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La trace de Dixmier et autres traces

Alain Guichardet

Abstract. J. Dixmier published in 1966 a short note devoted to the construction of a "non

normal trace", i.e. a linear form on L(H) (set of all bounded operators in a Hilbert space H),

possessing all the algebraic properties of the standard trace, but lacking of some continuity

property. We expose in details the construction of the trace, as well as the functional

analysis tools used by Dixmier, then the utilization of the Dixmier trace by A. Connes in

his Non Commutative Geometry, and also some generalizations to certain von Neumann

algebras, other than L(H).

Mathematics Subject Classification (2010). Primary : 46L52, 40C99, 47L20, 46L99,

58B34.

Keywords. Dixmier trace, Banach limit, Operator ideals, Dixmier ideal, Fredholm module.

1. Introduction

L'expression au singulier "la trace de Dixmier" est un peu trompeuse, car il
y en a en realite un grand nombre, ä cause de l'intervention de l'axiome du

choix; mais l'emploi du singulier est amplement justifie par le fait que, dans de

nombreux cas interessants, les circonstances imposent le choix de l'une d'entre
elles.

Quoiqu'il en soit, l'histoire de cette trace, ou de ces traces, peut etre presentee

sous la forme d'un arbre dont on examinera le tronc, les racines et les branches.

Le tronc de notre arbre est aussi court que dense et fondamental : c'est la

note de Dixmier (1966)1 aux Comptes-rendus de l'Academie des Sciences de

1966, reduite ä deux pages : "Existence de traces non normales". On exposera la
construction de ces traces et quelques-unes de leurs proprietes. Pour construire

ses traces, Dixmier met en ceuvre des outils de deux sortes.

1. Les references ä la litterature sont donnees par le nom de l'auteur suivi de l'annee de publication.
La seule ambiguite pourrait etre Hersch (1961), mais les deux articles concernes traitent de la meme
question.
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• Une propriete des valeurs propres d'un Operateur lineaire compact positif A

dans un espace hilbertien H : notant /xi > fi2 > • • • > 0 ces valeurs propres
comptees un nombre de fois egal ä leurs multiplicites, on a

n

V/Lt sup (Tr(PAP))
k=i PsTl"

oü n„ designe l'ensemble des projecteurs orthogonaux de rang n dans H.
• Une forme lineaire, notee LIM, sur l'espace /°°(N*) des suites bornees

s (si,S2. • • •) de nombres reels, jouissant des proprietes suivantes :

(a) LIM (s) > 0 si s > 0

(b) LIM(1,1,...) 1

(c) si s,t e /°°(N*) et si sn — tn -» 0 quand n -> oo, alors LIM(i)
LIM (t)

(d) LIM (,?i, S2, - - •) LIM (si, ii,52,^2,^3,^3, •• •), propriete essentielle

pour demontrer la linearite de la trace qui sera construite.

Les conditions (a), (b), (c) definissent la notion de limite generalisee (voir
ci-dessous n° 2.3).

Les racines de notre arbre seront consacrees ä la construction de ces outils,
et ce sera l'occasion d'assister ä la naissance de ce que Ton a appele par la suite

analyse fonctionnelle; nous en distinguerons deux sortes :

• Operateurs compacts dans les espaces hilbertiens, spectres, traces; travaux de

Fredholm, Hilbert, Schmidt, Riesz, Fischer, Courant, Hersch;

• integration, limites generalisees; travaux de Lebesgue, Banach, Hahn,

von Neumann, Zorn.

Le livre "Lemons d'analyse fonctionnelle" de Riesz et Nagy (1965) constitue

une bonne introduction ä l'Analyse fonctionnelle, contenant l'essentiel de ce que
nous utiliserons ici.

Quant aux branches issues du tronc de notre arbre, ce sera d'abord l'utilisation
de la trace de Dixmier par A. Connes dans la construction de sa Geometrie

non commutative, ce qui nous amenera ä presenter rapidement les modules de

Fredholm qui y jouent un role essentiel; ce sera ensuite diverses generalisations
dans le cadre des algebres de von Neumann (M. Benameur, T. Fack, A.L. Carey et

altri); le lecteur verra ici le role important que continue de jouer la notion de trace
de Dixmier. On espere aussi - espoir peut-etre utopique! - donner ici au lecteur

non specialiste une petite idee des objets qui figurent dans ces vastes theories,
et qui reposent sur un heureux melange d'Analyse fonctionnelle, de Geometrie

differentielle et de Topologie algebrique.
Mes remerciements vont ä T. Fack, A. Carey et P. Cartier, dont les aides

m'ont ete precieuses, ainsi qu'au rapporteur pour ses tres utiles suggestions.
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2. Les racines de l'arbre

2.1. Operateurs compacts, spectres, traces.

2.1.1. Origines de la theorie. La theorie des Operateurs compacts est issue de

celle des equations differentielles de la physique mathematique, tout particuliere-
ment de l'equation de Laplace : on appelle resolvante d'un Operateur differentiel
D l'operateur A\ (D — A Id)-1, lorsqu'il est defini, oü A est un parametre
complexe; dans les bons cas, cet Operateur est un Operateur integral; sans vouloir

exposer la theorie, montrons comment cela fonctionne sur un exemple simple.
Considerons l'operateur differentiel D sur l'intervalle [0,1] avec

conditions au bord /(0) /(l) 0 ; on cherche ä resoudre l'equation de Sturm-

Liouville Df — p2f — g oü g est une fonction donnee et p un parametre reel

> 0. Les valeurs propres de D sont les nombres Xn n2n2, n 1,2,..., de

multiplicite 1, avec fonctions propres sin(«jrx). La solution de notre equation est

la suivante, si p2 n'est pas valeur propre :

On voit done que la resolvante (D — p2 Id)-1 est l'operateur integral de noyau

Kp, de valeurs propres (n2jt2 — p2)~l, de multiplicite 1, avec fonctions propres
sin(«7rx).

