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La trace de Dixmier et autres traces

Alain GUICHARDET

Abstract. J. Dixmier published in 1966 a short note devoted to the construction of a “non
normal trace”, i.e. a linear form on L(H) (set of all bounded operators in a Hilbert space H),
possessing all the algebraic properties of the standard trace, but lacking of some continuity
property. We expose in details the construction of the trace, as well as the functional
analysis tools used by Dixmier, then the utilization of the Dixmier trace by A. Connes in
his Non Commutative Geometry, and also some generalizations to certain von Neumann
algebras, other than L(H).

Mathematics Subject Classification (2010). Primary : 46L52, 40C99, 47L20, 46199,
58B34.

Keywords. Dixmier trace, Banach limit, Operator ideals, Dixmier ideal, Fredholm module.

1. Introduction

L’expression au singulier “la trace de Dixmier” est un peu trompeuse, car il
y en a en réalit¢ un grand nombre, a cause de l’intervention de 1’axiome du
choix ; mais I’emploi du singulier est amplement justifié par le fait que, dans de
nombreux cas intéressants, les circonstances imposent le choix de 1’'une d’entre
elles.

Quoiqu’il en soit, I’histoire de cette trace, ou de ces traces, peut étre présentée
sous la forme d’un arbre dont on examinera le tronc, les racines et les branches.

Le tronc de notre arbre est aussi court que dense et fondamental : c’est la
note de Dixmier (1966)! aux Comptes-rendus de I’Académie des Sciences de
1966, réduite & deux pages : “Existence de traces non normales”. On exposera la
construction de ces traces et quelques-unes de leurs propriétés. Pour construire
ses traces, Dixmier met en ceuvre des outils de deux sortes.

1. Les références a la littérature sont données par le nom de 1’auteur suivi de I’année de publication.

La seule ambiguité pourrait étre Hersch (1961), mais les deux articles concernés traitent de la méme
question.
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e Une propriété des valeurs propres d’un opérateur linéaire compact positif A
dans un espace hilbertien H : notant pq > u, > ... > 0 ces valeurs propres
comptées un nombre de fois égal a leurs multiplicités, on a

n
Yk = sup (Tr (PAP))
- Pell,

ou IT, désigne I’ensemble des projecteurs orthogonaux de rang n dans H.
e Une forme linéaire, notée LIM, sur ’espace [*°(N*) des suites bornées
s = (51,52,...) de nombres réels, jouissant des propriétés suivantes :
(a) LIM(s) >0 si s >0
(b) LIM(1,1,...) =1
(c) si s,t € [®(N*) et si s, —1, - 0 quand n — oo, alors LIM (s) =
LIM (¢)
(d) LIM(sy,s2,...) = LIM(sy,s1,52,52,53,53,...), propriété essentielle
pour démontrer la linéarité de la trace qui sera construite.

Les conditions (a), (b), (c) définissent la notion de [limite généralisée (voir
ci-dessous n° 2.3).

Les racines de notre arbre seront consacrées a la construction de ces outils,
et ce sera ’occasion d’assister a la naissance de ce que I’on a appelé par la suite
analyse fonctionnelle; nous en distinguerons deux sortes :

e opérateurs compacts dans les espaces hilbertiens, spectres, traces; travaux de
Fredholm, Hilbert, Schmidt, Riesz, Fischer, Courant, Hersch;

e intégration, limites généralisées; travaux de Lebesgue, Banach, Hahn,
von Neumann, Zorn.

Le livre “Lecons d’analyse fonctionnelle” de Riesz et Nagy (1965) constitue
une bonne introduction a I’Analyse fonctionnelle, contenant 1’essentiel de ce que
nous utiliserons ici.

Quant aux branches issues du tronc de notre arbre, ce sera d’abord 1’utilisation
de la trace de Dixmier par A. Connes dans la construction de sa Géométrie
non commutative, ce qui nous amenera a présenter rapidement les modules de
Fredholm qui y jouent un role essentiel; ce sera ensuite diverses généralisations
dans le cadre des algebres de von Neumann (M. Benameur, T. Fack, A.L. Carey et
altri); le lecteur verra ici le role important que continue de jouer la notion de trace
de Dixmier. On espere aussi — espoir peut-étre utopique! — donner ici au lecteur
non spécialiste une petite idée des objets qui figurent dans ces vastes théories,
et qui reposent sur un heureux mélange d’Analyse fonctionnelle, de Géométrie
différenticlle et de Topologie algébrique.

Mes remerciements vont a T. Fack, A. Carey et P. Cartier, dont les aides
m’ont été précieuses, ainsi qu’au rapporteur pour ses treés utiles suggestions.
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2. Les racines de ’arbre

2.1. Opérateurs compacts, spectres, traces.

2.1.1. Origines de la théorie. La théorie des opérateurs compacts est issue de
celle des équations différentielles de la physique mathématique, tout particuliére-
ment de I’équation de Laplace : on appelle résolvante d’un opérateur différentiel
D Topérateur A, = (D — A -Id)™!, lorsqu’il est défini, ol A est un paramétre
complexe ; dans les bons cas, cet opérateur est un opérateur intégral ; sans vouloir
exposer la théorie, montrons comment cela fonctionne sur un exemple simple.

