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The exceptional set and the Green—Griffiths locus
do not always coincide

Simone Diverio and Erwan Rousseau

Abstract. We give a very simple criterion for the Green—Griffiths locus of a projective
manifold to be the whole manifold. Then, we use it to show that the Green—Griffiths locus
of any projective manifold uniformized by a bounded symmetric domain of rank greater
than one is the whole manifold. In particular, this clarifies an old undetailed example given
by M. Green to S. Lang.

Mathematics Subject Classification (2010). Primary: 32Q45, 32M15; Secondary: 37F75.

Keywords. Bounded symmetric domain, Green—Griffiths locus, jet differentials, Kobayashi
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1. Introduction

Let X be a compact complex manifold. Then, by Brody’s theorem, X is
Kobayashi hyperbolic if and only if there is no non-constant holomorphic map
f:C — X (such a map will be called entire curve). When X is a compact
Riemann surface, the uniformization theorem together with Liouville’s theorem
imply that X is Kobayashi hyperbolic if and only if its geometric genus is at
least two. Thus, the majority of compact Riemann surfaces are hyperbolic.

Being of genus greater than one can be also characterized in algebraic
terms. To this effect, let us consider the canonical line bundle Kxy of a
compact hyperbolic Riemann surface X, as well as its tensor powers K)‘?m.
As usual, the canonical bundle is just the top exterior power of the holomorphic
cotangent bundle of the manifold (thus, in this case, it is simply the holomorphic
cotangent bundle itself). Denote by H°(X, K)?'") the space of global holomorphic
sections of the holomorphic line bundle K}?”’: these sections are called global
pluricanonical forms. Then, by the Riemann—Roch theorem, the dimension of the
space HO(X, Kf’m) growths linearly with m. On the other hand, if the genus of
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X is one (resp. zero), then these dimensions are constantly equal to one (resp.
to zero).

A compact complex projective manifold is said to be of general type if there
exists a positive constant C such that

C—l mdimX < dim HO(X, K)?M) < CmdimX,

for all sufficiently large integers m > 0. For instance, a projective manifold with
ample (i.e., positive) canonical bundle is easily seen to be of general type. In
particular, a compact Riemann surface is hyperbolic if and only if it is of general
type.

Since Kobayashi hyperbolicity obviously is a hereditary property when passing
to subvarieties while being of general type is not, one cannot hope for a
straightforward generalization in higher dimension of the above characterization
of hyperbolicity in terms of pluricanonical sections. Still, one can impose such
an hereditary property and conjecture:

Conjecture 1.1 (Lang [Lan86]). Let X be a compact complex projective manifold.
Then, X is Kobayashi hyperbolic if and only if X together with all its subvarieties
is of general type.

This conjecture is almost completely open: a remarkable exception is the case
of surfaces, where the necessity condition can be proved to be true by using the
birational classification together with the non hyperbolicity of K3 surfaces, while
the sufficiency condition is shown in [McQ98] (see also [Bog77, Des79]) under
the assumption of positivity of the second Segre number. The sufficiency part can
be rephrased as follows.

Conjecture 1.2 (Green—Griffiths, Lang [GG80, Lan86]). Letr X be a compact
complex projective manifold of general type. Then, there should exist a proper
subvariety Y C X such that all entire curves of X are indeed contained in Y .

A nowadays classical strategy to attack this kind of questions, i.e. algebraic
degeneracy of entire curves, is to use jet differentials. Introduced (in their modern
form) by Green and Griffiths [GG80], and subsequently refined by Demailly
[Dem97], jet differentials are, roughly speaking, a particular kind of algebraic
differential equations on a projective manifold which all entire curves must satisfy.
In order to give an heuristic idea of this strategy, suppose X is a projective
manifold and that we dispose of a certain family {P;};c; of such algebraic
differential equations, say of order k. Then, if f: C — X is any entire curve,
the general theory (see below for more details) tells us that for all i € 7,
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Pifif....f®)y=o.

The hope is then that if we have enough algebraically independent differential
equations on X, then we should be able to successively eliminate the variables
fF® =D and so forth, so that we end up with a non trivial algebraic
equation for f only, say Q(f) = 0. This would give the desired algebraic
degeneracy for the entire curve. Roughly speaking, the Green—Griffiths locus of
X (see right after Theorem 1.3 for the precise definition) is defined to be the
intersection on X of the zero loci of all such algebraic equations Q. This is a
closed algebraic subvariety of X (of course, a priori possibly equal to X itself)
which thus contains all the non constant holomorphic images of the complex
plane inside X, i.e., the so-called exceptional locus.

A first substantial obstacle is that it is already a challenge to find even one
single such jet differential: for instance, it is known [Div08] (see also [Broll])
that for X c P"*! a smooth projective hypersurface there is no non zero such
algebraic differential operator of order less than n.

Anyway, given a complex manifold X, it turns out that for all positive integers
k,m, there exists a holomorphic vector bundle EZST*X — X whose global
holomorphic sections are precisely the algebraic differential equations (of order k
and weighted degree m) above. More generally, one can look at a holomorphic
subbundle V C Ty (following [Dem97], we shall call the pair (X, V) a directed
manifold) and consider only entire curves in X which are tangent to V (the
typical situation is for instance when X is fibered over another manifold and one
is interested in entire curves lying on the fibers). Then, there exists a corresponding
theory of jet differentials acting on germs of holomorphic curves tangent to V,
and the analogous vector bundle is then denoted by E fﬁ V* — X . For definitions
and basic properties of these bundles we refer to [GG80] and [Dem97], as well
as to Section 2 below.

The following theorem is the fundamental vanishing result and formalizes the
above discussion.

Theorem 1.3 (Green—Griffiths [GG80], Siu—Yeung [SY97], and Demailly [Dem97]).
Let (X,V) be a directed compact projective manifold and A — X an ample

line bundle. Then, for any entire curve f:C — X tangent to V and any
P e H(X, Eng* ® A1), one has P(f. f',..., f®)=o0.

Now, fix an ample line bundle A — X . Define GG4(X,V) to be the set of
points x € X such that for all integers k > O there exists a k -jet of holomorphic
curve ¢i: (C,0) — (X,x) tangent to V with the property that for all integers
m > 0, every global jet differential of order k and weighted degree m with values
in A~! vanishes whenever evaluated on (the k-jet defined by) ¢; at 0. Thus, if
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f: C — X is an entire curve tangent to V', Theorem 1.3 tells us immediately that
f(C) C GG4(X,V). We shall see in the next section that the locus GG4(X,V)
is indeed independent of the particular ample line bundle chosen.

Definition 1.4. Let X be a projective manifold and V C Tx a holomorphic
subbundle. The exceptional set Exc(X,V) of (X, V) is defined to be the Zariski
closure of the union of all the images of entire curves traced in X and tangent
to V. The Green—Griffiths locus GG(X,V) of (X,V) is defined as

GG(X,V)=GGy4(X,V),

for some (and hence any) ample line bundle 4 — X .
In the absolute case V = Tx, we shall simply call Exc(X, Ty) = Exc(X) and
GG(X,Tx) = GG(X).

By Theorem 1.3, one always has the inclusion:
Exc(X,V) C GG(X,V).

It is conjectured in [GG80] that if X is a n dimensional projective manifold
of general type and V = Ty, then there should exists a large integer k = k(X)
such that the growth rate of

m — dim HO(X, EZ S Ty)

would have to be maximal (that is asymptotic with m®*+17=1) This conjecture was
proven in [GGB80] for projective surfaces and therein supported in all dimensions
by an Euler characteristic computation. It was then established in the special case
of smooth projective hypersurfaces of general type in [Merl0] and was finally
proven in full generality only very recently by J.-P. Demailly in [Demll] by means
of his holomorphic Morse inequalities combined with a delicate “probabilistic”
curvature estimate. In particular, if X is a projective manifold of general type
and A — X an ample line bundle, then there always exist large integers k,m > 0
such that HO(X, E,fg Ty ® A7') # {0} and indeed this space is very big. Thus,
this settles the above-mentioned problem of the existence of global differential
operators satisfied by all entire curves in the case of projective manifold of general
type. This abundance of high order jet differentials makes legitimate to ask if
much more is true, namely that if X is a projective manifold of general type,
then the Green—Griffiths locus is always a proper subvariety of X, i.e.

GG(X) € X,

An affirmative answer to this would lead directly to the solution of Conjecture
1.2. One could even speculate more and ask whether Exc(X) = GG(X), that is
whether GG(X) provides an algebraic explicit description of the exceptional set.
About this, let us quote S. Lang from his paper [Lan86], page 200:
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In particular, the exceptional set |...] is contained in the Green—Griffiths
set [...]. I asked Green—Griffiths whether they might be equal. Green told
me that the two sets are not equal in general. Certain Hilbert modular
surfaces constructed by Shavel [Sha78], compact quotients of the product
of the upper half-plane with itself, provide a counterexample which is
hyperbolic, but such that the Green—Griffiths set is the whole variety.
Thus the jet construction appears insufficient so far to characterize the
exceptional set [...] completely algebraically.

