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Lamplighters, metabelian groups, and horocyclic products

Margarita AmcHisLAvskA and Timothy RiLEy

Abstract. Bartholdi, Neuhauser and Woess proved that a family of metabelian groups
including lamplighters have a striking geometric manifestation as 1-skeleta of horocyclic
products of trees. The purpose of this article is to give an elementary account of this result,
to widen the family addressed to include the infinite valence case (for instance Z?Z), and
to make the translation between the algebraic and geometric descriptions explicit.

In the rank-2 case, where the groups concerned include a celebrated example of
Baumslag and Remeslennikov, we give the translation by means of a combinatorial
‘lamplighter description’. This elucidates our proof in the general case which proceeds
by manipulating polynomials.

Additionally, we show that the Cayley 2-complex of a suitable presentation of Baumslag
and Remeslennikov’s example is a horocyclic product of three trees.

Mathematics Subject Classification (2010). Primary: 20F05, 20F16, 20F65

Keywords. Horocyclic product, lamplighter, metabelian group

1. Introduction

Our conventions throughout will be [a,b] = a~'b"'ab and a"® = ba"b™!
for group elements a, b and integers n. Our group actions are on the right.

1.1. The original lamplighter group (Z/2Z)?Z. Denote (Z/2Z) Z by T'1(2).
As an abelian group the ring (Z/27Z)[x,x~!] is isomorphic to the additive group
D;cz(Z/2Z) of finitely supported sequences of zeros and ones. By definition
I'1(2) = @;cz(Z/2Z) x Z, and so can also be expressed as (Z/27Z)[x,x % Z,
and this provides a convenient description of the action of the Z -factor, namely
a generator of the 7 -factor acts on (Z/2Z)[x,x~!] by multiplication by x.

Elements (Z jeZ fjxj , k) € I'1(2) can be visualized as a street (the real line)

with lamps at all integer locations, a lamplighter located by lamp k, and, for
each f; =1, the lamp at j is lit. We will call this the lamplighter model for
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FiGure 1
An element (x™* 4+ 1+ x 4+ x3,5) of I'1(2). The lamps at positions —4,0,1 and 3
are turned on and the lamplighter is standing by the lamp at location 5.

I'1(2). The identity element (0,0) corresponds to all lights being turned off and
the lamplighter at location 0. Figure 1 illustrates (x™* 4+ 1+ x + x3,5) € I'1(2).
In Section 7, we will explain the classical result that

(a,r | a2=1,[a,a’k]=1 (k € Z))

is a presentation for I';(2).

Elements of I';(2) expressed as words on a and ¢ can be visualized on
the lamplighter model above by starting with the model for the identity element,
reading off one letter at a time from left to right: upon reading ¢ we move
the lamplighter one unit to the right (hence upon reading r~! we move one
unit to the left), and upon reading a*! we flip the switch on the lamp at
which the lamplighter is currently located. For example, both t~*at*atar?ar?
and atat*at™"at3at?at* express the element pictured in Figure 1.

1.2. Cayley graphs. The Cayley graph of a group G with respect to a generating
set A is the graph which has elements of G as its vertex set and, for every
g€ G and a € A, has a directed edge labeled a from g to ag. The presentation
complex Pg of a group G presented by (A | R) is a 2-dimensional cell complex
which has a single vertex, one loop at the vertex for each generator of G, and
one 2-cell for each relation in the presentation glued along the corresponding
edge-loop. The universal cover ?5 of Pg is called the Cayley 2-complex of
G, and the 1-skeleton of Pg gives the Cayley graph of G with respect to this
presentation.

A group acts geometrically on a metric space if the action is cocompact,
by isometries, and properly discontinuous (that is, every two points have
neighbourhoods such that only finitely many group elements translate one
neighbourhood in such a way that it intersects the other). For example, if A
is finite, the action of a group G on itself by right-multiplication naturally
extends to such an action on a Cayley graph.

1.3. A primer on horocyclic products of trees. Part of the infinite binary tree
Tz/2z With every vertex having valence 3 and equipped with a height function
h is shown in Figure 2. A horocyclic product is constructed from two copies of
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FIGURE 2
A part of an infinite binary tree with a height function. Vertices in #;(Z/2Z) include
d.,d), d,e), d,[), (e,d), (j,c), (v,a), and (a,u). Edges in H1(Z/2Z) include
{(d.e), (h.b)}, {(d,e),(b,k)}, and {(u,a),(i,c)}.

Tz/2z by taking the subset

H1(Z/2Z) = {(po. P1) € Tzj2z X Tz/2z | h(po) + h(p1) = 0}

of 7z/22z x Tz 2z . In Section 3 we will give precise definitions and will generalize
this construction to products of n + 1 trees by taking the subset of (n 4+ 1)-tuples
of points in the tree whose heights sum to zero.

The starting point for this article is that this striking generic construction turns
out to give a Cayley graph of I'1(2) —

Proposition 1.1. The Cayley graph of T'1(2) with respect to the generating set
{a,at} is H1(Z/27Z).

This result originates with P. Neumann and R. Mboller in 2000. They
noticed that, with respect to a suitable generating set, the Cayley graph of
I''(2) = (Z/2Z) Z is a highly-arc-transitive digraph constructed by Moller
in [Mol], which is the horocyclic product #H,(Z/2Z) of two infinite binary trees
[NM]. See also [BW, BWI1, Woel].

Proposition 1.1 is a special case (with n =1 and R = Z/2Z) of Theorem 1.2
which will identify Cayley graphs of generalized lamplighter groups with the
1-skeleta of horocyclic products of trees. A mild generalization (allowing other
rings in place of Z/27Z) is proved in Section 4.
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1.4. Generalized lamplighter groups. Another group we can consider is Z ! Z
which we denote by I';. Again, as an abelian group the ring Z[x,x~'] is
isomorphic to the additive group &B,;.;Z of Z-indexed finitely supported
sequences of integers. So I'; can also be expressed as Z[x,x~!] x Z where
a generator of the Z-factor acts on Z[x,x!] by multiplication by x. The model
for I'; is similar to that of I';(2), except each lamp has Z-worth of brightness
levels. A presentation for I'y is ( a;it ‘ [a,a’k] =1(keZ) ) which is similar
to that of I'1(2) except that a has infinite order.

Similarly, for any commutative ring with unity R, we can construct a group
['1(R) = R[x,x ] xZ and consider the model where the lamps have |R|-worth
of brightness levels. In this notation, I';(2) = I''(Z/27Z) and T'; = I'1(Z). The
case where n = 1 of Theorem 1.2 states that the horocyclic product of two
R-branching trees H;(R) (defined in Section 3.1) is the Cayley graph of I'j(R)
with respect to a suitable generating set (proved in Section 4).

‘We can generalize these constructions further. The group I'; is a celebrated
example of Baumslag [Baul] and Remeslennikov [Rem]

Z [x,x_l, (1+ x)_l] x 72

where, if the ZZ2-factor is (¢,s), the actions of ¢ and s are by multiplication
by x and (1 4+ x), respectively. It was the first example of a finitely presented
group with an abelian normal subgroup of infinite rank — specifically, the derived
subgroup [I'2, I’;]. We will show in Proposition 7.3 that one of the presentations
for I’ is

(a.s,t | [a,a']1=1, [s,f] =1, a*® = aa").

An analogous lamplighter model for general I';(R) = R [x,x7!, (1 +x)7'| % Z?
will be discussed in Section 5.1. Restricting to the case where n = 2, Theorem 1.2
states that the 1-skeleton of the horocyclic product of three R-branching trees
H,(R) is the Cayley graph of I';(R) with respect to a suitable generating set
(proved in Section 5).

We can generalize these constructions even further to obtain the family of
groups [',(R) that figure in Theorem 1.2 defined as follows.

Suppose R is any commutative ring with unity.

For n =1,2,..., let A,(R) be the polynomial ring

R[x,x_l,(l+x)_1,...,(n—1+x)_1].
For h = (hg,...,hp—1) € Z" and f € A,(R), define
fh = fx"PA+x)"...(n—14x)"1.

Then T'p(R) := An(R) x Z" where the group operation is (f, h)( f . ﬁ) =
(f+ f-hh+h).
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This definition can be conveniently repackaged as:
I'n(R)

ko ki ... — kn—1
g{(x (1) O(" 1 +%) {Hko,...,kn_lez, feA,,(R)},

where the matrix multiplication naturally realizes the semi-direct product structure
of the group.

For brevity, define I';, :=T,(Z) and I',(m) := T (Z/mZ).

It will prove natural for us to index the coordinates of Z" by 0,...,n — 1.
Accordingly, we use ep,...,e,—; to denote the standard basis for Z”.

In higher rank, the examples originate with Baumslag, Dyer, and Stammbach
in [BD, BS]. Bartholdi, Neuhauser and Woess [BNW] studied the family
including I'y(m) for m,n = 1,2,... such that 2,3,...,n — 1 are invertible
in Z/mZ. And recently, Kropholler and Mullaney [KM], building on Groves
and Kochloukova [GK], studied I[',(Z[1/(n —1)!]) x Z where a generator of the
Z -factor acts as multiplication by (n — 1)! on the A,(Z[1/(n — 1)!])-factor in
I'W(Z[1/(n — 1)!]) and trivially on the Z"-factor. To put it another way, these
groups are A,(Z[1/(n — 1)) x Z"*1, defined like T, (Z[1/(n —1)!]), but with a
generator of the additional Z -factor acting on A,(Z[1/(n—1)!]) by multiplication
by (n—1)!.

1.5. Cayley graphs of generalized lamplighter groups. The main theorem we
address in this article is:

Theorem 1.2. For n = 1,2,..., if 2,...,n— 1 are invertible in R, then the
I-skeleton of H,(R) is the Cayley graph of T',,(R) with respect to the generating
set

{(r.ej).(r.ej)(r.ex)™" | reR, 0<jk<n-—1and j <k}.

In particular, if |R| < oo, then T, (R) acts geometrically on H,(R).

