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The lower central series of a right-angled Artin group

Richard D. WADE

Abstract. We give a description of Droms, Duchamp and Krob’s extension of Magnus’
approach to the lower central series of the free group to right-angled Artin groups. We also
describe how Lalonde’s extension of Lyndon words to the partially commutative setting
gives a simple algorithm to find a basis for consecutive quotients of the lower central series
of a RAAG.

Mathematics Subject Classification (2010). Primary: 20F36, 20F14; Secondary: 20F12,
20F40.

Keywords. Right-angled Artin groups, partially commutative groups, lower central series,
central filtrations.

1. Introduction

One can often translate problems concerning Lie groups to the world of Lie
algebras. When we linearise a problem our life is much easier: we understand
vector spaces and their endomorphisms very well, and we may use our knowledge
here to give us information about the underlying Lie group. This paper looks at
how such methods are also beneficial for studying discrete groups, at least in
respect to their lower central series.

Let G be any group. One may form a Lie Z-algebra by taking the direct
sum Y 72, ¥i(G)/vi+1(G), where y;(G) is the ith term in the lower central
series, and the bracket operation is given by taking commutators in G. If G is
a free group the picture is very nice indeed. The Lie algebra one attains is a free
Lie algebra, and the structure theory of free Lie algebras allows one to obtain
information about free groups and their automorphisms.

This Lie algebra correspondence is well-known. It is covered in detail in
Magnus’ classic textbook on combinatorial group theory [MKS, Chapter 5], and
also appears in Bourbaki [Bou]. The aim of this paper is to give a description
of the analogous theory for right-angled Artin groups, or RAAGs. These can
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be thought of as modified free groups, where some pairs of basis elements are
allowed to commute. Any graph I" determines a right-angled Artin group Ar as
follows: suppose that £ and V are the edge and vertex sets of I' and let ¢ and
7 be the maps that send an edge to its initial and terminal vertices respectively.
The group Ar then has the presentation:

Ar = (v e V|[(e),z(e)] : e € E).

In particular, there is a generator for each vertex of I' and a commutator relation
corresponding to each edge. Graphs with no edges determine free groups, and
complete graphs determine free abelian groups. The RAAG moniker is popular in
geometric group theory but these groups also enjoy interesting combinatorial and
algorithmic properties (particularly in the context of cryptography) and appear
throughout the literature as (free) partially commutative groups, graph groups,
trace groups, and semifree groups.

After replacing the free Lie algebra above with a free partially commutative
Lie algebra, the description of the lower central series algebra and its resulting
applications also holds in this more general setting. These results are not new,
however we feel that a unified summary of key results of Droms, Duchamp, Krob,
and Lalonde [Dro, DKI, DK2, Lall, Lal2, KL.] will make a useful reference. It
is worth noting that Papadima and Suciu also have a beautifully succinct, if less
hands-on, proof of this correspondence in their work [PS].

The algebraic approach in this paper has much wider implications than one
might initially guess. The author uses Duchamp and Krob’s work in [Wad] to give
strong restrictions on how higher-rank lattices in semisimple Lie groups can act
on right-angled Artin groups. We will see below that this Lie theory viewpoint
allows us to prove that RAAGs are residually torsion-free nilpotent; this is used
by Linnell, Okun, and Schick in their proof of the strong Atiyah conjecture for
RAAGs [LOS]. The work of Wise and Agol shows that the fundamental group
of every closed hyperbolic 3—-manifold is virtually a subgroup of a RAAG [Ago].
Such groups are therefore virtually residually torsion-free nilpotent.

The paper is set out as follows: in Section 2 we review a classical construction
that builds a a Lie algebra Lg from any central filtration G = {G;}72, of a
group. This is a generalisation of the construction of the Lie algebra associated
to the lower central series mentioned before. It is functorial in the sense that if
you have two central filtrations G = {G;} and H = {H;} of groups G and H
respectively, and ¢ : G — H is a homomorphism such that ¢(G;) C H; for all
i, then there is an induced algebra homomorphism Lg — Ly .