In [Lan86] there are no more details about that, nor in the subsequent literature
as far as we know: we have somehow the impression that this paragraph has
passed by unnoticed. Here, we take the opportunity to give a detailed account
of the above key fact by proving indeed a much more general result, as well as
several consequences.

Let W be a coherent analytic sheaf on a complex manifold X and m > 0 be
an integer. We shall denote by W™l the double dual of the m-th tensor power
We®™ of W. The starting point is the following criterion.

Theorem 1.5. Let (X,V) be a complex projective directed manifold. Suppose
that there exists a saturated coherent analytic subsheaf W C Ox (V) such that
for some ample line bundle A — X one has

HO(x, wHiM @ A7) =0, Vm=>1.

Then, GG(X,V)=X.

Observe that we do not require any Frobenius integrability property for W.
Observe moreover, that by a very recent result of [CP13], in the case where
W = Tx, the condition in the statement is satisfied if and only if X is not of
general type. Thus:

Corollary 1.6. If X is a projective manifold which is not of general type, then
GG(X) = X.

We now pass to direct and less direct consequences of the above criterion. First
of all, we have the following result. It follows straightforwardly from Theorem 1.5
and a technical elementary lemma about growth rate of sections of tensor powers
of pull-back of vector bundles (see Section 4 for more details and in fact a slightly
more general result concerning finite surjective morphisms).

Corollary 1.7. Let X ~ Y x Z be a complex projective manifold isomorphic to
a non trivial product. Then, GG(X) = X.
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This already shows that in order to produce a counterexample in the spirit of
Green—-Lang it is not necessary to look so far away at Hilbert modular surfaces, but
it is indeed sufficient to consider the product of two hyperbolic compact Riemann
surfaces. Here, it is worthwhile mentioning also that a slight variation of the
corollary above permits to show that certain surfaces constructed in [BCGP12]
provide examples of simply connected surfaces of general type for which the
Green—Giriffiths locus is the entire surface but the exceptional locus is not known.
Therefore, there exist surfaces whose hyperbolicity properties are unknown, and
for which it is not possible to use the jet differentials techniques alone in order
to deduce such properties (see Section 4 for more details about these examples).

Next, let 2 € C" be a bounded symmetric domain, I' C Aut(£2) a cocompact
torsion free lattice and X = Q/I'. The Bergman metric of Q is Aut(Q2)-
invariant and descends to a metric @ on every smooth quotient X . Moreover, the
cohomology class of @ is —2m ¢1(X). Thus, the canonical bundle Kx = det Ty
is positive and in particular X is projective and of general type. Moreover,
whenever X is a complex space whose universal cover is a bounded domain in
C™, then every entire curve must be constant by Liouville’s theorem. Hence, the
exceptional locus Exc(X) is empty. If Q has rank one or, equivalently, if it is
isomorphic to the unit ball 2 >~ B”, then it is well known that X has ample
cotangent bundle. In particular, since jet differentials of order one are simply
symmetric holomorphic forms, already by looking at order one jet differentials
one finds that GG(X) = @. The situation changes drastically as soon as the rank
of Q becomes bigger than one.

Theorem 1.8. Let X be a projective manifold uniformized by a bounded symmetric
domain Q2. Then, either Q2 ~ B" and thus GG(X) =@, or GG(X) = X.

This result should be compared to the *“all or nothing” principle on the Lang
locus of rational points in Shimura varieties established in [UY10] (see also
Section 6.1 for more details about this correspondence). One should also relate
it to the folowing fact brought to our attention several times in the last years
by Michael McQuillan (cf. also the recent preprint [McQI4]): rational curves on
bi—disc quotients which are not the product of curves are Zariski dense in mixed
characteristic. This implies, from the mathematical logic point of view, that there
cannot exist a proof of the Green—Griffiths conjecture in the first order theory of
algebraically closed fields of characteristic zero.

Theorem 1.8 provides a very large class of projective manifolds of general
type for which the worst possible situation occurs, as far as a description of the
exceptional locus in terms of the Green—Griffiths locus is concerned:

@ = Exc(X) € GG(X) = X.
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This includes of course also the particular Hilbert modular surfaces mentioned
above.

Among these locally symmetric manifolds, it is worth distinguishing the two
subclasses of locally reducible and of locally irreducible ones. The proof of
Theorem 1.8 will be quite different in the two cases. Indeed, in the locally
reducible case it is immediate to identify (after a finite unramified covering) a
foliation — and thus a subsheaf of the tangent sheaf — to work with in order to
apply directly Theorem 1.5. On the other hand, in the locally irreducible case, there
is no natural foliation at our disposal. To overcome this difficulty, one possibility
is to use the arithmeticity of the lattice (since the rank is at least 2) and the theory
of Shimura varieties (see the beginning of Section 6 for details). Alternatively,
it is possible to avoid the use of the arithmeticity of the lattice using the theory
of characteristic bundles [Mok89]. This shall provide a holomorphic fiber bundle
over X, endowed with a holomorphic foliation by curves given by liftings of
minimal disks (we are grateful to N. Mok for suggesting to us several things about
this approach). This foliation will turn out to be of negative Kodaira dimension
and this will be sufficient to obtain the desired conclusion (see Section 6 for the
details).

2. Proof of Theorem 1.5

Let us start by recalling some basic facts from [Dem97] about jet differentials
in the general framework of directed manifolds (for more details see the cited
references).

So, let (X,V) be a directed manifold, that is a complex manifold X
together with a holomorphic subbundle V' C Ty, non necessarily integrable,
of the holomorphic tangent bundle Tx of X. We call JiV the bundle of k-
jets of holomorphic curves ¢: (C,0) — X which are tangent to V', that is
@'(t) € Vyq) for all ¢, together with the projection ¢ +— ¢(0) onto X. It is a
holomorphic fiber bundle, which is naturally a subbundle of the bundle J;Tx
of k-jets of holomorphic curves with values in X with no further restrictions.
Moreover, there is a canonically defined fiber—wise C*-action on JiV given by
the reparametrization of a k-jet tangent to V by the homotheties corresponding
to elements of C*. Of course, this action is compatible with restriction to smaller
subbundles.

Let EggV* — X be the holomorphic vector bundle over X whose fibers
are complex valued polynomials on the fibers of JiV of weighted degree m
with respect to the above—defined C*-action. If W C V C Ty are holomorphic
subbundles, the inclusions
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SiW C iV C Jp Ty
induce surjective arrows
EZSTY — ECSV* > EZSW™,
so that ECOW* can be regarded as a quotient of EZGV*, the quotient map

being given by evaluating jet differentials tangent to V' only on k-jets tangent to
W.

Remark 2.1. In particular, we see that if every global section of E ,f g W* vanishes
at some point jp € Jy W C JiV, then so does every global section of E,ng*

Now, considering the highest monomials (with respect to the reverse lexico-
graphic order) gives a natural filtration on weighted homogeneous polynomials.
Such filtration defines an intrinsic filtration on the bundles E f g V*, whose graded
series are given by

Gr* EZGy* = = shv*g...@ stv*.
{14284+ klp=m

Therefore, it follows that if for all k-tuples of non negative integers (£1,...,¥€g)
such that £; + 2¢; + -+ + k€ = m, we have

HOX,SYV*®---@ S*V*) =0,

then
HO(X,EZSV*) =0,

as well.
Before entering into the proof of Theorem 1.5, let us show as promised that
the locus GG4(X,V) is independent of the ample line bundle 4 — X .

Lemma 2.2. The set GG4(X,V) does not depend on the ample line bundle
A—X.

Proof. Let A,B — X two ample line bundles and £ > 0 be a positive integer
such that B®¢ ® A~! is globally generated. We shall show that

GG4(X,V) Cc GGg(X,V),

and the equality will follow by interchanging the roles of A and B.
Let x ¢ GGp(X,V). Then, there exist integers k,m > 0, a global section
P € H(X, E,ﬁﬁV*@B‘l) and a k -jet of holomorphic curve ¢ : (C,0) — (X, x)
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tangent to V such that P(gr) # 0. Let 0 € H(X, B® ® A~!) be a global
section such that o(x) # 0. Then,

Pl®oe H'X,EFS V* @A™
and

(P* @ 0)(gk) = Phgi) -0 (x) #0,
so that x € GG4(X, V). O
Proof of Theorem 1.5. Let us first suppose that W = Ox (W) is the sheaf of
germs of holomorphic sections of a holomorphic subbundle W C V. Let A — X
be any ample line bundle and k,m > 0 be two integers. For all k-tuples of
non-negative integers (£1,...,£;) such that £; + 24, +---+ kf; = m we have

SYWr...@ S Wr @A c (WH)BH g A,
where [£| =Y {;. Thus,
HX,S“W*® - S4*W*®471) =0

and, since taking the tensor product of Ej,W* with A~! affects the corre-
sponding graded bundle just tensoring by A~!, we have

H°(X,EZSw*®@ A™") =0.
Moreover, we have of course surjective morphisms
EZSV* @A > EZSWr@ A

Therefore, by Remark 2.1, in such a situation every global jet differential tangent
to V of order k and weighted degree m with values in A~! must vanish when
evaluated on k-jets which are tangent to W . Since at each point x € X we have
such jets, it follows that GG(X,V) = X.