2.1.2. Quelques etapes de la construction de la theorie.

• Fredholm (1903). Generalisant une methode introduite par C. Neumann dans

le cas du probleme de Dirichlet - calcul des fonctions harmoniques dans

un domaine prenant des valeurs donnees sur le bord - Fredholm ramene
l'etude de certaines equations differentielles ä Celles d'equations integrales
de la forme

il demontre ce que l'on appelle alternative de Fredholm : ou bien A est (nul
ou) valeur propre de l'operateur integral T de noyau K, ou bien l'operateur
(T — A • I)-1 existe, et est alors une fonction holomorphe du parametre
complexe A.

oü le noyau Kp est donne par

—(psinp) 1 sinpx • sinp(l — y) si x<y
—(psinp)-1 sinpy • sinp(l — x) si y<x.
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• Hilbert (1904-1910). Definit l'espace, dit de Hilbert et note I2, les Operateurs
lineaires bornes, en particulier les Operateurs compacts, alors appeles Operateurs

completement Continus; rappelons que ce sont ceux qui transforment les

ensembles bornes en des ensembles relativement compacts. Hilbert demontre

que les Operateurs integraux consideres par Fredholm sont compacts.

• Schmidt (1907). Complete les resultats de Hilbert en montrant que les

Operateurs compacts autoadjoints admettent des bases orthonormees formees
de vecteurs propres.

• Riesz (1918). Precise la nature des spectres des Operateurs compacts autoadjoints.

Nous utiliserons tous ces resultats sous la forme du

Lemme fondamental. (Theoreme spectral pour les Operateurs compacts posi-
tifs.) Soit H un espace hilbertien complexe admettant une base orthonormee

denombrable; notons L(H) l'espace des Operateurs lineaires Continus dans

H et K(H) celui des Operateurs compacts. Soit A un Operateur compact
autoadjoint positif (i.e. (Ax \ x) > 0 9 x e H 11 existe une base orthonormee

formee de vecteurs propres e\, e2,... avec valeurs propres que l'on peut
ecrire p,\ > p,2 > > 0, chacune etant comptee un nombre de fois egal ä

sa multiplicity (finie si p.„ >0), et ne pouvant s'accumuler que sur 0. On

ecrit aussi pn(A) pour p.n si Ton veut preciser l'operateur A. Ce resultat

permet de traiter ces Operateurs un peu comme des matrices en dimension
finie.

2.1.3. Quelques proprietes des valeurs propres. Cette etude provient, elle aussi,

en grande partie de problemes physiques et du desir d'estimer les valeurs propres
des Operateurs differentiels de la physique mathematique, le principal resultat etant
le theoreme de Weyl :

Soit P un Operateur differentiel elliptique d'ordre d sur une variete

compacte de dimension n ; soit Ai,A2, la suite de ses valeurs

propres rangees de fagon que |Ai| < |A2| £ ...; alors |Afc| ~
Ckd'n +0(kdln~l).

Nous utiliserons ici les resultats dits "min.max", qui ont aussi une origine
purement algebrique dans le memoire de

• Fischer (1905). II etudie les formes quadratiques ä n variables reelles de la

forme / — tF, oü t est un parametre reel, f et F des formes quadratiques,
la seconde etant definie positive; on veut determiner les valeurs de t pour
lesquelles f — tF est de rang < n, c'est-a-dire les zeros du discriminant de

/-tF.
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On peut interpreter comme suit ses resultats. Notons (• | le produit
scalaire sur M" defini par F, A l'operateur lineaire symetrique defini par

/, ji\ > /x2 > > ßn les valeurs propres de A. Alors (§7) ßi est le plus

grand reel t pour lequel il existe un sous-espace vectoriel V de dimension

i tel que l'on ait

min{(Ax | x) \ x e V, ||x|| 1} > t;
il s'agit done ici d'un principe max.min, qui se demontre sans peine par
l'absurde si Ton sait que A admet une base de vecteurs propres e\,...,en :

il suffit de remarquer que tout V de dimension i contient un vecteur non
nul orthogonal ä e\,..., e;_i.

• Courant (1920). Courant demontre (Satz 3.a) un principe min.max pour les

valeurs propres des Operateurs differentiels autoadjoints dans des domaines

bornes de K" avec conditions au bord, qu'on peut enoncer sous la forme,

un peu simplifiee, suivante. On note Aj < A2 < les valeurs propres
d'un tel Operateur differentiel; soient vj,..., vn-\ des fonctions verifiant
les conditions au bord; on note d{vi,..., v„_i} le minimum d'un certain
ensemble d'integrales notees D{<p} ou les (p sont des fonctions orthogonales

aux vi et de norme 1 pour le produit scalaire hilbertien. Alors A„ est le

maximum des d{iq,..., v„_i}.
Courant renvoie ä un memoire des Math. Annalen n° 1, dont l'auteur H.