Considérons l’opérateur diftérentiel D = —d—22 sur 'intervalle [0, 1] avec
conditions au bord f(0) = f(1) = 0; on cherche a résoudre [’équation de Sturm-
Liowville Df —p?>f = g ou g est une fonction donnée et p un paramétre réel
> 0. Les valeurs propres de D sont les nombres A, = n?z?, n =1,2,..., de
multiplicité 1, avec fonctions propres sin(nmx). La solution de notre équation est
la suivante, si p? n’est pas valeur propre :

1
£ = [0 K, (. 9) 2() dy

ou le noyau K, est donné par

—(psinp)~lsinpx-sinp(l—y) si x<y
K,O(x9 y) =
—(psinp)~lsinpy -sinp(l —x) si y <x.

On voit donc que la résolvante (D — p?-Id)~! est I'opérateur intégral de noyau
K,, de valeurs propres (n’m? — p?)~!, de multiplicité 1, avec fonctions propres
sin(nmx).

2.1.2. Quelques étapes de la construction de la théorie.

e Fredholm (1903). Généralisant une méthode introduite par C. Neumann dans
le cas du probleme de Dirichlet — calcul des fonctions harmoniques dans
un domaine prenant des valeurs données sur le bord — Fredholm ramene
I’étude de certaines équations différentielles a celles d’équations intégrales
de la forme

b
f KG,y) FG)dy — A £(0) = g(0);

il démontre ce que 1’on appelle alternative de Fredholm : ou bien A est (nul
ou) valeur propre de I'opérateur intégral 7' de noyau K, ou bien 'opérateur
(T — A -D~! existe, et est alors une fonction holomorphe du paramétre
complexe A.
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e Hilbert (1904-1910). Définit ’espace, dit de Hilbert et noté [?, les opérateurs
linéaires bornés, en particulier les opérateurs compacts, alors appelés opéra-
teurs complétement continus ; rappelons que ce sont ceux qui transforment les
ensembles bornés en des ensembles relativement compacts. Hilbert démontre
que les opérateurs intégraux considérés par Fredholm sont compacts.

o Schmidt (1907). Complete les résultats de Hilbert en montrant que les
opérateurs compacts autoadjoints admettent des bases orthonormées formées
de vecteurs propres.

e Riesz (1918). Précise la nature des spectres des opérateurs compacts autoad-
joints. Nous utiliserons tous ces résultats sous la forme du

Lemme fondamental. (Théoréme spectral pour les opérateurs compacts posi-
tifs.) Soit H un espace hilbertien complexe admettant une base orthonormée
dénombrable; notons L(H) ’espace des opérateurs linéaires continus dans
H et K(H) celui des opérateurs compacts. Soit A un opérateur compact
autoadjoint positif (i.e. (Ax |x) >0 Vx € H). Il existe une base orthonor-
mée formée de vecteurs propres eq,e,,... avec valeurs propres que 1’on peut
écrire ; > pa > ... > 0, chacune étant comptée un nombre de fois égal a
sa multiplicité (finie si p, > 0), et ne pouvant s’accumuler que sur 0. On
écrit aussi pu,(A) pour p, si I'on veut préciser I'opérateur A. Ce résultat
permet de traiter ces opérateurs un peu comme des matrices en dimension
finie.

2.1.3. Quelques propriétés des valeurs propres. Cette étude provient, elle aussi,
en grande partie de problemes physiques et du désir d’estimer les valeurs propres
des opérateurs différentiels de la physique mathématique, le principal résultat étant
le théoréeme de Weyl

Soit P un opérateur différentiel elliptique d’ordre d sur une variété
compacte de dimension n; soit Ay,A,,... la suite de ses valeurs
propres rangées de fagon que |Ai| < |A2| < ...; alors |Ax| ~
Ck4/" + 0 (k¥/n=1).

Nous utiliserons ici les résultats dits “min.max”, qui ont aussi une origine
purement algébrique dans le mémoire de

e Fischer (1905). 1l étudie les formes quadratiques a n variables réelles de la
forme f —tF,ou ¢t est un parametre réel, f et F des formes quadratiques,
la seconde étant définie positive; on veut déterminer les valeurs de ¢ pour
lesquelles f —tF est de rang < n, c’est-a-dire les zéros du discriminant de
f —1tF.
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On peut interpréter comme suit ses résultats. Notons (- | -) le produit
scalaire sur R” défini par F, A D'opérateur linéaire symétrique défini par
[, 1 = U2 > ... > u, les valeurs propres de A. Alors (§7) w; est le plus
grand réel ¢ pour lequel il existe un sous-espace vectoriel V' de dimension
i tel que l'on ait

min{(Ax | x) |[x eV, |x|=1}>1¢;

il s’agit donc ici d’un principe max.min, qui se démontre sans peine par
I’absurde si 1’on sait que A admet une base de vecteurs propres e;,...,e, :
il suffit de remarquer que tout V' de dimension i contient un vecteur non
nul orthogonal a ey,...,ej_;.

Courant (1920). Courant démontre (Satz 3.a) un principe min.max pour les
valeurs propres des opérateurs différentiels autoadjoints dans des domaines
bornés de R" avec conditions au bord, qu’on peut énoncer sous la forme,

un peu simplifiée, suivante. On note A; < A, < ... les valeurs propres
d’un tel opérateur différentiel; soient vy,...,v,—; des fonctions vérifiant
les conditions au bord; on note d{vy,...,v,—1} le minimum d’un certain

ensemble d’intégrales notées D{¢} ou les ¢ sont des fonctions orthogonales
aux v; et de norme 1 pour le produit scalaire hilbertien. Alors A, est le
maximum des d{vy,...,vy—1}.