Now, take W as in the hypotheses. Since W is saturated, Ox(V)/W is
torsion-free and thus locally free in codimension two. In other words, there exists
a proper subvariety ¥ € X, codimy Y > 2, and a holomorphic vector bundle

W—-U:=X\Y

on the dense open subset U such that Oy (W) ~ W|y and W is actually a
subbundle of the restriction V|y of V to U. Of course, over U, we also have
WH*|u ~ Oy (W*). Since (W*)IIEI is reflexive by definition and thus normal, we
have a surjection

HO(X, (W*)[Ifl} ® A7) - HOU, (W*)[Ifl] ® A = HU, (W*)®I€l QR A,
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so that HO(U, (W*)®l @ A~') = {0}. From
SAYWr@--- @ SHkW*Q A |y c (WHBH @ 47!y,

we conclude that
H(U,Gr* EFSW* @ A™") = {0}
and thus HO(U, ECCW*®A~1) = {0}. Then, since each section of ECGV*®A™!

over U extends to a section of H(X, EZGV*® A™'), we have U C GG(X,V)
and since GG(X,V) is a closed set, then GG(X,V) = X. L]

2.1. Theorem 1.5 for Demailly-Semple jets. In this subsection we would like
to give a somehow more geometric proof of (a special case of) Theorem 1.5 in
the case of invariant jet differentials, even if this case is of course included in
what is proved above. For the sake of simplicity we shall assume that L C Ty
is a holomorphic line subbundle and not just an injection of sheaves of arbitrary
rank. In this case, the hypothesis on L simply become that L is not big, that
is its Kodaira—litaka dimension is not maximal. Invariant jet differentials were
introduced in [Dem97] as a refined version of Green—Griffiths’ ones: they are
constructed taking invariant holomorphic functions on the k-jet space by a larger
group, namely the full group of k-jets of biholomorphisms of (C,0), instead of
merely homotheties. The vector bundle Ej,,V* — X of invariant jet differential
of order k and weighted degree m acting on germs of holomorphic curves tangent
to V C Tx can be obtained as a direct image of an invertible sheaf on a tower
of projective spaces, as follows.

Start with a directed manifold (X, V) and define the new directed manifold
(3? , 7) to be

X =P(V), V =m"(0Oprm(=D)C Trw),

where n: P(V) — X is the projectivized bundle of lines of V and Op)(—1),
which is in turn a subbundle of 7*V, the tautological line bundle of P(V).
Now, set (Po(V),Vp) = (X, V) and define inductively

(Pe(V), Vi) = (Pe—r1 (V) , Vie1)

together with the total projection mgx: Pr(V) — X. The functoriality of this
construction shows that if (Y, W) C (X, V) is a directed submanifold (i.e. Y is
a smooth submanifold of X, possibly the whole X, and W C Ty C Tx|y is a
holomorphic subbundle of V|y), then for all positive integers k we have

P.(W) C P(V), W;C Vk|Pk(W) and OPk(V)(_l)lPk(W) = Opk(W)(—l),

and moreover the projection maps are of course compatible.
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If ¢: (C,0) - X is a germ of holomorphic curve tangent to V' then we can
define a projectivized lifting ¢p;: (C,0) — P (V). Such a lifting is tangent to
Vi and satisfies mox o @) = ¢.

It turns out that for any positive integer m there is an isomorphism of sheaves

(70.k)+Op, (v) (M) =~ Ox (Exm V™).

By (the version in the invariant case [Dem97] of) Theorem 1.3, for any positive
line bundle A — X and for all positive integers k,m, we have that

Ju1(C) C Bs(Op,ry(m) @ 75, A7),

whenever f:C — X is an entire curve tangent to V (here, Bs(e) stands for the
base locus of a line bundle).
With this is mind, we define the Demailly—Semple locus DS(X,V) to be

DS(X,V) = DS4(X,V),

where

DSAX, V) = () mox( [ BS(Opery (m) @ 75, A1) \ Pe(V)™e).

k>1 m=1

Here, Pi(V)%" is the complement of the set of values @j(0) reached by all
regular (i.e. with non-zero first derivative) germs of curves ¢. The fact that
DS4(X,V) is independent of the ample line bundle A — X can be shown in
the same way as in Lemma 2.2.

Remark 2.3. Observe that Py(V)*"¢ = &, and Pr(V)""8 C Bs(Op, (v)(m)) for
all integers m (see [Dem97]). Moreover, mox(Pr(V)5"8) = X, for k > 2, but
if f:C — X is an entire curve tangent to V' such that f;(C) C P (V)sing,
then f is in fact constant. Thus, it is necessary to remove Py (V)" from the
base loci of the (anti)tautological bundles in order to get a really useful notion
of Demailly—Semple locus (compare with the analogous definition in [Dem97,
beginning of §13] and [DTIO, Introduction], where this minor point was not
noticed).

The relation
Exc(X,V) Cc GG(X,V) C DS(X,V)

is immediate from definitions and Theorem 1.3. We do not know whether
GG(X,V) = DS(X,V), for instance, under the natural hypothesis that detV*
is big.
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Proof of Theorem 1.5 for Demailly—Semple jets. Fix any ample line bundle A —
X . We shall construct for each integer £k > 0 a smooth manifold X; C Py (V)
which projects biholomorphically onto X via mpx and such that for all integers
m > 0 we have

Xy C Bs(Op,vy(m) @ 75, A7Y).

The starting datum is a directed manifold (X, V) together with a rank one
holomorphic subbundle L. C V C Ty such that «(L™!) < dim X. We define X;
to be

Xy = Pp(L) € Pe(V).

Since at each step we are always projectivizing a rank one vector bundle, all Xj
are isomorphic to the starting X, the isomorphism being given by the projections
7o,k - Moreover, since as we have seen

Op.(v)(=DI|p, 1) = Op,(1)(—1)

and, on the other hand,
Opk(L)(—I) it ”g,kL e~ E,

we deduce that the restriction of Op, (1)(m) ® Jr(’;"kA_l to Xz = Pr(L) has no
non—zero holomorphic sections for all positive integers m by Kodaira’s lemma,
being isomorphic to L™®" @ A~!. But then, it follows that the base locus of
Op,(v)(m) ® HJ’kA_l must necessarily contain Xj, and we are done. ]

We want to underline that we have indeed the much stronger property that
not only X is contained in the base locus but also that the restriction of
Op(v)(m) @ 7y kA‘l to X has itself no non—zero sections.

3. Finite coverings and Green-Griffiths locus

In this section we shall describe the behavior of the Green—Griffiths locus
with respect to finite maps. We begin with the following result.

Proposition 3.1. Let p: X' — X be a finite surjective morphism of smooth
projective manifolds and let B < X be its branch locus. Then, there is an
inclusion p(GG(X')) € GG(X)U B.

In particular, if GG(X') = X', then GG(X) = X and if p is étale then

p(GG(X")) € GG(X).

Proof. Fix an ample line bundle A — X and suppose x € X\ (GG(X)UB). Since
x € GG(X), there exists an integer ko > 0 such that for all non constant kg-jets
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Pko: (C,0) — (X, x) there exist a positive integer m and a global holomorphic
section P € HO(X, EZG Ty ® A™') such that P(gg,(0)) # 0. Next, let y € X’
be such that p(y) = x. Since x € B, then y is not a ramification point and
thus any non constant ko-jet ¥y,: (C,0) — (X', y) gives by composition with
p a non constant kg-jet po Yy, : (C,0) — (X, x) for which therefore there exist
an integer m > 0 and a global holomorphic section P € H%(X, E kGO CTx®A™)
such that P((p o ¥k,)(0)) # 0. Thus, p*P is a global holomorphic section
p*P € HY(X', ExymTy ® p*A~") such that (po* P)(¥,(0)) # 0 (notice that p* A
is ample since p is a finite morphism), and therefore y & GG(X’).

The last assertion is clear since both GG(X) and B are Zariski closed
sets. L]

Corollary 3.2. Let ® € Aut(X) be an automorphism. Then, ®(GG(X)) =
GG(X).

Remark 3.3. Suppose that we have a surjective morphism between two projective
manifolds f:Y — X, and let V C Ty be a vector subbundle such that
df|lv:V — f*Tx is injective (we only mention the case of vector subbundles
and not that of general subsheaves for the sake of simplicity). It is then immediate
to check just following exactly the same proof of the proposition above that, more
generally, we have f(GG(Y,V)) C GG(X). This stronger version will be used
in Section 6.

