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Basic partitions and combinations of group actions on the
circle: A new approach to a theorem of Kathryn Mann

Shigenori Matsumoto

Abstract. Let be the surface group of genus g (g > 2), and denote by 1Zns
the space of the homomorphisms from into the group of the orientation preserving

homeomorphisms of Sl. Let 2g — 2 kl for some positive integers k and Z. Then

the subset of 1Zng formed by those ip which are semiconjugate to A:-fold lifts of some

homomorphisms and which have Euler number eu(ip) I is shown to be clopen. This

leads to a new proof of the main result of Kathryn Mann [Man] from a completely different

approach.

Mathematics Subject Classification (2010). Primary: 37E10.

Keywords. Basic partition, combination, surface group, Euler number.

1. Introduction

Let S1 M/Z and denote the canonical projection by n : M S1. Denote

by T : M R the translation by one: T(x) x + 1.

Notations 1.1. Let TL Homeo+hS1' denote the group of the orientation

preserving homeomorphisms of S1, and for any group G, 7Zq Homo(G, 77)

the set of the homomorphisms from G to TL.

Definition 1.2. A map h : S1 -> S1 is called degree one monotone if there is a

nondecreasing (not necessarily continuous) map h : M -»• M such that hoT Toh
and n o h — h o Ti.

Denote

7Z*g {cp 7Zg \ 3* S1 such that tp(g){x) x, Vg e G}.
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Definition 1.3. Two homomorphisms <pl,(p2 e 7Ig are called semiconjugate,
denoted (pl ~ cp2, if either <pl,(p2 e 7ZG or <pl,(p2 e 7Zg \7ZG and there is a

degree one monotone map h : S1 -> S1 such that <p2(g) o h h o <px(g) for any

g eG.

The proof of the following proposition can be found in Appendix A.

Proposition 1.4. 77; e semiconjugacy is an equivalence relation.

Definition 1.5. Let Fl c S1 be a <pl (G) -invariant subset (<p' e 7Zq, i 1,2).
A map £ : F1 -» F2 is called (cp1, (p2)-equivariant if f o ipx(g) (p2{g) ° £ on
F1 for any g e G.

We have the following easy proposition.

Proposition 1.6. Let F' C Sl be a cp1 (G)-invariant subset (cpl e Kg, i 1,2),
and assume there is a cyclic order preserving {(p1, cp2) -equivariant bijection
£ : F1 —> F2. Then we have cp1 ~ (p2.

Proof. Two homomorphisms <pi e K*G and q)2 e Kg \ K*G can never satisfy the

condition of the proposition. So one may assume <p' e Kg \ K*G. There is an

order preserving bijection £ : n~l(Fx) —> tt~x(F2) such that ^ o T T o %

and Ç o 7T 7T o ç Define h : M —M by

h (IT) inf {I (y") I y £ [7. oo) n tt"1 (W1)}.

Then h o T T o h and there is a monotone degree one map h : S1 -> S1

such that h o 7t — ji o h Now {<pl, ^2)-equivariance of ^ implies that

h o cp1 (g) — cp2(g) o h (VgeG).

Definition 1.7. A homomorphism <p e Kg is called type 0 if there is a <p(G)~

invariant probability measure on S1.

If there is a finite ip(G) -orbit or if the action of <p(G) is free, then cp is type
0. If <p is type 0 and <p ~ (p', then cp' is also type 0. If cp is not type 0, then the

minimal set of <p is unique, either a Cantor set or the whole S1. In the latter

case we say that <p is minimal.

Definition 1.8. For <p not of type 0, a minimal homomorphism which is

semiconjugate to is denoted by <p$, and called a minimal model.

A minimal model cp$ always exists and is unique up to topological conjugacy
for (p not of type 0. For any k > 2, let jqt : S1 -> S1 be the k -Fold covering

map, that is, (x + Z) kx + Z.
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Definition 1.9. For k e N, f e 7ZG is called a k -fold lift of <p e 1ZG if for any

g e G, it holds that <p(g) o jtk nk o f (g).

Definition 1.10. For k e N, a homomorphisra <p e 7ZG is called type k if it
satisfies the following conditions.

(1) cp is not type 0.

(2) A minimal model ^ is a k -fold lift of some homomorphism in 7ZG

(3) k is the maximal among those which satisfy (2).

For k > 0, the set of type k homomorphisms is denoted by 77.g (k).

Thus type 1 homomorphisms are those homomorphisms which are not type 0

and whose minimal model cannot be a k-fold lift for any k >2.

The group H is a topological group with the uniform convergence topology,
defined by the metric:

d(fh) sup If(x) — h(x)I for f,h e H.
xeS1

The space 7Zg is equipped with the following topology. Given cp e Hq g e G

and e > 0, let

(1.1) U{(p\ g, e) {ip' e HG I d(<p'(g),<p(g)) < e}.

The topology with subbase U(<p;g,e) is called the weak topology. When the

group G is finitely generated, this coincides with the usual topology of uniform

convergence on generators. The following proposition will be proven in the next

section.

Proposition 1.11. For any group G and k > 1, the subset 'R.G (0) is closed and

Ui<i<k 7^-gO') is open in Kg-

This is best possible, for example for free groups. Flowever for groups of a

special kind, one can expect that some component of TZG(k), k > 2, is also open.
The purpose of this paper is to consider this problem for the surface group Tlg,
g > 2. The group Tig is the fundamental group of the closed oriented surface

of genus g, and has a presentation:

Hg (Ai, B\,..., Ag, Bg I [Ai, B\] [Ag, Bg\ e).

Given <p e 72ng, its Euler number eu{<p) e Z is defined by

\MM), ^Bf)] WÎÀ^,HBg)]^Teu^\
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where for f e H, f denotes an arbitrary lift of / to a homeomorphism of
M. The map eu : Z is continuous, and thus eu~x(i) is clopen in 1Zjig

for any i e Z. We have the following classical theorem [Mil], [Woo], called the

Milnor-Wood inequality.

Theorem 1.12. The inverse image eu~~l(i) is nonempty if and only if ]i| < 2g — 2.

For homomorphisms with the extremal values of Euler number, we have

the following result [Mat2]. (In fact, the pathwise connectedness below is not
mentioned in that paper. But it is an easy consequence of the main theorem.)

Theorem 1.13. The inverse image E+ eu~1(2g — 2) is pathwise connected, and

if <p,(p' e E+, then <p ~ <p'. The same thing holds true for E- eu' '(—2g + 2).

Assume eu{<p) 2g - 2 and 2g - 2 kl for some positive integers k,l.
Choose an arbitrary A:-fold lift <p(Aj) (resp. <p(Bj) of <p(Af) (resp. <p{Bj))
for j 1,..., g. Then we have

[ <p{A{) (p(Bi) ]... [ (p{Ag), (p(Bg) ] Id.

In fact, this is obtained by taking a quotient by the action of Tl of the formula:

Wjx), rtfig)] T2g~2 Tkl.

Thus we have a A:-fold lift of (p once we choose k -fold lifts of the generators

arbitrarily. We shall denote the A:-fold lifts of <p by i/q-, 1 < j < k2g. The

following result is immediate.