Courant renvoie a2 un mémoire des Math. Annalen n° 1, dont I’auteur H.
Weber invente une méthode de minima pour construire les fonctions propres,

mais par récurrence, défaut que corrige la méthode de Courant.

Enoncé moderne du principe min.max. Reprenons les notations de notre
lemme fondamental; on a

(1) pn = min {max{||Ax||xe V", |x]| =1}}

€Lp—1

ou E,_; désigne I’ensemble des sous-espaces vectoriels de dimension n—1,
et V™ l'orthogonal de V.

Ici encore la preuve est facile en utilisant le lemme fondamental : il suffit de
remarquer qu’un tel sous-espace V™ contient toujours un élément non nul,
combinaison linéaire de ey, ..., e,. On remarquera que le minimum figurant
dans (1) est atteint pour le sous-espace V' engendré par ey,...,e,—1, €t quon
peut remplacer (1) par

2) pup =max{||Ax|| | (x|e)=0 Vi=1,...,.n—1, |x| =1}.

C’est ’assertion de H. Weber (cité plus haut).

Hersch (1961). Hersch généralise la formule (2) de la fagon suivante : pour
n>1,1<p<nona
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3) Pn—p+1 + ... + pn = max{Tr (PAP)}

ou P parcourt ’ensemble des projecteurs orthogonaux de rang p, annulant
et,...,en—p. On obtient (2) en prenant p = 1. Prenant p = n et posant
Op = M1 + ...+ Wn, on obtient la formule suivante, utilisée par Dixmier
pour construire ses traces

4) on = max{Tr (PAP) | P € I1,}

ou IT, désigne I’ensemble des projecteurs orthogonaux de rang n. On écrit
aussi 0,(A) pour o, lorsque I'on veut préciser ’opérateur A.

2.1.4. Traces. Trace usuelle des opérateurs linéaires. La notion de trace d’un
opérateur linéaire est apparue des les années 1880 dans le cadre de 1’étude des
représentations des groupes et des algebres (Frobenius, Killing, Lie, Molien, ...);
pour simplifier notre exposé, nous nous placerons tout de suite dans le cas des
espaces hilbertiens complexes.

Soit d’abord H wun espace hilbertien de dimension finie; la trace Tr(A)
d’un opérateur linéaire A est la somme des éléments diagonaux de la matrice
représentative de A dans une base quelconque; c’est aussi le nombre ) (Ae; | ;)

1
ou (e;) est une base orthonormée quelconque de H ; c’est enfin la somme
des valeurs propres de l’opérateur, comptées un nombre de fois égal a leurs
multiplicités. La forme linéaire Tr jouit des propriétés suivantes :

e clle est positive, i.e. Tr(A) >0 si A>0,ie. si (Ax|x)>0 VxeH;

o clle est centrale, i.e. Tr(AB) = Tr(BA), ce qui équivaut a dire que
Tr (UAU*) = Tr (A) pour tout opérateur unitaire U .

Soit maintenant H un espace hilbertien de dimension hilbertienne infinie
dénombrable; pour ce cas, on renvoie au livre de Dixmier [Dix3]. Reprenons
les notations du lemme fondamental et notons L(H)" I’ensemble des opéra-
teurs linéaires continus positifs; nous définirons la trace de ces opérateurs par
Tr(A) = > (Ae; | ¢;) € [0,4+00] ol (e;) est une base orthonormée quelconque.

i
Lapplication Tr jouit des propriétés suivantes :
(A) elle est additive et positivement homogene
(B) Tr (UAU*) = Tr (A) pour tout opérateur unitaire U

(C) Tr(A) est fini et non nul pour au moins un A

(D) elle est normale, c’est-a-dire compatible avec le passage aux limites crois-
santes : pour tout ensemble filtrant croissant F d’éléments de L(H)™, de
borne supérieure S, on a Tr(S) = sup Tr (F).
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De plus toute application de L(H)™ dans [0, +oo] possédant les propriétés
ci-dessus est proportionnelle a Tr.

Enfin tout opérateur positif de trace finie est compact, et un opérateur compact
positif A est de trace finie si et seulement si Y o, wn(A4) est fini, et alors égal
a Tr(A4).

Notion générale de trace sur L(H). Ce sont les applications de L(H)* dans
[0, +00] possédant les propriétés (A), (B) et (C) ci-dessus; en fait la notion de trace
a été définie dans des situations beaucoup plus générales : traces sur des algebres
de von Neumann, puis sur des C*-algebres; elles sont liées a la construction de
représentations de ces algébres; Murray et von Neumann ont utilisé les premiéres
pour obtenir une classification des algebres de von Neumann. On s’est alors posé
le probleme de savoir s’il existe des traces sur L(H) qui sont non normales, i.e.

non proportionnelles a la trace usuelle; Dixmier répond par I’affirmative dans sa
note de 1966.

2.2. Intégration, théoreme de Hahn-Banach. C’est le mémoire de von Neu-
mann (1929) qui va permettre 2 Dixmier de construire ses formes linéaires LIM
sur [°°(N*) ; avant de I’exposer, il est intéressant d’en examiner les antécédents.

o Lebesgue (1904). Lebesgue construit I’intégrale qui porte son nom |, f f(x)dx
pour une fonction réelle mesurable bornée, jouissant des propriétés suivantes :

M) [P fe)yde = 258 fx —h)dx

@) [2fodx+ [f f)dx + [7 f(x)dx =0

@) [(f@)+ o) dx = [} f(x)dx + [} p(x) dx
@ [P f(x)dx=0si f>0

(5) [y 1dx =1

(6) si fu(x) tend en croissant vers f(x), 'intégrale de f,(x) tend vers
celle de f(x).