For the converse, we suppose that the morphism is étale. We shall see later
that this hypothesis is in fact necessary.

Proposition 3.4. If p: X' — X is a finite étale cover of smooth projective
manifolds, then p~'(GG(X)) € GG(X').
In particular, if GG(X) = X, then GG(X') = X'.

Proof. Let us first reduce to the case when the finite étale cover is moreover
Galois: this is done as follows. We claim that there exists a finite Galois étale
cover X” — X which factorizes through X’. Once the proposition is known for
Galois covers, just apply it to X” — X and then Proposition 3.1 to X" — X’
to get the desired result as follows. Let pu: X” — X’ — X be a Galois cover
factorizing through v: X” — X’, x € GG(X) and z € p~'(x) C X’. Then, there
exists y € u~!(x) € X” such that v(y) = z. Since u~'(x) C GG(X") then, by
Proposition 3.1, v(y) € GG(X’) for any y € p~!(x), and thus z € GG(X').
The claim is a consequence of the correspondence between subgroups of the
fundamental group and étale covers and the following elementary lemma.
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Lemma 3.5. Let H <T be a subgroup of finite index in I". Then, there exists

a normal subgroup N < T of finite index in I" and such that N is contained
in H.

Proof. The group I' acts on the set of, say, left cosets G/H by permutation.
Then, we have a group homomorphism I' — &(G/H) from T" to the finite group
of permutations of G/H . It is straightforward to verify that its kernel N has the
required properties. O

So, let p: X’ — X be a finite Galois étale cover, say of degree d, and let
Aut(p) be its deck transformation group, which acts by biholomorphisms freely and
transitively on each fiber, by hypothesis. Given an ample line bundle A — X, and
any global holomorphic section Q € H(X', EZCTy, ® p*A™"), we can recover,
by “averaging” Q@ with the deck transformations, a global holomorphic section

Q) @*0=PecH (X EZS Ti ®p*A~9)
deAut(p)
invariant by Aut(p), which thus descends to a global holomorphic section
PeHX,EZG Ty ® A7),

If y e X'\GG(X’"), take ko > 0 such that for all non constant kg-jets
Vko: (C,0) — (X', y) there exist an integer m > 0 and a global holomorphic
section Q € H°(X, ngmT)’;, ® p*A~") such that Q(¥,(0)) # 0.

Let {y; :=y,...,y4} be the orbit of y under Aut(p). Then, by Corollary 3.2,
yi € X'\GG(X') for i =1,...,d.

Next, consider a ko-jet ¢k,: (C,0) — (X,x), where x = p(y), and its
(unique) lifting rﬁf{o to X’ such that gB,iO (0) = y;. Thus, we can find a
0; € H(X, E;ﬁf) ?mT)}‘, ® p*A~1) such that Qi(gF);'cO(O)) # 0. Considering sections
of the form Q := Q1+€2 Q2+---+¢€4 Q4 we see easily that choosing the scalars
¢; sufficiently small, we obtain a section Q € H°(X, E g) (fm Ty, ® p*A~1) such
that Q(gﬁio(O)) #0 for i =1,...,d. Indeed, by induction on d, suppose that
€,...,€4—1 are chosen in such a way that S := Q1+ €02+ -+ €5-1 041
satisfies S(qb'fco(O)) #0fori=1,...,d-1.1f S(gb',‘fo(O)) # 0 we are done taking
€g = 0. Otherwise S (foO(O)) = 0 and we choose ¢; # 0 sufficiently small so
that S(¢; (0)) + €z Qa (P (0) #0 for i =1,....,d — 1.

Finally, the averaging process above applied to this particular Q then gives a
P e H(X, ngd Ty ® A™9) such that P(gx,(0)) # 0, as it is straightforwardly
checked, and x € GG(X). O

Remark 3.6. Moreover, the averaging process above shows that in the Galois
situation if HO(X’, ECCT¥,) # 0 for some k,m > 0, then H%(X,EFS T§) #0
where d is the degree of the covering.
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The next example, together with the remark above, shows that the étale
assumption is necessary.

Example 3.7. Let X C P" a smooth hypersurface of degree d, cut out by the
single equation P(zo,...,z,) = 0. Consider the smooth hypersurface X’ C P"+!
cut out by the equation zZ, , — P(z,..., z,) = 0. The map n: X' — P" given
by the projection onto the first » + 1 coordinates is a branched Galois cover
whose automorphism group is Z/d7Z (acting by multiplying z,+; by powers of
a primitive d th root of unity), ramified along X . By [Div09], we know that if
d is large enough, then H°(X’, E,f’:gT;,) # 0 for m > k > 1. On the other
hand, since Tp» is ample, for all k-tuples of integers ¢;,...,£; > 0, the graded
terms HO(]P’",S“T];‘,, R ® SekT][’,',‘,,) =0 and thus HO(P",EEgTE’;n) =0 for
all k,m > 0.

Let us finally remark that one knows from [DMRIO] that generic projective
hypersurfaces of high degree X C P" have GG(X) # X .

4. Green-Griffiths locus for product manifolds

In this section we will show the following consequence of Theorem 1.5
(compare with Corollary 1.7).

Corollary 4.1. Let X be a complex projective manifold and suppose that X
splits, up to finite (possibly branched) coverings, into a nontrivial product Y x Z .
Then, GG(X) = X.

To prove Corollary 4.1, we will need the following two elementary lemmata.

Lemma 4.2. Let E — X be a rank r holomorphic vector bundle on a projective
manifold X of dimension n, and let A — X be an ample line bundle. If, for
some integer mo > 0, H°(X,S™E ® A™') # 0, then there exists a constant
C > 0 such that for all sufficiently large integers m > 0 we have

C—l mn+r—1 < hO(X, SmE) <C mﬂ+r—1'

Moreover, this is the maximum possible growth rate for the dimension of the
spaces of global sections of symmetric powers of E.

Proof. Let n: P(E) — X be the projective bundle of hyperplanes of E and
Og(1) — P(E) the tautological quotient line bundle associated to E. We have
that dimP(E) = n + r — 1 and, using the projection formula, it is well known
that
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(1) H°(P(E),Op(m) ® n*G) ~ H°(X,S™E ® G),

for any line bundle G — X . Since Og(1) is m-ample, there exists a positive
integer £y such that Og (1) ® n*A% is ample. On the other hand, by hypothesis
and (1), we have that Og (mo)®@n*A~1 is effective. Now, fix any ample line bundle
F — P(E) and let ko be a positive integer such that Og (ko) ® n* Atoko @ p—1
is effective. Then,

Ok (ko(molo + 1)) ® F~' = Op (moloko) ® n* A% ® O (ko) @ n* A'oko @ F~!

is effective.
Thus, by Kodaira’s lemma, Og (1) is big and there exists a constant C > 0
such that for all sufficient large integers m > 0 we have

C—l mn+r—1 < hO(P(E),OE(m)) < Cmn-i-r—l,

and this is the maximum possible growth rate of the dimension of the spaces of
global sections of powers of Og(1). Thanks to (1), the same holds for symmetric
powers of E on X. U

Lemma 4.3. Let f: X — Y be a surjective morphism with connected fibers
of smooth projective manifolds and suppose that n = dimX > dimY = m. If

E — Y is any holomorphic vector bundle, then for any ample line bundle A — X
we have H°(X, f*E ® A~!) = 0.

Proof. Suppose that E is of rank r. If, by contradiction, H°(X, f*E®A™!) # 0,
then, by Lemma 4.2, there exists a positive constant C such that

C—l kn+r—1 & hO(X,f*SkE) o Ckn+r—1’

for all sufficiently large integers k. On the other hand, by the projection formula,
H(X, f*V) ~ HO(Y,V), for any holomorphic vector bundle ¥V — Y . But then,

C—l kn—l—r—l < hO(X, f*SkE) — hO(Y, SkE) < Bkm+r_1,
for some positive constant B and all sufficiently large k, contradiction. ]
We are now in a good shape to give a short proof of Corollary 4.1.

Proof of Corollary 4.1. Let p: X — X be a finite surjective morphism such that
X ~YxZ and let A— X be an ample line bundle. Then, 0 < dimY < dim X
and prj Ty is a holomorphic subbundle of 7y, where pr,: X — Y is the first
projection. For any integer m > 0, by Lemma 4.3 applied to (7y)®™, we have
that HO(X, (prf T;)®"®A~') = 0, so that by Theorem 1.5 we have GG(X) = X .
Therefore, by Proposition 3.1, GG(X) = X. O



Exceptional set and the Green—Griffiths locus 433

Examples. Using the preceding results it is already possible to produce many
examples of projective manifolds of general type covered by their Green—Griffiths
locus. Let us consider the case of surfaces, although easy generalizations to higher
dimensions can be given.