Proposition 1.14. We have euffj) — I.

The main result of the present paper is the following.

Theorem 1.15. Assume 2g — 2 kl for some positive integers k and I. Then

the subset eu~l(l) H7?.nff(A0 is clopen in TZng-

The closedness of eu-1 (I) niZjjg(k) follows from Proposition 1.11. In fact, we
have

eu~\l) C TZug(k) eu~\l) \ U\<j<k-\Kng{j),
where eu~l{l) is closed and ]Bi<j<k-i'R-'ng(j) is open.

For the openness, we use the following concept.

Definition 1.16. For any group G, a homomorphism ip e 7Zg is said to be locally
stable if any homomorphism cp' e TZq sufficiently near to ip is semi-conjugate
to (p.
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The openness follows from the following theorem.

Theorem 1.17. Any homomorphism of eu"1 (I) HKjig(k) is locally stable.

Let Zj be the connected component of TZng which contains the above lift
fj, 1 < j < k2g. Then we have the following corollary.

Corollary 1.18. Any two homomorphisms of the same component Zj are mutually
semi-conjugate.

The same result has been obtained by K. Mann [Man], based upon extensive

use of algorithms in [CW]. This paper contains a completely different approach.
Also there is a quite simple proof for diffeomorphisms due to J. Bowden [Bow].

We shall prove Proposition 1.11 in Section 2, and Theorem 1.17 in Sections 4—7.

We give an outline of Sections 4 and 5 in Section 3. It seems that our method

provides a new and elementary proof of the main result of [Mat2], but we do

not pursue it in the present paper. Throughout the paper, we use the following
notations.

Notations 1.19. • The positive cyclic order of S1 is denoted by -<.

• Given two distinct points a,b e S1, [a,b] {x e S1, a < x < b}.
For a subset X of S1, we denote

• C C X if C is a connected component of X,
• Xj; the union of the closures of the connected components of S1 \ X,
• L
We abbreviate

• BP for "basic partition", BC for "basic configuration" and COP for "cyclic
order preserving".

2. Proximal actions

In this section, G is to be an arbitrary group, countable or not. This section
is devoted to the proof of Proposition 1.11. Let us begin by showing that TZq (0)
is a closed subset of Kg - Let <p be any homomorphism from the closure of
72g(0). Let us denote by ViS1) the space of the probability measures on S1,

equipped with the weak* topology. In order to show cp admits an invariant probability

measure, it is sufficient to prove that for any finite subset {g,-} c G, there is a
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probability measure invariant by (p(gi)* : V(Sl) T(Sl), thanks to the finite
intersection property of the compact set V(Sl). Choose

ftef] U(<p;gi, 1 /n) n 72g(0),
i

where U(-) is introduced in (1.1), and let /i„ e V(Sl) be a ^„(G)-invariant
measure. Since the maps <pn(gi)* and (p{gi)* are continuous and <pn(gi)*

converges to (p(gi)* pointwise, an accumulation point of {p,n} is the desired

measure.

Now let us turn to show that 72g(1) is an open subset of 7Zg The argument
is based upon the following Theorem 2.2 due to É. Ghys ([Ghy, p. 362]), whose

proof is included in Appendix B. To state it, we make a definition.

Definition 2.1. A homomorphism (p e 72g is called proximal if for any closed

interval I C S1, \nîg<iGW(g)II 0, where |-| denotes the diameter.

Theorem 2.2. For any (p e 7Zg, v e 72g(1) if and only if a minimal model <p$

is proximal.

Definition 2.3. Given x,y e S1, a sequence {/„} c H is called an (x,y)-
sequence if for any e > 0, there is N such that if n > N, fn maps the

complement of the e-neighbourhood of x into the e-neighbourhood of y.

Lemma 2.4. For any x,y e S1 and (p e 72g(1), there is an {x, y)-sequence in

i^tt(G).

Proof For any x e S1, define

Ex {y e 51 | 3 (x, y) -sequence in ^(G)}.

By Theorem 2.2, Ex is nonempty for any x e S1. On the other hand, it is easy
to show that Ex is closed and <p#(G) -invariant. Therefore we have Ex S1.

There is a bounded 2-cocycle c of the group TL defined by

c(f h) r(f o h - r( / - t( h

where / (resp. h) is an arbitrary lift of / (resp. h) to M, and r(-) stands for
the translation number. As is well known, its L°° norm satisfies |[c|| 1. For

ç e 7Zq the pull back cocycle <p*c lies in the second bounded cocycle group
Z^(G) of G and satisfies ||<p*c|| < 1. It is known [Matl] that <p*c 0 if and

only if <p G 72g(0). For other 'Rg(T) we have the following.
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Lemma 2.5. For any <p e 7Zg and k > 1, ip e 7Zdk) ifand only if ||<p*c|| l/k.

Proof It suffices to show only the following implication:

(2.1) <peKG(k)=ï\\cp*c\\ l/k, Vk > 1,

since the opposite implication follows from this. First of all, let us show (2.1)
for k 1. Let (p$ be a minimal model of any (p e 72g(1). Choose four points

x <y<z<u<x in S'.By Lemma 2.4, there are a (y,x) -sequence fn and

an (n, z)-sequence hn in (p$(G). Let f n and hn be the lifts of /„ and hn

such that r(fn) — r(hn) 0. One can choose lifts of the four points so that
3c < y <1 <u <TÇx). See Figure 1 for this and the next argument.

hn

fn

Z « T(z) T(U)

Tlx) T(y)

For n large, h n admits a fixed point, say ün, near ü. Now consider the

composite f n° hn. Clearly we have un < f no h n(u n) < T(un). On the

other hand, if we choose u' very near to w so that u ' > u Then for any large

n, we have / „ o h n{u') > T(u'). (See Figure 1.) This shows r( / „ o h n) 1.

Therefore c(fn,hn) 1 and ||<p*c|| ||^*c|| 1, as is required. Also it is not
difficult to show that the above inequalities also show the following.

(2.2) For any <p' e TZq sufficiently near to <p e 72g(1), we have ||(^')*cll — C
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To show (2.1) for k > 1, choose any <p e 7Zo(k), with <p# a /c-fold lift
of some ifr e 7Zq Clearly \]r e 7Zg(1). Moreover the cocycle (p*c cp^c is

precisely {l/k)\jr*c. This shows ||<p*c|| \/k.
Now the openness of 72g(1) follows from Lemma 2.5 and (2.2). The proof

that the set Ui<i<fc 72-g (' is open is left to the reader.

3. Outline

Before getting into a detailed proof of Theorem 1.17, we shall give an outline
of its first two steps. The basic idea is that a homomorphism in eu~1(l)fMlng(k)
of Theorem 1.17 has the following very special property: There is a finite set, say

R, of 51 such that the knowledge about how the generators of the group moves

points of R completely determines the semiconjugacy class of the homomorphism.
First of all, let us explain this phenomenon in a much simpler example. Let

F be the free group on two generators A and B. Let <p e 72r and denote

a — (p{A) and b — (p(B). Assume that r{[a b]) 1, where ~a (resp. b) is

an arbitrary lift of a (resp. b). Then one can show that such cp belongs to a

single semiconjugacy class. This will actually be done in Section 4. But we can

present a rough outline here.