Il pose la question de savoir si la condition (6) est une conséquence des
autres.

e Banach (1923).
Banach répond par la négative a la question posée par Lebesgue. Page 9 :

Je prouve aussi qu'on peut attacher a toute fonction bornée
d’une variable réelle f(x) et a tout intervalle (a,b) un nombre
/! : f(x)dx satisfaisant aux conditions I-5 de M. Lebesgue; ce
nombre peut étre regardé comme une généralisation de l’intégrale.
Pour une fonction intégrable au sens de Riemann, ce nombre est
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son intégrale riemannienne; pour les fonctions intégrables au
sens de M. Lebesgue, ce nombre ne coincide pas nécessairement
avec son intégrale lebesguienne (et la condition 6 n’est alors pas
satisfaite).

La démonstration procéde par induction transfinie ; la méthode sera expliquée
plus clairement par Hahn (voir ci-dessous, ol I’on prendrait pour R, 1’espace
des fonctions intégrables Riemann).

Hahn (1927). Hahn s’intéresse aux équations intégrales du type de Fredholm

b
o(s) + [ K(s.0)p(t)dt = f(s).

Il démontre ce que I’on appelle aujourd’hui théoréme de Hahn-Banach sous
la forme suivante : si R est un espace vectoriel normé, Ry un sous-espace
vectoriel complet et f; une forme linéaire continue sur Ry, il existe une
forme lin€aire f sur R prolongeant fp et possédant la méme norme.
La démonstration utilise 1’induction transfinie, reposant sur la théorie des

ensembles et des nombres ordinaux et cardinaux créée par Cantor (entre 1872
et 1897) et Hausdorff (1914).

(i) On démontre d’abord ce qui suit :

il existe un ensemble bien ordonné de sous-espaces vectoriels

Rg, & < a, commengant a Ry, tels que Ry = R et que

§§§’2>R§-CR§-:.
[Précisons un peu : les £ et o sont des nombres ordinaux, on définit
facilement un Rg, si tous les Rg, § < § sont déja définis, en utilisant
I’axiome du choix lorsque &, admet un précédent.]

Ce procédé doit s’arréter, i.e. Rg, doit étre égal a R avant
que la puissance de ’ensemble des Rg dépasse la puissance
de R.

(ii) On construit ensuite, par un procédé analogue, la forme linéaire sur un

Rg, en la supposant construite sur tous les Rg, § < &p.

Banach (1929). Banach redécouvre le résultat de Hahn, en en donnant une
preuve moins explicite que Hahn :

Supposant f construite pour un sous-espace vectoriel V, on peut
la définir pour V augmenté d’une dimension [... |; on prouve le
théoréeme par induction transfinie, en appliquant successivement
ce qui précede aux éléments de [’ensemble R — Ry (supposé bien
ordonné).
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e Zorn (1935). Zorn énonce, sans démonstration, ce qu’on appelle aujourd’hui
lemme de Zorn, qui court-circuite 1’induction transfinie, sous la forme
suivante :

A set B={B} of sets B is called a chain if for every two sets
B1, By either By D By or B, D By. A set A of sets A is said
to be closed (right-closed) if it contains the union Y B of every
chain B contained in A. Maximum principle : In a closed set A
of sets A there exits at least one, A*, not contained as a proper
subset in any other A € A.

Rappelons 1’énoncé moderne de ce résultat : tout ensemble ordonné inductif
contient au moins un élément maximal.

2.3. Limites généralisées. Moyennes invariantes. Quelques définitions. Etant
donné un ensemble X, on note /°°(X) I’espace vectoriel des fonctions réelles
bornées sur X ; c’est un espace de Banach pour la norme || f|loc = sup,cyx | f(x)].
Si X est infini, on dit que f admet une limite | a infini si, pour tout & > 0,
il existe un sous-ensemble fini ¥ C X tel que x € X\Y = | f(x) =[] <¢; on
note /g°(X) I’ensemble des fonctions tendant vers 0 a I’infini.

On appelle limite généralisée sur X toute forme linéaire LIM sur /°°(X)
jouissant des propriétés suivantes :

e clle est positive, i.e. f >0=LIM(f) =0
e si f admet une limite / a I’infini, alors LIM ( f) = 1.

Il revient au méme de dire que f est nulle sur /§°(X) et que LIM(1) = 1.
L'existence de limites généralisées est assurée par le théoréme de Hahn-Banach.
Enfin elles sont continues et de norme 1.

Von Neumann (1929). Von Neumann introduit la notion de messbare Gruppe
appelée a jouer un role important sous le nom de groupe moyennable, notion
étendue aux groupes topologiques par Bogolioubov (1939) et aux semi-groupes
par Dixmier (1950). Voir aussi Greenleaf (1969).

Voici la définition (p. 88) : un groupe G est dit messbar s’il existe une forme
linéaire m sur [°°(G) possédant les propriétés suivantes :

(i) m(f)=0si f=0
(i) m(1) =1
(iii) m( fx) =m(f) ou fx(y) = f(xy).
Von Neumann démontre entre autres les résultats suivants :

(a) Tout groupe fini est messbar, ce qui est trivial.
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(b) Tout groupe abélien est messbar; voici la preuve qu’il en donne (p. 95) :

la démonstration est une répétition presque mot pour mot du
raisonnement de Banach.