The easiest application of Corollary 4.1 is certainly to take X = C; xC; a
product of 2 compact Riemann surfaces of genus g; > 2 which gives an example
of general type and even hyperbolic, as observed in the Introduction.

Starting from these examples and using Proposition 3.1, one can construct
more interesting examples taking quotient by finite groups.

First, let us consider symmetric products of curves. Given a smooth projective
curve C of genus g, take X := C® = C x(C/6,, the quotient by the symmetric
group. If g > 3 then C® is of general type, hyperbolic [SZ00] and satisfies
GG(X) = X.

One can also consider the algebraic surfaces whose canonical models arise
as quotients X = (Cy x C3)/G of the product Cy x C; of two curves of genera
g1 := g(C1), g2 := g(Cy) = 2, by the action of a finite group G (in other words,
X has only rational double points as singularities). The minimal resolution §
of the quotient X = (C; x C3)/G is called a product—quotient surface and has
been intensively studied in [BCGP12]. This gives examples of surfaces of general
type S such that GG(S) = S which are not hyperbolic whenever the action of
G is not free (i.e. whenever X is singular) and can have in some cases finite
fundamental group.

In particular considering the universal cover, one obtains simply connected
examples of surfaces of general type covered by their Green—Griffiths locus.
Moreover, unlike previous examples, the distribution of rational, elliptic or entire
curves on these surfaces seems not to be known.

5. Green-Griffiths locus of locally reducible quotients of bounded
symmetric domains

For basic results and notation about hermitian symmetric domains, we refer to
[Mok89]. Let 2 = Gy/K be a bounded symmetric domain, where Gy = Auty(€2)
is the connected component of the identity of the automorphisms group of €,
and let I' C Aut(£2) be a lattice. The quotient X = Q/I" is said to be locally
irreducible (resp. locally reducible) if 2 is irreducible (resp. reducible) as a
hermitian symmetric space.

Definition 5.1. We say that X = Q/I" is reducible if there exists a subgroup
'y € T'" of finite index and a decomposition € ~ Q2; x Q5 into a product
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of bounded symmetric domains ; and 2, such that I’y ~ I'; x I'; and
I C Aut(£2;), i = 1,2. Otherwise, X is said to be irreducible.

In particular, a reducible quotient is by definition locally reducible. Geo-
metrically, the reducibility of X means that, up to a finite covering, X can be
decomposed isometrically in a non trivial way. We now concentrate on the locally
reducible case.

Theorem 5.2. Let X be a complex projective manifold uniformized by a reducible
bounded symmetric domain. Then, GG(X) = X.

Proof. The proof splits naturally into two parts: the reducible and the irreducible
case. We first treat the reducible case.

The case of reducible quotients. Let X be a reducible quotient. By definition,
there exists a decomposition 2 >~ Q; x 2, into a product of bounded symmetric
domains and a finite étale covering X of X which decomposes into a product
X ~ Y x Z whose factors are uniformized respectively by Q' and Q”. Since X
is a product, then, by Corollary 4.1, GG(X) = X .

The case of irreducible quotients. Let us treat first the particular case of an
irreducible quotient of a polydisk, in order to give the flavor of the proof in a
very explicit context.

Fix a co-compact subgroup I' C PSL(2,R)" acting freely and properly
discontinuously on A”. Suppose that A" /T is irreducible, so that by the so-called
Density Lemma [Rag72, Cor. (5.21) and Thm. (5.22), p. 86] the projection

T — PSL(2,R)

onto, say, the first factor has dense image I'; (it is indeed dense onto every factor).
Call z € A the complex coordinate of the first factor and w = (wy,...,wp—1) €
A"1 the complex coordinates of the last n—1 factors. We begin with a preliminary
elementary lemma.

Lemma 5.3 (Compare with [SB95]). Let n = f(z,w) (dz)®™ be a symmetric
differential of degree m on A, x A1, Suppose that n is T -invariant. Then, 7
vanishes identically.
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Remark 5.4. This lemma should be regarded as a consequence of the following
classical result for automorphic forms. Let ' C PSL(2,R)” be an irreducible
discrete subgroup with compact quotient A”/I", and f a I'-automorphic form of
weight 2r, r = (ry,...,rp) € Z" . If ry---r, =0, then f must vanish identically.
The same statement holds true for instance in the following more general setting:
the quotient A”/I" is not necessarily compact but I' is commensurable with the
Hilbert modular group (for these and related statements see for instance [Fre90]).
This latter version will be used in Section 6.2.

We shall return to the existence of such groups I' in Subsection 5.1.1, and
now we give an elementary proof of the above lemma.

Proof. Consider the smooth real function given by taking the Poincaré norm of
n:
(z,w) = | £z, w)|(1 = |z]*)™.

This is a I'-invariant smooth function, thus defined on the compact quotient
X = A"/T". Let p € X be a point where this function attains its maximum
and consider the discrete set of points {(z(;), w(;))}jes € A x A" which are in
the preimage of p by the quotient map. For each j € J, the holomorphic map
defined on the polydisk {z(;)} x Ay by

w = f(Z(j), w)

attains a maximum at the interior point w¢;) and so it is constant. So, all the
w; -derivatives vanish:

af /owa(z¢jy,w) =0, forall jeJ, A=1,....,n—1,and we A" ",

By the density of Ty, the set {z(;)}jes is dense in A, so df/dw, = 0,
A=1,...,n—1,and f does not depend on w. Therefore n does only depend
on z and can thus be regarded as a symmetric differential of degree m on A,
invariant by the action of I'y on Aut(A;) which has, once again by hypothesis,
dense image. But then, n = 0. L

Now, consider the projective n-dimensional complex manifold X = A"/T.
The holomorphic foliation by disks F on A" generated by d/dz descends to
a smooth foliation by curves F on X . Consider its tangent bundle 7z: it is a
rank one holomorphic subbundle of the tangent bundle 7x of X.

Proposition 5.5 (Compare for instance with [Bru04]). The canonical bundle
Ky =TF of F has negative Kodaira—litaka dimension.
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Proof. We have to show that HO(X ,K}‘?f) = {0} for all integers £ > 0. The
latter space of global sections identifies canonically with the space of I'-invariant
global holomorphic sections of K %ﬂ over A". Since F is generated by d/0dz,
these sections are exactly of the form considered in Lemma 5.3, and therefore
they vanish identically. O]

In particular K is not big and, by Kodaira’s lemma, for any ample line
bundle A — X and for any integer m > 0, we have H°(X,K2" ® A~') =0,
so Theorem 1.5 applies.

Now, we pass to the general case. Let 2 = Q) x---x Qr, k > 2, be the
decomposition of 2 into irreducible components. A classical theorem of Cartan
(which can be found in [Nar7l, Chap. 5]) states that all automorphisms of Q are
given by automorphisms of individual irreducible factors and by permutation of
isomorphic factors. It follows that for any lattice I" C Aut(2), there is a subgroup
I'o C I' of finite index such that I'y C Autp(2) = Aut(£2;) x -+ x Aut(R).
Thanks to Proposition 3.1, we can thus suppose without loss of generality that
the fundamental group of X, seen as a lattice inside Aut(€2), is contained in the
connected component of the identity Auty(€2). In particular we can suppose that
the action of I' preserves the factors and thus we have a corresponding splitting

Tx ~Vi®--- @V,

of the tangent bundle of X such that 7n*V; = Tg,, where 7: Q@ — X is the
quotient map.

Let Ky be the canonical bundle of X . Since it is ample there exists an integer
£ > 0 such that K}‘% is effective. We shall show that for any i = 1,...k, and for
any integer m > 0, we have H°(X, (V;*)®" ® K5*) = 0, so that GG(X) = X by
Theorem 1.5 (and in fact, more generally, that GG(X, V) = X, for any subbundle
V C Tx containing one of the V;’s). For i = 1,...,k, let

Q; =Gi/Ki, G =Autp(RQ;) and g; =¢& +my,

where g, and & are respectively the Lie algebras of G; and K; and m; ~
gi/% = Tq, ek; (here eK; is the identity coset). Next, let

Oi: Ki —> GL(mi)

be the isotropy representation of K; on m;, so that the corresponding homoge-
neous vector bundle is the tangent bundle Tgq;. The irreducible locally homoge-
neous vector bundle V; — X = Q/T is thus the one associated to the irreducible
representation

oi: Ky x--+x K; x--- x K — GL(m;)

(Brsw o oniss vos G F> 05 (i )
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Now, fix any integer m > 0 and let (0)®" be the representation defining
(V;*)®™ . Since K; is compact, all its representations completely decompose into
a direct sum of irreducible ones, thus:

(m)®" ~E1 @--- @ En

and we have a corresponding decomposition of (V;*)®™ into a direct sum of
irreducible locally homogeneous vector bundles

(V2" =W @ - Wy.