For R finite, this theorem is due to Bartholdi, Neuhauser & Woess [BNW].
(Instead of working with A,(R) and insisting that 2,...,n — 1 are invertible in
R, they work more generally with polynomials R[x, (Lo +x)"1,..., (€y—1 +x)7]
such that the pairwise differences ¢; — £; are all invertible. Our treatment could
be extended to this generality if desired.) We aim here to give as elementary,
explicit and transparent a proof as possible for general T',(R). The proof in
[BNW] proceeds via manipulations of formal Laurent series. We will work with
‘lamplighter models’ as far as possible—the cases » = 1 and n = 2—and use
these models to illuminate a proof in the general case which involves suitably
manipulating polynomials.
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Theorem 1.2 fits into a broader context which can be found in the introduction
to [Mar] (as we thank C. Pittet for pointing out). In the case where R is the field
IF,, the trees arise from valuations on F,((x)) (cf. Section 4.2 of [GK]), and this
leads to I';(F,) being a cocompact lattice in Sols(F,((x))) (Proposition 3.4 of
[CTe]), and we presume generalizes to I',(F,) in Soly,+1(IF,(x))). This provides
the formalism adopted by Bartholdi, Neuhauser & Woess in [BNW] in their
proofs. However our perspective is that the theorem relates two elementary (and
starkly different) objects: horocyclic products of trees and a family of metabelian
groups defined using polynomial rings, and there should be a proof which is
intrinsic to those concepts and is correspondingly elementary. We aim here to
provide such a proof to clarify the relationship and explore how far the ideas can
be pushed.

The n =1 and n = 2 cases of the theorem motivate us to give (in Section 7)
some group presentations which reflect the horocyclic product structure. One such
presentation then features in this embellishment of an n = 2 case of Theorem 1.2:

Theorem 1.3. H,(Z) is the Cayley 2-complex with respect to this presentation
Of Fz .
(i pisviGi € Z) | Ai = vipis Aigj = uivi (i, j € Z)).

1.6. The organization of this article. In Section 2 we explain the significance
of the family I',,(R). They have compelling applications and properties and other
manifestations and they bear comparison with other important families such as
Bieri—Stallings groups, the Lie groups Sol,,+;, and Baumslag—Solitar groups.
In Section 3 we define the trees Tr and their horocyclic products H,(R), and
explain some of their features. We prove Theorem 1.2 in the case n = 1 in
Section 4. This introduces some of the key ideas in a straight-forward setting. In
Section 5, we give a proof for the n = 2 case which contains most of the ideas
of the general proof, but we are able to present them in purely combinatorial
terms using a lamplighter description of I'2(R). We explain our proof for general
n in Section 6. In Section 7 we discuss presentations for I',(R) and then we
prove Theorem 1.3 in Section 8.

2. The significance of the family I',(R)

Here are some of the applications, properties, and cousins of the groups
Tn(R).

Instances of the family ', (R) and the related horocyclic products have featured
in some major breakthroughs. Baumslag and Remeslennikov’s construction of I';
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precipitated their theorem that every finitely generated metabelian group embeds
in a finitely presented metabelian group [Bau2, Rem].

Grigorchuk, Linnell, Schick, and Zuk showed that the LZ-Betti numbers of
Riemannian manifold with torsion-free fundamental group need not be integers
(answering a strong version of a question of Atiyah [Ati]) by constructing a
7-dimensional such manifold with fundamental group I'>(2) and third LZ-Betti
number 1/3 in [GLSZ].

Diestel and Leader in [DL] put forward the horocyclic product of an infinite
2-branching and an infinite 3-branching tree as a candidate to answer a question
of Woess as to whether there is a vertex-transitive graph not quasi-isometric to
a Cayley graph. Eskin, Fisher and Whyte [EFW2] verified this. (Accordingly,
the 1-skeleta of #,(Z/mZ) of Section 3.2 are termed Diestel-Leader graphs in
[BNW].) Woess recently wrote an account of this breakthrough and its history
[Woe2].

Eskin, Fisher and Whyte [EFW2] also classified lamplighter groups up to
quasi-isometry. Dymarz [Dyml] used lamplighter examples to show that quasi-
isometric finitely generated groups need not be bilipshitz equivalent. In both cases,
the horocyclic product view-point was essential to their analyses.

A number of properties of these groups have been identified.

Bartholdi & Woess [BW] studied the asymptotic behaviour of the N -step return
probabilities of a simple random walk on a horocyclic product of two regular
(finitely) branching trees. Woess [Woel] described positive harmonic functions in
terms of the boundaries of the two trees. Bartholdi, Neuhauser & Woess [BNW]
identified the £2?-spectrum of the simple random walk operator and studied the
Poisson boundary for a large class of group-invariant random walks on horocyclic
products of trees.

A group G is of type F, if there exists a K(G,1) (an Eilenberg—Maclane
space — a CW-complex whose fundamental group is G and which has contractible
universal cover) with finite n-skeleton. All groups are Fy, being finitely generated
is equivalent to F;, and being finitely presentable is equivalent to F,. Bartholdi,
Neuhauser & Woess [BNW] show that H,(Z/mZ) is (n — 1)-connected but
not n-connected and deduce that I',(m) is of type F, but not of type Fj,+1
when 1,...,n — 1 are invertible in Z/mZ. Kropholler & Mullaney [KM] use
Bieri-Neumann—Strebel invariants to prove that I',(Z[1/(n —1)!]) xZ (as defined
in Section 1.4) is of type F, but not of type F,+;. The Bieri—Stallings groups
[Bie, Sta] exhibit the same finiteness properties, and bear close comparison with
the family I',(2) in that both are level sets in products of trees (just the height
functions concerned differ).

Cleary & Taback [CTa] showed that, with respect to a standard generating
set, I'1(2) has unbounded dead-end depth: there is no L > 0 such that for every
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group element g, there is a group element further from the identity than g that
is within a distance less than L from g. (Cf. Question 8.4 in [Besl], which
Erschler observed can be resolved using I';(2).) Cleary & Riley [CR] exhibited
I'2(2) as the first finitely presentable group known to have the same property. By
finding a combinatorial formula for the word metric, Stein & Taback [ST] showed
that, with respect to generating sets for which the Cayley graphs are horocylcic
products, I',(m) have no regular language of geodesics and have unbounded
dead-end depth. We understand that Cleary has unpublished work and Davids &
Taback have work in progress on whether or not almost convexity holds for I',(2)
with respect to certain generating sets.

De Cornulier & Tessera showed that the Dehn function of I';(2) grows quadrat-
ically [CTe], and Kassabov & Riley [KR] that that of I', grows exponentially.

The horocyclic product construction can be applied to any family of spaces
with height functions. A fruitful alternative to 7z;nz is the hyperbolic plane
H?, viewed as the upper half of the complex plane, with height function given
by log,(Imz) for some fixed g > 1. The horocyclic product of n copies of H?
(each with the same ¢ > 1) is a manifold Sol,,—;. (Varying ¢ is a dilation.) The
horocyclic product of 7z/,z and H? with parameter g is termed freebolic space
in [BSSW]. When p = ¢ it is shown to be a model space for the Baumslag—Solitar
group {(a,b | b~lab = a?)—that is, the group acts on the space cocompactly by
isometries.

These constructions and their parallels have been pursued particularly by
Woess and his coauthors [BNW, BW, BSSW, BSW, BW2, Woel], focusing on
stochastic processes, harmonic maps, and boundaries. He gives an introduction
in [Woe2]. Additionally, the boundaries of these various horocyclic products
admit similar analyses, which is why the work of Eskin, Fisher & Whyte
[EF, EFW2, EFWI1, EFW3] encompasses both Sol; and lamplighter groups.
Dymarz [Dym2] also exploits the parallels.

The parallel is promoted to absolute agreement when one passes to asymptotic
cones. After all, the asymptotic cones of 7z/,z for m > 2 and of H? are both
the everywhere 2%0-branching R-tree. The height functions on 7z /mz, and H?
induce a height function on this R-tree in such a way that the asymptotic cones
of a horocyclic product of k spaces, each of which is either 7z/,,z or H2, is
the horocyclic product of k R-trees. So, for instance, for m > 2, the Baumslag—
Solitar groups BS(1,m), Sols, and I';(m) all have the same asymptotic cones.
(This observation is essentially in Bestvina [Bes2].)

Another striking manifestation, set out in [BNW, Remark 4.9] (building on the
n =1 case in [Nek]), of I',(m), when 2,3,...,n — 1 are invertible in Z/mZ,
is as automata groups.
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3. Horocyclic products of trees

3.1. R-branching trees. We let 7 denote the R-branching tree, by which we
‘mean the simplicial tree in which every vertex has 1+ |R| neighbours, and every
edge is labelled by an element of R in the following manner. Equip the tree with
the natural path metric in which every edge has length one. Choose any infinite
directed geodesic ray p: R — Tg with Z € R mapping to the vertices along the
ray. This determines a height (or Busemann) function s : Tp — R by

h(p) =p ' (q) +d(p.q)

where ¢ is the point on the ray closest to p. (Figure 3 gives some examples
of calculations of heights.) Label the edges emanating upwards from any given
vertex in 7g by the elements of R in such a way that the edges traversed by p
are all labeled 0.

We can specify a unique address for each vertex in Tg as follows.

Lemma 3.1 (Addresses of vertices in Tg). Vertices v in Tr are in bijective
correspondence with pairs consisting of an integer (the height of v) and a finitely
supported sequence of elements of R (the labels on the edges that a downwards
path starting at v follows).

This lemma is easily proved. The sequences are finitely supported because the
last non-zero entry in the sequence indicates where the downwards path becomes
confluent with p.

FiGure 3

The tree 7r with an infinite geodesic ray p determining a height
function h. For example, h(p) = p~'(q) +d(p.q) = —-1+3=2
and h(p)=p"'(q)+d(p'.q)=0+2=2.
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3.2. The horocyclic product of R -branching trees. The horocyclic product of
n + 1 copies of Tx is

> h(p) =0 I

i=0

7"{II(R) = {(pO’ v 9pn) € ’TEH-I

It is naturally an n-complex: (po...., pn) is in the k-skeleton if and only if
{i | h(pi) € Z}| = n—k.

Equivalently, if we view 77{“ as a cubical complex in the natural way, then the
k -cells of H,(R) are the intersections of the (k + 1)-cells of 7}5‘“ with H,(R).

Figure 4 shows a horocyclic product of two 3-branching rooted trees of depth 2,
and so a portion of H;(Z/37Z). Nine upwards- and nine downwards-3-branching
trees are apparent in this graph.

FiGure 4
A portion of H(Z/3Z), after a figure by Dymarz in [Dyml]

3.3. Cell-structure. It will not be required in our proofs of theorems that follow,
but we include a description here of the cell-structure of H,(R), which turns out
to be attractively exotic and so adds to the lure of family groups I',(R). Some
of the details given here were also identified in Section 4.1 of [BNW].