Précisons qu’il s’agit du mémoire de Banach (1923) ot est utilisée 1’induction
transfinie.

(c) Si G admet un sous-groupe distingué H qui est messbar ainsi que G/H ,
alors G est messbar (preuve sans difficulté).

Il résulte de 1a que tout groupe résoluble est messbar. Von Neumann prouve
aussi que le groupe libre a 2 générateurs n’est pas messbar.

Les formes linéaires m possédant les propriétés ci-dessus sont appelées
moyennes invariantes; elles jouissent en outre des propriétés suivantes

e m est continue et de norme 1 pour la norme || f | = sup| f(x)|

e si G est infini, m est une limite généralisée; en effet, pour tout sous-
ensemble fini £ de G, il existe une infinité de sous-ensembles translatés de
E et deux a deux disjoints; par suite, m(f) est nul pour tout f a support
fini, puis, par continuité, pour tout f tendant vers O a I’infini.

Von Neumann démontre ensuite (p. 94) que si G, supposé moyennable, opere
sur un ensemble X, il existe une forme linéaire m sur [°°(X) possédant les
propriétés suivantes :

(d) m(f)=0si f=0
(e) m(l) =1
() m(fg) =m(f) o fg(x) = f(gx).

Une telle forme linéaire est encore appelée moyenne invariante, et on voit
comme plus haut que, si G contient un sous-groupe opérant librement sur X,
toute moyenne invariante est une limite généralisée.

Voici enfin le résultat de von Neumann utilisé directement par Dixmier pour
construire ses traces.

Il existe une limite généralisée sur l’ensemble R, invariante par le groupe,
résoluble, des transformations affines x — ax +b, a,b € R, a # 0.

3. Le tronc de ’arbre

3.1. Premiere étape : construction de limites généralisées sur N*. Il s’agit
de construire une limite généralisée LIM vérifiant la condition (d) du §1. On part
d’une limite généralisée m sur R, invariante par le groupe des transformations
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affines (résultat de von Neumann, fin du n® 2.3). On associe a tout s € [*°(N¥)
la fonction f; € [°°(R) définie par

fs(x)=s pour xel[i—1,i[U]—1i,—i+1]

et on pose LIM(s) = m( f5). Il est immédiat que LIM est une limite généralisée
sur N* et la condition (d) résulte de I’invariance de m par la transformation
X — 2x.

Remarque. Voici d’autres méthodes pour construire LIM, reposant plus directe-
ment sur I’existence de limites généralisées quelconques.

e A. Connes (1994, p. 305) part d’une limite généralisée L sur RZ, définit
fs par fs(x) =s; pour x € ]i —1,i], et pose LIM(s) = L(M( f5)) ou, pour
une fonction localement intégrable bornée g, la moyenne de Cesaro M(g)
est définie par

1 = de
M = —— 1) —;
©w =5 [ #0]
la propriété (d) de LIM résulte alors de ce que, pour tout réel k > 0 on a

Jim (M(gi)(x) —M(g)(x)) =0 ot gi(x) = g(kx).

e R.S. Ismagilov, en 2001, évite le passage par les fonctions d’une variable
réelle; il part d’une limite généralisée ¢ sur N* et la compose avec
I’analogue discret de la moyenne de Cesaro, i.e. pose LIM(s) = v (M(s))
ou, ici,

M _ 1 . Sp
(8)n = 1+10gn;—p—'

3.2. Deuxieme étape : construction des traces. Quelques notations. Avec les
notations p,(A), 0,(A) des n® 2.1.2 et 2.1.3, la trace usuelle est donnée par

Tr(A) = Y pa(A) = sup (0 (4)):

on désigne par L!(H)T I’ensemble des opérateurs positifs de trace finie, i.e.
tels que la suite positive croissante (0,(A)) soit bornée. Les traces de Dixmier
sont finies sur ’ensemble des opérateurs tels que o0,(A) € O(logn), i.e. que la
suite s(A), = 1‘:’_’15)’;)” soit bornée; suivant A. Connes cet ensemble sera noté
LL®(H)™T, partie positive d’un idéal L*°(H) (voir ci-dessous n°® 3.4).

Définition des traces. On part d’une limite généralisée LIM sur N* vérifiant la
condition (d) du §1, et on pose



472

A. GUICHARDET

LIM (s(A)) si A e LL®°(H)t
+00 dans le cas contraire.

@(A) = {

Montrons que ¢ a bien les propriétés (A), (B), (C) du n°® 2.1.4.

(i)
(ii)
(iii)

(iv)

Il est immédiat que ¢ est positivement homogene.
On a ¢(UAU*) = @(A) parce que UAU* et A ont méme spectre.

@(A) est fini et non nul pour au moins un A : prendre A tel que
n+1
pn(A) = log( 7 ) .

La preuve de ’additivité est plus délicate.

a) Montrons d’abord que ¢(A4 + B) < ¢(A) + ¢(B). On rappelle (n° 2.1.3) que,
pour tout A, on a 0,(A) = maxpen, {Tr (PAP)}, ce qui entraine immédiatement

on(A + B) < 04(A) + on(B).

b) Démontrons 1’inégalité inverse.