Weber invente une methode de minima pour construire les fonctions propres,
mais par recurrence, defaut que corrige la methode de Courant.

• Enonce moderne du principe min.max. Reprenons les notations de notre
lemme fondamental; on a

(1) ßn min {max{||Ax|| lief, ||jc|| 1}}
VeE„-i

oü En-1 designe l'ensemble des sous-espaces vectoriels de dimension n — 1,

et V"" l'orthogonal de V.

Ici encore la preuve est facile en utilisant le lemme fondamental : il suffit de

remarquer qu'un tel sous-espace V~" contient toujours un element non nul,
combinaison lineaire de ei,...,en. On remarquera que le minimum figurant
dans (1) est atteint pour le sous-espace V engendre par ely..., en-\, et qu'on

peut remplacer (1) par

(2) ßn — max{||Ax|| | (x \ e{) 0 Vi 1,...,«-1, ||x|| l}.
C'est l'assertion de H. Weber (cite plus haut).

• Hersch (1961). Hersch generalise la formule (2) de la fagon suivante : pour
n > 1, l < p <n on a
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(3) Pn-p+i + + pn= max{Tr(PAP)}

ou P parcourt l'ensemble des projecteurs orthogonaux de rang p, annulant

e\,...,en-p. On obtient (2) en prenant p 1. Prenant p n et posant

on ßi + + fin, on obtient la formule suivante, utilisee par Dixmier

pour construire ses traces

oü n„ designe l'ensemble des projecteurs orthogonaux de rang n. On ecrit
aussi a«(A) pour ct„ lorsque l'on veut preciser l'operateur A.

2.1.4. Traces. Trace usuelle des Operateurs lineaires. La notion de trace d'un

Operateur lineaire est apparue des les annees 1880 dans le cadre de 1'etude des

representations des groupes et des algebres (Frobenius, Killing, Lie, Molien, ...);
pour simplifier notre expose, nous nous placerons tout de suite dans le cas des

espaces hilbertiens complexes.
Soit d'abord H un espace hilbertien de dimension finie; la trace Tr (A)

d'un Operateur lineaire A est la somme des elements diagonaux de la matrice

representative de A dans une base quelconque; c'est aussi le nombre J2 (Ae, | e,)

oü (e,) est une base orthonormee quelconque de H ; c'est enfin la somme
des valeurs propres de l'operateur, comptees un nombre de fois egal ä leurs

multiplicites. La forme lineaire Tr jouit des proprietes suivantes :

• elle est positive, i.e. Tr(A) >0 si A > 0, i.e. si (Ax | x) > 0 Wx e H ;

• eile est centrale, i.e. Tr (AB) Tr (BA), ce qui equivaut ä dire que
Tr (UAU*) Tr (A) pour tout Operateur unitaire U.

Soit maintenant H un espace hilbertien de dimension hilbertienne infinie
denombrable; pour ce cas, on renvoie au livre de Dixmier [Dix3], Reprenons
les notations du lemme fondamental et notons L(H)+ l'ensemble des Operateurs

lineaires Continus positifs; nous definirons la trace de ces Operateurs par
Tr(A) ^(Aet \ e,) e [0,+00] oü (e,) est une base orthonormee quelconque.

L'application Tr jouit des proprietes suivantes :

(A) elle est additive et positivement homogene

(B) Tr (UAU*) — Tr (A pour tout Operateur unitaire U

(C) Tr(A) est fini et non nul pour au moins un A

(D) eile est normale, c'est-ä-dire compatible avec le passage aux limites crois-
santes : pour tout ensemble filtrant croissant T d'elements de L(H)+, de

borne superieure S, on a Tr(5) supTr(J").

(4) ct„ max{Tr(PAP) | P e II«}
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De plus toute application de L(H)+ dans [0, +00] possedant les proprietes
ci-dessus est proportionnelle ä Tr.

Enfin tout Operateur positif de trace linie est compact, et un Operateur compact

positif A est de trace finie si et seulement si Yff=\ lln (d) est fini, et alors egal
ä Tr(A).

Notion generale de trace sur L(H). Ce sont les applications de L(//)+ dans

[0, +00] possedant les proprietes (A), (B) et (C) ci-dessus; en fait la notion de trace

a ete definie dans des situations beaucoup plus generates : traces sur des algebres
de von Neumann, puis sur des C* -algebres; elles sont Hees ä la construction de

representations de ces algebres; Murray et von Neumann ont utilise les premieres

pour obtenir une classification des algebres de von Neumann. On s'est alors pose
le probleme de savoir s'il existe des traces sur L(H) qui sont non normales, i.e.

non proportionnelles ä la trace usuelle; Dixmier repond par 1'affirmative dans sa

note de 1966.

2.2. Integration, theoreme de Hahn-Banach. C'est le memoire de von
Neumann (1929) qui va permettre ä Dixmier de construire ses formes lineaires LIM
sur /°°(N*) ; avant de l'exposer, il est interessant d'en examiner les antecedents.