To understand the cell-structure of #,(R) it helps to consider the case H,(1)
where R is the zero ring (with only one element — we do not insist 0 # 1 in
a ring), or equivalently Z/17Z . Recall that 7; is simply the real line subdivided
into unit intervals (known as the apeirogon) and H, (1) is the horocyclic product
of n + 1 copies of 7;. In other words #,(1) is the slice through the standard
tessellation of R”*™! by unit (n + 1)-cubes by the hyperplane

H 1= (s s 55 %) ER"+1|x0+---—!—xn =10}
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Given that the height-preserving map 7r —> 7; that collapses the branching
induces a map H,(R) = H,(1), we can view H,(R) as many copies of H,(1)
branching along H,—;(R) subcomplexes.

But what is the cell-structure of #,(1)? What tessellation of R” (alternatively
called a honeycomb) does it give?

The first two examples are readily identified: H;(1) is the apeirogon and
H,(1) is the tessellation of R2? by equilateral triangles of side-length /2.

The vertices of #H,(1) are the points where H intersects the 1-skeleton of the
tessellation of R”*1! by unit-cubes, in other words the points (xo,...,x,) such
that xo +---+ x, = 0 and at least n (therefore all) of the coordinates x; are
integers. So the vertex set of H,(1) is {(xo....,x,) € Z"*!| xo + -+ 4+ x, = 0},
which is known as the A, lattice.

The vectors {ep—e; | 1 < j <n} generate the parallelepiped

n

P = er(eo—ej) ‘ 0<r; =<1
j=1

={(x0,....x%n) €ER"| =1 <x,...,x, <0 and xo + -+ + x, = 0}

whose translates X+ P, as X ranges over lattice points, tessellate H . The span of
any k vectors in {eo —e |1<j< n} is a subspace of R”*! over which all but
k +1 coordinates are constantly zero, and so is a subset of the (k 4+ 1)-skeleton of
the tessellation by unit cubes. So, for every k, the k-cells of P are a subset of
the k-skeleton of H,(1), and H,(1) is the tessellation formed by the translates
of some subdivision of P . This subdivision is by hypersimplices (also known as
ambo-simplices).
The (k,n + 1)-hypersimplex (where k = 1,...,n) is the n-dimensional
polytope defined in the following three linearly equivalent ways [Dol].
(i) The convex hull of the midpoints of the (k—1)-cells of the regular n-simplex

{(x0,....%s) eR™1| 0 <xp,....xp <1 and xo+-+-+x, = 1}.

(ii) The convex hull of the ("Z 1) points in R”*! that have k coordinates all

1 and the remaining n + 1 —k all 0.
(iii) {(xo,...,x,,)eR”+1|0§x0,...,xn51and Xo+ -+ xp =k}.

Observe that P is the intersection of H with the union of the cubes [k —1,k] x
[-1,0]" where kK = 1,...,n. The intersection of H with [k —1,k] x [-1,0]" is

n
{(xo,...,xn) eR"™ | k—1<xo<k, —-1<x1,...,x, <0 and in =O},
i=0
which is mapped to the (k,n + 1)-hypersimplex as given by (iii) by the linear
equivalence xo — k—x¢ and x; > —x; fori = 1,...,n.So P is assembled from
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(k,n + 1)-hypersimplices, one for each k = 1,...,n (see [Dol]). For instance, in
the case of H3(1), the parallelepiped P is assembled by attaching tetrahedra (a
(1,4)- and a (3, 4)-hypersimplex) to a pair of opposite faces of an octahedron (a
(2, 4) -hypersimplex).

This is the same cellular structure that is obtained from the A, lattice in
R" by taking the Delaunay polytopes associated to the holes. See Section 4 of
Conway-Sloane [CS]. The holes of a lattice are those points that are at maximal
distance from lattice points. A Delaunay polytope associated to a hole is the
convex hull of the lattice points closest to the hole.

4. The n =1 case of Theorem 1.2

Theorem 1.2 in the case n = 1 states that H;(R) is the Cayley graph C of
'y (R) with respect to the generating set {A, := (r,1) | r € R}. This generating
set is, in fact, profligate — {1¢,A;} suffices to generate I';(R). This case includes
I'y = ZZ and lamplighters I'y(m) = (Z/mZ)? Z.

Proof of Theorem 1.2 for n =1 (c¢f. [BW, BWI, Woel]). An element of I';(R) =
R[x,x 1% Z is a pair (f,k) where k € Z and f =) fjx/ with each f; € R
and only finitely many are non-zero. Recall from Lemma 3.1 that vertices in Tx
are uniquely specified by their addresses—pairs consisting of a finitely supported
sequence of elements of R (the edge-labels on the path proceeding downwards
from the vertex) and an integer (the height).

Let ® be the bijection between I';(R) and the vertices of H;(R) that sends
(f.k) to the pair of vertices (u,v) with addresses ((fx, fx+1>fk+2,--.)—k)
and ((fx—1, fk—2, fk—3,...), k), respectively. So, in effect, ® splits the bi-infinite
sequence of coefficients of f apart at k to give two infinite sequences as shown
in the middle of Figure 5. The righthand shaded sequence gives the address of
u and the lefthand shaded sequence gives the address of v.

In C, the edge labeled A, emanating from (f,k) leads to (f,k)A, =
(f+rx¥, k+1), which is mapped by ® to (u’,v’) where »’ and v’ have addresses
((fe+1s fe+25--.),—k—1) and ((fx +71, fe-1, fk—2,...),k +1), respectively — see
the top of Figure 5. So, as r varies over R, (u’,v") varies over all the vertices
adjacent to (u,v) that are reached by moving along the (unique) downwards edge
in 7gp emanating from u and moving along one of the R-indexed edges that
emanate upwards from v.

The inverse of A, = (r,1) is (—rx!

,—1) since

(r, D(=rx L, =) = (r + (—rx Hxl,1-1) = (0,0).
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FIGURE 5
Here we use the lamplighter description of I'; to illustrate right-multiplication
by the generators A, and their inverses. The middle line represents g = (f, k)
and the top and bottom represent gA, and gA; !, respectively.

So, similarly, the family (f,k)A,~" = (f — rx¥~'\,k — 1) with r ranging
over R, is mapped by ® to (u”,v”) where u” and v” have addresses
((fk=1 — 1 fx» fk+1,---),—k + 1) and ((fx—2, fe—3,...).k — 1), respectively —
see the bottom of Figure 5. These are the vertices obtained by moving along the
one downwards edge in 7g from v and moving from u upwards along one of
the R-indexed family of edges.

So, vertices that are joined by an edge in C are mapped by ® to vertices
that are joined by an edge in #;(R). Moreover, every pair of vertices that are
joined by an edge in H;(R) can be reached in this way. So ® extends to a
graph-isomorphism C — H;(R), completing our proof. U

Remark 4.1. Perhaps the one subtlety in the above proof is that the edge in T
from v to v’ is labeled by f; + r. The first guess one might make is that it
would be the edge labeled r. But that would not work because (u’,v’) has to
have some “memory” of f, else there would be no way for ®~!((u/,v")A; 1) to
equal & 1(u,v).

Remark 4.2. In this rank-1 case we could use any group G in place of the
ring R, and identify a Cayley graph of the (restricted) wreath product G ¢ Z as
a horocyclic product. Specifically, view elements of G ?Z as pairs (p,k) where
k € Z and p is a finitely supported function Z — G, and let p, denote the
map sending 1 — g and i — 1g for all i # 1. Then the Cayley graph of
G Z with respect to the generating set {1, := (pg.1) | g € G} is the horocyclic
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product of two G -branching trees. This appears to break down in higher rank
where we would need G to be abelian (e.g., to define the lamplighter description
in Section 5.1).

5. The n = 2 case of Theorem 1.2

In this section we will prove Theorem 1.2 when n = 2: the l-skeleton of
Ha(R) is the Cayley graph of I';(R) with respect to the generating set

{A; :=(r.e0), pr:=(r.€1), vy = Arper ! ‘ reRr}.

This case includes Baumslag and Remeslennikov’s metabelian group, which is
I,.

5.1. A lamplighter model for I';(R). Recall that
Do(R) =R [x,x ', (1+x)7' %22

where, if the ZZ2-factor is (z,s), the actions of 7 and s are multiplication by x
and 1+ x, respectively.

We will use a lamplighter description of T'; developed from [BNW] and
[CR]. A lamplighter is located at a lattice point in a skewed rhombic Z? = (t,s)
grid, as in Figure 6. (The lattice points are the vertices of the tessellation of the
plane by unit equilateral triangles.) Each vertex has six closest neighbours — one
in each of what we will call the s-, s~ -, -, t—!-, st~ !- and s~!¢-directions —
and can be specified using 7- and s-coordinates. A configuration K is a finitely
supported assignment of an element of R to each lattice point.

Figure 6 shows six examples of configurations where R = Z. Vertices where
no element of R is shown should be understood to be assigned zeroes. As an
example of the terminology in action, the integer at (—2,1) in grid (5) is 4 and
its neighbours in the s-, s™!-, t-, t7!-, st~ !- and s~!¢-directions are 0, 2, 6,
1, 0, and —4, respectively.

We define an equivalence relation ~ on configurations by setting K ~ K’
when there is a finite sequence of configurations starting with K and ending
with K’ in which each configuration differs from the next only in one triangle of
adjacent ring elements which is %, in one and is p4,% "¢+, for some r € R
in the other. The six integer-configurations shown in Figure 6 are all equivalent,
for example.

An element f =) czni;x (1+x)’ of R[x,x7*, (14 x)7"] corresponds
to the configuration which has n; ; at (i, j) for all i, j € Z. A motivating result
for these definitions is —
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FIGURE 6

An example of propagation to a configuration supported on Lg o

Lemma 5.1. Two such polynomials represent the same element of the ring
Rx,x71, (1 +x)7'] if and only if their corresponding configurations are
equivalent.

Proof. The relations in R[x,x™!, (14 x)~'] are generated by (I + x) being
the sum of the terms 1 and x in a manner that corresponds to the relations
between configurations being generated by altering triangles of entries. Indeed,
multiplying (1 4+ x) = 1 4+ x through by rx’(1 + x)/ gives rx*(1 + x)/*! =
rx'(1+x)’ +rx'*t1(14x)’, which corresponds to 5", ~ p4,%+, at a suitably
located triangle of entries in a configuration. L

The element g = (f.(k,l)) € I'2(R) corresponds to the lamplighter being
located at (k,/) and the configuration being that associated to f .