On a 0,(A) + 0,(B) < 02,(A + B) : il suffit d’associer a deux projecteurs
P, O € I1, le projecteur sur le sous-espace vectoriel engendré par les images
de P et Q. Cela entraine
1 4+ log2n
A B)y < ————5s(A+ B),.
S(An +5(Byn = T =5 s(4+ B

Il en résulte que si A ou B n'appartient pas a3 LUV®(H)™T, il en est de
méme de A+ B.

Pour tout 4 € L1*(H)™, la suite s(A4), —s(A),4+1 tend vers 0, d’ol
¢(A) =LIM (s'(4)) ol s'(4) = (s(A)2,5(A)2,5(A)4, s(A)s, ...)

et la condition (d) (cf. page 2) entraine ¢(4) = LIM (s”(A4)) ol s"(A), =
s(A)z2n -
Soient A, B € LL°(H)™t ; d’aprés a), on a A+ B € LL°(H) ™, par suite

@(A+ B) = LIM (s"(A + B)).

Comme llﬂffgzn" tend vers 1, LIM (s”(4 + B)) = LIM (s""(A + B)) ol

1 4+ log2n
e A B — " A B .
$TIAT S 1+ logn S+ B

Enfin
¢(A) + ¢(B) = LIM (S(A) + S(B)) <LIM (s””(A + B)) :
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Pluralité de ces traces. Nous adopterons la notation usuelle Tr, au lieu de ¢,
I'indice @ rappelant le choix d’une limite généralisée w sur N*. Si la suite
s(A) admet une limite, Tr,(A) est égal a cette limite pour tout choix de w ; en
particulier la trace Tr, est nulle sur L'(H)*, car alors s(A4) admet la limite 0,
ce qui montre que la trace est non proportionnelle 2 Tr, donc non normale.

Si s(A) admet une limite, on dit que A est mesurable; dans le cas contraire,
Tr,(A) prend une infinit€é de valeurs, mais cette situation est peu naturelle, citons
Gracia-Bondia et alt. (2001, p. 292) :

No naturally occurring operator has come to our attention that lies
in LY (H)t but is not measurable, although it is easy to construct
artificial examples of non measurable operators without recourse to the
axiom of choice.

Commentaires de A. Connes (1994, p. 21 et 546) :

The Dixmier trace is a general tool designed to treat in a classical
manner data of quantum nature.

Property D [i.e. Try(T) =0 if T is of trace class] is the counterpart
of locality in our framework.

Carey, Sukochev (2006), Lord, Sedaev, Sukochev (2005) examinent en détails
le probléeme de la mesurabilité des opérateurs; les premiers le relient au théoreme
de point fixe de Markov-Kakutani.

3.3. Exemples.

(a) Soit D T'opérateur é % dans L2([0, 1]) avec pour domaine 1’ensemble des
fonctions f € C*°([0,1]) telles que f(0) = f(1); ses valeurs propres sont
les Ay = k, k € Z avec vecteurs propres e(x) = e 27k* ; I’opérateur
A = (D? + 1)7Y2 est compact, positif, de valeurs propres p; = 1, de
multiplicité 1, et ur = (1 + k2)72 de multiplicité 2, pour k > 1;
la suite s(A4), = %(1 + 23 %=, (1 +42)72) a méme limite que
@ > %=1 7. cest-a-dire 2, ce qui montre que A appartient a L (H)™T,
est mesurable et que Tr,(A) = 2.

(b) Voici un critére de mesurabilité pour un élément A4 € L»*°(H)" utilisant
les fonctions zéta (Connes, 1994, p. 306) : pour tout nombre complexe s
de partie réelle > 1, 'opérateur A° a une trace usuelle finie, que ’on note
C4(s) ; alors s(A) admet une limite [ si et seulement si (s — 1) {4(s) tend

vers [ lorsque s tend vers 1.

(¢) Voici maintenant un ensemble d’exemples contenant ’exemple A =
(D2+1)"1/2 ci-dessus (Connes, 1994, p. 307). Soit A un opérateur pseudodif-
férentiel d’ordre —n sur un fibré vectoriel au-dessus d’une variét€ compacte
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X de dimension n ; plusieurs auteurs avaient défini, par une formule ex-
plicite, ce qu'on appelle résidu de Wodzicki de A. Connes démontre que
A, convenablement prolongé a 1’espace hilbertien H = L2(X), appartient a
L1%°(H), est mesurable et que Tr,(A4) est égal & ce résidu.

Supposons maintenant que X est une variété riemannienne; notons A
l'opérateur laplacien, f une fonction différentiable sur X', et My I'opérateur
de multiplication par f ; alors Tr, (My . A™"/2) est égal, 2 un facteur constant
pres, a lintégrale de f pour I’élément de volume de X .

(d) Relation avec le semi-groupe de la chaleur (A. Connes, 1994, p. 563). Si
AeLb®(H)t et TeL(H), on a

Tr,(TA) = cte - LIM,, ()L_l -Tr (T -exp (—A~2 A_z))) )

3.4. Les idéaux LP?(H). LY (H)™ est la partie positive d’un idéal bilatere
de L(H), appelé idéal de Dixmier : ensemble L*(H) des opérateurs compacts
A tels que 0,(|4]) € O(logn); A. Connes a situé cet idéal dans une série
d’idéaux bilateres L?9(H) jouissant de propriétés analogues a celles des espaces
d’interpolation usuels :

e pour p € |l,4o0[, g € [1,40o0[, L?9(H) est I’ensemble des opérateurs
compacts tels que Y. n/P=Da-1.45 (J4]) < +o0

e pour p € |1,+o0o[, L”°°(H) est I’ensemble des opérateurs compacts tels
que sup (n'/771. g, (|A]) < +00.
Tous ces idéaux contiennent L!(H) ; A. Connes a utilisé certains d’entre eux
dans sa théorie de la Géométrie non commutative.