• Lebesgue (1904). Lebesgue construit l'integrale qui porte son nom fb f(x) dx

pour une fonction reelle mesurable bornee, jouissant des proprietes suivantes :

la /(*) dx fa+h f(x ~ h)dx

(2) fa /M + fb /(X) dx + ff /W dx 0

(3) fa( f(x) + fa /(X) dx + fa dx

(4) jbaf(x) dx>0 si />0
(5) /o1 ldx 1

(6) si fn(x) tend en croissant vers /(x), l'integrale de /«(x) tend vers
celle de /(x).

II pose la question de savoir si la condition (6) est une consequence des

autres.

• Banach (1923).

Banach repond par la negative ä la question posee par Lebesgue. Page 9 :

Je prouve aussi qu'on peut attacker ä toute fonction bornee

d'une variable reelle f(x) et ä tout intervalle (a,b) un nombre

fa /M dx satisfaisant aux conditions 1-5 de M. Lebesgue; ce

nombre peut etre regarde comme une generalisation de l'integrale.
Pour une fonction integrable au sens de Riemann, ce nombre est
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son integrale riemannienne; pour les fonctions integrables au

sens de M. Lebesgue, ce nombre ne coincide pas necessairement

avec son integrale lebesguienne {et la condition 6 n'est alors pas
satisfaite).

La demonstration precede par induction transfinie; la methode sera expliquee
plus clairement par Hahn (voir ci-dessous, oü Ton prendrait pour R0 l'espace
des fonctions integrables Riemann).

• Hahn {1927). Hahn s'interesse aux equations integrales du type de Fredholm

II demontre ce que l'on appelle aujourd'hui theoreme de Hahn-Banach sous

la forme suivante : si R est un espace vectoriel norme, Rq un sous-espace
vectoriel complet et /o une forme lineaire continue sur Rq il existe une

forme lineaire / sur R prolongeant /o et possedant la meme norme.
La demonstration utilise 1'induction transfinie, reposant sur la theorie des

ensembles et des nombres ordinaux et cardinaux creee par Cantor (entre 1872

et 1897) et Hausdorff (1914).

(i) On demontre d'abord ce qui suit :

il existe un ensemble bien ordonne de sous-espaces vectoriels

R^, £ < a, commengant ä Rq, tels que Ra R et que

£<£'=>• Rf C

[Precisons un peu : les £ et a sont des nombres ordinaux, on definit
facilement un R%0 si tous les R%, £ < £0 sont dejä definis, en utilisant
l'axiome du choix lorsque £0 admet un precedent.]

(ii) On construit ensuite, par un precede analogue, la forme lineaire sur un

Rf0 en la supposant construite sur tous les R%, $<$o•

• Banach {1929). Banach redecouvre le resultat de Hahn, en en donnant une

preuve moins explicite que Hahn :

Supposant f construite pour un sous-espace vectoriel V, on peut
la definir pour V augmente d'une dimension [... ]; on prouve le

theoreme par induction transfinie, en appliquant successivement

ce qui precede aux elements de I'ensemble R — Rq {suppose bien

ordonne).

Ce procede doit s'arreter, i.e. R%0 doit etre egal ä R avant

que la puissance de I'ensemble des R% depasse la puissance
de R.
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• Zorn (1935). Zorn enonce, sans demonstration, ce qu'on appelle aujourd'hui
lemme de Zorn, qui court-circuite 1'induction transfinie, sous la forme
suivante :

A set B — {B) of sets B is called a chain if for every two sets

B[, B2 either B\ D B2 or B2 D B\. A set A of sets A is said

to be closed (right-closed) if it contains the union ffB of every
chain B contained in A. Maximum principle : In a closed set A
of sets A there exits at least one, A*, not contained as a proper
subset in any other A e A.

Rappeions 1'enonce moderne de ce resultat : tout ensemble ordonne inductif
contient au moins un element maximal.

2.3. Limites generalises. Moyennes invariantes. Quelques definitions. Etant
donne un ensemble X, on note l°°(X) l'espace vectoriel des fonctions reelles

bornees sur X ; c'est un espace de Banach pour la norme || /||oo sup^ev | /fx)
Si X est infini, on dit que / admet une limite l ä l'infini si, pour tout e > 0,
il existe un sous-ensemble fini Y c X tel que x & X\Y =$ \ f(x) — / | < e; on

note lf(X) l'ensemble des fonctions tendant vers 0 ä l'infini.
On appelle limite generalisee sur X toute forme lineaire LIM sur l°°(X)

jouissant des proprietes suivantes :

• eile est positive, i.e. f >0 LIM (/) > 0

• si / admet une limite / ä l'infini, alors LIM(/) /.

II revient au meme de dire que / est nulle sur lf°(X) et que LIM(l) 1.

L'existence de limites generalisees est assuree par le theoreme de Hahn-Banach.

Enfin elles sont continues et de norme 1.

Von Neumann (1929). Von Neumann introduit la notion de messbare Gruppe
appelee ä jouer un role important sous le nom de groupe moyennable, notion
etendue aux groupes topologiques par Bogolioubov (1939) et aux semi-groupes

par Dixmier (1950). Voir aussi Greenleaf (1969).

Voici la definition (p. 88) : un groupe G est dit messbar s'il existe une forme
lineaire m sur l°°(G) possedant les proprietes suivantes :

(i) m(f)> 0 si / > 0

(ii) m( 1) 1

(iii) m(fx) m(f) oü fx(y) f(xy).
Von Neumann demontre entre autres les resultats suivants :

(a) Tout groupe fini est messbar, ce qui est trivial.
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(b) Tout groupe abelien est messbar; voici la preuve qu'il en donne (p. 95) :

la demonstration est une repetition presque mot pour mot du

raisonnement de Banach.