By the assumption x([a, b ]) 1, there is a fixed point x e S1 of [a, b]
such that

x -< b_1(x) -< a~1b~1(x) -< ba~1b~1(x) < [a,b]{x) x.

See Figure 2 left.
The homeomorphism a maps the long interval [ba~1b~l(x),a~1b~1(x)\ onto

a subinterval [x, b~l (x)]. Therefore there is a fixed point of a in the open
interval (x,b_1(x)). There is also a fixed point in (a~~xb~x(x),ba~lb~l(x)).
Likewise b admits at least two fixed points, one in (b^1 (x), a~lb~l (x)), another

in (ba~1b~1(x),x).
Let R be the set of four points in Figure 2 left, and set S {A, A-1, B, B~x}.

Let R2 Uses Then R2 contains R, and has 8 more points. The

configuration of R2 in S1 is determined uniquely. Likewise if we set R3

UseS<p(s)R2, then its configuration is also unique. See Figure 3.

The left depicts R2 and the right a part of R3. This way, we can determine
the configuration of the whole orbit <p(T)x, which, according to Proposition 1.6,

implies that the semiconjugacy class of <p is uniquely determined. The actual

proof can be organized as an induction.
Here is another example of this kind. See Figure 2 right. This is also a

homomorphism <p from the free group on two generators A and B, and we
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y ab(y)

z b(z)

biy)

Figure 2

Figure 3

denote a — (p{Ä) and b cp(B). The homeomorphism a (resp. h) has a fixed

point x (resp. z), and we have y ab(y) for the point y in the figure. Clearly
c(a,b) 1 and any homomorphism with c(a,b) 1 has a configuration as in

Figure 2 right. Again one can show that such cp belongs to a single semiconjugacy
class. That is, if we let R be the set of four points x, y, z and b(y), then the

same thing holds with this R.
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What is good about these partitions R is the following. Let i// be any k -fold
lift of (p. Then the pull back image irf] (R) has the same property: it determines
the semiconjugacy class of the homomorphism ijr.

What is not good is that partitions of this kind are difficult to find. To show

Theorem 1.17, we need something more.
Let us consider a Fuchsian representation <p e 72n2 of the surface group n2

of genus 2 such that eu(cp) 2. One can assume the elements av q>{Av) and

bv <p(Bv) (v 1,2) are the hyperbolic motions in Figure 4 left.

The axes of av, bv and [a\,bi\ [b2,a2\ are depicted in Figure 4 right. Let

x and y be the fixed points of [a\,b\\. See Figure 5 for parts of orbits of x
and y.

The set R of fourteen points there is enough to determine the semiconjugacy
class of the homomorphism <p. In fact, the configuration of R immediately implies
that eu((p) 2, and by [Mat2], the semiconjugacy class is unique. However when

we consider a 2-fold lift f of cp, it is not clear if the inverse image

actually determines the semiconjugacy class or not. To cope with the problem,
we need an algorithm to determine the orbits of x and y, which can be inherited
to a k -fold cover. But this is not according to the word length of the elements

of n2.
Consider the amalgamated product

n2 Ti *A r2,

where Fy is the subgroup generated by Av and Bv and A generated by

[A\,B\\ [52,T2]. First we consider the homomorphism (pv cp\rv This
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Figure 5

is a homomorphism from the free group Fv on two generators such that

r([av, b „]) 1, and the previous observation works. However notice that one

can define the set R of four points in Figure 2 in two different ways: one from
the orbit of x, the other y. It is more natural and more convenient to consider

disjoint four intervals (instead of points). For Vi, they are E\ [j.\ x] and its
iterates in Figure 6. The complement of the four intervals is denoted by P\. The

stabilizer (in Ti of E\ is A, and the limit set of the Fuchsian group F\ is

contained in P\. Likewise in the right figure, the four intervals are E2 [x,y]
and its iterates. The complement is denoted by P%.
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For yv e r„, the configuration of the orbits <pv(yv)(x) and (pv(yv)(y) is

determined just by the data in Figure 6 inductively on the word length of yv, as

we have explained. They are contained in Pv.

The actual proof is given in Section 4, where we call such subsets Pv basic

partitions. The complementary intervals Ev is called the entrance of A to Pv.
As we explained, the stabilizer of Ev (in T,,) is A. The entrances £T and E2

satisfy the conditions; E\ U E2 — Sl and IntE\ n Int E2 0. They are said

to be combinable. Now the whole orbits <p(g)(x) and <p(g)(y) for g e U2 can
be determined just by this combinability condition. This part, reminiscent of the

Maskit combination theorem [Mas] in Kleinian groups, is shown in Section 5.

What is good for this construction is that the whole process can be passed to a

2-fold lift of (p.

Moreover the set R of fourteen points in Figure 5 are robust, in the sense that

any homomorphism near to <p has the same configuration as R. Furthermore, if
we consider a 2-fold lift xjr of <p, the set n^iR) is also robust for ifr. litis part,
shown in Section 7, concludes the proof of the local stability (Theorem 1.17) for

g 2-

For g > 3, the group il is represented as the fundamental group of a tree

of groups. Each vertex of the tree has valency either 1 or 3. For a valency 3

vertex, we have a homomorphism y e TZr, where T is the free group on two
generators A and B. The homeomorphism a (p(A) and b <p(B) has the

property that c(a,b) 1. This implies that <p admits a configuration in Figure 2

right. For this we consider a basic partition P as in Figure 7.
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£2 a{EÀ) ab{E2)

27

£3 KE3)

£4 b(E2) èa(£4)

Figure 7

£1 =fl(£i)

The complementary region consists of four intervals E\-E4. The stabilizer

of E\ is the subgroup (a), and we say that £j is the entrance of (a) to P.
Likewise E2, £3 and £4 are entraces to P of the subgroups {ab), {b) and

(,ba), respectively. Compare with Figure 2 right.

4. Basic partitions

Let T be a group with a prescribed finite symmetric generating set S.

Definition 4.1. A subset P of Sl is called a basic partition (BP) for <p e 72r,
if it satisfies the following conditions.

(1) P is a union of finitely many disjoint closed intervals.

(2) For any I c P, there exists a unique element si e S such that

; 1-1

<P(si)I U /, u U Ji,
i l i 1

where /, d P, Ji c Pu are distinct intervals and / > 2. (See Notations 1.19.)

(3) For any I c P and s e S\{si}, cp(s)(I) is a proper subset of some I' \Z P.
(4) For any /cfj and s e S, either (p(s)J C £> or <p(.s')7 c Int(P).
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Example 4.2. The set Pv (v — 1,2) in Figure 6 is an example of BP for

homomorphisms <pv <p\r„. The set P in Figure 7 is also a BP.

Definition 4.3. For a BP P for <p e 72p and I >2, define inductively
pl rWsuwPCO^'-1. where P1 P - Also define P°° (~]l£N P1.

