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Pseudoholomorphic simple Harnack curves

Erwan BRUGALLE

Abstract. We give a new proof of Mikhalkin’s Theorem on the topological classification
of simple Harnack curves, which in particular extends Mikhalkin’s result to real pseudo-
holomorphic curves.

Mathematics Subject Classification (2010). Primary: 14P25, 32Q65; Secondary 14P0S5.
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A non-singular (abstract) real algebraic curve is a non-singular complex
algebraic curve C equipped with an anti-holomorphic involution conjc. The
real part of C, denoted by RC, is by definition the set of fixed points of conjc .
If C is compact, then RC is a disjoint union of at most g(C) + 1 smooth
circles, where g(C) is the genus of C. When RC has precisely g(C) + 1
connected components, we say that the real curve C is maximal. Equivalently,
a real algebraic curve C is maximal if and only if the quotient C/conjc is a
disk with g(C) holes (see for example [Vir84b]).

A real map ¢ : C — CP? from a real algebraic curve is a map such that
¢ o conjc = conj o ¢, where conj([x : y : z]) = [x : ¥ : z] is the standard
complex conjugation on CP2. Note that ¢(RC) C R¢p(C) if ¢ is real, however
this inclusion might be strict as ¢ may map pairs of conjc -conjugated points
to RP2. Given ¢ : C — CP? a real smooth map, a point p € R¢(C) is
called a solitary node if there exists a neighborhood U of p in RP? such that
¢~ (U) = ¢~ '(p) which in addition consists of two conjc -conjugated points at
which the differential of ¢ is injective (i.e., locally at p, ¢(C) is the transverse
intersection of two complex conjugated disks).
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1. Introduction

Let Lo, L;, and L, be three distinct real lines in C P2 with LoNL{NL, = &.
A simple Harnack curve is a real algebraic map ¢ : C — CP? satisfying the
following two conditions:

e (C is a non-singular maximal real algebraic curve;

e there exist a connected component @ of RC, and three disjoint arcs [y, [, >
contained in O such that ¢~!(L;) C [;.

Note that by Bézout’s Theorem, the set ¢~!(L;) contains finitely many points.
We depict in Figure 1 examples of simple Harnack curves with a non-singular
image in CP? and intersecting transversely all lines L;. Theorem 1 below says
that these are essentially the only simple Harnack curves.

Let ¢ : C — CP? be a simple Harnack curve, and choose an orientation of
©. This induces an ordering of the intersection points of @ (or C) with L;, and
we denote by s; the corresponding sequence of intersection multiplicities. Let s
be the sequence (so,s1,52) considered up to the equivalence relation generated
by

(S0,51,52) ~ (50,51,52),  (S0.51,52) ~ (52, 50,51),

and  (so,S1,52) ~ (S0, 52,51),

where (4;)1<i<n = (Un—i)1<i<n - This equivalence relation is such that s does not
depend on the chosen orientation on (@, nor on the labeling of the three lines

P A\
Vo~ VARV)
Q o
e
k(k-1)

2

(a) d = 2k (b) d =2k + 1

FIGURE 1
Simple Harnack curves of degree d and genus W; in particular three

quadrants of RP?2\ (U?=O)RL,- contain @ circles in ¢(RC), while the fourth
one contains either (k_l)z(k_z) or k(k2+ D such circles depending on the parity of d .
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Theorem 1 (Mikhalkin [Mik00], Mikhalkin-Rullgérd [MROI1]). Let ¢ : C — CP?
be a simple Harnack curve of degree d, and suppose that ¢(C) is the limit
of images of a sequence of simple Harnack curves of degree d and genus
a(C) = gd;l)z(i_i). Then the curve ¢(C) has solitary nodes as only singularities
(if any). Moreover if either g(C) =0 or g(C) = W, then the topological

type of the pair (]RPz,qu(C) U?=0 RL,—) depends only on d, g(C), and s.

Mikhalkin actually proved Theorem 1 for simple Harnack curves in any toric
surface, nevertheless this a priori more general statement can be deduced from
the particular case of CP?, see Appendix A.2. Existence of simple Harnack
curves of maximal genus with any Newton polygon, and intersecting transversely
all toric divisors, was first established by Itenberg (see [IV96]). Simple Harnack
curves of any degree, genus, and sequence s were first constructed by Kenyon
and Okounkov in [KOO6]. In addition, when g = 0 they could dispense with
the hypothesis that ¢(C) must be the limit of images of a sequence of simple
Harnack curves of degree d and genus g(C) = W. In Theorem 2 below,
we delete this hypothesis for any g.

