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Isometries of two dimensional Hilbert geometries

Vladimir S. Matveev and Marc Troyanov

Abstract. We prove that every isometry between two dimensional Hilbert geometries is a

projective transformation unless the domains are interiors of triangles.

Mathematics Subject Classification (2010). Primary: 53C60, 51F.

Keywords. Hilbert geometry, isometry group.

Dedicated to Pierre de la Harpe on his seventieth birthday

1. Introduction

The Hilbert distance between two points x and y in a bounded convex domain
El of R" is defined as

(1.1) d(x,y) := In((x,y;x,y)) := In ^ _*j :
>

where \u — v\ denotes the usual Euclidean length between two points u and v

in R", and x and y are as Fig 1. It is well known that the distance function d
satisfies the standard requirements of a distance function, the only nontrivial point
to check being the triangle inequality, see for example [Hil] or [Har, §1], This

distance was introduced by Hilbert in [Hil] and we refer to [H] for a presentation
of both classic and contemporary aspects of Hilbert geometry1.

Recall that straight lines, convexity, and the cross ratio of four aligned points
are invariant under projective transformations, this implies immediately that if
/ : RP" -» RP" is a projective transformation, then its restriction to El defines

an isometry / : El f(El) with respect to the Hilbert distances in £2 and f(El).
(We consider R" as a subset of RP" by identifying it with an affine chart, the

' More generally, the Hilbert distance is well-defined for a domain £2 in RP", that is convex and
bounded in an appropriate affine chart of RP".
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Figure 1

The points x and y

Hilbert metric inside fi does not depend on the choice of the affine chart.) The

converse to this statement is not always true: some special Hilbert geometries
admit isometries which are not projective transformations. The simplest example
is given by the simplex and is discussed in detail in dimension 2 by Pierre de la

Harpe in [Har], This author asked for a full description of all isometries in Hilbert
geometry and a complete answer in finite dimension has recently been obtained

by Cormac Walsh in [Wal]. Note also that the same author, together with Bas

Lemmens, previously described all isometries of polyhedral Hilbert geometries in

[LW], while Bas Lemmens, Mark Roelands and Marten Wortel gave some partial
results in infinite dimension in [LRW],

Our goal in this paper is to give a short proof of the following two dimensional
result:

Theorem 1.1. Let 01 and Q.2 be two bounded convex domains in the plane
R2 and d\,d2 be the corresponding Hilbert metrics. Suppose that Oi is not
the interior of a triangle, then every isometry f : (Q.\,d\) —» (Q2,d2) is the

restriction of a projective transformation of RP2.

As mentioned above, this result is false if is the interior of a triangle. In
that case (Oi,c?i) is isometric to a Minkowski plane whose unit ball is a regular
hexagon and its group of isometries is not difficult to describe, see [Har], Recall

also that the above theorem is a special case of the result of C. Walsh [Wal,
Theorem 1.3]. For the case of quadrilaterals, the result is also proved by P. de la

Harpe in [Har, Proposition 4],

Our proof uses methods completely different from those in Walsh's paper. It
is quite direct and only based on the description of metric geodesies in Hilbert
geometry, together with a quite old and nontrivial result from line geometry due

to Walter Prenowitz.
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2. The case of strictly convex domains

It will be convenient to start with the case of a strictly convex domain. In
fact we will prove the following result:

Proposition 2.1. Assume that Qi and are bounded convex domains in M".

If Q.i is strictly convex, then every isometry f : (Q.\,d\) (f22,di) is the

restriction of a projective transformation of MP".

This result is proved in [Har, Proposition 3], but we shall give a slightly more
direct proof. The result has recently been extended in infinite dimension in [LRW,
Theorem 1.2].

The proof is based on the structure of geodesies for the Hilbert distance. It
is easy to check from the definition of the Hilbert distance that if three points

x,y,z e £2j are aligned and z e [x,y], then d\{x,y) d\(x,z) + d\{z,y). In
other words the intersection of Euclidean straight lines with S21 are geodesies

for the Hilbert metric. Furthermore, the following fact is classical (see [Har,

Proposition 2] or [PT, Theorem 12.5]):

Lemma 2.2. Let p and q be two points on the boundary of Q, \, and suppose
that at least one of them is an extreme point of Q, Then the open interval (p,q)
is the unique geodesic between any pair of its points, that is if x,y e (p, q) and

z £21, then d\{x, y) d\{x, z) + d\(z, y) if and only if z e [x, y].

Proof of Proposition 2.1. It is easy to prove the proposition for one dimensional

Hilbert geometries; we therefore assume n > 2. Let / : £2j -»• £22 be an

isometry for the Hilbert distances between bounded convex domains in M",
where £21 c M" is strictly convex. From the previous Lemma, it then follows that

the affine segment [x,y] between two points x,y eQ.\ is the unique geodesic

joining these two points. Since / is an isometry, there is also a unique geodesic

joining the images f(x) and f(y) in £22 and because the Euclidean segment

[/(*)> f(y)\ C S22 is known to be geodesic we conclude that / maps the segment
[x, y] c £2i to the segment [fix), f{yj\ C f22. Since x and y are arbitrary points
in Q1, we conclude that / is a local collineation, that is a mapping sending
Euclidean segments to Euclidean segments. The conclusion now follows from
the local version of the fundamental theorem of projective geometry (see, e.g.,
[Shi, Lemma 4]), which states that any local collineation defined in some open
connected set of the real projective space MP" is the restriction of a projective
transformation.
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3. Proof of the main Theorem

The proof of Theorem 1.1 will be based on a 1935 result of Prenowitz [Pre]
which generalizes the fundamental theorem of projective geometry in dimension 2.