An appealing feature of this model is how it elucidates the way in which
I'1(R) sits inside T'2(R) (e.g., Z ¢ Z sits inside Baumslag and Remeslennikov’s
group I';) as the elements for which the lamplighter is on the ¢-axis and the
configuration is equivalent to one that is supported on the ¢ -axis.

Definition 5.2. Using 7- and s-coordinates, define the half-planes

HY :={(p,q9) | p+q=m},
HY) :={(p.q) | p <m},
Hy = {(p.q) | ¢ <m}.

For example, Figure 7 displays Hy° , ., H, _, and Hj _,.
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Ficure 7
Propagation in the half-planes H}fg’ hy H,?O_l and H ,}1_1. Propagation

to levels k1, h1 and hg, respectively, is illustrated using lighter tones.
Propagation to level 0 in each half-plane is illustrated using darker tones.

Our analyses will involve finding opportune representatives in the equivalence
classes of given configurations. Indeed, we will in some instances (in Section 5.2)
be concerned only with the part of a configuration in some half-plane. The
following definition will then be useful.

Propagating to level { in H,° means converting a configuration to an
equivalent configuration such that the only non-zero entries in Hy° are on the
line with s-coordinate £. This can always be done by moving the entries in H’°
that are above that line by using 3% ~ 44+5%+c and moving those below by
using % ~ p—c?1¢y . Propagating to level { in H? means converting to an
equivalent configuration such that the only non-zero entries in H? are on the line
with s-coordinate £. This can be done using % ~ 44+5%+c and % ~ %2,
for entries above and below the line, respectively. And propagating to level £ in
H! means converting to an equivalent configuration such that the only non-zero
entries in H,. are on the line with #-coordinate . This can be done using
p%e ~ 0912, and p% ~ p_.21¢, for entries on the left and the right of the
line, respectively.

In each case, propagation produces a finitely supported sequence, namely
the entries in level £ of the half-plane concerned. For example, in Figure 6
propagating the integer-configuration (1) to level 0 in H{°, H®, and H!, yields
configurations which can be read off (6), specifically, 10,5,—-2,—6,-3,0,0,... in
HE, 6,7,1,0,0,... in H°, and 5,0,1,0,0,... in H!,. And in Figure 8, the
configuration in the centre grid propagated to level 0 yields 5,3,4,2,0,0,... in
H, 18,5,1,0,0;... in HY, and 2,3,0,1,0,0,... in H}.
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The following properties of propagation may at first seem surprising because
it is not immediately apparent that the entries outside H,, are of no consequence
for the sequence produced by propagation.

Lemma 5.3. For x = 00,0,1 and for all {,{' € Z the following hold.

(i) Any two equivalent configurations which are both zero everywhere in H,,
aside from level L, are in fact equal on level ¢ in H, . (So propagation
of a configuration to level ¢ in H, determines a unique sequence and
propagating any two equivalent configurations to level £ in H, produces
the same sequence.)

(ii) If propagating a configuration K to level £ in H, produces the sequence

ai,az,..., then ap, for p=1,2,..., depends only on the restriction of K
fo

HY o1 f*x=00

H:(r)z—p+1 if*x=0

Hy ,.1 f*=1

(iii) The following defines a bijection on the set of finitely supported integer se-
quences. Given such a sequence, take the configuration which is everywhere-
zero aside from level £ of H, where one reads the sequence, and obtain a
new sequence by propagating to level ' in H, . Indeed, this map is inverted
by propagating back to level .

Proof. We will explain only the case * = co. The cases * = 0,1 are similar.
For (i), recall that the equivalence relation on configurations is generated by
equivalences in which a triangle of only three adjacent entries is altered. Such
alterations do not change the sequence obtained by propagating to level £ in Hj°
by moving those above the level using 3% ~ ,45%+c and moving those below
by using % ~ p_?"¢y . Consideration of the directions in which entries are
moved by these two types of equivalences leads to (if). For (iif) observe that the
result is true when [£ —{'| = 1. O

Corollary 5.4. For all k,l € Z, each configuration is equivalent to a unique
configuration supported on

Ly :={G.0 | i eZYyu{(k,l—1),(k1-2),..},

specifically, that obtained by simultaneously propagating to level | in HZY, and
H? | and to level k in H} .

In the light of Lemma 5.1, when k =1/ = 0 this says that
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{1Lx) x7,(1+x0)77|j=12,..}

is a basis for R[x,x~!, (14 x)7!] over R. (This is a special case of Lemma 6.1.)

Figure 6 shows an example of such a propagation with k = £ = 0, and the
transition from the central grid to the top grid in Figure 8 is an example with
k=1 and {=2.

5.2. Proof of Theorem 1.2 in the case n = 2. We are now ready to show that
the 1-skeleton of H,(R) is the Cayley graph C of I';(R) with respect to

{Ar:=(r.e0), pr:=(r€1), vr:=Au, " | reR}.

FiGure 8

An example of a calculation of ®(g), where g is the element of I'> represented
on the central grid. The lamplighter is at (1,2), s0 hoo = —1 —2 = =3,
ho =1, and h; = 2. The right, left, and lower grid illustrate the calculation of
a™® = (5,3,4,2,0,0,...), a° = (18,5,1,0,0,...), and a! = (2,3,0,1,0,0,...),
respectively, by propagation to level 0 in H$°, Hg, and H| . The upper grid
illustrates a configuration which is supported on Li >, is equivalent to that of
the central grid, and yields the sequences b*° = (3,1,0,2,0,0,...),
b% = (11,3,1,0,0,...), and b! = (—=6,—4,—1,—1,0,0,...), which feature in our
proof of case n = 2 of Theorem 1.2.
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We will denote a vertex in Hp(R) by a triple of vertices in Tg, each
designated by their addresses in the sense of Lemma 3.1. First we will establish
a bijection ® from I3(R) to the vertices of H,(R), defined by sending

= (f.(ho,h1)) € T2(R) to the vertex ((a%°,hs), (2% ko), (al,h1)) found as
follows. Represent f using the lamplighter model as some configuration K.

Let hoo = —ho — hi. Let a®, a% and a! be the sequences obtained by
(independently) propagating K to level 0 in the half-planes H;° orny H ;1)0 T

and H ,}1_1, respectively — see Figure 7 for a general illustration and Figure 8 for
a particular example.

Here is why @ is a bijection. Let X' be the configuration of Corollary 5.4
that is equivalent to X and is supported on Lj,p, . As that corollary points
out, K’ is determined by the sequences b*®, b°, and b' obtained from K by
propagating H }f" h and H) ° _, tolevel hy, and H, 1 _; to level ho. But, given
ho and h,, the bl_]eCtIOIl of Lemma 5.3(iii) tells us that b>, b°, and b! are
determined by (and determine) a®, a°, and a', respectively. So, given any vertex
v = ((a%, hso), (2% ko), (al, k1)) in Ha(R), there is a unique g = (f, (ho,h1))
such that ®(g) = v: specifically, take the f corresponding to K’'. (This is a
special case of Proposition 6.9.)

Next we claim that for all r € R,

®(gAr) =

(((ag°,ag>°,...),hoo 1), ((r +a.a®ad...). ho + 1), (al,hl)),
D(gr, ') =

(- + 0,08, ) oo + 1), (@208, ), ho — 1), (@1 ) ).
P(gur) =

(((a§°,a§°, < )hoo — 1), (@% hy), (((—1)hor + B.at.az,...), b1 + 1))

(g, ") =

(((—r + a0, .. ). heo + 1), (% ko). (@b, al...). I —1))
P(gvr) =

(@, hoo), (¢ + 123,48, ), ho + 1), (@}, 03, ) by — 1)),
D(gv, 1) =

((am,hm),((ag,ag,...),ho 1), ((( Dror +y/,al,dl,. .. ). b1 + 1))

where o, o', B, B’, ¥, and ¥’ depend only on g (and not on r).
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FiGure 9
Obtaining ®(gr), P(gA; "), D(gpr), P(guy "), ®(gvr), and (gv; ') from
d(g) = ((a%°, hoo), (@%, ko), (al, h1)). The sequences associated to the former are

denoted here by a*°, a’, a', Eoo, EO, and El. The central grid represents g and the

six outer grids represent gA,, gA; ', gu,, guy ', gvr, and gv !, as indicated.

As we will see, much of the explanation for these equations is contained in
Figure 9. The central grid represents g: the lamplighter is at (ho,k;) and the
sequences a*®, a%, a', b, b%, and b! associated to f are obtained from the
locations indicated (in the manner set out earlier). On right-multiplying g by A,,
AN, we, wit, vy, or vl the lamplighter moves as shown and r is added to

or subtracted from one entry in the configuration (also as shown). The locations

. _1 oo =0 —1 )
from which the sequences a®, a’, a', boo, b , and b associated to the new

configurations are obtained also shift as shown.

Here is the justification for the first coordinates on the righthand sides of the
six equations above.

Here is why the first coordinate of ®(gA,) is ((a5°,a’,...), heo —1). Since

ghr = (f +r-(ho,h1), (ho,h1) +eo) = (f +rx"o(1 +x)", (ho + 1,hy)),

the representation of gA, in the lamplighter model is obtained from that of g by
adding r to the entry in K at (hg, 1) and moving the lamplighter to (ho+1, k).
The second entry is ho — 1 because (hoo — 1) + (ho + 1) + Ay = 0, and 2™
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is (as®,a$’,...) by Lemma 5.3(ii), since the sequence obtained by propagating
H;l’;’ +hy+1 1O level 0 is the same as that obtained by propagating H ,f;’ v, 1O
level 0 and discarding the first entry.

The first coordinate of ®(gu,) can be identified likewise.