Because they are extremal objects, simple Harnack curves play an important
role in real algebraic geometry, and Theorem 1 had a deep impact on subsequent
developments in this field. However their importance goes beyond real geometry,

as shown by their connection to dimers discovered by Kenyon, Okounkov, and
Sheffield in [KOS06].

The goal of this note is to give an alternative proof of Theorem 1. Moreover,
our proof is also valid for real pseudoholomorphic curves, which are also very
important objects in real algebraic and symplectic geometry. Note that a real
algebraic map ¢ : C — CP? is pseudoholomorphic, but that the converse is
not true in general. Mikhalkin’s original proof of Theorem 1 uses amoebas of
algebraic curves, and does not a priori apply to real pseudoholomorphic maps
which are not algebraic.

It is nevertheless possible to read our proof of Theorem 1 in the algebraic
category, by going directly to Section 2.2, and defining the map x; : C — L; as
the composition of ¢ with the linear projection CP?\ (L; N Lg) — L;, with
{i, j,k} ={0,1,2}.

We consider CP? equipped with the standard Fubini-Study symplectic form
wrs. Recall that an almost complex structure J on CP? is said to be tamed
by wrs if wrs(v,Jv) > 0 for any non-null vector v € TC P2. Such an almost
complex structure is called real if the standard complex conjugation conj on
CP? is J-antiholomorphic (i.e. conj o J = J~! o conj). For example, the
standard complex structure on CP? is a real almost complex structure.
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Let (C,w) be a compact symplectic surface equipped with a complex structure
Jc tamed by w, and a J¢ -antiholomorphic involution conjc, and let J be a
real almost complex structure on CP2. A symplectomorphism ¢ : C — CP? is
a real J-holomorphic map if

dpolJc =Jodp and ¢oconjc = conjoe.

It is of degree d if ¢«([C]) = d[CP'] in H,(CP?;Z). Recall that any
intersection of two J -holomorphic curves is positive (see [MSI12, Appendix EJ).

The definition of simple Harnack curves extends immediately to the real J -
holomorphic case. Given three distinct real J-holomorphic lines Ly, L, and
Ly in CP? such that ﬂ?":o L; = &, a real J-holomorphic curve ¢ : C — CP?
is a simple Harnack curve if C is maximal, and if there exists a connected
component O of RC, and three disjoint arcs /o, /;,/, contained in O such that

¢~ (Li) Cli.

Theorem 2. Let ¢ : C — CP? be a J-holomorphic simple Harnack curve of
degree d. Then the curve ¢(C) has solitary nodes as only singularities (if any).
Moreover if either g(C) =0 or g(C) = W, then the topological type of
the pair (RPZ,RQ’J(C) Ui2=0 RLi) does not depend on J, once d and s are
Sfixed.

It follows from Theorem 2 that Figure 1 suffices to recover all topological types
of pairs (RP2,R¢(C)|JU?_,RL;) where ¢ : C — CP? is a simple Harnack
curve, see Appendix A.l. As in the case of algebraic curves, one may generalize
Theorem 2 to J-holomorphic simple Harnack curves in any toric surface, see
Appendix A.2.

The proof of Theorem 2 proceeds along the following lines: the three
projections from CP? \ (L; NLg) to L; induce three ramified coverings
w; » C — L;; by considering the arrangement of the real Dessins d’enfants
;o Y(RL;) on C/conjc, we deduce the number of connected components of
R¢(C) in each quadrant of RP?\ (U?_,RL;), as well as its complex orientation;
the mutual position of all these connected components is then deduced from
Rokhlin’s complex orientation formula.

