusion of the (affine) complement of Y. Denoting also by
i : Y c-ï Pv the inclusion of 7, by Lemma 24 there is a filtered short exact

sequence

(29) 0 —> (M, F) (M(*Y), F) —> F) —> 0

(Note that here FLlrM simply means M ®coY/pn •)

For each k, we apply the exact functor Grf oDRpw to (29) to obtain a

distinguished triangle of complexes of coherent sheaves on X :

Grf DRpw (A4) <g> L"1 — Grf DRPyv ® L"1

—> Grf DRpw <g> L~l —> Grf DRPyv(A4) <g> L-1[l].

The claim is that

(30) H1 (X, Grf DRp/v (M(*Y)) ® L"1) 0 for all i 0.

This will be proved in Step 4. Assuming it for now, by the long exact sequence
on cohomology we are reduced to showing

H'(X, Grf DRp/v (FL1iiM) ® L~l) 0 for all i < -1.

But in fact the statement is true even for i < 0 by induction on n dim X,
since (FLlvM, F) is supported on D and, again by non-characteristic pullback
as in Section 7, it underlies a Hodge module in HMö(7, d + 1).

Step 3. Note first that we can extend the cover / : X -* X ramified over D to

a cover still denoted f :PN P'v, ramified over 7 ; it is enough to do this

locally since Hodge modules are local by construction. Fix a point x e X. The

claim is that there exists a neighborhood x e Ux c P'v such that the restriction
of / : X -> X over Ux n X can be extended to a finite cover fx : Vx -> Ux,
ramified over 7 IT Ux If x Y, it is clear that there is such an extension.

On the other hand, if x e 7, then one uses a local holomorphic trivialization
(Ux, ux n X) ~ (Ux HY,UX n D) xD2, considering a contractible neighborhood
of x in 7 such that the contraction is compatible with D.

This new / is non-characteristic for (M, F) by our choice of 7, and so

the filtered pullback (f*M, F) on P'v can be defined as in the remarks after
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Definition 21. It underlies a pure Hodge module f*M of weight d, as the

relative dimension is zero. By Theorem 8 we then obtain /*/*M e HMx (PN,d) ;

note that this is a single Hodge module since / is finite. There is a natural

monomorphism M -> /* f*M, and we define M as its cokernel, so that there

is an exact sequence

(31) 0 —» M —> /* f*M —> M —» 0,

in the abelian category HMxlP^d), i.e. M is a new pure polarized Hodge
module of weight d with support contained in X. Note that by Saito's fundamental

result mentioned in Section 4, all the Hodge modules in the exact sequence above

are uniquely extended from the open subset of U on which they are variations

of Hodge structure; in particular they coincide with the strict support extension

of their restriction to U.
We denote by P the Q -perverse sheaf associated to M, so that DRpa (M) ~

pc p <g) C. Since as mentioned above M is the unique extension with strict

support X of its restriction to U, we have

p~j*rxP,
i.e., P is the extension of its restriction to the affine open set U as well. By the

Artin-Grothendieck vanishing theorem (see, e.g., [Laz, Theorem 3.1.13]), we then

have

H'(X, Pc) ~ H'(U, Pc) 0 for all i > 0.

Since M is polarized, as in Section 17 we have that D.P ~ P(d), where DP is

the Verdier dual. By Verdier duality we then also get

H'(X, Pc) 0 for all i < 0.

In conclusion, we have verified that

(32) Hl (A, DRpAr (Af)) 0 for all i ± 0.

The main assertion in this step is that

(33) H' (A, Grf DRpwCM)) 0 for all k and all i + 0.

To this end we need to use stability under projective morphisms, Theorem 8;

applied to the absolute case P^' —» pt, the strictness in the statement amounts to
the degeneration at E\ of the natural Hodge-to-de Rham spectral sequence

Epx 'q Hp+q (X, Gr^? DRpAi (AÎ)) =» /2^(Z,DRPA.(Af)),

Note that here we are using the identification f*M ~ Rf DRpn (M) (which is

a special case of the definition of push-forward via smooth morphisms). Given

(32), this degeneration immediately implies (33).
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Step 4. We are left with proving (30), which will be done in this step. More

precisely, for each k we will prove the isomorphism

(34) Grf M ~Gr£ M(*Y)®L,

where

L := Coker(0x -> ^*&x) ^ L"1 © • • ©

the last isomorphism coming from Proposition 2. The isomorphism (34) implies
what we want in combination with (33); it is proved using the interaction between

the Hodge filtration and the V -filtration along Y.
To this end, note first that by definition there is a canonical isomorphism of

filtered right £>u -modules

CM, F)ju ~ (.M, F) ®Ö£/ L\u.