Similarly, since

gA;t = (f. (ho,h1))(— 1 - (—eo). —€)
= (f =7 - (ho, 1) - (—e0), (ho,h1) — o)
= (f —rx"7 14+ 0", (ho — 1, 1y)),

the representation of gA,”' is obtained by moving the lamplighter left to
(ho—1, k) and subtracting r from the entry there. We claim that ®(gA, ') has
first coordinate

(—r +a,a,a$, .. ), hoo + 1)

where o’ depends only on g. The second entry is /s + 1 because (hoo + 1) +
(ho — 1) + hy = 0. All but the first entry of the sequence a®™ can again be
identified by using Lemma 5.3(i7)). In propagation in H ,‘;’(‘)’ +hy—1> entries on the
boundary line (that through (ko + 2y —1,0) and (0, ko + h; — 1)) advance only
along that line: they are unchanged as they propagate and they do not affect any
other entries in the resulting sequence. So the r subtracted from the entry at
(ho — 1, h1) moves, undisturbed to (kg + h1 — 1,0). The « is the first entry in
the sequence when the portion of X in H;fg hy—1 18 propagated to level 0. So
it depends only on g.

The first coordinate of ®(gu,~!) can be identified likewise.

Since v, = A,u,"', the representation of gv, is obtained by adding r
to the entry in K at (hg,h;), moving the lamplighter to (ho + 1,4;), then
moving the lamplighter to (ko + 1,h#; — 1), and then subtracting r from the
entry at (ho+ 1,h; —1). Equivalently, it is obtained by moving the lamplighter to
(ho+1,h1—1) and adding r to the entry at (ho,h;—1). So the first coordinate of
®(gv,) is (a®°, hso): the second entry is /o, because hoo+ (ho+1)+(ho—1) =0
and a* = a* because a* and a* are both obtained by propagating in Hp?
and the altered entry in the configuration is outside H ,;’(‘)’

+hy
The first coordinate of ®(gv,~!) is (a%°,he) likewise.

+h;?

The entries in the second and third coordinates are explained analogously
except for ®(gu,) and ®(gv, '), where there is an added complication. When,
in the case of ®(gu,), the r added at (hg,h,) is propagated to (0, /) it changes
sign with each step and so becomes (—1)"0r. Similarly, for ®(gv,~ 1), the r
subtracted from (hy — 1,4;) changes sign with each step as it propagates to
(0, hy), and so also becomes (—1)"0~1(—r) = (—=1)"or.
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Finally, we explain why @ extends to an isomorphism from the Cayley graph
C to the l-skeleton of Hy(R).

Suppose g € I'2(R). The set of vertices V in H,(R) that are reached by
traveling from ®(g) along a single edge partitions into six subsets: travel along
the unique downwards edge in one coordinate-tree, travel upwards along one
of an R-indexed family of edges in another, and remain stationary in the last.
Since «, o', B, B’, y, and Y’ only depend on g, each of giA, — ®(gi,),
ghr > (gAY, gur o D(gpy), gt (g, gup - ®(gVy), and
gv,~ ! > ®(gv,~!) is a map onto one such subset, and together they give a
bijection from the neighbours of g in C to V.

There are no double-edges and no edge-loops in either graph: for the 1-skeleton
of Hy(R) this is straightforward from the definition, and it therefore follows from
the above for the Cayley graph. So ® extends to an isomorphism between the
two graphs, and this completes our proof.

Remark 5.5. It may be tempting to try to express directly the group multiplication
in T'2(R) in terms of the representations of elements as triples of addresses of
vertices in Tg. It is striking how spectacularly awkward this turns out to be, as
the following special case of multiplication by a generator ¢ € {AF!, ! vE!}
illustrates.

We have ®(g) = ((a%°, hoo), (2%, ), (al, 71)). To find ®(g&) we call on the
sequences b>®, b® and b'. Since the propagation (of the bijection established in
Lemma 5.3(iii)) in a half-plane proceeds in the manner of Pascal’s triangle, we

can explicitly express a* in terms of b* and b* in terms of a*:
( m

Z(—l)ab;“ (T) ifm>0

i=0

o0

> (=1)¢bry, ("‘li‘"‘) if m <0,

\ i=0

( —m

S (Dak,, (‘l’") if m <0

by =4 0

o0

* i—14+m .
Z(—“aw( ,- )1fm>0,
=0

\ i=

when * = 00,0 and m = h;, e =i, and § =0, and when * =1, and m = hy,
€ = |ho|, and § =i + |ho|. The infinite sums make sense since all but finitely
many entries of the sequences a* and b* are zero.

These formulae could be used to express «, o', B, B’, ¥, and y’ in terms
of a*, a%, a', iy and h;: obtain b®, b, and b! using the second formula,
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then shift them and add or subtract r appropriately to get the b, b and b
associated to ®(g¢), and finally obtain «, o', B, B’, y, and y’ using the first
formula.

For example, to calculate «’ first obtain b® and b? from a® and a° using the
second formula with m = hy, then let b~ = (B —r, b, bS°, b, .. ), then obtain
a® from b using the first formula with m = h,, and then, as —r + o/ =@,
we have found «’.

The complexity of the formulae that would result stands in marked contrast to
the “ fx +r” in our proof in Section 4 of Theorem 1.2 in the case where n = 1.

Remark 5.6. Given that equivalence classes of configurations correspond to
elements of R][x, x~1, (14 x)71], the above analysis can all be rephrased in terms
of polynomials—the point-of-view we will take in the next section. In the light of
Lemma 5.1, Corollary 5.4 amounts to the statement that for each pair (k,[) € Z2,

{x"+"(1+x)"iez}U{xk(1+x)"”'j=—1,—2,---}

is a basis for R[x,x™!,(1+x)7!] over R.
The sequence a® lists the coefficients of x°,x!,... in xf> £ when expressed
as a linear combination of the basis

{x|iezZ}u{(Q+x)]|j=-1,-2,--}.

Likewise, a® lists the coefficients of x~!,x™2,... in x~#0 £, and a' lists those
of 1+x)"L,(A+x)2...in Q+x)"f.

If we multiply f by x7#0(1+x)™"1 to give f (in effect, shifting the origin
from (0,0) to (ho,k1)), then b* lists the coefficients of x°,x!,... in f, and b°
lists the coefficients of x~',x72,..., and b! lists those of (14+x)~!, (14+x)72,....

6. The general case of Theorem 1.2

The standing assumptions in this section are that n is any fixed positive
integer and R is any commutative ring with unity in which 2, 3, ..., n—1 are
invertible. We will prove Theorem 1.2 in full generality: the 1-skeleton of H,(R)
is the specified Cayley graph.

6.1. Preliminaries. Recall that
An(R) =R [x,x_l, Q+x)" L. .., n—1 +x)_1] i

The following lemma generalizes Corollary 5.4 and is vital to the proof of
Theorem 1.2. Baumslag & Stammbach [BS] prove a very similar result as do
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Bartholdi, Neuhauser & Woess [BNW, Section 3]. We include a proof for
completeness and because this and the lemmas that follow are where the hypothesis
that 2,3,...,n —1 are invertible is used.

Lemma 6.1 (adapted from Baumslag & Stammbach, Lemma 2.1, [BS]).
{l,xj,x_j,(l +x)7, . n=14+x)" ] J = 1,2,...}

is a basis for A,(R) over R.

Proof. First we show that the given set spans.
Suppose § €{0,1,...,n—1}.

For [ € §, let
o= [ G-n7,

ieS~{l}
understanding this product to be 1 when S ~ {/} = @. This is well defined
because 2,3,...,n — 1 are invertible. Then, by induction on n,
[Te+07 =3 a@+07"
leS leS

in A,(R), the crucial calculation for the induction step being that
(+x) " m+x) " =m-DW+x)"'+d-m)t(m+x)™!

for all m € {1,2,...,n—1} and [ € {0,1,...,m —1}. So [[;es(! + x)~! is in
the span.

Next consider x"0(1+4 x)"1...(n—1+ x)"»—1 where each h; is a non-positive
integer. We show it too is in the span by inducting on Z?;é |h;|. The base case is
immediate and the previous paragraph gives the induction step: let S = {i | #; < 0}

and
1 ifieS
& =
0 ifi¢s.
for each i, then
ol + )P (n =14 x)n1

— (xho-l-E:O(l & x)h1+£1 . (h‘, o<1 o x)hn_l—l-en_l) l_l(l 4 x)—l
leS

_ (xho+£o(1 4 x)h1+£1 . (n — 1+ x)h,,_1+s,,_1) le(l + x)—l.
leS

To complete the proof that the given set spans it is enough to show that
p(x)(m + x)7* is in the span whenever p(x) € R[x], m € {0,...,n—1}, and
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k > 0. After all, any element of A4,(R) is an R-linear combination of products of
powers of x,(1+x),...,(n—14x) and so by the previous result is an R-linear
combination of some such p(x)(m + x)~%. Well, write p(x) = (m + x)q(x) + s
for some ¢(x) € R[x] and s € R. Then

p(x)(m + x)~ — (q(x) + s(m + x)~ 1)(m + %)~ —k+1

which by induction on |k| is in the span.
For linear independence, suppose

n—1 d;

O—Zu,x’ + Y i+ x)7

i=0 j=1

in A,(R) for some u;,A;; € R. Multiplying through by x9(1 + x)?1 ---(n —

1 + x)%-1 and comparing coefficients we see that 0 = po = 1 = -+ = g, -
The constant term on the right hand side is A g4, - 191.29%2. .(n—1)%-1, As
2,...,(n—1) are invertible in R, we must have A4, = 0. Repeatedly dividing

through by x and analyzing the constant term gives Ao ; = 0 for all j. Viewing
the resulting polynomial as a polynomial in x — 1 rather than x and applying
the same technique yields A;,; = 0 for all j. Then viewing it as a polynomial
in x —2, then x —3, and so on, gives A; ; =0 for all i, ;. O

In the light of this lemma we will, in the remainder of this section and the
next talk about the (x + x)~/ or the x/ coefficient of a p € A,(R), meaning
the coefficient of that term when p is expressed as a linear combination of the
basis established in Lemma 6.1.