2. Proof of Theorem 2

Let ¢ : C — CP? be a J-holomorphic simple Harnack curve in CP? of
degree d and genus g. We define p; ; = L;NL;.
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2.1. Construction of the maps n; : C — L;. Gromov proved in [Gro85] that
there exists a unique J-holomorphic line passing through two distinct points
in CP2. By uniqueness, this line is real if the two points are in RP?, hence
there exists a real pencil of J-holomorphic lines through any point of RP2. In
particular if {i, j, k} = {0,1,2}, the map CP?\ {pjx} = Li, which associates
to each point p the unique intersection point of L; with the J-holomorphic
line passing through p and p;, is a real smooth map. We define =; : C — L;
as the composition of ¢ with this projection. By positivity of intersections of
J -holomorphic curves, the map x; is a real ramified covering.

2.2. Dessins d’enfants on C. We denote by C the quotient of C by conjc.
Since C is maximal, the surface C is a disk with g holes.

Let T; C C be the graph n; ' (RL;)/conjc . Note that T; NTy = ¢~ (RP?)
if j # k, in particular T'; NIy = ﬂf=o I'; . We call a triple point an isolated point
in ﬂiz=0 I'; . By construction, a triple point corresponds to a singular point of
¢(C) in RP?, where at least two complex conjugated non-real branches intersect.
By the adjunction formula (see [MS12, Chapter 2] in the case of J-holomorphic
curves), the graph Uf=0 I'; has no more than W — g triple points, and
¢(C) is nodal with only solitary nodes in case of equality.

Let {i,j, k} = {0,1,2}. We label by + (resp. —) the connected component
of RL; \{pi,j. pir} containing (resp. disjoint from) ¢(O) N L;. We endow each
connected component of Iy \7;"! ({pi,;, pix}) with the sign of the corresponding
component of RL; \ {p;,j, pix}. We also denote by (gg,&1) € {+,—}? the

connected component of RP?\ (U?:o RL,-) which project to the components
labeled by ¢y and &; of RLy and RL; under the projections of center p;» and
Po,2 respectively.

The map 7; : C — L; is a ramified covering of degree d, so by the Riemann-
Hurwitz formula it has exactly 2(d + g — 1) ramification points (counted with
multiplicity). Given j # i, a subarc of /; connecting two consecutive points in
I; N¢~1(L;) has to contain a ramification point of 7; in its interior, and a point
of contact of order ¢ of /; with RL; is a ramification point of multiplicity
c —1 of m;. Alltogether, the set /; U/l with {i,j .k} = {0,1,2} contains at
least 2(d — 1) ramification points of m; (counted with multiplicity). Moreover a
connected component of RC distinct from (© contains at least two ramification
points of m;. Since C has g+ 1 connected components, if follows that these two
previous lower bounds are in fact equalities, in particular all ramification points
of m; are real. This implies that each connected component of C \ I} is a disk,
and that the restriction of m; on this disk is a homeomorphism to one the two
hemispheres of L; \ RL;.
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Lemma 3. If g = 0, then the arrangement of Uiz=0 Ii in C depends only,
up to orientation preserving homeomorphism, on d and s. In particular it has
exactly W triple points.

Proof. Since m; has no ramification point outside O, the graph I'; decomposes
C into a chain of disks, where two adjacent disks intersect along (the closure
of) a connected component of I'; \ O. See Figure 2 in the case when d = 6 and
¢~ 1(L;) consists of 6 distinct points. By definition, the points of I; in /; are
endowed with the sign +.

By the adjunction formula, the number of intersection points of the graphs
I and I';, with i # j, is not more than @d—_—z) =1+4+2+...4+4d-2.
However, this number is clearly the minimal number of intersection point of I’
and I';, and there exists a unique mutual position of those graphs that achieves
this lower bound (see Figure 3a). The lemma follows immediately by symmetry
(see Figure 3b). ]

% P12
RL; / % RL,
po1 % Po2
RL, '
(a) RLoURL; URL5 in RP2 (b) The graph I'o = 5 !(Lo), dots and

squares being points in ¢~!(L1) and
¢~ 1 (L) respectively

FiGure 2
Simple Harnack curves of degree d and genus W; in particular three

quadrants of RP2\ (U?=0)]RL,- contain @ circles in ¢(RC), while the fourth
one contains either (k_l)z(k_Z) or k(kz"' D such circles depending on the parity of d .
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(a) To UTy, crosses being points in

(,‘b_l(Lo) (b) TouUTy UTH»

FiGure 3

In case of positive genus, we have the following lemma.
Lemma 4. The arrangement of Uf=0 I'; has exactly %‘;@ — g triple points.
Moreover if d = 2k (resp. d = 2k + 1), then R¢(C) has exactly UCL;’C"Z)
(resp. @) connected components in the quadrant (+,+) (resp. (—,—)), and

——k(kz_ D connected components in each of the other quadrants.