Indeed, this follows from (31) and the definition of the filtration on f*M given
after Definition 21; passing to the filtration on the £> -modules underlying (31)

is, on the open set U on which / is étale, the same as the split short exact

sequence

0 —> FPM —» FPM ® f*OpN —> FPM <g> L —> 0.

Here and in what follows we consider L as a left J) -module with trivial filtration.
On the open set U it is by definition an integrable connection, underlying the

complement of Qu in f*Q/-i(u)- 0° the other hand, we know from [EV,
§6] that globally each L~l is the Deligne canonical extension of L~^, whose

meromorphic connection has residue i/m along Y. The direct sum L is the

ID-module underlying the canonical extension of this complement. The tensor

product M <S> L becomes a right £> -module,7 with the induced tensor product
filtration.

The statement follows if we show that the isomorphism on U above can be

extended uniquely to an isomorphism of filtered right D-modules

(35) (.M, F) ~ (M(*Y), F) ®opA, L.

Both sides of (35) are regular holonomic; moreover, they are isomorphic to their
localization along Y, i.e., a local equation of Y acts on them bijectively. Forgetting
about the filtration, the isomorphism in (35) then follows from Proposition 15.

As for the filtration F, we need to compare it to the H-filtration along the

divisor Y. The first claim is that {M(*Y), F) ® L is regular and quasi-unipotent

7 Recall that if M is a right £>x -module, and A/" a left £>x -module, the tensor product M N
has a natural right £>x -module structure; see, e.g., [HTT, Proposition 1.2.9(H)].
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along Y ; see Definition 19. To this end, note first that the summand M(*Y)®L~l
of M(*Y)®L, with i ranging from 1 to m-1, coincides with M(*Y) on U,
and so their V -filtrations along Y are the same for a < 0. On the other hand, if
t is a local equation for Y, then multiplication by L~l coincides with the action

of t1!"1, and so by the definition of the F-filtration we obtain for each a:

(36) Va(M(*Y) ® L~') Va+i/mM(*Y) ® L~l.

This gives in particular

FpVa(M(*Y) ® L~l) (FpVa+i/mM(*Y)) ® L~l

for all possible indices. Using this, the fact that (M(*Y), F) ® L is regular and

quasi-unipotent is an immediate consequence of the fact that M(*Y) is so (as it
underlies a mixed Hodge module), together with Lemma 24(1).

From (36) we also obtain that

Gr^ ® L~l) ~ Gr^+i/m (M(*Y)) ® L'Y
We see however from Lemma 24(1) that

Gr^ M(*Y) =0 for a £Z,
and therefore

Gr^ (M(*Y) ® L~l) =0 for a + i/m $ TL.

The bottom line is that in order to have Gr^ (M(*Y) ® L) ^0, one must have

a + i/m e Z for all 1 < i < m — 1, and consequently a cannot be an integer
(recall that we are working with m > 2).

Let us now denote M' M(*Y) ® L for simplicity. Using this last remark,

by Lemma 25 we deduce that M' is generated as a <0 -module by the negative

part of its V -filtration, i.e.

M' — FcoM! 0P7v.

The next thing to note is that, again since the jumps in the V -filtration do not

happen at integers, according to Lemma 26(2) the second condition in Definition
19 is equivalent to the fact that

FPM' YJ(FP-iV<oM')-dit
i> 0

for all p. Consequently, the Hodge filtration is determined by its restriction to

the negative part of the V -filtration. Finally, this restriction is determined by the

corresponding filtration on the open complement V since according to Lemma

26(1) for all p we have

FpV<0.M! - V<0M' n j*j~l FPM'.

As (M,F) and (M(*Y), F)® L coincide on U, and as (M, F) was defined by
extension from U, the two filtered 0 -modules must then agree everywhere.
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9. Particular cases

In this section I will explain how M. Saito's vanishing theorem can be used

to deduce many of the standard vanishing theorems. In the next sections I will
make the point however that the abstract version is equally valuable for concrete

applications.

Kodaira-Nakano vanishing. Let X be a smooth projective complex variety of
dimension n. We consider the trivial Hodge module M Qx \n\. According to

Example 11, the corresponding right 3D -module is a>x, with filtration Fpcox

if p > —n and Fpa>x 0 if p < —n, so that

GrF_p DRx(cuz) [n — p] for all p.