Precisons qu'il s'agit du memoire de Banach (1923) oü est utilisee l'induction
transfinie.

(c) Si G admet un sous-groupe distingue H qui est messbar ainsi que G/H,
alors G est messbar (preuve sans difficulte).

II resulte de lä que tout groupe resoluble est messbar. Von Neumann prouve
aussi que le groupe libre ä 2 generateurs n'est pas messbar.

Les formes lineaires m possedant les proprietes ci-dessus sont appelees

moyennes invariantes; elles jouissent en outre des proprietes suivantes

• m est continue et de norme 1 pour la norme || / ||oo sup | f(x)\
• si G est infini, m est une limite generalisee; en effet, pour tout sous-

ensemble fini E de G, il existe une infinite de sous-ensembles translates de

E et deux ä deux disjoints; par suite, m(f) est nul pour tout / ä support
fini, puis, par continuite, pour tout / tendant vers 0 ä l'infini.

Von Neumann demontre ensuite (p. 94) que si G, suppose moyennable, opere
sur un ensemble X, il existe une forme lineaire m sur l°°(X) possedant les

proprietes suivantes :

(d) m(f)> 0 si / > 0

(e) m(l) 1

(f) m(fg) m(f) oü fg(x) f(gx).
Une telle forme lineaire est encore appelee moyenne invariante, et on voit

comme plus haut que, si G contient un sous-groupe operant librement sur X,
toute moyenne invariante est une limite generalisee.

Voici enfin le resultat de von Neumann utilise directement par Dixmier pour
construire ses traces.

II existe une limite generalisee sur I'ensemble M, invariante par le groupe,
resoluble, des transformations affines x ^ ax + b, a,b e M, a /0.

3. Le tronc de l'arbre

3.1. Premiere etape : construction de limites generalisees sur N*. II s'agit
de construire une limite generalisee LIM verifiant la condition (d) du §1. On part
d'une limite generalisee m sur M, invariante par le groupe des transformations
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affines (resultat de von Neumann, fin du n° 2.3). On associe ä tout s e l°°(N*)
la fonction fs e /°°(M) definie par

fs(x) Si pour x e [i — 1, i [ U ] — i, —i + 1]

et on pose LIM(s) m(fs). II est immediat que LIM est une limite generalisee

sur N*, et la condition (d) resulte de l'invariance de m par la transformation

x 2.x.

Remarque. Voici d'autres methodes pour construire LIM, reposant plus directe-

ment sur 1'existence de limites generalisees quelconques.

• A. Connes (1994, p. 305) part d'une limite generalisee L sur R+, definit

fs par fs(x) Si pour x e ]i — l,z], et pose LIM(.v) L(M(/,)) oü, pour
une fonction localement integrable bornee g, la moyenne de Cesaro M(g)
est definie par

1 fx dt
M(g)(x) / g(t) - ;

log x J \ t

la propriete (d) de LIM resulte alors de ce que, pour tout reel k > 0 on a

lim (M(gjfc)(x) - M(g)(x)) 0 oü gk(x) g(kx).
x—>oo

• R. S. Ismagilov, en 2001, evite le passage par les fonctions d'une variable

reelle; il part d'une limite generalisee f sur N* et la compose avec

l'analogue discret de la moyenne de Cesaro, i.e. pose LIM(.s) i//"(M(.v))

oü, ici,

1 + log n ' pp= l

3.2. Deuxieme etape : construction des traces. Quelques notations. Avec les

notations fin(A), on(A) des nos 2.1.2 et 2.1.3, la trace usuelle est donnee par

Tr (4) ^2p„(A) sup (an(A));
« "

on designe par L1 (H)+ l'ensemble des Operateurs positifs de trace finie, i.e.

tels que la suite positive croissante (crn(A)) soit bornee. Les traces de Dixmier
sont finies sur l'ensemble des Operateurs tels que on(A) e O(log«), i.e. que la
suite s{A)n soit bornee; suivant A. Connes cet ensemble sera note

LL°o(^)+, partie positive d'un ideal Ll'°°(H) (voir ci-dessous n° 3.4).

Definition des traces. On part d'une limite generalisee LIM sur N* verifiant la

condition (d) du §1, et on pose
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LIM (s(A)) si A e Ll'°°(H)+
+00 dans le cas contraire.

Montrons que <p a bien les proprietes (A), (B), (C) du n° 2.1.4.

(i) II est immediat que <p est positivement homogene.

(ii) On a (p{UAU*) <p(A) parce que UAU* et A ont meme spectre.

(iii) <p(A) est fini et non nul pour au moins un A : prendre A tel que

(iv) La preuve de l'additivite est plus delicate.

a) Montrons d'abord que <p(A + B) < <p{A) + <p(B). On rappelle (n° 2.1.3) que,

pour tout A, on a crn(A) — max/>en„{Tr(PAP)}, ce qui entraine immediatement

b) Demontrons l'inegalite inverse.

• On a er« (A) + on{B) < a2n(A + B) : il suffit d'associer ä deux projecteurs
P, Q e n„ le projecteur sur le sous-espace vectoriel engendre par les images
de P et g. Cela entraine

II en resulte que si A ou B n'appartient pas ä L1 00 (//)+, il en est de

meme de A + B.