4. Les branches de I’arbre

4.1. Modules de Fredholm.

4.1.1. Introduction. Quelques mots pour commencer sur les opérateurs de
Fredholm (cf. Carey et altri, 2011). Un opérateur linéaire borné F dans un
espace hilbertien H est dit de Fredholm si son espace image est fermé et si son
noyau et son conoyau sont de dimensions finies; on définit son indice comme
étant dim Ker (F)-dim Coker (F). Ce sont aussi les opérateurs inversibles modulo
les compacts, en ce sens qu’il existe un opérateur G tel que FG —1I et GF —1
soient compacts. Ils généralisent les opérateurs de la forme I+ compact considérés
par Fredholm (cf. n® 2.1.2).

On peut faire remonter la notion de module de Fredholm aux travaux de
Gohberg et Krein (1957) et de Atiyah (1970). L’idée de départ est la suivante : soient
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X une variété compacte et P un opérateur pseudodifférentiel elliptique d’ordre 0
opérant sur les sections d’un espace fibré vectoriel V ; il donne lieu a un opérateur
dans L2(X,V) qui est de Fredholm; de plus, pour toute fonction f € C(X)
opérant par multiplication dans L?(X,V), l'opérateur [P, f] est compact. On
a un exemple simple de cette situation en prenant P = D(D? +1)"'/2 oi D
est 'opérateur différentiel considéré au n® 3.3; il est immédiat que P est de
Fredholm; pour montrer que [P, f] est compact, on peut se ramener au cas ou
f est un polynéme trigonométrique (par densité de ces polyndmes et continuit€),
puis, par linéarité, au cas ou f est une fonction propre ey ; la suite est un calcul
facile.

Notons que ce travail a suivi de peu le théoréme de l’indice de Atiyah et
Singer, calculant I’indice de P en termes de données géométriques fournies par
P et X.

Atiyah part de 1a pour introduire une notion abstraite d’opérateur elliptique
sur un espace topologique compact X : un triplet (H,x, P) ou H est un espace
hilbertien, = un morphisme C(X) — L(H) et P un opérateur de Fredholm dans
H tel que [P,m( f)] soit compact pour tout f € C(X). Il construit a partir de
la les groupes dits de K-homologie Ko(X) qui constituent la théorie duale de la
K-théorie K°(X).

4.1.2. Modules de Fredholm et Géométrie non commutative. Dans les années
1990, A. Connes a défini les modules de Fredholm qui jouent un réle fondamental
dans sa Géométrie non commutative. Voici leur définition (on ne parlera ici que
des modules de Fredholm dits “impairs”) : ce sont des triplets (4, H, F) ou
H est un espace hilbertien, A une sous-algebre involutive de L(H) et F un
opérateur autoadjoint de carré I tel que [F,a] soit compact pour tout a € A.
Avant d’esquisser I’aspect “Quantized Calculus” de la Géométrie non commu-

tative, donnons une courte présentation de ses applications en Physique (Gracia-
Bondia et alt, 2001, p. XI) :

... a bouquet of applications to the reinterpretation of the phenomenolo-
gical Standard Model of particle physics as a new spacetime geometry,

the quantum Hall effect, strings, renormalization and more in quantum
field theory ...

Quant a I’aspect “Quantized Calculus”, il est résumé de la facon suivante par
A. Connes (1994, p. 1) :

The correspondence between geometric spaces and commutative algebras
is a familiar and basic idea of algebraic geometry. The purpose of this
book is to extend this correspondence to the noncommutative case in
the framework of real analysis [...]. The extension of classical tools,
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such as measure theory, topology, differential calculus and Riemannian
geometry, to the noncommutative situation [...] involves, of course,
an algebraic reformulation of the above tools, but passing from the
commutative to the noncommutative case is never straightforward.

Tentons de préciser un peu : A. Connes voulait rendre rigoureuse une formule
donnant le Lagrangien de la théorie de Yang-Mills, qui présentait des divergences
logarithmiques.

Les modules de Fredholm permettent de faire aussi bien du calcul différentiel
que du calcul intégral :

(i) On définit la différentielle d’un élément a € A par da = [F,a], ce qui
s’applique en particulier au cas ol les €léments de notre algébre sont des
opérateurs de multiplication par des fonctions mesurables bornées, mais

pouvant étre trés irrégulieres; on remarquera que 1’on a encore la formule
de Leibniz d(a-b) =da-b +a-db.

(ii) On peut définir des intégrales de la forme [ f(x)-|dx|? qui ont un sens
puisque dx est maintenant un opérateur; on remarquera que la théorie des
distributions de L. Schwartz ne permet pas de le faire. C’est ici que vont
intervenir les traces de Dixmier.

Ajoutons que ce “Quantized Calculus” permet aussi de faire du calcul
différentiel sur des espaces tres irréguliers comme des quotients de variétés ou des
variétés feuilletées; et que les modules de Fredholm servent aussi a construire la
K-homologie K°(4), égale a Ko(X) si A = C(X), le caractére de Chern allant
de K°(A) vers la cohomologie cyclique HC*(A), et a généraliser le théoréme de
I’indice de Atiyah et Singer.