Theorem 28 gives

Hq(X, 3lpx <g> L) 0 for p + q > n

and the dual statement, for any L ample, i.e., Kodaira-Nakano vanishing.

If we restrict to the Kodaira vanishing theorem, which corresponds to the

lowest non-zero piece of the filtration on a>x, then we can see it as an example
of the following more easily stated special case of Theorem 28; it is useful to
record this for applications.

Corollary 37. If (AT, F) is a filtered SI)-module underlying a mixed Hodge
module M on a projective variety X, and L is an ample line bundle on X,
then

H' (X, 5(AT) ® L) 0 for all i > 0.

Kollâr vanishing. The following theorem of Kollâr is a natural generalization of
Kodaira vanishing to higher direct images of canonical bundles.

Theorem 38 ([Koll], Theorem 2.1(iii)). Let f : X -» Y be a morphism between

complex projective varieties, with X smooth, and let L be an ample line bundle

on Y. Then

H'(X, f*cûx ® L) 0 for all i > 0 and all j.

To deduce the statement from Theorem 28, we consider the push-forward
M — fSlx ["] of the trivial Hodge module on X, with n dim A. According
to Example 12, for the underlying 3D -modules we have

/+(^,F)~0(M-,F)H]
i
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in the derived category of filtered 3by -modules (so compatible with inclusions

into smooth varieties), and for each i we have S (Mi) — Rl f*cox Theorem 38

then follows from Corollary 37. More generally, the same argument shows the

following vanishing theorem due to Saito: the statement of Theorem 38 holds for
Rl f*S(M), where M corresponds to the unique pure Hodge module with strict

support X extending a polarized variation of Hodge structure on an open set

Nadel vanishing. To deduce Nadel vanishing, one needs a more subtle

relationship between multiplier ideals, the V -filtration on the structure sheaf, and

the Hodge filtration on localizations, combining results of [BS] and [Sai5]. As

mentioned in Example 14, this is one place where it is more convenient to have

the initial discussion in terms of left £> -modules.

Let X be a smooth projective variety, and D an effective Cartier divisor on

X. Recall that Ox(*D) is equipped with a natural Hodge filtration F, as the left
ID-module associated to the Hodge module [n], where j : U X ^ D ^ X
is the inclusion; see Example 14. Looking at the first step in this filtration, one

can recognize multiplier ideals from the formula

where 0 < e 1, and in general J(B) stands for the multiplier ideal of a

Q -divisor B (see [Laz, Ch. 9]). Indeed, [Sai5, Theorem 0.4] says that

F0&x(*D)~V1&x-Ox(D),

while [BS, Theorem 0.1] says that for any a e Q one has

Here the V -filtration notation means the following: assume that D is given
locally by an equation /, and consider the graph embedding if : X -> X x C.
One can consider the V -filtration on the left ID-module if # Ox Ox ®c <C [3r]

along X0 — X x {0}. The notation VaOx stands for the filtration induced on

Ox — Ox ® 1
•

This allows us to deduce the Nadel vanishing theorem (see, e.g., [Laz, Theorem

9.4.8]), at least when D is a Cartier divisor.

Theorem 40. With the notation above, if L is a line bundle on X such that

L — D is ample, then

i/çl.

(39) FqOx(*D) ~ J((\ - e)D) Ox(D),

VaOx ~j((a-e)D).
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Proof. From the discussion above it follows that for the left 3) -module Ox(*D)
the lowest graded piece for the filtration F is

Gr£ Ox(*D) j{(l-e)D)-Ox(D),

so for the associated right 3) -module we have

S(M) =(ox® 0X(D) ® J(( 1 - e)D).

Corollary 37 implies that if A is ample, then

Hl(X,a>x ® A ® Ox{D) ® J"((l — s)D) 0 for all i > 0.

But by assumption we can write L ~ A ® &x{D) with A ample.

Remark 41 (Arbitrary Q -divisors). The Nadel vanishing theorem for arbitrary
Q-divisors B is not in general a vanishing theorem for the lowest graded piece
of the Hodge filtration corresponding to a mixed Hodge module; it is however a

consequence of the same result. Roughly speaking one can reduce to the situation
studied above after performing a Kawamata covering construction to arrive at

a Cartier divisor, using a bistrictness property of Hodge modules which allows

us to deduce vanishing for the push-forward to the base, and finally passing to

an eigensheaf of the push-forward. In other words multiplier ideals are naturally
direct summands of Hodge theoretic objects, while Theorem 28 also applies to
filtered direct summands of 3) -modules underlying mixed Hodge modules, again
since the functor Gr[ oDR is exact. I thank N. Budur for this observation.