Thus {P'l/sN is a decreasing sequence of compact subsets, each consisting
of finitely many closed intervals. In Example 4.2, if the corresponding homomor-

phism is onto a Shottky group, then P°° coincides with the limit set. In general,
P 00 is a closed perfect set.

Let us see how P2 is obtained from P. By (2) and (3) of Definition 4.1, we

have

p2 (J H^r'iPn */(/)).
inP

That is, any interval I d P is divided uniquely as:

l l-1
I U <p(si)~\li) U IJ (pisPfUJi),

i 1 i l

where (p{sjl)(li) d P2, <p{sJl){Ji) d P^ (P2)n. Any /' d P2 is of the above

form /' and ^(s/) maps /' onto p d P. For any other 5, <p(,v)

maps /' onto a proper subset of some I" d P2. On the other hand, P2 is

obtained from P§ by adding new intervals of the above form (p(s/)~l (.p). A

component of Pj2 is called level 1 if it is contained in P%, and level 2 otherwise.

Any level 1 component is mapped by any ip(s) onto a component of P2, either

to level 1 or to level 2. As for a level 2 component, we have the following.

(1) A level 2 component is mapped by <p(sj) onto a level 1

component and is mapped by any other <p(s) onto an interval contained

in the interior of P2. Especially no level 2 component is mapped onto a

level 2 component.

By these considerations, we have the following lemma.

Lemma 4.4. For a BP P for <p e IZr and I > 2, Pl is a BP for (p.

Let P (resp. P') be a BP for <p e 77r (resp. (pr). Recall that P* P fl P$

from Notation 1.19.

Definition 4.5. A COP (cyclic order preserving) bijection £ : P* P^ is called

a BP equivalence if for any x,y G P* and s e S, we have

• [x,y] d P if and only if [£(x)>£(t)] C P' and
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• y <p(s)x if and only if £(_y) <p'(s)^(x).

Lemma 4.6. Let P (resp. P') be a BP for <p g TZr (resp. <p' Then a BP

equivalence £ : P* -» P* extends uniquely to a BP equivalence f2 : P2 -> P'f.

Proof. For any x 6 P* \ P*, there exists a unique element s e S such that

(p(s)x g P*. Define £2(x) xp\s)_1 o£ o(p{s){x). It is easy to show that £2 is

in fact a BP equivalence.

Notice that P°° HzeN *s a Perfect closed set, P£° (P00)# consists of
countably many disjoint closed intervals, and Pf° P°° n P^° is a countable

set. All three sets are ^(r)-invariant.
The next theorem says that if P is a BP for <p e TZr, then the semiconjugacy

class of the homomorphism <p is determined by the simple dynamics of S on

P. A semiconjugacy class is in fact determined by how one or several orbits are

located in S1 (Proposition 1.6).

Theorem 4.7. Let P and P' be BP's for G TZr and <p' G TZr- Then a BP

equivalence £ : P* —» P* extends uniquely to a p,cp')-equivariant COP bijection
ÇOO poo (p0oo_

Proof. This follows from inductive applications of Lemma 4.6.

The next lemma plays a key role when we study a k -fold lift of a

homomorphism. The easy proof is omitted.

Lemma 4.8. Let P be a BP for ip e TZr and i// a k-fold lift of (p. Bien nf1 P
is a BP for xf.

The lemma joined with Theorem 4.7 says that if if is a k-fold lift of (p

which admits a BP P, then the semiconjugacy class of i// is determined by the

dynamics of iJ/(S) on nfl(P).
For future purpose, we need to continue to study more about BP's. Especially

we have to show that the stabilizer (defined later) of an interval / c Pj can be

determined by a simple algorithm for a certain class of BP's.

Definition 4.9. For any J c P^°, define the level of J, lev(./) e N, by

lev(J) I if and only if J c P^ \ P^-1.

Lemma 4.10. Let P be a BP for <p G TZr If J C P^00 satisfies lev(/) I for
some I > 2, then there is a unique element s G S such that lev(ip{s)J) =1 — 1,

and for any other s G S, 1ev(yp(s)J) 1 + 1.
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Proof. For 1=2, this follows from (1) placed just before Lemma 4.4. The general

case can be shown by an easy induction.

Definition 4.11. A labelled directed graph G(P) associated with a BP F for

(p e TZr is defined as follows. The vertices of G(P) are components of P#. There

is a directed edge from J\ to J2 with label s e S (written J\ -4- J2 if s si,
where I is the component of P right adjacent to J\, and (p(s){J\ J2.

Example 4.12. The graph G(Pi) and G(P2) of the BP's in Figure 6 consists of
one cycle, while the graph G(P) for Figure 7 consists of 3 cycles.

Notice that for any vertex 7 of G(P), there is exactly one edge leaving 7.
However there may be a vertex at which no edges arrive.

Definition 4.13. A BP P for cp e 7lp is called pure, if the graph G(P) consists

of disjoint cycles. We allow a period one cycle formed by one vertex and one

edge.

In fact, the pureness does not change if we replace "right adjacent" by "left
adjacent" in Definition 4.11, although the direction or labelling of the graph may
change. For any BP P P2 can never be pure. The BP's in Examples 4.12 are pure.

Definition 4.14. For <p e 72r and a subset A of S1, the stabilizer of A with

respect to <p, denoted by Stabf/,(4), is defined by

Stab„(A) {y e F | <p(y)(A) A}.

Lemma 4.15. Let P be a pure BP for y e 72r. Then we have the following.

(1) The group F is free with symmetrized free generating set S and cp is

injective.

(2) For any J C P#, the stabilizer Stabil/) is generated by an element written
as a cyclically reduced word of S.

(3) For any J \Z P£° with lev(/) I (/ > 2), Stab^f./) is generated by an
element which has a nonreducing representation aßct~l by reduced words

of S such that the word length of a is 1 — 1 and ß is cyclically reduced.

Proof. For any J C P#, assume (p(y)(J) J for some y e F \ {e}. Write y as a

reduced word in S : y sm •s2Si. For any 1 < i < m, let /,• cp(si si)(J).
Then we have lev(7,) 1 for any i, that is, 7, is a vertex of G(P). In fact, if
lev(7,) would take the maximal value I > 2 at some i, then by Lemma 4.10, we

have lev(7;_i) lev(7i+i) 1-1 and s;+i sf1, contrary to the assumption
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that the word is reduced. Again since the word is reduced and P is pure, we
have either of the following.

j s2 % si s2 %J -> J\ -* -> Jm J or J 4- Jl Jm J.

Let Ii c P be an interval right adjacent to /,. Then in the former case <p(si +1)
is always expanding on f, that is, jf+i sit. This shows that (p(y) cannot be

the identity. The same is true in the latter case. Points (1) and (2) follow from
this, while it is easy to derive (3) from (2).

Finally we shall prepare some terminologies and facts needed for the next
section. Let A be an infinite cyclic subgroup of T and <p e '72r.

Definition 4.16. Given a closed subset X of S1, the set

e£(X) UP". ] {e} ± Stabp(/) c A},

is called the entrance of A to X with respect to (p.