Lemma 6.2. Suppose % € {0,1,...,n—1} and qo,...,qn—1 € Z, and g+« = 0.
Given Ax1,Axz2,... in R, all but finitely many of which are zero, take p to be
any element of A,(R) such that the coefficients of (* +x)™',(x +x)72,... are
Au1sAw, ... Let X, 1, A, 5, ... be the coefficients of (x+x)™', (x+x)7>,... in

p/ g x610(1 + x)fh (n —1 + x)qn—lp
Then A, 1, A%y, ... depend only on Ay, Axp,... and
(A'*,lyl’\'*,Za' )H(A*la *2,---)

is a bijection from the set of finitely supported sequences of elements of R to
itself. Moreover, if 0 = Ay = As3 =--+, then

PV VAN U (A*,l [T G-%%00..).

i€{0,...,n—1}~{*}
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Proof. Tt is enough to prove this in the special case p’ = (i + x)p where one of

qo,--.,qn—1, denoted ¢g;, is 1 and all others are 0, for a general instance can

be reached by composing a suitable sequences of instances of this special case

(and its ‘inverse’). Note that i # *, and so we will be able to invert (i — ).
Express

n—1 oo

(6.1) p= Z,LLJJCJ +Y Y A+ X
[=0j=1
n—1 oo

© WS ) NP
j=0

[=0,=1

where each w;,pu}, 4, j,A;’ ; € R (and only finitely many are non-zero) — that

is, as linear combinations of the basis established in Lemma 6.1. We prove the

special case by calculating (g, ¢t},...) and (4]
For i,1 € {0,...,n —1},

1 12"'-)'

o0
G +x)Y pixd =ipo+ (o +ip)x" + (g + ip2)x® + -+
j=0

and, as (i + ) +x) 7 =+ )7 + (=) +x)~/,
CH+x)D A i0+x)7 = 0+ + 32,6 -DA +x)7
i=1 j=1 ji=1
m .
(6.3) =1+ Y (Arjr1+ A =D)I+x)7.
=1
So

(A* 1$AL,27 . -) = (A-*,2 + A"k,l(i - *)’A*,?’ + A"k,2('l - *)s £ & ) ]

and evidently the only coefficients from (6.1) this depends on are Ay 1,A«2,....
Also we find that if 0 = Ax2 = Ay 3 =---, then

(A, 1J;,2sl;,3’---) = (Ax,1(i —%),0,0,...),
which leads to the final claim. To see that
()“*,ls)'*,Za . ) = (A*ly *,2 )

is invertible when i # x, consider any m such that A, , = 0 for all g > m.
Then 0 = Ay m+1 = Aum+2 = --- as otherwise the sequence Ay 1,Ax2,... would
not be finitely supported. And
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hom = (i — %),

)L*,m—l = (- *)_l(k;,m—l - A‘*,m)

Mg =G — 07 (AL — Au2).
Ol
Lemma 6.3. Suppose qo,...,qn—1 € Z and ) ; qi =0. Given po,p1,... in R,
all but finitely many of which are zero, take p to be any element of A,(R)
such that the coefficients of x°,x',... are po,pu1,.... Let wy, iy, ... be the
coefficients of x°,x',... in
pri=x01+x)--(n—14x)"1p.

Then g, 1y, ... depend only on g, it1,... and

(“’O’)u‘ls "') = (lu‘i]’ I’t”l"")

is a bijection from the set of finitely supported sequences of elements of R to
itself. Moreover, if 0 = 1 = pp =+--, then (g, 1y, 15, ...) = (10,0,0,...).

Proof. We follow a similar approach to our proof of Lemma 6.2. This time, as
>, gi =0, it is enough to prove the result in the special case p’ = x"1(i +x)p
where go = —1, ¢; =1 and all g; =0 for all j #0,i.

Again, consider p and p’ expressed as in (6.1) and (6.2). The crucial
calculations this time are that

o>
x4+ x) Z,u,-xj = ipox ™" + (o +ip1)x° + (1 +ip)x" + -
j=0

and for / € {0,1,...,n— 1}, using (6.3),

o0 o0
x i + x) ZA,,,- C+x)7 =Ax 1+ Z (Anj1 4+ G =DAy)x 10 +x)77

J=1 j=1

which has no x°, x!,... terms when written as a linear combination of the basis
elements since, by induction on j and when / # 0,

x M 4+x) 7 =1 =10+ =1+ x0) 22— =T+ 0) 7

So
(s s --2) = (o + iy, iy + P2, ..),

and the final claim of the lemma is evident. To see that
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(o, k15 ---) = (Ko, K7s---)

is invertible, recall that i € {1,2,...,n — 1} (so i is invertible), and consider
any m such that u;, = 0 for all ¢ > m. Then 0 = pmi1 = mi2 = -+ as
otherwise we would have p,41 = —i~'p, for all ¢ > m and so the sequence

Mo, (L1, L2, ... would not be finitely supported. So

Km = ru*;n
m—1 = fpp_1 — illm

o = o — i1
O

Corollary 6.4. If k. = 0, then the coefficients of (x + x)™',(x + x)72,... in
xko(1 4+ x)k1...(n =1+ x)*n—1 are all zero.

Proof. 'This is the final statement of Lemma 6.2 in the special case p =1 (and
hence A. ; =0 for all j), and ¢q; = k; for all /. O

Corollary 6.5. If k. = —1, then the coefficient of (x+x)~! in xko(14+x)*1 ... (n—

1+ x)kn—1 s
[ G-»k.

i€{0,....n—1}~{*}

Proof. This is the final statement of Lemma 6.2 in the special case p = (*+x)™!
(50 A,y =1 and A, ; =0 forall j #1), g« =k« +1=0 and ¢g; = k; for all
- O

Corollary 6.6. If koo := — Y 1o ki > 0, then the coefficients of x° x',... in
xkO(l 4 x)kl cee(nm—=1+ x)‘k"—1 are all zero.

Proof. This is the final statement of Lemma 6.3 with go = ko + koo and g; = k;
for all other i (so Z?;é gi = 0 as required) in the special case p = x %> (and
since koo > 0, we have p; =0 for all j). O

Corollary 6.7. If Y7—o ki =0, then in x%0(1 + x)~*1...(n — 1 + x)*n—1 the

coefficient of x° is 1 and the coefficients of x',x?,... are all zero.

Proof. This is the final statement of Lemma 6.3 in the special case p =1 (so
po=1and pu; =0 for all j #0) and ¢; = —k; for all i. O
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Lemma 6.8. For p € A,(R),
(i) the coefficients of x°,x',... in p equal those of x',x?,... in xp,
(ii) the coefficients of (x + x)~1,(x +x)72,... in (x + x)p equal those of
(x+x)72,(x+x)3,... in p.

Proof. Calculate in the manner of our proof of Lemma 6.2. The crucial point for (i)
is that x(I+x)™/ = (I +x)/T'=I(I+x)~/ hasno x!,x2,... terms when j > 1.
The crucial points for (i) are that (x+x)(/ +x)7 = ((+x) 7T 4+ (x=D)( +x)7*
and (* + x)x/ = *x/ + x/*! have no (x + x)7!,(* + x)72,... terms when
le€{0,1,...,.n—1}~{x} and i > 1 and when j > 0. U

6.2. The bijection ® between I',(R) and the vertices of #,(R). Define a
map ® from I',(R) = A,(R) x Z" to the vertices of H,(R) by

(f (hos -+ s hn—1)) = ((@%°, hoo), (@°, ho), ..., (@" 71, p1))

where ho := —ho—-++-—h,_; and the sequences a*>,a°, ..., a" ! will be defined
as follows (guided by Remark 5.6). They list the coefficients of elements of A,(R),
expressed as linear combinations of the basis from Lemma 6.1, specifically, for
x=0,...,n—1,

e a® lists the coefficients of x°, x!,... in xfe f and
e a* lists the coefficients of (% + x)™!, (x +x)72,... in (% +x) 7 f.
Our proof that ® is a bijection will involve

f = x_ho(l + x)—hl e(n—1 -|-x)_hn—1f

and further sequences b™,b°, ... b""! defined by:
e b lists the coefficients of x°, x!,... in f, and

e b* lists the coefficients of (x + x)~!, (x +x)72,... in f
Proposition 6.9. ® is a bijection.

Proof. Suppose v = ((a%°, ko), (@% ho),...,(@" "1, h,_1)) is a vertex of H,(R)

and so ho = —ho — -+ — hy—1. We will explain that there is a unique
g = (f. (ho,...,hp—1)) with ®(g) =v.
The idea is to find the sequences b, b?, ..., b*~!, for then we can recover

f (and therefore f) from them since they list all its coefficients when expressed
as a linear combination of the basis from Lemma 6.1.

For % = oo, this is possible (and unique) by Lemma 6.3 applied with
p = xof and p = f (and so g9 = —(heo + ho), and ¢q; = —h; for
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i =1,...,n—1). It establishes a bijection taking (uo,@1,...) = a*, which lists
the coefficients of x, x!,... in xf f, to b® = (uj),i,,...), which lists the
coefficients of x°, x!,... in f Likewise, for « = 0,1,...,n—1, apply Lemma 6.2
with p = (x+x)™"* f and p’ = f (and so g; = —h; for i =0,1,...,n—1 except
that g« = 0). It establishes a bijection taking (A« 1,Ax2,...) = a*, which lists the
coefficients of (x +x)~!, (x+x)72,... in (x+x) h*f to b* = ()L* 1o A e)s

which lists the coefficients of (* +x)~!, (* +x)~2,... in f. O

6.3. Extending ®. Next we show that ® extends to a graph-isomorphism from
the Cayley graph C of I',(R) with respect to the generating set

{(r.e),(r.e))(r.ex) " [re R,O<i,jk<n—1and j <k}

to the I-skeleton of H,(R).

Recall that we denote the standard basis for Z" by ey,...,e,—1. So, if
h=(ho,...,h,,_1)EZ",then h+e, (ho,... i— 1,/’! +1h;+1,...,hn_1).
Recall that for such h and for f € A4,(R),

Fh= fxoa+x)M..(n—14 x)n-1,

(Warning: f -0 = f and f -(h+ h') equals (f -h)-h’, and not in
generalﬁ ]f -h+ f -Ah’ ) Alsq recall that the group operation on I',(R) is
(f(f.h)=(f+f -hh+h).

Suppose g = (f,h) € [',(R) where f € A,(R) and h € Z". We show below
that post-multiplying g by the elements of the generating set and their inverses
gives

(6.4) g(r.e;) = (f +r-hh+e;),

(6.5) g(re))™ ' =(f—r-(h—e;), h—eg;),

(6.6) g(r.e)(rex)™ = (f +(k—j)r-(h—eo),h+e —e),
(6.7) gr.e)(r.e))™ = (f +( —k)r-(h—e) h+e—e)

for all »r € R and all j,k € {0,...,n — 1}. The explanation is that (6.4) is
immediate from how group multiplication is defined, (6.5) uses that

(r.e)™' = (—r-(—ej),—e;),

the key calculation for (6.6) is that

7+ % k—j

. h - —— h
k + x) ’ k + x
and (6.7) is immediate from (6.6).

reh—r-(h+e —ep)=r(1- = (k — j)r - (h—ex),
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Suppose
D(g) = ((@%, hoo), (@° ho),...,(@@" !, hn—-1)).