On the other hand, it is perhaps most natural to try and prove an analogue
of the Kawamata-Viehweg vanishing theorem for Q -divisors in the context of
mixed Hodge modules. This will be done in Theorem 52 below. An analogous
extension of Nadel vanishing is then an immediate consequence; see Corollary 54.

Abelian varieties. In the case of abelian varieties it turns out that Theorem 28

holds directly for the graded pieces of a filtered 3) -module (M,F) underlying
a Hodge module itself, rather than those of its de Rham complex.

Proposition 42 ([PS1], Lemma 2.5). Let A be a complex abelian variety, (M, F)
the filtered 3) -module underlying a mixed Hodge module on A, and let L be

an ample line bundle. Then for each k e Z, we have

H' (A, Grf M ® L) 0 for all i > 0.

Proof. Denote g dim A. Consider for each k e Z the complex of coherent
sheaves
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Grf DR^ (A4 Grf A4 ^ Grf+1 A4 -> > ® Grk+g

supported in degrees —g,... ,0. According to Theorem 28, this complex has the

property that, for i > 0,

TU (A, Grf DR4CM) ® L) 0.

Using the fact that kl\ ~ &®s, one can deduce the asserted vanishing theorem

for the individual sheaves Grf A4 by induction on k. Indeed, since Grf A4 0

for k « 0, inductively one has for each k a distinguished triangle

Ek -* Grf DRA(M) -> Grf+g M -> £fe[l],

with Ek an object satisfying Hl(A,Ek <g> L) 0.

This observation is one of the key points towards showing that, under the

above assumptions, all graded pieces Grf M satisfy the analogues of the generic

vanishing theorems of [GL1], [GL2], [Hac], [PP]. In view of the examples in
Section 5, besides recovering these results the statement leads to new applications,
for instance to Nakano-type generic vanishing (see [PS1, Theorem 1.2]).

Theorem 43 ([PS1], Theorem 1.1). Under the assumptions of Proposition 42, each

Grf A4 is a GV-sheaf on A, i.e.

codimpjco(/1) {a. e Pic°(A) | Hl (A, Grf A4 ®a) 0} > i, for all i > 0.

A stronger generic vanishing statement was proved in [PS1] for the total
associated graded object

Grf A4 0Grf M,
k

seen as a coherent sheaf on T* A ~ A x H°(A, £2^) ; this was useful in proving
that all holomorphic 1-forms on varieties of general type have zeros [PS2].

10. Weak positivity

This section contains a proof of an extension of Viehweg's weak positivity
theorem for direct images of relative canonical sheaves, based on Theorem 28

and found jointly with C. Schnell; see also [Sch3], The general strategy follows
Kollâr's approach to semipositivity via vanishing theorems in [Koll, §3]. The

shortness of the proof is due to the fact that one can apply the machinery of
vanishing theorems to abstract Hodge modules.
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Definition 44. A torsion-free coherent sheaf f on a (quasi-)projective variety
A is weakly positive on a non-empty open set U ç X if for every ample line
bundle A on A and every a e N, the sheaf SabF <g)A®b is generated by global
sections at each point of U for b sufficiently large. (Here SPF denotes the

reflexive hull of the symmetric power SPF.)

Before proving the main result, let's record a standard global generation

consequence of Theorem 28.

Corollary 45. Let X be a smooth projective complex variety of dimension n,
and (A4, F) a filtered S) -module on X underlying a mixed Hodge module M.
Then for any ample and globally generated line bundle L on X, the sheaf

S (A4) <g> L®("+1)

is globally generated.

Proof Denoting IF S (A4) <E> L®(n+I>, Corollary 37 implies that

Hl(X, F <g> L®";) 0 for all i > 0.

The result is then an immediate consequence of the Castelnuovo-Mumford Lemma;
see [Laz, Theorem 1.8.5].

We also need the following simplification of what is needed in order to check

weak positivity under our hypotheses.

Lemma 46. Let F be a torsion-free sheaf on a smooth (quasi-)projective variety
X, and L a line bundle on X. Then F is weakly positive on an open set U CA
on which F is locally free if F®a ® L is generated by global sections over U

for all a > 0.

Proof. This is well known, so I will only sketch the proof. First, it is standard that

one can reduce to checking the definition for only one (not necessarily ample)
line bundle L, and all a > 0; see [Vie, Remark 1.3(ii)]. Now a torsion-free sheaf

is locally free and therefore coincides with its reflexive hull outside of a closed

set of codimension at least 2. On the other hand, its global sections inject into
those of the reflexive hull. So it is enough to reduce the definition to the usual

symmetric powers, which in turn are quotients of the tensor powers.