• Pour tout A eL, la suite s{A)n — ^(A)„+i tend vers 0, d'oü

(p{Ä) LIM (i'(A)) oü /(A) (s(A)2, s(A)2, ^(A)4, ^(A)4,...)

et la condition (d) (cf. page 2) entraine <p{A) — LIM (,s"(A)) oü s"(A)n
s(A)2n.

• Soient A,B e L1'°°(//)+ ; d'apres a), on a A + B e L1'00^)"1", par suite

• Comme tend vers 1, LIM {s"(A + B)) LIM (s""(A + B)) oü

an(A + B) < CT„(A) + an{B).

s(A)n + s(B)n < ^ j(A + B)n
1 + log«

<p(A + B)= LIM (s"(A + B)).

• Enfin

(p{A) + <p(B) LIM (s(A) + s(B)) < LIM {s""{A + B)).
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Pluralite de ces traces. Nous adopterons la notation usuelle Tr® au lieu de <p,

l'indice co rappelant le choix d'une limite generalisee co sur N*. Si la suite

s(A) admet une limite, TrM(A) est egal ä cette limite pour tout choix de a> ; en

particulier la trace Trw est nulle sur L1 (//)+, car alors ,t(4) admet la limite 0,

ce qui montre que la trace est non proportionnelle ä Tr, done non normale.

Si s(A) admet une limite, on dit que A est mesurable; dans le cas contraire,

TicoiA) prend une infinite de valeurs, mais cette situation est peu naturelle, citons
Gracia-Bondia et alt. (2001, p. 292) :

No naturally occurring operator has come to our attention that lies

in L1,00(H)+ but is not measurable, although it is easy to construct

artificial examples of non measurable operators without recourse to the

axiom of choice.

Commentaires de A. Connes (1994, p. 21 et 546) :

The Dixmier trace is a general tool designed to treat in a classical

manner data of quantum nature.

Property D [i.e. Trw(7) 0 if T is of trace class] is the counterpart
of locality in our framework.

Carey, Sukochev (2006), Lord, Sedaev, Sukochev (2005) examinent en details

le probleme de la mesurabilite des Operateurs; les premiers le relient au theoreme

de point fixe de Markov-Kakutani.

3.3. Exemples.

(a) Soit D l'operateur ^ dans L2([0,1]) avec pour domaine l'ensemble des

fonctions / e C°°([0,1]) telles que /(0) /(l) ; ses valeurs propres sont

les Ak — k, k e Z avec vecteurs propres (x) er27Zlkx ; l'operateur
A (D2 + 1)~1 /2 est compact, positif, de valeurs propres /xi 1, de

multiplicity 1, et ßk (1 + k2)~l/2 de multiplicity 2, pour k > 1 ;

la suite s{A)n 1+110g„ (l + 2^fe=i(l + k2)~1/2) a meme limite que

1+12gn J2k=l I' e'est-a-dire 2, ce qui montre que A appartient ä L''°°(//)+,
est mesurable et que Trm(A) 2.

(b) Voici un critere de mesurabilite pour un element A e LI'0C(H)+ utilisant
les fonctions zeta (Connes, 1994, p. 306) : pour tout nombre complexe s

de partie reelle > 1, l'operateur As a une trace usuelle finie, que l'on note

£4(5); alors 5(A) admet une limite / si et seulement si (5 — 1) ^(.v) tend

vers / lorsque s tend vers 1.

(c) Voici maintenant un ensemble d'exemples contenant l'exemple A

(D2 +1)-1/2 ci-dessus (Connes, 1994, p. 307). Soit A un Operateur pseudodif-
ferentiel d'ordre —n sur un fibre vectoriel au-dessus d'une variete compacte
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X de dimension n ; plusieurs auteurs avaient defini, par une formule ex-

plicite, ce qu'on appelle residu de Wodzicki de A. Connes demontre que
A, convenablement prolonge ä l'espace hilbertien H L2(A), appartient ä

L}'°°(H), est mesurable et que Trm(A) est egal ä ce residu.

Supposons maintenant que X est une variete riemannienne; notons A

l'operateur laplacien, / une fonction differentiable sur X, et Mf l'operateur
de multiplication par / ; alors Tr^ (Mf • A-"/2) est egal, ä un facteur constant

pres, ä 1'integrale de / pour 1'element de volume de X.
(d) Relation avec le semi-groupe de la chaleur (A. Connes, 1994, p. 563). Si

A e L1>00(//)+, et T L(H), on a

Trm(TA) cte • UM*(iT1 • Tr (T exp (-X~2 A~2)))

3.4. Les ideaux hp,q(H). L 1'0O(H)+ est la partie positive d'un ideal bilatere
de L(//), appele ideal de Dixmier : ensemble L]>°°(H) des Operateurs compacts
A tels que an(\A\) e O(logn); A. Connes a situe cet ideal dans une serie

d'ideaux bilateres Lp'q(H) jouissant de proprietes analogues ä Celles des espaces

d'interpolation usuels :

• pour p e ]l,+oo[, q e [l,+oo[, Lp'q(H) est l'ensemble des Operateurs

compacts tels que Yin n^1^p~l^9~1 cjn(\A\) < +oo

• pour p e ]l,+oo[, LP'°°(H) est l'ensemble des Operateurs compacts tels

que sup)«1^-1 -(Tn(|A|)) < +oo.
Tous ces ideaux contiennent L1(H) ; A. Connes a utilise certains d'entre eux

dans sa theorie de la Geometrie non commutative.