Proof. Locally around each boundary component of C distinct from O, the
graph Uiz=0 I'; looks like in Figure 4a. In particular, we may glue a disk as
depicted in Figure 4b. Performing this operation to each boundary component of
C distinct from ©, the lemma is proved with the same arguments as Lemma 3.

O

Even if this will eventually follows from Theorem 2, we do not claim that
the disk gluing in the proof of Lemma 4 has any interpretation in terms of
degenerations of ¢(C). Note that when g = ML;‘{_Z), the arrangement U,-2=O I';
depends only, up to orientation preserving homeomorphism, on d and s. See
Figure 4c in the case d = 6.

2.3. Application of Rokhlin’s complex orientation formula. To end the proof
of Theorem 2 in the case d = 2k, it remains to prove the following lemma. The
case of curves of odd degree is entirely similar, and is left to the reader.
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(b)

(c)

FiGure 4

Lemma 5. The following hold:

(1) ¢(y) bounds a disk in RP? disjoint from Re¢(C \ y) for any connected
component y of RC \ O;

(2) a connected component of Rp(C \ O) is contained in the disk bounded by
$(O) in RP? if and only if it is contained in the quadrant (+,+).

Proof. These two facts will be a consequence of Rokhlin’s complex orientation
formula ([Rok74] see also [Vir84b]). Since there exists a smoothing ¢'(C’)
of ¢(C) where ¢’ : C — CP? is a real J'-holomorphic curve of degree
d and genus W, we may assume'! from now on that C has genus
g‘—l—_—l)—z(d—_zl. Analogously, we may further assume for simplicity that ¢(C)
intersects transversely the three J -holomorphic lines L;.

Recall that since C is maximal, the set C\RC has two connected components.
Moreover the choice of one of these components induces an orientation of RC

1'This assumption is intended to simplify the exposition, and is not formally needed for our purposes.

Indeed, there exists a generalization of Rokhlin’s formula for nodal curves that we could also have used
here ([Zvo83] see also [Vir96])
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(as boundary). The effect of choosing the other component of C \ RC is to
reverse the orientation of RC. Hence there is a canonical orientation, up to a
global change of orientation of RC, of all connected components of RC . This
orientation is called the complex orientation of RC .

Recall also that a disjoint pair of embedded circles in RP?2 is said to be
injective if their union bounds an annulus A. If the two circles are oriented and
form an injective pair, this latter is said to be positive if the two orientations
is induced by some orientation of A, and is said to be negative otherwise, see
Figure 5a and b.

(a) A positive pair (b) A negative pair

(c) Fiedler’s orientation rule

FiGgure 5
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We denote respectively by IT, and I1_ the number of positive and negative
injective pairs of connected components of ¢(RC) equipped with their complex
orientation. Rokhlin’s complex orientation formula reduces in our case to

s H+_H____(k—1)2(k—2).

Now we apply Fiedler’s orientation rule ([Fie83] see also [Vir84b]) to estimate
the quantities I14 and I1_. Consider the projection o : C — Ly, and choose
an arc a of I'yg \ RC. The arc a lifts to a pair of conjc -conjugated arcs in C,
whose topological closure in C, denoted by @, is homeomorphic to S!. The set
a NRC consists of two ramification points ¢; and g of my. By construction,
each of these two points g; corresponds to a tangency of ¢(C) with a real
J -holomorphic line D; passing through p;,. Choose a complex orientation of
RC, and orient RD; in a way compatible with the complex orientation of R¢(C)
at ¢(q1), see Figure 5c. Transport this orientation to RD, via the portion of
the pencil of J-holomorphic lines through p;, that intersect ¢(a). Fiedler’s
orientation rule states that this orientation of RD, is still compatible with the
complex orientation of R¢(C) at ¢(g2), see Figure 5Sc.