Viehweg's theorem in [Vie] saying that f*(Oz/x is weakly positive for any

surjective morphism / : Z -» A of smooth projective varieties is a special case
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of the following result.8 The statement and proof are more conveniently phrased

in terms of left 0 -modules.

Theorem 47. Let X be a smooth projective complex variety, and, C'V, F) the

filtered left 0 -module on X underlying a mixed Hodge module M which is a

variation of mixed Hodge structure on a non-empty open set U çl. Then S (AO

is weakly positive over U.

Proof Step 1. First, as M is a variation of mixed Hodge structure generically
over X, it is well known that S (AO is a torsion-free sheaf on X. Fix now a

positive integer m, and consider the diagonal embedding

i : X ^ X x • • • x A,

where the product is taken m times. On this product, consider the box product
mixed Hodge module

M^m := M

As the filtration on Mmm is the convolution of the filtrations on the individual
factors, it is not hard to see that p{M^m) — m p(Af) and moreover

i*S(Jfi®m) S(A0®m

Denoting by r (m — 1 )n the codimension of X via the diagonal embedding,
in the derived category of coherent sheaves on X we have a natural morphism

(48) Fm.p(X)-r r(AA®m, F) — Li*S(Af®m)[-r],

which is an isomorphism over the open set U where M is a variation of mixed

Hodge structure. This follows for instance from [Sehl, Lemma 2.17] (see also

[Sch3, Lemma 3.2]).

Step 2. We can specialize formula (48) by passing to the cohomology sheaves in

degree r, in order to obtain a natural sheaf homomorphism

(49) S(Q) Fm.p(Äo_r Q —> S(A0®m

which is an isomorphism on U ; here (Q, F) is another filtered left <0 -module

on X, underlying the object i*Min MHM(A).
Fix now a very ample line bundle L on I. In order to deduce that .S'(A')

is weakly positive over U, using Lemma 46 it suffices then to show that

S(Q) (8)cox ® is globally generated, where n dim A. But this a

consequence of Corollary 45, recalling that S(Q) <g> cox is the lowest non-zero
graded piece of the right 0-module associated to Q.

8 We apply it to the left SO -modules Ah corresponding to Mi in the decomposition /*(tuz, F) —
t7)!—£]; see Example 12.
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Remark 50. A more general result, involving kernels of Kodaira-Spencer mor-
phisms associated to the de Rham complex of M, was recently proved in [PW].
The method of proof is however different, and does not rely on vanishing theorems.

In [Vie], Viehweg proved that if / : Z -> X is a surjective morphism of
smooth projective varieties, then f*co®yx is weakly positive for m >2 as well.

A natural question to ask in this direction is the following:

Question 51. Let / : Z -> X be a surjective morphism of smooth projective
varieties, and (M, F) the filtered left ID-module underlying a mixed Hodge
module M which is a variation of mixed Hodge structure on a non-empty open
set in Z. Is

weakly positive for all m > 1

Assuming a positive answer to this question, the exact same method of proof
as in Theorem 47 would imply for all m >2 the weak positivity of

It is worth noting that it is indeed now possible to give a proof of Viehweg's
statement on using cohomological methods à la Kollâr; see [PS3],

In this section I will show that the Kawamata-Viehweg vanishing theorem

for (Q> -divisors continues to hold for the lowest graded piece of a mixed Hodge
module as long as its singular locus does not intersect the augmented base

locus B+(L) of a big and nef line bundle (in particular always for variations of
mixed Hodge structure). The proof follows quite closely the original one, with
modifications permitted by Saito's study of non-characteristic pullbacks. I expect
a stronger version to hold, at least under certain non-characteristicity hypotheses

with respect to B+(L).9

./* (s(Af) ® o^x)

11. Kawamata-Viehweg-type vanishing

9 Added during revision: since this was written, in the case when L is a big and nef line bundle
the most general version of Kawamata-Viehweg-type vanishing was proved by Suh [Suh] and Wu [Wu],
Further results for Q-divisors were also obtained in [Wu].
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Theorem 52. Let (A4, F) be the filtered right ID -module underlying a mixed

Hodge module M on a smooth projective variety X, and let L be a line bundle

on X with L ~q A + A, where A is a big and nef Q -divisor on X and (X, A)
is a kit pair. Assume that B+(A) U Supp A is contained in the smooth locus of
M. Then

Hi(X, S(M) 0 L) 0 for all i > 0.