Now, they all have a natural induced hermitian metric coming from the Bergman
metric on 2;, and the decomposition is as hermitian vector bundles. Moreover,
observe that each of the W;’s comes from a homogeneous vector bundle on €
which is in fact a pull-back of a homogeneous vector bundle on ;. Therefore,
the Chern curvature of the W,’s is zero whenever evaluated (in its (1, 1)-form
part) on tangent vectors lying on the orthogonal complement of V;. In particular,
the W;’s cannot be of strictly positive Chern curvature in the sense of Griffiths.

To conclude, we use the following deep vanishing theorem which we rephrase
in a slightly different way.

Theorem 5.6 (See [Mok89, Corollary 1’ on page 212]). Let Q be a bounded
symmetric domain of complex dimension > 2 and X = Q/T" be an irreducible
quotient of finite volume of 2 by a torsion free discrete group T" of automorphisms.
Suppose V is an irreducible locally homogeneous Hermitian vector bundle on X

which is not of strictly positive Chern curvature in the sense of Griffiths. Then,
H%X,V) =0 unless V is trivial.

Now, if W, is non trivial then, by Theorem 5.6, H Otx, W;) = 0 and a fortiori
H°(X,W; ® Kx%) = 0 since K is effective. If, on the other hand, W; is trivial,
then

W ® Kxt ~ (kx')®™ "

and thus HO(X, W; ® Ky*) ~ H® (X (K§£)$rkwj) = 0, since Ky is ample. [J

Remark 5.7. Although we were not able to prove it, we strongly expect that in
the proof above the case W; trivial should not exist. This would give the stronger
statement that for any i = 1,...k, and for any integer m > 0,

HO(X,(V;*)®™) =0,
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5.1. The case of surfaces. Let us now speculate more on the case of surfaces.
In this case 2 is necessarily the bidisk A%. We begin with a few words about
the existence of irreducible co-compact subgroups I' C PSL(2,R)? acting freely
and properly discontinuously on A2, which is however quite classical (see for
instance in [Sha78]).

5.1.1. Construction of I'. Take a quaternion algebra A which is division and
whose center is a totally real quadratic number field k (for an excellent reference
about quaternion algebras and Fuchsian groups see [Kat92]). Assume that

A®gR = M(2,R)?,

that is, A is unramified at the two places corresponding to the two different
embeddings of k into R. If ® is a maximal order in A, denote by I'(1) the
group of units in ® with reduced norm 1, and identify it with its isomorphic
image in SL(2,R)2. Next, call I = I'(1)/{%1} the image of I'(1) in PSL(2,R)?.
Then, it is well known that the action of I'” on A? is irreducible and properly
discontinuous (see [Sha78, Shi94]); moreover, the fact that A is division classically
implies that this action is co-compact.

Now, since the action is co-compact, IV is a group of finite type. By Selberg’s
theorem, a finitely generated linear group over a field of zero characteristic is
virtually torsion-free, i.e. it has some finite index subgroup I" which is torsion-
free. Thus, I' acts freely on A?. Moreover, being of finite index in IV, it is
straightforward to see that it is again irreducible and with a properly discontinuous,
co-compact action.

5.1.2. Surfaces of general type with a holomorphic foliation by curves. Let
S be a surface of general type and L C Ts a holomorphic line subbundle, i.e.
S is endowed with a smooth holomorphic foliation F by curves whose tangent
bundle T is L. Suppose that the canonical bundle Kr is not big.

Proposition 5.8. Let (S, F) be as above. Then, S is a quotient of the bidisk AZ.

Proof. Following [Bru97], the existence of such a smooth foliation on the surface
of general type S implies that Kg is ample and so, by Aubin—Yau, S is Kéhler—
Einstein and hence Ts is Kg-semistable. The semistability inequality reads

1
(2) ci(TF)-c1(S) = 561(5)2 > 0.
Since F is smooth, the Baum—Bott formulae give

c2(S) —c1(Tx) - c1(S) + c1(Tr)* =0

3
) c1(8)? = 2¢1(T#) - c1(S) + e1(TF)* = 0.
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If Tg is stable, the first inequality in (2) is strict and using the second of (3)
we obtain ¢(Tz)?> > 0. Thus, T or its dual Kr must be big. Since, by (2),
c1(Kx)-c1(Ks) > 0, we get that K is big, contradiction.

Therefore, Tg is polystable but not stable, that is Tg = L; @ L, is a
direct sum of two line bundles and by Beauville-Yau’s uniformization theorem
[Bea00, Yau93], the universal cover S of S splits as a product of simply
connected Riemann surfaces, the decomposition of the tangent bundle lifts and
the fundamental group of S acts diagonally on S . Of course, the only possibility
for S is to be the product of two disks. O

It is known by [Lu96] that surfaces as above satisfy the Green—Griffiths
conjecture since they verify the Chern numbers inequality c¢;(S)? —2c¢2(S) >0
(to see this just inject the difference of the two identities in (3) into the first
inequality in (2)).

Next, assume that § is a smooth projective surface of general type and F
a (possibly singular, with at most isolated singularities) holomorphic foliation by
curves whose canonical bundle K is not big. By Seidenberg’s theorem, we can
suppose without loss of generality that F has reduced (or canonical) singularities.

Thus, the birational classification of foliations developed by Brunella and
McQuillan (see [Bru97, McQO8] and [Bru0O4]) tells us that F is necessarily of
the following two types.

e A Hilbert modular foliation, and thus S is a Hilbert modular surface, if
k(Kr) = —o0.

e An isotrivial fibration of genus > 2, if «(Kx) = 1.

This gives the “singular” analogue of Proposition 5.8. Then, for instance,
Hilbert modular surfaces which are minimal resolution of surfaces with cusps
give examples of surfaces S with ¢;(S)? < 2c¢(S) such that GG(S) = S.

Finally, what if Kx is big? Here is a natural question which was asked to us
by M. McQuillan in a private communication.

Question 5.9. Let S be a surface admitting a holomorphic foliation by curves
F with canonical singularities. Suppose that Kr is big. Is it then true that
GG(S,Tr) € S? If moreover S is of general type, what can be said about
GG(S) in this case?

6. Green—Griffiths locus of locally irreducible quotients of bounded
symmetric domains

In this section, we will prove the following theorem.
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Theorem 6.1. Let X be a complex projective manifold uniformized by an

irreducible bounded symmetric domain of rank greater than or equal to two.
Then, GG(X) = X.

Let us explain the idea to prove such a result. Recall that in the locally
reducible case we used in an essential way the existence of natural holomorphic
foliations on the manifold coming from the irreducible factors of the universal
cover. At first glance, it could be therefore tempting to think that the irreducibility
of the tangent bundle could be somehow an obstruction for the Green—Griffiths
locus to cover the whole manifold. The theorem above tells us that this is indeed
not the case.

To prove Theorem 6.1 we need thus to find something which replaces the
existence of natural foliations. The idea is somehow to use, instead of the trivial
foliations on the universal cover 2 of X, the existence of many polydisks nicely
embedded in .

6.1. The Green-Griffiths locus of Shimura varieties: An “all or nothing”
principle a la Ullmo-Yafaev. It is not easy in general to construct totally
geodesic subvarieties in arbitrary compact quotients of symmetric hermitian
domains. Interesting examples are given by the theory of Shimura varieties.
Consider a connected semisimple and simply connected @ -anisotropic linear
algebraic group G over Q with associated Lie group G = G(R). Then, for
any congruence subgroup I' which acts without fixed point on D = G/K, the
quotient space X = D/I" is a smooth projective variety.

Any g € Gg gives rise to a Hecke correspondence 7 on X as follows. Let
I, = T'Ng !T'g: this is a congruence subgroup of finite index in I". The variety
Y = D/T, is smooth projective and admits two finite étale maps to X, given
by pi(I'gx) =Tx, p2(I'gx) =I'gx, for any x € D. The action on cycles of X
is given by pa,p7.

A direct application of Propositions 3.1 and 3.4 gives the following result
which should be seen as a geometric counterpart of the “all or nothing” principle
of [UYI10] and as a preliminary version of Theorem 6.1.

Theorem 6.2. Let X be a compact Shimura variety associated to a semisimple,

connected and simply connected Q -anisotropic algebraic group over Q. Then
GG(X)=2 or GG(X) =X.

Proof. Since the group G is connected, Gg is dense in G = G(R) [PR94]. It
follows that if ¥ C X is a subvariety of X, the irreducible components of T (Y')
for g € Gg are dense in X.
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We conclude using Propositions 3.1 and 3.4 which give that if ¥ C GG(X)
then T, (Y) C GG(X). O

Now, we give a criterion to decide on which side of the alternative we are.