It follows from Lemmas 3 and 4 that ¢(gq;) is contained in the quadrant
(£1,&2) if and only if ¢(g2) is contained in the quadrant (e, —&;), see Figures 3
and 4. Hence Fiedler’s orientation rule implies that the complex orientation of
the curve ¢(C) is as depicted in Figure 6. In particular if y; and y, are two
distinct connected components of ¢(RC) which form an injective pair, we see
that this pair contributes to IT; if and only if y; = ¢(O) and y;_; is in the
quadrant (+, +). Hence we deduce from Lemma 4 that

o k=Dk~-2)

e = 5 and TI_ >0,

with equality if and only if the conclusion of the lemma holds. Now the result
follows from Equation (1). O

Remark 6. It is proved in [Mik0OO] that the index map defined in [FPTOO]
provides a pairing between connected components of R¢(C \ O) and points with
integer coordinates in the interior of the triangle A, with vertices (0,0), (d,0),
and (0,d). It is interesting that this pairing is also visible from the arrangements
'y UT; UTI,, see Figures 3 and 4. In addition to the pairing, a triangulation of
Ay (dual to a honeycomb tropical curve) is also visible in these pictures. I do
not know whether this subdivision has any interpretation.
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FIGURE 6

Appendix A

As consequences of Theorem 1, we generalize to simple J-holomorphic
Harnack curves some facts that are well known for simple algebraic Harnack
curves.

A.l1. Topological types of simple Harnack curves. Here we deduce from
Theorem 2 all topological types of pairs (RPZ R¢(C)|JU?_ RL;), where
¢ : C — CP? is a simple Harnack curve.

Proposition 7. Let ¢ : C — CP? be a simple J-holomorphic Harnack curve
of degree d. Then the topological type of the pair (RP? R¢(C)|JU7_,RL;) is
obtained from Figure 1 by performing finitely many of the two following operations:

e the contraction of a circle disjoint from UizzoRL,- to a point, see Figure Ta;

e the replacement of u; consecutive intersection points with RL; by a point
of order of contact uj, see Figure Tb.

Conversely, any such topological type is realized by a J -holomorphic Harnack
curve of degree d .
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(a) (b)

Ficure 7

Proof. Indeed, let ¢’ : C' — CP? be a simple J’-holomorphic Harnack curve
of degree d and genus W such that ¢'(C’) is a smoothing of ¢(C),
and ¢'(C’) intersects transversely a J'-holomorphic perturbation L] of L; for
i =0,1,2. According to the proof of Theorem 2, the topological type of the pair
(RP%,R¢'(C")|JUZ_,RL!) is given Figure 1. This proves that the topological
type of the pair (RP2 R¢(C)|JUZ_,RL;) is as stated in the proposition.

Analogously, to prove the second statement, it is enough to exhibit a rational
Harnack curve of degree d intersecting each lines L; in a single point of order
of contact d. According to Theorem 2, the map

¢: CP!' — CP?
[x:y] — [x9:y?:(x-y)]

is such a rational Harnack curve. ]

A.2. Simple Harnack curves in other toric surfaces. Here we deduce the
classification of simple Harnack curves in any toric surface from the classification
of simple Harnack curves in CP?. Theorem 10 below can be proved along the
same lines as Theorem 2. The reason why we restricted to CP? in Theorem 2
is that, thanks to symmetries, the proof in this particular case is much more
transparent and avoids purely technical complications. Furthermore Theorem 10
can be deduced from Theorem 2 thanks to Viro’s patchworking. We briefly
indicate below how to perform this reduction. We refer to [Vir84a, Vir89, Shu035]
for references to patchworking, and to [IS02] for its J-holomorphic version.
Let A C R? be a convex polygon with vertices in Z?, and let Xa be the
complex algebraic toric surface associated to A, see [GKZ94]. The complement
of the maximal toric orbit of XA is denoted by d0Xa, and is called the roric
boundary of Xa. There is a natural correspondence e <> X, between edges
of A and irreducible components of dXa, which satisfies e N e’ # @ if and
only if X, N X, # @. Note that Xa might have isolated singularities located
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at intersections X, N X, of irreducible components of 0Xa. Recall that A
induces an embedding of X, into some projective space CPY, and we equip
X with the restriction, still denoted by wprgs, of the corresponding Fubini-Study
symplectic form. An almost complex structure J on XA tamed by wprg is
said to be compatible if it coincides with the toric complex structure on Xa
in a neighborhood of dXa, and real if the standard complex conjugation on
(C*)? = Xa \ 0Xa is J -antiholomorphic.