In Section 3 we build up a host of free partially commutative objects
associated to a right-angled Artin group. Of central importance is the free partially
commutative monoid M , which may be viewed as the monoid of positive elements
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in Ar. We define U to be the free Z—module on M. The module U inherits
a graded algebra structure, with the grading coming from word length in M.
One can extend U to an algebra U® by allowing infinitely many coeflicients
in a sequence of elements of M to be nonzero. The algebra U* behaves very
much like an algebra of formal power series. For instance, if vy,...,v, are the
generators of Ar and vy,...,v, are the associated elements of the monoid, then
1 + v; is a unit in U with inverse

QA4+v) ' =1—vi+vi?—vi +--.

If we define U™ to be the group of units of U, the mapping v; — 1+ v; gives
an embedding :
M A[‘ — U*,

called the Magnus map. We define a sequence of subsets D = {Dy}2°, of Ar
by saying that g € Dy if and only if u(g) is of the form:

u(g) =1+ elements of U of degree > k.

Proposition 4.11. For all k, the set Dy is a subgroup of Ar and these subgroups
satisfy:

(1) D is a central filtration of Ar.

(2) Dy+1 < Dy and Dy /Dy4y is a finitely generated free abelian group.
(3) y&x(Ar) C Dg.

As p is injective NP2, Dy = {1}, and this fact combined with properties (1)
and (2) imply that a right-angled Artin group is residually torsion-free nilpotent.
If C is the central filtration given by the lower central series, then property (3)
implies that we have a Lie algebra homomorphism Lo — Lp. We finish our
study of the Magnus map by using it to give a new proof of the normal form
theorem for words in right-angled Artin groups.

The algebra U has an associated Lie algebra £(U) consisting of the elements
of U and bracket operation [a,b] = ab — ba. In Section 5, we study the Lie
subalgebra Lr of L£(U) generated by the set V = {vy,...,vn}. For this, we use
Lalonde’s description of the free partially commutative Lie algebra determined by
the graph I' [Lall, Lal2]. One first defines a subset LE(M) C M known as the
set of Lyndon elements of M . These have a very rigid combinatorial structure.
In particular there is a way of assigning a bracketing to each Lyndon element;
given a subset X = {x1,...,x,} of a Lie algebra L, this bracketing induces a
7Z—module homomorphism ¢y : Z[LE(M)] — L. When X = V, the induced
map ¢y : ZI[LE(M)] — Lr is an isomorphism. This gives a basis of Lr as a
free Z-module, and allows us to give a universal defining property of Lr:
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Theorem 5.25. Let L be a Lie algebra, and suppose that X = {x1,...,x,;} is
a subset of L that satisfies

[xi,x;] =0 if v; and v; are connected by an edge in T.
Then there is a unique algebra homomorphism Yy : Lr — L such that
YUx(vi) =x; for 1 <i <r.
We use this in Section 6 to construct a chain of algebra homomorphisms
Lr - Le— Lp — Ly

and show that the composition of the three maps is the identity on Lr. In fact:

Theorem 6.3. Lr, L¢, and Lp are isomorphic as graded Lie algebras.
Furthermore, the central filtrations C and D are equal, so that yi(Ar) = Dy
for all k > 1.

We are now able to use Lyndon elements and Lyt to describe the lower central
series of Ar in more detail. For instance, Proposition 4.11 now implies:

Theorem 6.4. If k € N, then yi(Ar)/yr+1(Ar) is free-abelian, and Ar/yi(Ar)
is torsion-free nilpotent.

We have attempted to make this work as self contained as possible. In
particular, we do not assume any results concerning free Lie algebras, which
allows the theory of free Lie algebras and the free partially commutative Lie
algebras studied here to be developed in parallel. This comes at the cost of
assuming certain facts about the combinatorics of words in RAAGs. We hope
that this trade-off is beneficial for the reader. A wonderful aspect of Magnus’
approach to the study of free groups is how nicely the overall structure of his work
translates to right-angled Artin groups. An avid reader is encouraged to compare
Section 4 of this paper with Section 5.5 of [MKS]. The statements contained in
this paper are adapted to deal with the more general setting of RAAGs, however
very little work needs to be done in ensuring the proofs then follow through as
well.

2. Lie algebras from central filtrations

Let G be a group. Let G = {G}x>1 be a sequence of subgroups of G such
that for all k,/:
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(FI) G =G,
(F2) Gi+1 =< Gy,
(F3) [Gi, Gi] C Gg4i.