Corollary 6.3. Let X be a compact Shimura variety associated to a semisimple,
connected and simply connected Q -anisotropic algebraic group over Q. Suppose
that X contains a subvariety Y of positive dimension such that GG(Y) = Y.
Then, GG(X) = X. :

Proof. Fix an ample line bundle A — X . First we observe that if GG(Y) =
Y then ¥ C GG(X). Indeed, if y € Y, for all integer k > 0 there
exists a k-jet ¢x: (C,0) — (Y,y) such that for all integer m > 0 and
all 0 € HYY,EZSTy ® A'|y), one has Q(gx(0)) = 0. Given any P €
HY(X,EZSTy ® A7), restricting P to ¥ we obtain P (g (0)) = 0. But then,
y € GG(X).

Finally, since then GG(X) # @, thanks to Theorem 6.2 we obtain GG(X) =
X. O

Although we have considered the compact case, the same strategy can be
applied in the isotropic case. An interesting and very explicit case is the one of
Siegel modular varieties which we shall discuss now in some detail.

6.2. The Green-Griffiths locus of (compactifications of) Siegel modular vari-
eties. Let n > 2 and

Q=DM ={(ZeMwn,C)|Z=12, 1d,-TZ.Z>0}

be the classical bounded symmetric domain of type /71, which is holomorphically
equivalent to the Siegel upper half-space H, = {r € M(n,C) | r = Tz,Imt > 0}.
It has complex dimension n(n + 1)/2 and rank n. The group Sp(2n,R) acts
transitively on 2 and we have indeed a presentation

Q = Sp(2n,R)/U(n)

as a homogeneous space. Now, let I' C Sp(2n,R) be a lattice commensurable
with Sp(2n,Z), and consider the quotient manifold X = Q/I" and any smooth
compactification X of X.

Proposition 6.4. The Green—Griffiths locus GG(Y) of X is the whole manifold.

Proof. 'There is a totally geodesic polydisk A" < Q given by

A" 3z =(z1,...,24) = z¥ = diag(zy,..., Zn)s
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where diag(zy,...,z,) is the diagonal matrix with (z;,...,z,) as entries along
the diagonal. This corresponds to the embedding

SL(2,R)" < Sp(2n,R)

M=M,... My > M* = (“ 2 )
C

* d*
where, for i = 1,...,n,
M; = (“" b") € SL(2,R),
Ci di
a* = diag(a,,...,a,) and similarly for »*, ¢* and d*.

More generally (the following construction is taken from [Fre79]), given
A € GL(n,R), one can consider the map A" «— Q, given by A" 5 z =

(z1,...,2zp) = A'z*A. In order to take quotients, one defines
At 0 A o)
.— n %
'y:= M €SL(2,R)" such that (0 A—l) M (O A“) el

Indeed, it is straightforward to see that we thus have a well-defined map
da: A"/T4 = X.

Again following [Fre90], consider a totally real number field K of degree n
together with its embedding with dense image

K «— R”
o (a(l), ...,a(”)).
Next, fix a basis A = {«1,...,a,} of K as a QQ-vector space. Then, the matrices
Ap = (ai(J))i,j=1,...,n € GL(n,K)

have the property that the corresponding I'y, is commensurable with the Hilbert
modular group associated to K. Moreover, such matrices A, are clearly dense
in GL(n,R) as A runs through all possible bases.

Now, take a global jet differential of order k and weighted degree m over X,
PeH'(X,E f o TY*) Taking the pull-back ¢ P, we obtain a k-jet differential
on A"/T'4, . Therefore, by Remark 5.4 and an evident variation in the non-
compact case of the subsequent proposition, ¢;AP must vanish on jets tangent
to the directions given by the foliations defined by the factors. Thus, we have that

P4, (A"/T4) C GG(Y). By density, we finally get GG(_) =X. U
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The characteristic bundle [Mok89, Chapter 6]. In order to “globalize” this
polydisk approach, the right tool turns out to be the characteristic bundle
introduced by Mok. We recall below one possible construction as well as some
basic features of this important object.

So, let @ = Go/K be an irreducible bounded symmetric domain of rank
> 2 endowed with its Bergman metric @ and X = Q/I" a quotient of by a
torsion-free discrete group of automorphisms. By a slight abuse of notation, we
will still call @ the induced metric on X . Now, consider the projectivized bundle
m: P(Tx) — X of lines of Ty and the corresponding tautological line bundle
Op(ry)(—1) C n*Ty — P(Tx) with the natural hermitian metric 4 induced by
.

Next, let ®,(7Tx) be the Chern curvature of Tx with respect to the metric

w. For each x € X and v € Ty \ {0}, consider the hermitian form on Ty,
defined by

@ Tica T 3 6.1) = oz 0(Ou(T)(0,7) - 7).

w
It is the hermitian form associated to the Griffiths curvature of (7x,w) in the
direction given by v, which is therefore semi-negative. Call N, [, C Tx,x its
zero eigenspace: it is clearly neither zero nor the whole space. We say that [vg]
is a characteristic direction at the point x € X if dim N, [, is maximum among
dim Ny [y], for [v] € Tx x \ {0}. This maximal dimension does depend only on :
we call it n(2), the null dimension of Q.

Definition 6.5. The set S = S(X) C P(Tx) of characteristic directions together

with the induced projection 7|s: & — X onto X is called the characteristic
bundle.

The characteristic directions are, equivalently [Mok89, Proposition 1 on page
242], the directions which minimize the holomorphic sectional curvature

1
lvl1g
In algebraic terms, the characteristic vectors (i.e. the non zero vectors which
define a characteristic direction) are given by the highest weights of the isotropy
representation on the holomorphic tangent space.

It is a remarkable fact that 7|s: & — X is indeed a holomorphic fiber bundle
and that § is a smooth closed complex submanifold of P(Tx) of dimension

Txx \ {0} 3 v

(0w (Tx)(v,7) - v, V).

dimS = dim P(Ty) — n(Q) = 2dim X — 1 — n(Q).

Even more remarkable, we have the following
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Proposition 6.6 (Mok [Mok89, Proposition 4 on page 262]). Let X = Q/T" be
a compact quotient of an irreducible bounded symmetric domain of rank > 2.
Then, for any integer m > 0 and any o € H°(P(Tx), Op(ry)(m)), we have that
o vanishes identically on S.

Remark 6.7. We stated here a weaker form of the proposition above, which
gives in fact — in its full strength — a precise description of the stable base locus
of Op(ry)(1) in terms of higher characteristic bundles, see [Mok89] for more
details.

In the sequel, we shall need the following slightly refined version of
Proposition 6.6, which deals with global sections of the restriction of the (anti)ta-
utological bundle to S.

Proposition 6.8 (Compare with [Mok89, Chapter 6, (3.1) and (3.2)]). Let
X = Q/T be a compact quotient of an irreducible bounded symmetric domain
of rank > 2. Then, for any integer m > 0 we have

H°(S,0s(m)) = {0},

where Og(m) is the restriction Op(ry)(m)|s.
In other words, the Kodaira—Iitaka dimension of Og(1l) is negative.

Proof. The proof relies essentially on the fact that the argument used to prove
[Mok8&9, Proposition 4 on page 262] goes through in this stronger version. We
sketch it anyway for the reader’s convenience.

We proceed by contradiction and suppose there exists an integer m > 0 and a
non zero section o € H%(S, Os(m)). By a slight abuse of notation, we still call
h the restriction of the natural hermitian metric 2 on Op(ry)(—1) to Os(—1).
Then, g := (K" + 0 ® 5)Y/™ defines a hermitian metric on @g(—1) which still
has semi—negative curvature, since ¢ is holomorphic.

Claim 6.9 (Compare with Mok’s hermitian metric rigidity theorem). In this
situation, g = C - h for some positive constant C .

This claim implies that ||o||;—= is constant. If it were a non zero constant this
would imply that ¢ never vanishes and thus Og(m) is holomorphically trivial.
But this is impossible since

Claim 6.10. The following inequality holds:
f Cl(oP(TX)(l)) Fopims—1l o g
S

where v is the Kihler form on P(Ty) given by Cl(OP(TX)(l),h_l) +r*w.
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But then ||o||p-m =0 and o is identically zero, too. U

It remains to prove the two claims above.

Proof of Claim 6.9. We follow almost word—by—word the alternative proof of
Mok’s hermitian metric rigidity theorem which makes use of Moore’s ergodicity
theorem [Mok89, Chapter 6, §3]: we just need to check that his argument goes
through when everything lives on & and does not come necessarily from the
whole P(Tx).

So, write g = e - h, where u is a smooth real function on & and write
q :=n(S2). By [Mok89, Chapter 6, formula (2) on page 116], we have that

2n—2g—1

i du A Ou A 1 (Op(ryy(=1), h) =0 onS.

This follows from a quite straightforward integral formula over S. Now, we lift
everything on €2, where the characteristic bundle is trivial

S(Q)~QxS CcQxP" ! = P(Te).

Here, S, is the set of characteristic direction over a base point o0 € . In
particular we have an identification

Ts@).(0.v) = Ts,,[v] © TQ,0-

From the explicit expression of the curvature ®;(Op(ry)(—1)) it is immediate to
check that the non—negative (1,1)-form i du A du must vanish on N, ,) C Tq.o.
Since u is real, it follows that

(5) du|x, ,, = 0.