We claim next that ® maps

g(r.ej) =

(((a§°,a§°,...),hoo— 1),...,((j +rBj.al,a3,..).hj + lbig),...),
glr.e) >

(((e) =78}, 05,0, ) oo + 1), (@S, ) by = 1), ),
g(r.e)(rep)”"

(- (e + rBiad b, ) by + 1), (0 a0 e — Tsss: Js

g(ra ek)(r! ej)_l =

(-0 (@hads 0.k = 1), (@ + 7Bl abah 0 e +1),00),

where the pairs indicated by ellipses are unchanged from the corresponding
(@', h;) in ®(g), and in terms of linear combinations of the basis established in
Lemma 6.1,

a; is the coefficient of (j +x)~" in (j + x) L

o} is the coefficient of x® in x">*! f,

ok is the coefficient of (j +x)"Vin (§ _,_x)—hj-—]ﬁ

o)y is the coefficient of (k 4+ x)™" in (k + )1 £

Bi = 1_[ (i - J')hi,the coefficient of (j + x)—l in (j + x)"hj‘l h,
i€{0,....,n—1}~{j}

ﬁ} = 1, the coefficient of x° in x/e*1. (h—e)),

Bix = l_[ (i — j)*  the coefficient of (j + x)~!
i€{0,....n—1}~{j} in (k o ])(] + x)_hj_l . (h— ek),
ﬁ;k = l_[ (i — k)h" ,the coefficient of (k + x)~!

0=t in (j —k)(k +x) - (h—¢)).
(The values of the coefficients B;,B;x and ﬁ}k are as stated as a consequence
of Corollary 6.5 and ﬁ} as a consequence of Corollary 6.7.)

Here is why. First note that the second entries (those involving Ao, h1, ..., hp—1)
of all the coordinates are correct: they can be read off the vectors in the second
coordinates of the righthand sides of (6.4)—(6.7). Secondly, note that the case of
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®(g(r,e;)(r,ex)™!) is identical to that of ®(g(r,ex)(r,e;)"!), save that j and k
are interchanged. So we will only address the former.

Here is why the (a’,%;) indicated by ellipses in the above four equations
are indeed the same as the corresponding (a’,h;) in ®(g). We compare the
(* +x)71, (* + x)72,... coefficients of the appropriate polynomials.

Case ®(g(r,e;)). The polynomials in question are (* + x)~"*(f + r-h) and
(% + x)~"* f . The relevant coefficients agree when * ¢ {oo, j} since those of

(*+x) " r . h=r l_[ (I + x)M
l1€{0,1,...,n—1}~{*}

are all zero by Corollary 6.4.

Case ®(g(r,e;)~"). Similarly, the relevant coefficients of

¢ +x)yM(-r-th—e¢))=—r( +x)! I (I +x)"
1€{0,1,...,n—1}~{*}

are all zero when * ¢ {o0, j} by the same corollary.

Case ®(g(r,e;)(r,ex)™"). Similarly, when = ¢ {oo, j,k} the relevant coefficients
of (% + x)™"(k — j)r-(h —e) are all zero. And, for the * = co case, the
coefficients of x° x!,... in x"e(k — j)r-(h—ey) are all zero by Corollary 6.6
(with kg = hoo + ho, kxr = hp — 1 and k; = h; for all other [) since
hoo +ho+ -+ hyp—1—1=-1<0. '

Now we turn to the coordinates which differ after multiplication by a generator.

Why the oo-coordinate of ®(g(r,e;)) is ((@5°,a3°,...),hee —1). We need to
determine the coefficients of x°,x!,... in x"~~!(f +r-h). Those of x>~~1r.h
are all zero by Corollary 6.6. Lemma 6.8(i) tells us that the coefficients of
x%, x1,... in xP~1 f equal those of x!,x2,... in x"e f and so are a$°,a$e, ...
by definition.
Why the j -coordinate of ®(g(r.e;)™") is ((aé,ag, .., hj—=1). The (j+x)~', (j+
x)72, ... coefficients of (j +x)""+1(f —r-(h—e;)) are a},a],... since those of
(j+x)""*lr.(h—e;) = (j +x)"r-h are all zero by Corollary 6.4 and those
of (j+x)""*1f equal the (j +x)72,(j +x)73,... coefficients of (j +x)~" f
by Lemma 6.8(ii).

Why the k-coordinate of ®(g(r.e;)(r.ex)™!) is ((ak,ak,..),hx — 1). The
(k +x)7, (k + x)72,... coefficients of (k +x)""*+1(f + (k—j)r-(h—ex)) are

ak,ak, ... similarly to the previous case.

Why the j -coordinate of ®(g(r.e;)) is ((«; +rﬁj,a{,ag, ...),hj +1). We need
to check that the (j +x)~1, (j +x)72,... coefficients of (j +x)"%~1(f +r-h)
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are o; +rpj,al,al,.... The (j +x)2 (j +x)73.... coefficients are af,a},..

since those of (j +x)™~1r-h = (j +x)"'((j + x)™r -h) are all zero by
Corollary 6.4 and those of (j + x)™%~!f equal the (j +x)71,(j +x)72,...
coefficients of (j 4+ x)™ f by Lemma 6.8(ii) for the same reasons as in earlier
cases. Its (j + x)~!-coefficient is «; + rB; by definition.

Why the oo-coordinate of <I>(g(r, e ") is ((aj’- —rBj.af®,a3°,.. ) heo + 1). The
x° x!,... coordinates of x"~t1(f —r.(h—e;)) are «; —rp.af®, a3, ... for
similar reasons.

Why the j -coordinate of <I>(g(r, e )(r, ek)_l) is ((ajk +r,8jk,a{,a£, ) hi 1).
The (j +x)"L, (j +x)72,... coefficients of (j +x)"%~1(f +(k—j)r-(h—eg))
are ojx + rﬁjk,a{,ag,... likewise.

The set of vertices V in #H,(R) that are reached by traveling from ®(g)
along a single edge partitions into (n + 1)n subsets: travel along the unique
downwards edge in one of the n + 1 coordinate-trees, travel upwards along one
of an R-indexed family of edges in another, and remain stationary in the rest.

As we have seen, for each element x of the generating set
{(r,e,-),(r,ej)(r,ek)_llr ER, 0<i,j,k<n—1and j < k}

the location of ®(gx) and ®(gx~!) falls in one of these subsets. Thereby the
union of this generating set together with the set of the inverses of its elements
has (n + 1)n subsets which correspond to the (n 4+ 1)n subsets of V. Indeed,
each subset contains one R-indexed family of generators or inverse-generators.

Since «; and B; do not depend on r and f; is invertible (since 2,3,...,n—1
are invertible), for fixed j, the map r — o; + rB; is a bijection R — R. So
g(r,ej) — P(g(r,e;)) is a bijection between a subset of the neighbours of g in
the Cayley graph C and one of these subsets of V.

Likewise, because B}, Bk, ,B}k are invertible (since 2,3,...,n —1 are invert-
ible),

/ !
r b —rf,

r = ok + 1Bk,

! !
r|—>ajk—|-r ik

are all bijections R — R. So as on’., ok » a}k, ; Bk, and ﬂj’.k do not depend
on r, there are similar bijections between subsets of neighbours of g and subsets
of V. Combined, these bijections give a bijection from the neighbours of g in
C to the neighbours of ®(g) in V.

There are no double-edges and no edge-loops in either graph: for the 1-skeleton
of H,(R) this is straightforward from the definition, and it therefore follows from
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the above for C. So ® extends to an isomorphism from C to the 1-skeleton of
‘Hn(R), completing our proof.

7. Presentations of I'y, I'y(m), I'; and T';(m)

In this section we give presentations of I'y, ['y(m), I'; and I';(m) which
reflect their descriptions as horocyclic products of trees. Our presentations for I',
include one which we will prove in Section 8 to have Cayley 2-complex H3(Z).

Proposition 7.1. Presentations for the group

xk

Iy =Z2Z§Z[x,x_l]>¢Z:{( 0

J; )|k €Z, fe Z[x,x-l]}
include
@ (a,t|[a.a*] =1 (keD)),
(i) (A2 (1A = pfakk e m)),
(i) (Ai(i € 2)

AEA TR = A kARG ok e Z)).

These are related via A =t, u =at, and A; = a't.

Proof. As an abelian group,
Zlx.x" = PZ=(a; (€Z)|[ai.a]=1Vij).
i€Z

So Z[x,x_l] NnZ = (t,a,- (i eZ) | ta,-t‘l = dj+1, [a,-,aj] == ] Vi,j), which
simplifies with a = ap to give (i).

For (ii), it suffices to show that (a,tbigl[a,a‘k] = 1(k € Z)) can be re-
expressed as

(a,t ‘tk(t_la)k — (at)*t7*(k € Z)),

since the latter becomes (ii) via A = ¢ and u = at. Well, t*(t~'a)* and (at)*t=*
freely equal (r*~'ar=®*-D)_ . (tat™')a and a (tat™)...(t* lat=* D), respec-
tively, and a straight-forward induction shows that the family {atka = aa' } keZ
is equivalent to

k k —k —1 -1 —k
{a‘ -.a'a=aa'---a", a"  ---a" a=aa" ---d } .
k>0

Finally we establish (iii). If A; = a't then A; must correspond to ( g ll ) and so
k k—1 —k s —k -1
& x il 4--- 4+ x50 —k b5 —i(x 44+ x7)
A to( 0 { )and A to( 0 1 )
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From there it is easy to check that the relations A,XA; % = A_ jk A_; ¥ correspond
to valid matrix identities, and so must be consequences of the relations [a, a' k] = ]
(ke Z).

Conversely, given that Ag = A =t and A, = u = at, we find that
Ay = a 't = Au~'A, and so the relations AX (A'lul_l)k = ukA* of (ii)
are )Lik)tj_k = }L_jkk_,-_k in the case i =0 and j = —1. O

On introducing torsion, adding the relation @™ = 1 to Presentation (i) of
Proposition 7.1, we get presentations for I';(m). These can be reorganized in the
manner of Presentations (ii) and (iii), and in the case m = 2 can be simplified
significantly:

Proposition 7.2,

T (2) = (Z/2Z) Z = (A,,u | (W)Y =1 (ke Z)),
T'i(m)=(Z/mZ)Z

=(10,---,lm—1

where m>2, A =t, w=at, and A; = a't.