4. Les branches de l'arbre

4.1. Modules de Fredholm.

4.1.1. Introduction. Quelques mots pour commencer sur les Operateurs de

Fredholm (cf. Carey et altri, 2011). Un Operateur lineaire borne F dans un

espace hilbertien H est dit de Fredholm si son espace image est ferme et si son

noyau et son conoyau sont de dimensions finies; on definit son indice comme
etant dim Ker(F) -dim Coker(F). Ce sont aussi les Operateurs inversibles modulo
les compacts, en ce sens qu'il existe un Operateur G tel que FG — I et GF — I
soient compacts. Iis generalisent les Operateurs de la forme 1 +compact consideres

par Fredholm (cf. n° 2.1.2).

On peut faire remonter la notion de module de Fredholm aux travaux de

Gohberg et Krein (1957) et de Atiyah (1970). L'idee de depart est la suivante : soient
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X une variete compacte et P un Operateur pseudodifferentiel elliptique d'ordre 0

operant sur les sections d'un espace fibre vectoriel V ; il donne lieu ä un Operateur
dans L2(X,V) qui est de Fredholm; de plus, pour toute fonction / e C(X)
operant par multiplication dans L2(X, V), l'operateur [P,f] est compact. On

a un exemple simple de cette situation en prenant P — D(D2 + I)-1/2 oil D

est l'operateur differentiel considere au n° 3.3; il est immediat que P est de

Fredholm; pour montrer que [P, f] est compact, on peut se ramener au cas ou

/ est un polynome trigonometrique (par densite de ces polynomes et continuite),

puis, par linearite, au cas oü / est une fonction propre ; la suite est un calcul
facile.

Notons que ce travail a suivi de peu le theoreme de l'indice de Atiyah et

Singer, calculant l'indice de P en termes de donnees geometriques fournies par
P et X.

Atiyah part de lä pour introduire une notion abstraite d'Operateur elliptique
sur un espace topologique compact X : un triplet (H,ir, P) oil PI est un espace

hilbertien, n un morphisme C(A) -> L(H) et P un Operateur de Fredholm dans

H tel que [P, tt(/)] soit compact pour tout / e C(X). II construit ä partir de

lä les groupes dits de K-Homologie K0(A) qui constituent la theorie duale de la

K-theorie K°(Z).

4.1.2. Modules de Fredholm et Geometrie non commutative. Dans les annees

1990, A. Connes a defini les modules de Fredholm qui jouent un role fondamental
dans sa Geometrie non commutative. Voici leur definition (on ne parlera ici que
des modules de Fredholm dits "impairs") : ce sont des triplets (A, H, F) oü

H est un espace hilbertien, A une sous-algebre involutive de L(H) et F un

Operateur autoadjoint de carre I tel que [F, a] soit compact pour tout a e A.
Avant d'esquisser l'aspect "Quantized Calculus" de la Geometrie non commutative,

donnons une courte presentation de ses applications en Physique (Gracia-
Bondia et alt, 2001, p. XI) :

a bouquet of applications to the reinterpretation of the phenomenolo-

gical Standard Model of particle physics as a new spacetime geometry,
the quantum Hall effect, strings, renormalization and more in quantum
field theory

Quant ä l'aspect "Quantized Calculus", il est resume de la fa?on suivante par
A. Connes (1994, p. 1) :

The correspondence between geometric spaces and commutative algebras
is a familiar and basic idea of algebraic geometry. The purpose of this
book is to extend this correspondence to the noncommutative case in
the framework of real analysis [...]. The extension of classical tools,
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such as measure theory, topology, differential calculus and Riemannian

geometry, to the noncommutative situation [... ] involves, of course,

an algebraic reformulation of the above tools, but passing from the

commutative to the noncommutative case is never straightforward.

Tentons de preciser un peu : A. Connes voulait rendre rigoureuse une formule
donnant le Lagrangien de la theorie de Yang-Mills, qui presentait des divergences

logarithmiques.
Les modules de Fredholm permettent de faire aussi bien du calcul differentiel

que du calcul integral :

(i) On definit la differentielle d'un element a e A par da [F,a], ce qui
s'applique en particulier au cas oü les elements de notre algebre sont des

Operateurs de multiplication par des fonctions mesurables bornees, mais

pouvant etre tres irregulieres; on remarquera que Ton a encore la formule
de Leibniz d(a • b) da b + a db.

(ii) On peut definir des integrales de la forme f f(x) \dx\p qui ont un sens

puisque dx est maintenant un Operateur; on remarquera que la theorie des

distributions de L. Schwartz ne permet pas de le faire. C'est ici que vont
intervenir les traces de Dixmier.

Ajoutons que ce "Quantized Calculus" permet aussi de faire du calcul
differentiel sur des espaces tres irreguliers comme des quotients de varietes ou des

varietes feuilletees; et que les modules de Fredholm servent aussi ä construire la

K-homologie K°(A), egale ä K0(Y) si A C(X), le caractere de Chern allant
de K°(A) vers la cohomologie cyclique HC*(A), et ä generaliser le theoreme de

l'indice de Atiyah et Singer.