Let U(Tx) the w-unitary tangent bundle to X and U(S) C U(Tx) the
subspace of unitary characteristic vectors. Of course, u pulls-back to a (S'-
invariant) function on U(S), which we still call u by abuse of notation. Fix a unit
characteristic vector v and let L C Go be its stabilizer, so that U(S) = I'\Go/L
has a locally homogeneous space (it is more convenient to write I" on the left for
this proof). By pulling-back again we get a positive I'-invariant and L -invariant
smooth function # on Gy which we will show to be invariant under the right
action of a closed non-compact subgroup H C Gg. Now, by Moore’s ergodicity
theorem, every H -invariant subset of I'\ Gy is either of zero or of full measure,
since Gg is simple and T" a lattice. If #: I'\Go — R were not constant then we
could find two positive real numbers a < b such that the set

Vap :={y € T\Go | a < ii(y) < b}
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is neither of zero nor of full measure. But by the H -invariance of u, V,,
would be H -invariant, contradiction. It then follows that u itself is constant and
therefore g is a constant multiple of 4.

We now come back to the existence of such a closed non-compact subgroup
H : it is obtained as a one-parameter subgroup of transvections as follows. Take
a non zero vector w € N, [,] and let y be the geodesic on Q determined by
w. Without loss of generality, we can suppose that the characteristic vector v is
unitary and form the curve y* C U(S(2)) obtained by parallel transport of v
along y (here we use that S and hence U(S) are invariant by parallel transport).
By construction, the curve ¢ = y*(f) is pointwise tangent to N, [,*(), SO that
u is constant along y* by (5). By the same argument, u is also constant along
the image @(y*) of y* by any isometry ¢ € Go. By the general theory, y* is
the orbit H(v) = H(e mod L) of v under a non-compact one-parameter family
H C Gy of isometries. But then, for ¢ € Gy, u is constant along the H -orbit
¢H mod L = ¢(y*). This means exactly that # on I'\Gg is invariant under the
action of H. L

Proof of Claim 6.10. The Chern curvature i ©4(Op(ry)(—1)) of h at a point
(x,[v]) € P(Tx) is roughly given by a “vertical” term, which is nothing but
minus the Fubini-Study metric, and a “horizontal” term, which is given by the
(1,1)-form associated to the hermitian form in (4). In particular, if [v] is a
characteristic direction, at (x,[v]) it is semi-negative of rank 2n — 1 —n($2). So,
the restriction of i ©,(Op(ry)(—1)) to S is also semi-negative of rank at least
2n —1—2n(2) > 0. Therefore, along S, the trace with respect to v

c1(Opayy (1), B AVEMSL — ¢ (Op(ryy(—1), k) A pdimS-]

is strictly positive and thus so is its integral over S. O

Foliating the characteristic bundle by minimal disks. Let @ = Go/K be a
bounded symmetric domain of rank > 2 and X = Q/I" a compact quotient. We
shall recall how to construct a natural (smooth) holomorphic foliation by curves
M on §. The foliation in question is the one associated to minimal disks in
Q. Let us describe how one can construct it. Let QY = G./K be the compact
dual of Q, where G, is a compact real form of the complexification of Gy.
Write Q@ cc CYm®? c QV for the Harish-Chandra and Borel embeddings. As in
the non compact case, one defines the notion of characteristic vectors on Q" as
highest weights of the isotropy representations on the holomorphic tangent space.
Since the isotropy representations for  and QY are the same at points of Q, a
tangent vector to 2 is characteristic for € if and only if it is characteristic for
QY. Next, there is a notion of minimal rational curve in QV: these are rational
curves representing the positive generator of H»(QY,Z) ~ Z.
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Proposition 6.11 (Mok [Mok89, Proposition 1 on page 143]). For any x € QY
and any characteristic vector v € Tqv x there exists a unique minimal rational
curve C passing through x such that Tcx = [v]. Furthermore, all minimal
rational curves are obtained in this way.

Now, it can be shown that the intersection of any minimal rational curve with
Q is biholomorphic to a disk. Such disks in 2 are called minimal disks. We
shall still call minimal disk the image in X of a minimal disk in 2 under the
uniformization map 2 — X.

Consider the projectivized bundle P(7x) — X . For each non singular germ
of holomorphic map ¢: (C,0) — X, one can define a projectivized lifting
@ : (C,0) » P(Tyx) simply by writing @ (¢) = (¢(¢), [¢'(¢)]); here, we think at
point of P(Ty) as pairs (x,[v]), where x € X and v € Ty \ {0}. Tautologically,
the restriction of Op(ry)(—1) to the image ¢ ((C,0)) of ¢ is isomorphic to
the tangent bundle to @ ((C,0)). Now, as we saw, for each point (x,[v]) € S
there exists a unique minimal disk f: A — X passing through x and whose
tangent space at x is [v] Moreover, by uniqueness, for each f({) one has that
(fO,[f(O) €S, ie. f (A) € S. The collection of all f (A), when f runs
among all minimal disks in X, thus endows & with a holomorphic foliation by

curve M, whose tangent bundle 75, is naturally isomorphic to the restriction of
OP(TX)(_I) to S.

The proof of Theorem 6.1 is now almost immediate.

Proof of Theorem 6.1. The idea is to use the characteristic bundle 7: S — X
together with Remark 3.3.

The (smooth) holomorphic foliation M on & constructed above is such that
the canonical bundle K¢ to this foliation is isomorphic to Op(ry)(1)|s. By
Proposition 6.8, K has negative Kodaira-litaka dimension. Thus, by Theorem
1.5, we obtain that GG(S,Thp) =S

Next, the tangent bundle 7Txy C Ts C Tp(ry)|ls to M is transverse to the
kernel of the differential dm. In fact given a direction tangent to M, it is of the
form f for some minimal disk f in X . Thus, since x o f f, we have

dn(f') = f"#0.

Then, Remark 3.3 tells us that 7(GG(S,Tr)) C GG(X) and, since we have
GG(S,Thn) = S, Theorem 6.1 follows.

O
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7. Final remarks on the Green-Griffiths—-Lang conjecture

The final step for the solution of the Green—Griffiths—Lang conjecture using
only (invariant) jet bundles requires to show that at least one of the base loci

Bi := (1) Bs(Op,(vy(m) ® 75, A71) \ Pe(V)¥™ C Pr(V)

m=>1

projects down to a proper algebraic subvariety Yy := mg x(Bg) in X . The results in
this paper show that, unfortunately, this is hopeless without any further assumption
on X besides that of being of general type.

Nevertheless, one could think of a less demanding property, namely that for
all irreducible subvarieties Z C Py (V) such that myx(Z) = X, the restriction
Op,vy(1)|z could be big.

This is exactly what is proved in a theorem of Lu and Yau [LY90] for order
one jets, for X a surface of general type with ¢;(X)? —2c2(X) > 0, achieving
thus the proof of the Green—Griffiths—Lang conjecture in this case. But we cannot
expect even this less demanding property to be true in general since we have
seen at the end of Section 2 that there exist projective manifolds X of general
type such that for each k > 0 there is a smooth submanifold X; C Py (V) which
projects biholomorphically onto X via mgj and such that for all integers m > 0
we have

H®(Xy, (Op,vy(m) @ mg A Dlx, ) = 0.

Thus, we see that Lu and Yau’s result is sharp in this sense and that ¢f(X) =
2¢3(X) is somehow a threshold for projective surfaces of general type as far
as the solution to the Green—Griffiths—Lang conjecture using only base loci of
sections of k -jet bundles is concerned.

On the other hand, McQuillan’s celebrated work on surfaces [McQ98] shows
that the conjecture is true whenever the second Segre number c¢7 — ¢, of the
surface is positive (this being the case for the compact free quotients of the bidisc
thanks to the Hirzebruch proportionality principle, see [Hir58]). Observe that his
proof relies upon a combination of the theories of jet differentials and that of
foliations: jet differentials of order one (the existence of which is assured by
the assumption on the Segre number) produce (multi)foliations such that every
entire curve must be tangent to. The algebraic degeneracy is then obtained in this
situation as a consequence of deep results about parabolic leaves of holomorphic
foliations on surfaces of general type rather than trying to control the Green—
Griffiths locus (which, a posteriori would not give the desired result, also in view
of what is described in these lines).

As far as we know, at present, the only cases where an explicit control of
the Green—Griffiths locus is known are given by generic projective hypersurfaces
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of high degree: it is shown in [DMRI0] that if X Cc P**!, n > 2, is a generic
projective hypersurface of degree degX > 2"5, then GG(X) is contained in a
proper subvariety of X . This result is further refined in [DT10] where, under the
same hypotheses, it is proved that GG(X) is contained in a proper subvariety
of codimension at least two. The reader may consult the survey [DRI1l] for more
details about hyperbolicity of projective hypersurfaces.
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