Definition 4.17. A pair of closed subsets (Q, E) is called a (r, A)-pair for <p if
Q is a <p(r)-invariant closed perfect set, E E^{Q), and £ is a finite disjoint
union of closed intervals.

Lemma 4.18. Let P be a pure BP for cp e 72r and A an infinite cyclic subgroup

of T. Assume E^(P) is nonempty. Then (P°°, e£(P)) is a (T, A)-pair.

Proof. We only need to show that E^(P) E^( P°°). That is, if J C Pf° and

Stab,p(/) c A, then lev(/) 1. But this is clear from Lemma 4.15.

5. Combinations

This section is divided into three subsections. In the first, we are concerned

with a single homomorphism, while in the second, with a pair of homomorphisms.
1. Throughout this subsection, we make the following.

Assumption 5.1. (a) The group G is written as an amalgamated product

G — F! *a r2,

where A is an infinite cyclic subgroup.

(b) (p e 72g, and <pv (p\rv is injective for v 1,2.

(c) (QV,EV) is a (r„,A)-pair for <pv, v 1,2.
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Denote r* rv \ A. We make extensive use of the following partition of the

group G.
G [J Gk,

k> 0

where

G° A, G1 r* U r*,
(5.1) g2 r*r2* u r2*rf,

g3 r*r*r* u nrrjT*,

Definition 5.2. The pairs (Q\,Ef) and (Q2, E2) are called combinable for cp if
Ei and E2 alternate in S1, that is, Ei U E2 Sl and Int(£i) n Int (£'2) 0-
In this case we denote E* dEi dE2.

We also assume the following in this subsection.

Assumption 5.3. Q ((Qi. £1), (Q2, E2)) is a combinable pair for <p.

We define an (undirected) graph (V(Q),E(Q)) of the combinable pair Q as

follows.

V(Q) {<p(g)Qv \geG, v 1,2},

E(Q) {{u, 1/} I v, v' e V(Q), 0/«', »fl»'/ 0}.

The group G acts naturally on the graph (V(Q),E(Q)) as graph automorphisms
via the homomorphism <p. The rest of this subsection is devoted to the study

of properties of the graph (V(Q),E(Q)). Especially we show that the graph

(V(Q),E(Q)) is in fact a tree. (It is isomorphic to the Bass-Serre tree associated

to the amalgamated product G ri*Ar2.)
For v,w e V(Q), we denote v ~ w if {u,u;} g E(Q), and say that v and

w are adjacent. Tlie indexing set for Qv is the group Z/2Z, thus for example
<23 Q l) while the indexing set for a group element is Z, thus in general

Ys + Yi

Lemma 5.4. We have Qv ~ Qv+i and Qv ~ (p{yv)Qv+\ for any yv e T*.
Conversely if Qv ~ v, then either v — Qv+\ or v (p(yv)Qv+1 for some

Yv e r;.

Proof. Since Q\ IT Q2 — E* ^ 0, we have Q\ ~ Q2. Since Qv is invariant by

<Kr„). we have Qv n cp(yv)Qv+1 <p(yv)(Qi n Qz) f=- 0 for yv e T*. That is,

Qv ~ (P(Yv)Qv+ 1 •
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In the sequel, we shall show that all the other vertices are not adjacent to

Qv. First we prepare some fundamental facts. See Figure 8.

(5.2) Qv c Ev+1 and Qv n Intisj, 0,
(5.3) (p(yv)Ev C Int Ev+\ and Int<p{yv)Ev ngv 0 for any yv e T*.

For (5.3), recall that Qv is assumed to be perfect.

ÔV+1 Qv

Figure 8

The subsets Qv should have countably many complementary
intervals. Only some of them are drawn in the figure.

Now for yv+i e T*+1, the vertex <p(yv+i)Qv is not adjacent to Qv, since

<P(Yv+i)Qv C (p(yv+i)Ev+l C Int isy

We shall show by induction on k that if k > 2 and yv+i e r*+/ (1 <i <k),
then

(5.4) V(yv+k •••yv+i)Qv Clnt<p(yv+k)Ev+k.

This shows that <p(yv+k yv+i)Qv is adjacent neither to Q\ nor to Q2, by
virtue of (5.3).

To show (5.4) for k 2, notice by (5.2)

<p(yv+2yv+i)Qv c <p(yv+2yv+i)Ev+i c Int<p(yv+2)Ev+2.

For the inductive step,

<p(yv+k+iyv+k yv+\)Qv C ip(yv+k+i)Int(p(yv+k)Ev+k c Int(p(yv+k+\)Ev+k+\

Remark 5.5. The above proof shows that any vertex (p(g)Qv is distinct from Qv
unless g e Tv.

See Figure 9 for the graph (V(Q),E(Q)).
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Figure 9

The vertices a-d are a Q2, b Qi, c yiÖ2 and

d yiy2 0i • The actual set Q\ is depicted on the circle.

Lemma 5.6. For any interval J C (Qv)§ which is distinct from <p(yv)Ev for any

yv er„ we have Int/ n v 0 for any v e V(Q) and Stab^(/) Stab¥,v(/).

Proof. Any vertex other than Qv contained in Ev+\ is contained in <p(yv)Ev

for some yv e T*, by virtue of (5.4), showing the first statement. For the last

statement, choose an arbitrary element g e StabV(J). Then g leaves 3J invariant.
The set 3J is contained in Qv and disjoint from any other vertex of V(Q).
Therefore g stabilizes the vertex Qv in the action of G on the graph. This shows

g 6 r„ by Remark 5.5.

Let us continue the study of the graph (V(Q).E(Q)).

Lemma 5.7. Let v,vu e V(Q). If v ~ w and v — (p(yv+k • • • Yv+\)Qv for
some k > I and y„+,- e T*+i, then either w — (p{yv+k---Yv+2)Qv+\ or
w <p(yv+k Yv+iYv)Qv-i for some yv eF*, and moreover vDw is contained

in the (p(G)-orbit of E*.

Proof Recall that the group G acts on the graph (V(Q),E(Q)) as graph

automorphisms. Thus if w ~ cp(Yv+k Yv+\)Qv, then <p(Yv+k • • Yv+\)~lw ~
Qv. Therefore either (p(yv+k • • Yv+i)~lw is equal to Qv+\ or (p(yv)Qv-\ for

some yv e T*. Since <p{yv+i)Qv+\ Qv+\, this shows the first part. An
immediate consequence is that G acts transitively on the set of edges E(Q). That

is, there is g e G which maps E* Q\ n g2 onto v (T w, showing the second

part.

Definition 5.8. Any vertex v of the graph is written as v <p(yv+k • • • Yv+\)Qv
for yv+i e r*+!-. The number k is unique, and is called the distance of v.
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Lemma 5.9. (1) We have Stab,p(öv) Tv.

(2) The graph (Y(S).E(Q)) is a tree and <p is injective.

(3) For g e G, we have <p(g)E* n E* ^ 0 if and only if g e A.