Let (C,w) be a compact symplectic surface equipped with a complex structure
Jc tamed by w, and a J¢ -antiholomorphic involution conjc, and let J be a
real compatible almost complex structure on Xa. A real J-holomorphic map
¢ : C — Xp is said to have degree A if ¢.([C]) is equal, in H(Xa:;Z), to
the class realized by a hyperplane section of X for the embedding induced by
A. By the adjunction formula, a J-holomorphic map ¢ : C — Xa of degree
A which does not factorize through a non-trivial ramified covering has genus at

most the number of integer points in the interior A of A. Furthermore ¢(C) is
non-singular in case of equality.

Definition 8. Let A C R? be a convex polygon with vertices in 72, and let
le1,...,ex] be the natural cyclic ordering on the edges of A. A simple Harnack
curve of degree A is a real J-holomorphic map ¢ : C — Xa of degree A, for
some real compatible almost complex structure J on Xa, satisfying the following
three conditions:

e C is a non-singular maximal real curve;

e there exist a connected component O of RC, and k disjoint arcs [q,..., [
contained in O such that ¢~ (X,,) C l;;

e the cyclic orientation on the arcs l; induced by O is precisely [ly,...,[].
Note that the last condition is non-empty only when k > 4.

Example 9. For A; the triangle with vertices (0,0), (d,0), and (0,d), the
surface X, is the projective plane equipped with a homogeneous coordinate
system, and 0Xa, is the union of the three coordinate lines. A simple Harnack
curve of degree A, is a simple Harnack curve of degree d in the sense of
Section 1. Note however that a J-holomorphic simple Harnack curve of degree
d might not be a simple Harnack curve of degree Ay, since J is not required to
be integrable in a neighborhood of the coordinate axis. This additional requirement
is necessary when one wants to consider more general toric surfaces.

As in Section 1, given ¢ : C — X a simple Harnack curve, we encode in a
sequence the intersections of ¢(Q) with the components of dXa . The choice of
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an orientation of O induces an ordering of the intersection points of O with X, ,
and we denote by s; the corresponding sequence of intersection multiplicities.
Let s be the sequence (si,...,s;) considered up to the equivalence relation
generated by

(S1,- s 8k) ~ (S1s--eu8k)y  (S1senvy k) ~ (SksS15ee-ySk—1),

and
(S1,...,8%) ~ (Sk» Sk—1,.-.,51)-

Recall that (4;)1<i<n = (Un—i)1<i<n-

Theorem 10. Ler A C R? be a convex polygon with vertices in 72, and let
¢ : C — Xa be a simple Harnack curve of degree A. Then the curve ¢(C)
has solitary nodes as only singularities (if any). Moreover if either g(C) =0 or

2(C)Y=|Z2n 3|, then the topological type of the pair ((R*)*, R¢(C) N (R*)?)
depends only on A, g(C), and s.

Proof. Let us assume for simplicity that ¢(C) intersects dXa transversely, and
suppose for a moment that we have proved the following:

Claim: for any edge e of A, the cyclic orders on the finite set O NRX, induced
by O and RX. coincide.

Assuming this claim, one constructs exactly as in the proof of [KRSO0I1, Theorem
2(1)] a simple Harnack curve in C P2 by patchworking ¢(C) with finitely many
simple algebraic Harnack curves constructed in [IV96]. Theorem 10 now follows
from Theorem 2. .

Hence it remains to prove the claim. Let e be an edge of A, and define X, to
be X, from which we remove its two intersection points with the other irreducible
components of dXa. Since the almost complex structure on A is integrable
in a neighborhood of 0Xa, there exists a J-holomorphic compactification of

(C*?U X, into CP2 = (C*)?ULyUL, UL, where L; is a J-holomorphic

line in CP?, and L, is a compactification of )?e. The map ¢ induces a J -
holomorphic map ¢’ : C — CP?, and exactly as in the beginning of Section 2.2,
one proves that the map np : C — L, has no ramification point on the connected
component of O\ ¢'"!(L; U L,) containing ¢'~!(Lo). This says precisely that
the cyclic orders on the set @ N RX, induced by O and RX, coincide. U
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