We will need the following definitions.

Definitions 3.1. Let U be a plane domain, that is an open connected nonempty
subset of R2. By a line in U we mean a connected component of the intersection
of a Euclidean straight line with U. A family of lines in U is a partition of
U by lines, that is a collection of lines in U such that each point of U lies

on exactly one line of the collection. If all lines in a family extend to Euclidean

straight lines passing through a common point A, the family is called a pencil
with pole A. A (linear) n-web in U is a set of n families of lines on U such

that no two families have a common line.

Figure 2 shows a pencil with pole A in the domain U. By taking the pencils
through n pairwise distinct poles A\,..., An f U we obtain an n-web in any
subdomain U' c U disjoint from any line through a pair of distinct points A,-, Aj

Figure 2

A pencil of lines covering a plane domain.

Theorem 3.2 (Prenowitz 1935). A one to one continuous map defined in a plane
domain that carries a 4-web into a 4-web is the restriction of a projective
transformation.

Recall that, by Brouwer's theorem, an injective continuous map defined in
a domain of R" is a homeomorphism onto its image. The above result is

proved in [Pre]; a much simpler proof is given in [Kas] assuming the map
is a diffeomorphism. Some generalizations in higher dimensions are given in

[AAS].
The following corollary will be useful in the proof of Theorem 1.1:
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Corollary 3.3. Let f : U —> M2 be a one to one continuous map defined in a

domain U Cl2 and let A\, • As el2 be five pairwise distinct points. Assume

that f maps the intersection of every line through Aj with U to a straight line
(1 < j < 5). Then f is the restriction of a projective transformation.

A polygonal region U covered by 5 pencils. Corollary 3.3 states that a homeomorphism
defined in U carrying all those lines into lines is a projective transformation.

Proof. There are 10 lines through any pair of the points Aj and the pairwise
intersections of those 10 lines determine (at most) 20 points2. Let us denote this

set by 1 and call it the set of intersection points. For any point X e U \ I, at

least four of the directions XAj are mutually distinct and this property holds in
a neighborhood V of X. The pencils with the corresponding four points Aj as

poles form a 4-web in V, see Figure 3, which is mapped by / to a 4-web in

f(V). By Theorem 3.2, we know that the restriction of / to V is the restriction

210 distinct lines in a projective plane define C^) 45 intersection points counted with multiplicity,
the 5 points Aj have multiplicity 6.

Figure 3
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of a projective transformation. By real analyticity, two projective transformations
that coincide on an open subset coincide everywhere. Since U \ 1 is connected

the restriction of / to U \ 1 is a projective transformation and since I is finite,

/ is a projective transformation on the whole domain U by continuity.

Proof of Theorem 1.1. Recall that we assumed that the bounded convex
domain e K2 is not the interior of a triangle. We first assume that Qi
is also not a quadrilateral. Then, has at least five distinct extreme points

Aj, A2, A3, A4, A5 e 3J2i. Because the points Aj are extreme points of £2i,
Lemma 2.2 implies that each line through one of the points Aj intersects £2j on

a unique geodesic (for the Hilbert distance) between any of its pairs of points.
Since / is an isometry, it sends each line from the five pencils into a straight line
in Q2 and it follows from Corollary 3.3 that / is the restriction of a projective
transformation.

Suppose now that ßj is a quadrilateral with vertices ABCD. The vertices

are extreme points of £2i, therefore, by Lemma 2.2, any line through a vertex
defines a unique geodesic for the Hilbert distance and it is thus mapped on a line

by the isometry /. The pencils with the four vertices as poles form a 4-web in
each connected component of the complement of the diagonals. These connected

components are the interior of the triangles ABM, BCM, CDM, DAM, where

M is the intersection of the diagonals, and from Prenowitz' Theorem 3.2, we

conclude that the restriction of / to each of those triangles is a projective
transformation.

Consider two adjacent such triangles, and consider the / -image of their union,
see Fig 4. Since the restriction of / to each of these triangles is a projective
transformation, the image of its union is the union of two triangles. By continuity
they have a common edge. Since the image of the line AC is a straight line, the

Figure 4

The restriction of / to the "dark-gray" triangles ABM and BCM is a projective
transformation, and / sends iC to a straight line. Then, the image of ABC is a

triangle and the restriction of / to it is a projective transformation.
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closure of the image of the union of these triangles is a triangle. Furthermore,
the map / sends any line through A or B to a line, we thus conclude that

/ restricted to the triangle ABC is a projective transformation (see also the

Corollary in [Pre] page 567). Similarly, the restrictions of / to BCD, ABD
and to CDA are projective transformations, which implies that the map / on
the whole quadrilateral ABCD is the restriction of a projective transformation

as desired.
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