Proof. Point (1) is a rephrasing of Remark 5.5. Lemma 5.7 says that any vertex of
distance k (k > 1) is only adjacent to vertices of distance k — 1 and k + 1, and

the vertex of distance k — 1 is unique. This shows that the graph (V(Q),E(Q))
is a tree. To show that <p is injective, assume <p(g) — id for some g e G.
Then g acts trivially on the graph. Especially g leaves the vertex Qv invariant.
That is, g e Tv by (1). By the assumption that <pv — <p\vv is injective, we get

g e, as is required. The if part of (3) is clear. To show the converse, notice
that £* <2i IT Q2. By Lemma 5.4, if <p(g)Qv n Qv+1 f 0, then g e Tv+i.
This holds for each v 1,2, and thus g e Fi (T T2 A.

Further discussions are necessary for the development of the next subsection.

Definition 5.10. Let J0 be the family of connected components of £j and E2,
and for n > 1, let

JJn — {^(fv+n—1 Yv )I I Yv+i ë Fv_|_(-, I EH Ev, V 1, 2 j.

Lemma 5.11. (1) For any J e Jn (n > 2), there are Ji e Ji (1 < i < n — 1)
and v such that

J C Int Jn-i C Jn-1 C C IntA C Ji C (ßv)#,

(2) Any two intervals J, J' e Jn, n > 1, satisfy either J J' or J IT J' 0.

Proof Point (1) is shown inductively using (5.3). Point (2) is clear for n 1.

(See Figure 8.) The general case can be shown by an induction on n based

upon (1).

For a subset K of G and X of 51, denote cp(K)X UgSK<p(g)X

Definition 5.12. Define a subset Xn of S1 by X0 E* and for n > 1,

Xn <p(Gn)Xo. Let X — [JnXn. (For the definition of G", see (5.1).)

The following easy lemma is useful to clarify an argument in the next
subsection.

Lemma 5.13. (1) Xn — U/ej,, •

(2) ï„nïra 0 if n ^ m.
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(3) X (p{G)E*.

(4) For any v e V(Q) of distance n (n > 0), vFXm ^ 0 if and only if m — n

or m n + 1.

The following lemma will be used in Section 6 where we consider successive

combinations.

Lemma 5.14. Assume there is a subset E' C (<2i)# such that (Q\,E') is a

(IT, A')-pair for cp\, where A' is an infinite cyclic subgroup of IT such that

A'flyiAyj"1 {e} for any y\ IT. Then (Cl(ç?(G)((2i U Q2)), E') is a (G, A')-
pair for cp.

Proof. It is clear that

Z := C%(G)(Ô! U Q2)) Cl( [J v)
veV(Q)

is a <p(G) -invariant closed perfect set. So what is left is to show that E' E§' (Z),
where by definition E' — E^ (Q\). The assumption on A' implies that

E'r\(p(yv)Ev 0 for any v and yv e T*. By Lemma 5.6, we have E' c Efi'(Z).
To show the converse, assume J c e£'(Z). If J a (Q1 U Q2)$, then clearly
we have J n E'. Otherwise J must be contained in cp{yv)Iv e J\ for some

lv C Ev and yv e F*. Since J C E^'(Z), there is g e A' \ {e} c F* such that

<p(g)J J Then <p(g)<p(yv)Iv Fq>{yv)Iv 0. If v 2, then <p(y2)12 C Int£T,
while <p(g)<p(y2)I2 C Int£2- A contradiction. If v 1, <p(g)<p(yi)/i 6 f7i since

g e r*. Then by Lemma 5.11 (2), <p{gyi)I\ <p(Yi)h, and yf*gy 1 e A by
Lemma 5.9 (3). But this is contrary to the assumption on A'.

2. In this section, we assume the following.

Assumption 5.15. Let v 1,2 and i — 1,2.

(a) The group G is just as in Assumption 5.1.

(b) Let (pl e IZq and assume <p'v (pl\rv is injective.

(c) Let (Q'V,E'V) be a (Fv,A)-pair for <p'v.

(d) The pair Ql ((Q\, E\), (Q'2, Ef)) is combinable for cpl.

(e) There is a COP bijection £ : g}, U -* 8f * G Q2 * such that

HQl,*) Ql,* and the restrictions £v £|ßJ^ : ßj* Q2vit is {<pl,(pl)-
equivariant.

Our purpose is to show that £ extends to a (<p1, <p2) -equi variant COP bijection
from the saturation <pl{G){Q\ ^ U Q\ f) to (p2{G){Q\ * U ß§*) (Theorem 5.17).
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The proof is in two steps: the first step is the following Lemma. Let X'n and

X1 be defined as in Definitions 5.10 and 5.12 for <pl.

Lemma 5.16. The map Ç extends to a COP bijection

I Gi\. U 82,* U X1 -> Ql. U Ql. U X2

which is (cp1, (p2)-equivariant as a map from X1 to X2.

Proof. Recall that X1 — (pi{G)E]f. The map £ extends to X1 by the (<p1,(p2)-

equivariance. Namely, given x e X1, choose g e G and x0 & E\ such that

x (p1(g)xo, and define §(x) <p2(g)Ç(x0). The map | is a well defined

bijection since by Lemma 5.9 (3), Stab^,(El) c A, and %\Ei is (^1|a.<?2|a)-

equivariant. Notice also that £ coincides with the original Ç on ij c Q \ „U Q\ *
by the (<pl, ip2)-equivariance of and X\ (n > 2) is disjoint from Q\ + U Q\ ^.
Therefore we only need to show that £ is COR

We shall prove that f is COP on 8i * C 82 * U Uo<i<n -^7 by an induction on

n. This is sufficient since X1 — (Jn X*. For n — 1, this is true by the assumption
since X\ c Q \ #

U Q\ #. To show it for « + 1, choose an arbitrary open interval

Int/ CS'\ (ßp* U £>2,* U U X/)
0 <i<n

such that Int/ (T X,|+| / 0. Clearly we only have to show that § is COP on

1 n (q\,* U 82,* U [J X/),
0<i<« + l

where / is the closure of Int/. Now any point of Int / IT X^+l is an endpoint
of some interval of J^+i, and by Lemma 5.11, we have / e This shows

I n (q\,* U 82,* u U x/) / n (X„! u x^)-
0<i<n+l

Furthermore I <p] ig) J for some J e and g e Gn.

Finally since we have defined

and all the maps on the RHS is COP, the map il/n^jux1 *s COP, as is

required.



38 S. Matsumoto

Theorem 5.17. Under Assumption 5.15, the COP bijection

Ï Ql* U Ql, Ql* U Ql,
extends uniquely to a (<p1, <p2) -equivariant COP bijection

I : <pl(G)(Q^ U QlJ <p2(G)(ß2* U ßfj.
Proof. Recall that

<p\G)(Q\uQ12) {J{V\V eVCQ1)},

where v <p1(g)Ql for some g e G and v. Denote u* cp1(g)Ql*. Define

Î on each v* by the (cpl, <p2)-equivariance. This is well defined because £ is

((pi, (p2) -equivariant on Q\ ^ and Stab^, (Qlv) — Tv by Lemma 5.9 (1). Of course

the map £ is COP on each u*. The map £ coincides with the one defined in
Lemma 5.16 on »»fll1. The proof is complete by Lemma 5.16.