4.1.3. Un exemple particulierement instructif. (Cf. A. Connes [1994, p. 22 et

326]).
On note D le disque ouvert |z| < 1, S1 son bord, A CfS1), H L2(S1),

P le projecteur orthogonal de H sur le sous-espace des f tels que f (n)
0 Vn < 0, enfin F 2P — I; pour montrer qu'on obtient bien un module de

Fredholm, il suffit de verifier que tous les Operateurs [P,a] sont compacts, et,

pour cela, on utilise la meme methode que pour l'exemple du n° 4.1.1.

Voici maintenant un module de Fredholm isomorphe au precedent, mais

nettement plus interessant. Soit f2 un domaine de Jordan de C, et X son bord.

Le theoreme de la representation conforme de Riemann etablit qu'il existe une

bijection conforme D -> £2 ; si de plus X est une courbe de Jordan, Caratheodory
a montre que cette bijection se prolonge en un homeomorphisme Z : Sl X.
Transportant le module de Fredholm (A, H, F) par cet homeomorphisme, on



La trace de Dixmier et autres traces 477

obtient un module de Fredholm note (A0, H0, F0), oü A0 — C(X), qu'on peut
aussi decrire de la fa?on suivante.

Pour tout z0 e ß il existe une mesure vZo sur X telle que, pour toute

/ e C(X), on ait ff- dvZo / (z0) oü / est la fonction harmonique sur O

prolongeant / ; la classe d'equivalence de cette mesure est independante de z0

et appelee classe des mesures harmoniques. On pose alors

H0 lß(X,vZo)

• p0 — projecteur orthogonal de H0 sur 1'adherence de 1'ensemble des /
telles que / soit holomorphe

• F0 2P0-I.
Prenons maintenant pour X l'ensemble de Julia d'une transformation <p(z)

z2 + c ; £2 est done l'interieur de l'ensemble des z pour lesquels l'ensemble des

cpn (z) est borne; si c est suffisamment petit, la dimension de Hausdorff p de X
est >1. Notant z 1'application identique X -» C, 1'expression \dz\'' a un sens,

et on a le resultat important suivant.

Theoreme. Pour toute f e C(X), l'operateur f(z)-\dz\p appartient ä L1,00(Ho),

est mesurable et sa trace de Dixmier Trm(f(z) \dz\p) est egale, ä une constante

pres, ä /'integrale de f pour la mesure de Hausdorff dAp. De plus la

nonnormalite de la trace de Dixmier est une consequence du fait que les mesures
de Hausdorff et harmoniques sont mutuellement etrangeres.

4.2. Generalisations.

4.2.1. Introduction. On va remplacer les algebres h(H) utilisees jusqu'ici par
des algebres de von Neumann semi-finies, objets que l'on doit d'abord definir.

Une algebre de von Neumann est une sous-algebre autoadjointe d'une algebre

L(H), contenant I et fermee pour la topologie de la convergence simple des

Operateurs; une trace (sous-entendu normale, semi-finie, fidele) sur une algebre
de von Neumann A est une application x de l'ensemble des elements positifs
de A vers l'intervalle [0, +oo], jouissant des proprietes (A), (B), (D) des traces

sur L(H) (cf. n° 2.1.4) et des proprietes suivantes :

• pour tout element positif A de A, x(A) est la borne superieure des x(B),
0 < B < A, x(B) < +oo

• A > 0, x(A) 0 => A 0.

On dit que A est semi-finie si eile admet une telle trace; les algebres L(H)
en sont bien entendu des exemples, mais il en existe d'autres, tres differentes, par
exemple les facteurs de type IIqo : leur centre est reduit aux scalaires et r peut



478 A. Guichardet

prendre toute valeur reelle positive sur les projecteurs orthogonaux de l'algebre
(il s'agit lä des "geometries continues" de von Neumann).

4.2.2. Traces de Dixmier et algebres de von Neumann semi-finies. Voir Carey
et altri (2011), Benameur et Fack (2006).

Soit A une telle algebre munie d'une trace r ; on doit d'abord definir

l'analogue de l'ideal LI o°(//) du n° 3.4; pour cela, etant donne un element A,
on remplace les nombres ii„(A) du n° 2.1.2 par des /xs(A), s e R+ :

fis(A) inf {|| AP ||, P projecteur orthogonal de A, r(I — P) < sj;

on definit ensuite hx,°°(A) comme ensemble des A tels que

f ixs(A)ds e 0(log(l + 0);
Jo

enfin, pour toute limite generalisee o> sur au sens du n° 3.1, on pose

r"(/l) " SifTTÖ / ßAA)ds)-

On obtient alors les analogues

• du critere de mesurabilite du n° 3.2

• du lien avec le semi-groupe de la chaleur (n° 3.3)

• des modules de Fredholm.

Cela permet d'etudier les C* -algebres associees ä des graphes, et aussi de genera-
liser le theoreme sur les residus de Wodzicki au cas de varietes munies d'actions
de groupes ou de groupoides, notamment au cas d'operateurs pseudodifferentiels
le long des feuilles d'un feuilletage.

4.2.3. Applications diverses. On trouvera dans la reference [Sin] divers resultats,
lies aux traces de Dixmier, et concernant les Operateurs de Hankel, les residus

de Wodzicki, les ideaux de Marcinkiewicz, les etats KMS de la Physique

statistique,
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