4.1.3. Un exemple particulierement instructif. (Cf. A. Connes [1994, p. 22 et
326]).

On note D le disque ouvert |z| < 1, S' son bord, A = C(S!), H = L?(S"),
P le projecteur orthogonal de H sur le sous-espace des & tels que E(n) =
0 Vn <0, enfin F=2P —1; pour montrer quon obtient bien un module de
Fredholm, il suffit de vérifier que tous les opérateurs [P,a] sont compacts, et,
pour cela, on utilise la méme méthode que pour I’exemple du n® 4.1.1.

Voici maintenant un module de Fredholm isomorphe au précédent, mais
nettement plus intéressant. Soit 2 un domaine de Jordan de C, et X son bord.
Le théoreme de la représentation conforme de Riemann établit qu’il existe une
bijection conforme D — 2 ; si de plus X est une courbe de Jordan, Carathéodory
a montré que cette bijection se prolonge en un homéomorphisme Z : S!' — X .
Transportant le module de Fredholm (A, H, F) par cet homéomorphisme, on
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obtient un module de Fredholm noté (Ag, Hy, Fy), ou Ay = C(X), quon peut
aussi décrire de la facon suivante.

Pour tout zy € Q il existe une mesure vz, sur X telle que, pour toute
feC(X), onait [ f-dv,, = f (zg) ou f est la fonction harmonique sur £2
prolongeant f ; la classe d’équivalence de cette mesure est indépendante de zg
et appelée classe des mesures harmoniques. On pose alors

o Ho=L2%(X,vs)

e Py, = projecteur orthogonal de H, sur I’adhérence de 1’ensemble des f
telles que f soit holomorphe

o Fo=2P;—1.

Prenons maintenant pour X 1’ensemble de Julia d’une transformation ¢(z) =
z2 4+ ¢ ; Q est donc I'intérieur de ’ensemble des z pour lesquels I’ensemble des
@"(z) est borné; si ¢ est suffisamment petit, la dimension de Hausdorff p de X
est > 1. Notant z ’application identique X — C, I’expression |dz|? a un sens,
et on a le résultat important suivant.

Théoréme. Pour toute f € C(X), lopérateur f(z)-|dz|? appartient @ L1>°(H,),
est mesurable et sa trace de Dixmier Try,( f(z)-|dz|P) est égale, a une constante
prés, a lintégrale de f pour la mesure de Hausdorff dA,. De plus la
nonnormalité de la trace de Dixmier est une conséquence du fait que les mesures
de Hausdorff et harmoniques sont mutuellement étrangeres.

4.2. Généralisations.

4.2.1. Introduction. On va remplacer les algébres L(H) utilisées jusqu’ici par
des algebres de von Neumann semi-finies, objets que 1’on doit d’abord définir.

Une algébre de von Neumann est une sous-algebre autoadjointe d’une algebre
L(H), contenant 1 et fermée pour la topologie de la convergence simple des
opérateurs; une frace (sous-entendu normale, semi-finie, fidele) sur une algebre
de von Neumann A est une application t de I’ensemble des éléments positifs
de A vers I’intervalle [0, +o¢], jouissant des propriétés (A), (B), (D) des traces
sur L(H) (cf. n® 2.1.4) et des propriétés suivantes :

e pour tout élément positif A de A, t(A) est la borne supérieure des 7(B),
0<B<A, 1(B) <4+

e A>0,1(A)=0=A4=0.

On dit que A est semi-finie si elle admet une telle trace; les algebres L(H)

en sont bien entendu des exemples, mais il en existe d’autres, tres différentes, par
exemple les facteurs de type Il : leur centre est réduit aux scalaires et 7 peut
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prendre toute valeur réelle positive sur les projecteurs orthogonaux de 1’algebre
(il s’agit 1a des “géométries continues” de von Neumann).

4.2.2. Traces de Dixmier et algebres de von Neumann semi-finies. Voir Carey
et altri (2011), Benameur et Fack (2006).

Soit A une telle algebre munie d’une trace t; on doit d’abord définir
I’analogue de I'idéal L»*°(H) du n°® 3.4; pour cela, étant donné un élément A,
on remplace les nombres f1,(A4) du n® 2.1.2 par des us(4), s € R} :

pns(A) = inf{||AP]|, P projecteur orthogonal de A, t(I— P) < s};

on définit ensuite L1*°(4) comme ensemble des A tels que

fz ps(A)ds € O (log(1+1)):
0

enfin, pour toute limite généralisée w sur RY au sens du n® 3.1, on pose

,(A) = a)(t b I(Vg(l%t) fot s(A) ds).

On obtient alors les analogues
e du critére de mesurabilité du n® 3.2
e du lien avec le semi-groupe de la chaleur (n® 3.3)
e des modules de Fredholm.

Cela permet d’étudier les C* -algebres associées a des graphes, et aussi de généra-
liser le théoréme sur les résidus de Wodzicki au cas de variétés munies d’actions
de groupes ou de groupoides, notamment au cas d’opérateurs pseudodifférentiels
le long des feuilles d’un feuilletage.

4.2.3. Applications diverses. On trouvera dans la référence [Sin] divers résultats,
liés aux traces de Dixmier, et concernant les opérateurs de Hankel, les résidus
de Wodzicki, les idéaux de Marcinkiewicz, les états KMS de la Physique
statistique, ...
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