Remark 53. In particular we have the vanishing above if L is a big and nef line
bundle such that B+(L) is contained in the smooth locus of M. Note that one

does not have a similar statement for other associated graded pieces Grf DR(A4)
of the filtered de Rham complex, as in the case of Kodaira-Saito vanishing. This

is already well known for the trivial Hodge module M — Qx [n]. In this case, by

Example 11 the graded pieces are [n — k] with n dim X. Simple examples
show however that for k < n the Nakano extension of Kodaira vanishing does

not usually hold for twists by big and nef line bundles; see [Laz, Example 4.3.4],

In order to understand the statement and proof, we need to review a few

more definitions and results. Before doing this, let's note that an immediate

consequence of the theorem above is the following generalization of the Nadel

vanishing theorem; see also Section 9.

Corollary 54. Let X be a smooth projective variety, and D an effective Q-
divisor on X with associated multiplier ideal 1(D). Let L be a line bundle

in X such that L — D is big and nef and assume that B+(L — D) U Supp D
is contained in the smooth locus of a mixed Hodge module M with underlying

filtered S)-module (A4, F). Then

H1 (X, S(M) 0 L 01(D)) 0 for all i > 0.

Higher direct images of the lowest Hodge piece. Let X be a smooth variety.
Recall that according to M. Saito's theory [Sai2], for a mixed Hodge module

M with strict support equal to X, there exists a maximal non-empty open set

Î7 ç X on which M is variation of mixed Hodge structure, denoted say by V ;

we call this the smooth locus of M. Note that the lowest Hodge piece S (A4) is

a locally free sheaf on U

As the functor S(-) is exact, we can often restrict our study to the case when

M is a pure Hodge module which is a polarized variation of Hodge structure on
U. In this case, in response to a conjecture of Kollâr, Saito proved (among other

things) the following, the second part of which can be seen as a generalization
of the Grauert-Riemenschneider vanishing theorem.
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Theorem 55 (Saito, [Sai4]). Let f : X —> Y be a surjective projective morphism
(with Y possibly singular), and let (M, F) be the filtered £) -module underlying a

pure Hodge module with strict support X that is generically a polarized variation

of Hodge structure V. For each i > 0, one has

R' f* S(M) S(F,V!),

the lowest Hodge piece of the variation of Hodge structure V' on the intersection

cohomology of V along the fibers of f. Consequently, Rl /* S (M) are torsion-

free, and in particular

Rl f*S(M) 0 for i > dimZ — dimF.

Augmented base loci. We start by recalling the definition and some basic results

on augmented base loci of divisors.

Definition 56 ([ELMNP], §1). Let D be a Q-divisor on a normal complex

projective variety X. The augmented base locus of L is

B+(D):=B(£>-e//),

where H is any ample divisor on X, 0 < e « I is rational, and B(D — eH)
denotes the stable base locus of the Q -divisor D — eH, i.e., the base locus of
Im(D — eH)\ for m 0. If L is a line bundle, we define B+(L) similarly. It
is not hard to check (see [ELMNP, Proposition 1.5]) that equivalently one has

(57) B+(£>) p| Supp E,
D=A+E

where the intersection is taken over all Q -divisor decompositions of D such that
A is ample and E is effective.

We have that B+(L) 7^ X if and only if L is big. When L is a big and nef,

according to Nakamaye's theorem [Nak], one has the following description

B+(L) Null(E),

where Null(E) is the union of all subvarieties V C X such that LdimV V 0,

or equivalently L\y is not big.

We will use the following birational interpretations of the augmented base

locus; slightly more general statements can be found for instance in [BBP, Lemma
2.2 and Proposition 2.3].10

101 thank Angelo Lopez for pointing out this reference.
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Lemma 58. If D is a Q -divisor on X, then

B+(£>)= Pi /(Supp E),
f,A,E

where the intersection is taken over all projective birational morphisms f : Y —> X
with Y normal, and all decompositions f*D ~q A + E, with A ample and E

effective.

Lemma 59. Let f : Y -> X be a birational morphism of smooth projective
varieties, and Exc(/) ç Y its exceptional locus. If D is a Q -divisor on X,
then

B+ /-1(B+(D)) UExc(/).

Proof of Theorem 52. First, just as in the proof of Saito's vanishing theorem,
due to the exactness of the functor S(-) we can reduce to assuming that M is a

pure Hodge module. I will divide the proof into a few steps which loosely follow
the standard steps in the proof of the Kawamata-Viehweg theorem. In the first
three steps we will assume that L is a big and nef line bundle, and A 0. The

last two will deal with the general case.