AR TR = kLR (LR TR =1
(i,j €Z/mZ.k € Z) ’

Proof. The presentation for I'1(2) comes from simplifying Presentation (ii) of
Proposition 7.1 using the relation a? = 1, which is equivalent to A~ 'uA=! = =1,
The family A (A~ 1A~ = uk1=* becomes the family (A¥p%)2 = 1. The case
k =1 provides the relation a? = 1.

For I'y(m), consider adding the family of relations (Aik)tj_k)m =1 for all
i,j,k € Z to Presentation (iii) of Proposition 7.1. In particular this adds the
relation a™ = 1, which is the case: (A;A9")" = (ar¢7!)™ = 1. In the resulting
group A; = A; when i = j modulo m since then a't = a’/t because a™ = 1.
This group must be I'j(m) because all the remaining added relations hold in
I'1(m), after all when k& > 0 (and similarly when k& < 0),

(kikkj_k)m = ((ait)k(ajt)_k)m
— (ai (tai[—l) . (tk—2ait—(k—2))(tk—lai—jt—(k—l))(tk—2a—jt—(k—Z))
---(ta_jt_l)a_j)m

which is 1 because (a‘p)m =1 and ¢'” and ¢'’ commute in T'y(m) for all
p.q €. O
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Proposition 7.3. Presentations of

k I
= (PO Yot enr ezt o)

include
() (a,s.t|la,a’]=1,[s,t] = 1, a® = aa’),
(ii) ([1,, v,c,d |[/,L,v] =1, p " v =, 0 ld2n = d),
(iii) ( Ai,piovi G €Z) | A =vipi, digj = pwivj (i, j €Z) ).
These are related by

an (o)} (5 0) (T 1)

w=s, v=tls, c=at, and d =t 'a, and A; = a't and p; = a's (and
hence v; = A;jpu; ! = ad'ts~la™).

The generators A;, i, and v; := A;ju; !
Section 5. After all,

agree with those employed in

Ai=aitr—>(x J!) and pd,-za"sr»(

- 1+xi),

0 1

which are alternative ways of expressing (i,eq) and (i,e;).

Presentation (i) and the given matrix representation are due to Baumslag in
[Baul] and our proof below that they agree is an embellishment of the argument
in his paper. Presentation (ii) is striking as it shows that I’ maps onto a free-
product with amalgamation of two BS(1,2) groups (via identifying p and v).
The generators of Presentation (iii) are those we used in Sections 5 and 6 to
relate I'; to a horocyclic product of trees. In Section 4 of [GKKL], presentations
of similar matrix groups are given (e.g., in Section 4.3.1) using techniques that
are similar to those that follow and are based on ideas in [Baul].

In the course of proving Proposition 7.3 we will also establish:

Lemma 7.4 (Normal form). Elements g in T'», presented as (i), are represented
by a unique word

k1 kK I Ir,
(7.1) wg — amlt ...amKt anls ...anLS Sltk

with kq,..., kg, li,.... 00, ,k,L,K € Z and my,...,mg,ny,...,np € Z ~ {0}
satisfying ki <---<kg and 1y <...<lp <0.
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Proof of Proposition 7.3 and Lemma 7.4. Let us establish the existence part of
Lemma 7.4. Suppose w is any word on a,s,t representing g. First convert w to
a word of the form []; a®”'** s't* by inserting suitable words on {s*!,*1} after
each a and then using the relation [s,7] = 1. Then eliminate all the positive p;
by expressing a*”’ as a product of terms like @'’ using the relation a® = aa’.
In Ty, [a,a"] =1 for all n >0 as can be seen by an induction via

n 5 n n n n
1= [a,at ] = [as,(as)’ ]= [aa',a' a’ +1] = [a,a' -H].

(We see here that the relation a® = aa’, which Baumslag calls mitosis, is the key
to coding the infinite family of defining relators [a,a’"] =1 (n €Z) in a finite
presentation.) So, as a* can be expressed as a product of terms of the form at’
(j € Z), elements of the set {asf,a’j, |i,j € Z} pairwise commute in I',. So
we can rearrange terms to get the form of wg.

Next we observe that the map ¢ from the group presented by (i) to the given
matrix group, defined for a, s and ¢ as indicated in the proposition, is well-
defined and is a homomorphism: the defining relations correspond to identities

which hold in the matrix group. It maps a group element g represented by the
word w, of Lemma 7.4 to

oo (o DT D=7 )

where
f=mx* b mgx®™ 01+ x)" + -+ a1+ )L,

So ¢ is surjective. Now {x',(1+ x)/ |i,j € Z, j <0} isabasis for Z[x,x!, (1+
x)~1] as we saw in Section 5.1. So ¢ is also injective and the normal form words
of Lemma 7.4 each represent different group elements. So (i) is a presentation
of Fz.

The translation between Presentations (i) and (ii) comes from that the relations
[s,z] =1 and [w,v] =1 are equivalent, and, in the presence of that commutator,
wlc?v = ¢ and v1d?u = d are equivalent to ¢® = aa' and @® = d'a,
respectively.

Presentations (i) and (iii) agree as follows. When i = j = 0, the relation
Airj = p;v; becomes [s,f] = 1, and, in the presence of [s,f] = 1, when
i =—j =1, it gives a* = a'a, and when —i = j = 1, it gives a° = aa’.
Moreover, in terms of a,s, the relation A;4; = w;v; is @'/t =a'sa’ts~la™/,
which holds in T, because a’sa’ts a7t 'a™/ =a'(sas V) ta 7t a7/ =
a'(aa®) ata7') =a'tialta a7 = 1. O
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The normal-form words of Lemma 7.4 read off lamplighter descriptions of
group elements in which the configurations are supported on Lo (that is, the
t-axis and the negative half of the s-axis). If a group element g positions the
lamplighter far from Ly o, then the configuration supported on L o representing g
will differ dramatically from that representing ga*!, since the effect of propagating
+1 towards Lo compounds in the manner of Pascal’s triangle.

A word on a,s,t as per Presentation (i) for I', represents a group element
whose lamplighter description can be found as follows. Start with the lamplighter
located at (0,0) and the configuration entirely zeroes. Working through w from
left to right, increment the integer at the lamplighter’s location by +1 on reading
an a1, move the lamplighter one step to the right or left (the 7- or ¢! -direction)
on reading a ¢ or t~!, respectively, and move the lamplighter one step to the
adjacent vertex in the s- or s~ !-direction on reading an s or s~!, respectively.

For presentations of the groups I',(m) in general see Theorem 4.7 in [BNW].

8. H2(Z) as a Cayley 2-complex
In this section we show that H,(Z) is the Cayley 2-complex of
Ty ={Aispi,vi G €Z) | i =vipi, digj = vy (i, j € Z)),

proving Theorem 1.3.

Identify the Cayley graph (the 1-skeleton of the Cayley 2-complex) with the
I-skeleton of H,(Z) as per the n = 2 case of Theorem 1.2 (proved in Section 5).

First we show that every 2-cell in H»(Z) is bounded by an edge-loop which
corresponds to a defining relation of I';. Suppose a point p = (po, pP1,p2) €
H2(Z) is in the interior of a 2-cell X'. Then each p; is in the interior of an edge
I; of the tree 7z. Let {; = minyez; h(v) and x; = h(p;) —¢; for j =0,1,2.
It follows from h(po) + h(pl) + h(pz) = {} and 0 < xXj < 1 that £o + €1 + ¢>
is either —1 or —2. So xp + x; +x2 is 1 or 2. Say X is of “type 1” or “2”
accordingly. Examples are shown in Figure 10 (with the vertices of the triangles
labeled by (xg, x1,x2)-coordinates).

Consider moving p within X as parametrized by (xg,x;,x2). It is on an
edge in X when one of the p; is at an end of [; and is on a vertex when two
(and hence all three) are at an end of /;. So if X is of type 1, it has vertices,
(x0,x1,x2) = (1,0,0), (0,1,0), and (0,0,1), and 0X is traversed by following
the edges (1 —r,r,0)o<r<1, then (0,1 —r,7)o<r<1, and then (r,0,1 —r)o<r<1.
If X is of type 2, it has vertices, (xo,x;,x2) = (0,1,1), (1,0,1), and (1,1,0),
and 0X is traversed by following (r,1 —r,1)o<r<1, then (1,7,1 —r)o<,<1, and
then (1 —r,1,r)o<r<1-
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'(szle 0 (1)) example with  (£g.£1.£3) = Type 2 example with (£q,£1,£2) = (0,—1,—1)

(0,1,0)

0,1,

Ficure 10
Examples of 2-cells of type 1 and 2

Now, dX corresponds to a length-3 relator in I',, and matching the changes
in heights as dX is traversed with the height-changes indicated in the family
of six displayed equations in our proof of the n = 2 case of Theorem 1.2 in
Section 5, that relator must be Agv; ~'u; ! for type 1, and A7 1v;ux for type 2,
for some i, j,k € Z.

The workings of lamplighter model illustrated in Figure 9 allow us to see that
Agvi'p;t =1 in Ty if and only if k—j—i = 0 since Akvytu;! does not move
the lamplighter and increments the lamp at the lamplighter’s location by k—j —i.
That is, the relation is A;4; = p;v; for some i, j € Z. Similarly, A7 vjur =1
in T, if and only if i = j = k since A;'vjux does not move the lamplighter
and transforms a triangle of numbers % — j_ik (with the lamplighter being
located to the right of the —i). That is, the relation is A; = v; u; for some i € Z.
So around dX we read one of the defining relations in the presentation given in
the theorem.

Finally, we show that every edge-loop in H,(Z) which corresponds to a
defining relation bounds a 2-cell. So suppose p : S! — H»(Z), given by
r > p(r) = (po(r), p1(r), p2(r)), is a loop in the 1-skeleton of H,(Z) and
around p we read one of the defining relations. Then for each j, such are the
defining relations, the image of the loop r — p;(r) is in a single edge I; of Tz
and, by a similar analysis to that above,

{(uo,ul,uz) (S 7-Z3 ‘ Uj (= Ij and h(uo) -+ h(ul) + h(uz) = 0}

is a 2-cell of H,(Z) with boundary circuit p.
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So, as no edge-loop in either H,(Z) or in the Cayley 2-complex is the
boundary of two 2-cells, the result it proved.
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