3. Let v 1,2 and i 1,2. Assume the following.

(a) The group G is just as in Assumption 5.1.

(b) Let cpl e 7Zg and denote cp'v — <p! |ry •

(c) Let PI is a pure BP for (p'v, with E'v the entrance of A to Plv

(d) The pairs (P[,E\) and (P2, Ef) are combinable in the sense that E\ and

El2 are alternating in S1.

(e) There is a COP bijection £ : P/^ P2^ U Pf _
such that fPi f

is

a BP equivalence from Pj* onto P2*.

Joining Theorems 4.7 and 5.17, we get the following.

Theorem 5.18. Under the above assumption, (pl and (p2 are semiconjugate.

Notice that the set R of fourteen points in Figure 5 is equal to P/ tUP2't for
the homomorphism (here denoted (pl) in 1Zjj2 with eu{<pl) 2. Thus the above

theorem says that any homomorphisms which admit the same configuration R

are mutually semiconjugate. This, together with the robustness of R (discussed

in Section 7), implies the local stability of <p1. Furthermore a 2-fold lift of <p]

is also shown to be locally stable.
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6. Trees of groups

Definition 6.1. A tree of groups is a finite tree T (V, £) such that

(1) to each vertex v e V (resp. edge e e £) is associated a group f„ (resp.

(2) and if v e V is an end point of e e £, then a monomorphism ie,v : Ae r„
is assigned.

The fundamental group G(T) of a tree T of groups is the group generated

by r,, and Ae (u e V, e e £) subject to the relation À y whenever 1 e Af,
y eTv, v is an end point of e, and ie,v(X) — y.

Example 6.2. Consider the closed oriented surface of genus g. Divide
by circles into once punctured tori and pairs of pants. Embed a tree in as

in Figure 10 top. Then the fundamental groups T,- of subsurfaces S, and the

fundamental groups Aj of circles Cj are considered to be subgroups of the

fundamental group ng of the total surface, the base points being taken on the

tree. This yields a tree of groups as in Figure 10 bottom whose fundamental group
is isomorphic to flg

Ae),

Figure 10

Throughout this section we work under the following assumption.
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Assumption 6.3. (a) The group G G(T) is the fundamental group of a tree

T (V, £) of groups.

(b) The vertex group r„ admits a finite symmetric generating set Sv, and the

edge group Ae is infinite cyclic.

(c) If e and e' are distinct edges starting at a vertex v, then A^nA^A^A"1 {e}
for any A„ e T„.

(d) There are two homomorphisms <pl e 1Zg i 1,2. We denote <p'v the

restriction of ipl to the vertex group T,,.

(e) For each vertex group F,.,, there is a pure BP P'} for (plv with respect to

the generating set Sv.

(f) If v is an end point of e, then there is an entrance, denoted E\. e, of Ae

to Plv with respect to <p'v. Put Qlv — Pl'œ.

Then (Qlv,Elve) is a (r„, Ae)-pair for <plv by Lemma 4.18.

(g) If v and v' are two end points of e, then (Q'v,Elve) and (Q'v,,Elv,e) form
a combinable pair. Denote the finite set E'e * Elv e fl E'v, e.

The set P1 UvsV pi* is called the basic configuration
(abbreviated BC) of G G(T) for (pl. A COP bijection
Ç \ Pl —> Pl is called a BC equivalence if l(P,fi,) P^ and

is a BP equivalence from P^ to P^ for each v e V.

(h) There is a BC equivalence £ : Pl -* P%.

For our purpose, the following example of BC is the most important.

Example 6.4. Consider a Fuchsian representation of the surface group ü5 in

Figure 10. Choose a lift T of the tree T embedded in the surface to the universal

covering space D. See Figure 11. The lift of the curve Cj to D which intersects

T is denoted by C j The edge group Aj is the stabilizer of C j. As for the

vertex group T,-, its convex core (of the limit set) is contained in the region S

depicted in Figure 11.

For a vertex of valency 1, the vertex group is generated by two hyperbolic
motions a and b such that x{[a b]) — 1. So it has a BP as in Figure 6. For

a vertex of valency 3, generators a,b of the vertex group satisfies c(a,b) 1,

and it has a BP as in Figure 7. Tie BP Pi (resp. P3) corresponding to the

vertex group Fj (resp. F3) is depicted in Figure 12. The BC of n5 consists of
50 points and satisfies all the conditions of Definition 6.3.

The following lemma is straightforward.
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Figure 11

Lemma 6.5. If Pi is a BC for <p
'

e TZg, where G G{T) is the fundamental

group of a tree T, and if is a k-fold lift of cp1 for some k > 2, then

it^l{Pl) is a BC for if1.

Before stating the main theorem of this section, we prepare a lemma. By
Theorem 4.7, the BP equivalence : Pi,* Pi,* extends to a (<pf <pf)~

equivariant COP bijection %v : Q\ „ -> Q% t for each vertex v. Notice that

Q'v,* Pi(rv)p;f,.

Lemma 6.6. There is a COP bijection £ : Ql ^ —» |J|; ^ such that

ilßi., =1-
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Proof. If v, v' are distinct vertices, then Plv fl Plv, C PI. In fact, if v,v' are

adjacent, this follows from (g). If not, Plv, is contained in Int E\, e, where e is

the edge that starts at v and tends toward the direction of v', which implies
Pi> n Py' — 0- Since Qlv if C Plv, the lemma follows from the fact that both

f : Pi -» P^ and f„ : are COP bijections.

Theorem 6.7. The BC-equivalence £ : Pi -» P% extends to a {(pl, <p2) -equivariant
COP bijection f : <p' (G) Pj —> (p2(G) P^.

Proof. The proof is by an induction on the number n of vertices of T. If n 2,
this is just Theorem 5.17. Given 7~, delete a vertex v of valency 1 and the edge e

which starts at v. Denote the resultant subtree by T' and the other end point of
e by v'. Then the group G G(T) can be written as an amalgamated product:

G G(T') *a, r„.

Let

Ô"W(G(T'))( U Qi).
veT'

Then (Q", E'v, e) is shown to be a (G(T'). Ae)-pair by virtue of Assumption 6.3

(c) and successive use of Lemma 5.14. Clearly the pair (Q", E'v, e) is combinable
with the (r„, Ae)-pair (Qlv, Elv e). On the other hand, by the induction hypothesis,
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£ has an G(T')-equivariant extension £' : Q'f -> Q*2. Moreover f and satisfy

point (e) of Assumption 5.15. The proof is complete by Theorem 5.17.

7. Robust basic configurations

Again let G G(T) be the fundamental group of a tree T of groups. Assume

that (p1 e TZg satisfies Assumption 6.3 for v 1, and let P) be the associated

BC. Recall that for each vertex v of T and / > 2, (Pf)1 is the BP for
derived from the BP Pj. (Definition 4.3). Denote (P1)* IPP; )i •

For each point x 6 Pj, the stabilizer Stabil (x) is infinite cyclic by
Lemma 4.15, Lemma 5.9 and a repeated use of Lemma 5.6. Denote by xz+

(resp. xf) the point in (P1)* right (resp. left) adjacent to x.