The line bundle case. Note to begin with that since L is big, in general there

exist an m > 0, an ample line bundle A, and an effective divisor E, such that

(60) L®m ~A®GX(E).

Step L This is a Norimatsu-type statement (see [Laz, Lemma 4.3.5]): we show that

if A is an ample line bundle, and E c X is a reduced simple normal crossings
divisor on X contained in the smooth locus of M, then

H1 (X, S(M) ® A <g> Ox(E)) 0 for all i > 0.

Let's assume first that £ is a smooth divisor. As S(M) is locally free in a

neighborhood of E, we have a short exact sequence

0 —» S(M) <B> A —> S(A4) ® A ® 0X(E) —» 5(Af)|£ <g> A\E <g> &e(E) —» 0

Passing to cohomology and applying Corollary 37, we see that is is enough to
show that

Hi(E,S(M)\E®0E(E)®A\E) 0 for all i > 0.

Again by Corollary 37, it suffices then to note that N"(AT)]£ ® Oe(E) ~ S(M'),
for some filtered £> -module underlying a mixed Hodge module M' on E. We

can in fact take
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(M', F) := (Hli-M,F).
On one hand, this filtered TD -module underlies a Hodge module, as

F) ~ r(A4,F)[l]

by [Sail, Lemma 3.5.6], On the other hand, since E is contained in the smooth

locus of M, using [Sehl, Lemma 2.17] (as in the proof of Theorem 47) we see

that there is an isomorphism S(TV') — S(TV)|£, where TV is again notation for
the associated left <0 -modules. This is equivalent to what we want by adjunction.

In general we have E E\ + • • • + Ek, where Ej are smooth divisors with
transverse intersections. The statement can be easily proved by induction on k,
using exact sequences similar to the one above, and the fact that M continues

to be a variation of mixed Hodge structure when restricted to the log-canonical
centers of E.

Step 2. In this step we show that we can reduce the general statement to the

case where in (60) we have that E has simple normal crossings support, and

this support is contained in the smooth locus of M. Consider the notation of
Definition 56, so that

B+(L) B(L - eH) Bs <8 Ox(-keH))

for k sufficiently large and divisible, and Bs(-) stands for the usual base locus.

We consider p : Y -> X a log-resolution of the linear series \L®k ®Ox(—keH)\,
so that

p* (L®k ® Ox{-kH)) ~ Mk 0 Oy(Fk),

where Mk is the moving part of the pullback, a big and basepoint-free line
bundle, and Fk is its fixed divisor. From Lemma 59 we have that

B_|~(p*L) q,_1(B+(L)) U Exc(/x) Supp(Ffc) U Exc(p),

which is a divisor with simple normal crossings support on Y.

By assumption B+(L) is contained in the smooth locus of M. Choosing the

log-resolution to be an isomorphism outside of B+ (L), by Example 22 we have

that ji is non-characteristic for (M,F). Recall that this implies that the filtered
inverse image p*(M, F) (M, F) is given by the formula

M p~~lM 0^-1 &x toy/x and FPM p*FPM (8 (Oy/x,

and this underlies the Hodge module p* M. We see then that S(p*M) ~
p*S(M) (8 toy/x, and so

p*S(p*M) ~ S(M),
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as i±*cöy/x — 0x • Assuming that we proved that

(61) Hl(Y, ® p.*L) 0 for all i > 0,

this implies the vanishing we want on X as Rl p*S{p* M) — 0, which is a

consequence of Theorem 55.

Let's now write
Fk Y. aj Ej,

j
with the convention that aj >0, so that we may assume that the sum contains

all the exceptional divisors of ji among the Ej. By construction we have that

B+(yU*L) is contained in the smooth locus of p*M ; equivalently, this statement

holds for all Ej in the sum above.

Finally, note that by construction we have

p*L®k ~ fi*0x(keH) ®Mk® 0y{Fk),

and the line bundle p*0x(keH) ® Mk is still big and nef. To conclude, one

appeals to a version of the Negativity Lemma, stating that for such a k » 0,
there exist bj > 0 such that

fi*0x(kH)®(9Y(-J2biFj)
j

is ample, where the sum runs over the exceptional divisors of p (and so with
the same convention as above we can assume that it runs over all Ej ); see, e.g.,

[Laz, Corollary 4.1.4]. But now we can write

/x*L®fc ~ (ii*0x(keH) ® 0Y(-J2bj Fj)) ® 0Y{J2(aJ + bj)Fj),
j j

which is of the form required at the beginning of this reduction step.