Definition 7.1. The BC P*1 is called robust if for any point x 6 P\ and any

big I, one of the generators of (p1(Stabil(x)) maps the interval [xf,x^\ into a

proper subinterval of it.

Lemma 7.2. For a homomorphism <p1 e Ptng with eu{cpl) 2g — 2 (g > 2),
the BC given by Examples 6.2 and 6.4 is robust.

Proof. If we choose a Fuchsian representation as a model of (p1, then any point
of the BC is a fixed point of a hyperbolic motion. Any representation <p1 with
eu(<pv) 2g — 2 is semiconjugate to the Fuchsian representation by [Mat2],
showing the lemma.

Finally we have the following theorem.

Theorem 7.3. Assume that cp1 admits a robust BC P*. Then there is a

neighbourhood U of cp1 in 7Zo such that if (p2 e U, (p2 admits a BC P2

and a BC equivalence Ç : Pj ^ P^.

Proof. Choose I large enough so that the condition of Definition 7.1 is met by
all the points x in Pi and that the intervals [xf, x;+] 's are disjoint. Let gx be

the generator of Stapi (x) such that

F1 (gx)[xf ,x+] C Int [xf, xp.

Choose a neighbourhood U of p so that for any (p2 e U and x e P\ we have

<p2(gx)[Xf ,x+]c Int [xf, xp.
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Let £(x) be the leftmost point in ¥\\{(p2{gx)) n [xf, x;+ ]. Then the set

pl {m I x pj}

forms a BC for <p2, and the map £ is a BC equivalence. In fact, it is easy to

see that for any vertex v,

Pl* {£(*) I X

is a BP for q>2\r„, because we have assumed that is a pure BP.

Joining this theorem with Lemma 6.5 and Theorem 6.7, we get the following
corollary, which conclude the proof of Theorem 1.17.

Corollary 7.4. If cp1 e 7ZG admits a robust BC, and f1 e TZq is a k-fold lift
of gf (k > 1 then f1 is locally stable.

Proof Let P} be a robust BC for (pl. Then clearly nf] (Pf) is a robust BC for

f1. By Theorem 7.3, there is a BC P 2 for any f2 sufficiently near to f1 and

a BC equivalence £ : nfy(Pf) -> P\. By Theorem 6.7, the BC equivalence £

extends to a (f1, f2) -equivariant COP map f : f1{G)(nf1(Pl)) —> f2(G){ P 2).
The map £ extends to a (xfr1, f2) -equivariant semiconjugacy.

Appendix A: The proof of Proposition 1.4

We shall show that the semiconjugacy as defined in Definition 1.3 is an

equivalence relation in 7Zg \ 'P*G All that needs proof is the reflexiveness. Let
ipl,(p2 7Zg \7ZG. Assume there is a degree one monotone map h : S1 S1

such that

(7.1) cp2(g) oh h °(p\g), VgcG.

Since (pl e 77g \ 1Z*G, h is not a constant map. Let h : R -> M be a lift of h

as in Definition 1.2. Notice that such a lift h is unique up to the composition
with T", since the map h is nonconstant. (This is why we divide the definition
of semiconjugacy into two parts.) Define h ° : M ->• M by

h °(y) inf {x e E I h(x) y}.

Clearly h ° commutes with T, and there is a degree one monotone map
h* : S1 ->• 51 such that h° on no h°. The well-definedness of h° is guaranteed
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by the uniqueness of h Moreover if h, h' and h' o h are nonconstant monotone

degree one maps, then we have

(h'o h)0 h0 o (h')0.

Thus (7.1) implies that

h0 o (p2{g~l) (p1 (g-1) o h0,

completing the proof.

Appendix B: The proof of Theorem 2.2

We assume that <p e 7Zg is type 1 and minimal, and will show that q> is

proximal, the other implication being obvious. Call a closed interval I c Sl
<p-contractible if mfg&c\(p{g)I\ 0. First of all we have the following easy fact.

(1) For any g e G and any closed interval I, / is (p -contractible if
and only if (p(g)I is (p -contractible.

Next let us show:

(2) There is 8 > 0 such that if |/| < 8, then I is -contractible.

Proof. Since cp is not type 0, there is a nontrivial homeomorphism <p(g) which
admits a fixed point. This shows that there is a <p -contractible interval J. Since

(p is minimal, the family

J {<Kg)Int/ I g e G}

must cover S1. Now the Lebesgue number 8 of the open covering J works.

Define a map U : M -> M by

U (^) supjy (x'.oo) I n([lc, y"]) is <p-contractible}.

We have the following easy properties.

(3) jc + 8 < U (7) < Jt + 1.

(4) V is monotone nondecreasing.

Also (1) implies the following.

(5) For any g e G and a lift <p{g) of <p{g) to R,

fig) ° U U o <p(g).

Especially, U o T — T o U

(6) The map U is injective.
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Proof. Assume on the contrary that there is J et such that Cl(t/-1(50)
[T0, Ti] is an interval. By the minimality of cp, there is a lift cp(g) such that

cp(g) (3c i) e (T0, Ti). Then there is T2 e (T0,Ti) such that cp(g) (T2) e

(T0,Ti) and (p(g) _1(T2) e (Ti, 00). Now

<P(g) (7) <p(g) 0 U (T2) U o (p(g) (T2) y.

This shows

U o <p(g) _1(T2) <Kg)_1 o (7 (T2) ^(g)_1(y) y.

This contradicts the fact that <p(g) _1(T2) ^ [To, T1] Cl( U -1(50).

(7) (/ is bijective.

Proof. Define V : E -» M by

V (T) inf {(y e (—00, T) | ?r([y, T]) is <p-contractible}.

For any point T e M, and any point Ti in (T, U (3c)), (6) implies that
U (T) < U (Ti). This shows that the interval 7r([Ti, U (T)]) is <p-contractible.

Since Tj is an arbitrary point of (T, U (T)), this shows that V U (T)) < T
Again by (6), we have in fact

V (U (T)) T.

The same argument shows that U o V Id.

By (4) and (7), U is a homeomorphism. By (5), there is U e PL such that
7T o U — U o jt. Also by (5), U commutes with any element of cp(G). Finally
let us show:

(8) There is k e N such that Uk Id.

Proof. If Fix(t/fc) is nonempty for some k e N, then Fix([/fe) must be invariant

by cp(G), since Uk commutes with any element of cp(G). That is, Fix(17^) S1,

showing (8). If not, the rotation number of U must be irrational, and there is a

unique minimal set A of U. Since X is unique and since U commutes with

any element of <p(G), X must be left invariant by any element of <p(G). Since

cp is minimal, this implies X S1. That is, U is topologically conjugate to an

irrational rotation. But then ip(G) must be abelian, and cp must be of type 0. A
contradiction.

To conclude, since cp is assumed to be of type 1, we have k — 1. But by (3),
this implies U T. That is, <p is proximal.
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