Step 3. In this last step we conclude the proof assuming that E in (60) has

simple normal crossings support contained in the smooth locus of M, which
is the outcome of Step 2. By standard arguments using Kawamata covers, it is

known that there exists a finite cover / : Y -> X with Y smooth projective,
such that

f*L~A'®0Y(E'),
with A! ample and E' a reduced simple normal crossings divisor; see, e.g.,

[Laz, p. 255]. Moreover, / can be chosen to be non-characteristic with respect
to {M, F).

This last statement requires some discussion; recall that Kawamata covers can
be constructed in two steps (see [Laz, Proposition 4.1.12]). The first is a Bloch-
Gieseker type cover g : Z X, where for some component E\ of E one can



86 M. Popa

write g* E kE\, for a given k and some E\ not necessarily effective. In this

step one can assume that E is very ample by writing it as the difference of two

very ample line bundles, and then g can be constructed so as to be ramified

along a generic union of hyperplane sections of X in the embedding given by E ;

see the proof of [Laz, Theorem 4.1.10]. From this genericity it follows that g is

non-characteristic with respect to (M, F). On the other hand, the second step is

to consider a cyclic cover h :Y -»• Z, which is ramified along f*E\ ; since this
is contained in the smooth locus of f*M, this cover is also non-characteristic.
One then applies this procedure inductively for all components of E.

Going back to the proof, we can now consider the filtered inverse image

f*(M, F) underlying the pullback Hodge module just as in Step 2. Note that we
have E' /-1(Supp E), and so E' is contained in the smooth locus of f*M.
By Step 1, we then have

H1 (:Y, S(f*M) ® f* L) 0 for all i > 0.

But precisely as in Step 2 we have that

~ S(M) ® f*coY/x.

As &x is a direct summand of f*coY/x via the trace map, we obtained the

desired vanishing using the projection formula.

The Q -divisor case. We do this in two further steps which reduce us to the line
bundle case discussed above. We first reduce to the case when Supp A is a

simple normal crossings divisor.

Step 4. Let p : Y —> X be a log-resolution of (A, A), and write

Ky - p*(Kx + A) P - N,

where P and N are effective Q -divisors with simple normal crossings support,
without common components, and such that P is exceptional and all the

coefficients in N are strictly less than 1. We then have

Ky +N +{P]-P +p*A p*(Kx + A + A) + TB],

and so there exists a line bundle L' on Y such that L' p*A + A', where

À' AT + [P] — P, a strictly boundary divisor with normal crossings support.
Note that p* A is still big and nef, and in fact by Lemma 59 we have

B+(p*A) At_1(B+(A)) UExcO).

We can choose p such that it is an isomorphism outside the support of A. It
follows that both B+{p*Ä) and Supp A' are contained in the smooth locus of
p*M. Note finally that it is enough to show that
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Hl(Y, ®L') 0 for all i > 0.

Indeed, we have observed before that

p*S(p*M) ~ S(M) and R1 p,*S(p*M) — 0 for i > 0.

Step 5. It is enough to assume then that A is a divisor with simple normal

crossings, support, say A with 0 < a; < 1 and £>, smooth.

The strategy is to prove the statement by induction on k. The case k — 0

is the line bundle case proved above. Assume now that k > 0, and let's write
a i £. Note that 0 < p < q — 1. Just as in Step 3, one considers a Kawamata

cover associated to the divisor D i ; concretely, there exists a finite morphism

/ : Y —>• X, with Y smooth projective, such that on Y the divisor D\ becomes

divisible by d. In other words, we have

k

L' := f*L ~q A' + cD\ +J2aiDi,
i=2

where A' f*A and D\ — f*Di, still satisfying the fact that D[ has simple
normal crossings. Moreover, this morphism can be chosen to be non-characteristic
for (M,F), so we can deal with f*M as in the previous proof.

By induction we can now assume that the line bundle L'®Oy(—cD[) satisfies

H1 (Y, S(f*M) <E> L' <g> Oy(-cD[)) 0 for all i > 0.

Recall that due to the definition of the filtration under non-characteristic inverse

image we have S(f*M) ~ f*S(M) ® ojy/x On the other hand, it is standard

that in the covering construction above we have that /* (L' (g> &y{—cD[) ® coy/x)
contains L as a direct summand. The desired vanishing follows from the projection
formula.
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