We say that G is a central filtration, or a central series of G . The above conditions
imply that Gy < G and Ggyq < Gi for all k. The results in this section are
classical (see, for example, Chapter 2 of [Bou]) and we will state them without
proof.

One example of a central filtration is y(G) = {yx(G)}x>1, the lower central
series of G. This is defined recursively by y1(G) = G and yx11(G) = [G, yr(G)].
Where it is clear which group we are using, we shall simply write y; (or y)
rather than y;(G) (or y(G)). An easy induction argument shows that the lower
central series is contained in all central filtrations of G

Proposition 2.1. Let G = {Gy} be a central filtration of G. Then yr C Gy for
all k.

Central filtrations tell us about residual properties of groups. We say that a
central filtration G is separating if N2 G = {1}.

Proposition 2.2. Suppose that G is a central filtration of G that is separating.
Furthermore, suppose that each consecutive quotient Gy /G4y is free-abelian.
Then:

(1) Gy is a normal subgroup of G.
(2) For all k the group G/Gy is torsion-free nilpotent.

(3) G is residually torsion-free nilpotent.

Each central filtration G also gives rise to a Lie algebra Lg over Z. To
describe this, we first have to take a short detour to look at some commutator
identities. We use the convention that for x,y € G we have [x,y] = xyx~1y~!

and for conjugation we write Yx = yxy~!.

9

Lemma 2.3. Let x,y,z be elements of G. Then the following identities hold:

(D) Yy =[x, yly
(2) [xy,z] = *[y, z].Ix, 2] = [x, [y, 2]].ly, 2].I%, 2],
3) [#: ¥7] = [B.5]7 2] = [2 703 [ 2] |12 2],

As well as the Witt—Hall identity:

[[x,5],”z].[ [y, 2], x].[[z. x]. *y] = 1.
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The reader should be aware that the above equations are different to those
that occur in many group theory text books; the commutation and conjugation
conventions we use are set up for left, rather than right, actions. The Witt—Hall
identity implies the following ‘3 subgroup’ theorem:

Theorem 2.4 (Hall, 1933). Let X,Y and Z be three normal subgroups of G.
Then

[[X,Y],Z] C[[v.Z]. X].[[Z, X], Y]

Now let G = {G;};>1 be any central filtration of G. Let Lg; = G;/Gi41.
As [Gi,Gi] C Ga; C G;j+; each Lg,; is an abelian group, and we can form
a Z-module Lg = ®°,Lg;. Any element in Lg is of the form ) ; x;G;41,
where each x; € G; and only finitely many x; are not equal to the identity.

The Witt—Hall identity can be seen as a group theoretic version of the Jacobi
identity in a Lie algebra. In fact, one can use the above set of commutator
relations to show the following:

Proposition 2.5. The bracket operation
[in Git1, YY) Gj+1] = % %1Gi+j+1
i ) iJ

gives Lg the structure of a graded Lie Z-—algebra.

The identities (2) and (3) imply that if G has a generating set {x;,...,x,}
then any consecutive quotient Y (G)/yr+1(G) of terms in the lower central series
is generated by elements of the form [x; , [xiy, [~ [xi_ ;s Xie ] ]]]-¥k+1(G). In
particular:

Proposition 2.6. If G is generated by {xi,...,x,} then L, ) is generated by
the set {x171(G),...,xny1(G)}.

We finish this section with a useful observation:

Proposition 2.7. Let G = {G;} and H = {H;} be central filtrations of
groups G and H respectively. Let ¢ : G — H be a homomorphism such
that ¢(G;) C ¢(H;) for all i € N. Then ¢ induces a graded Lie algebra
homomorphism ® : Lg — Ly, defined by:

@(Z X Qi) = Z¢(xi)Hi+1-
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3. The cast

In this section we introduce a host of partially commutative structures
associated with a finite graph I'. As in the introduction, we will assume that I’
has its vertices labelled vy,...,v,. This is also our preferred generating set of
the right-angled Artin group Ar, so that [v;,v;] =1 in Ar if there is an edge
between the vertices v; and v; in I'.

3.1. The monoid M and algebra U. Let W(V) be the set of positive words
in {v1,...,v,}. The empty word is denoted by @ or 1. We write |w| to denote
the length of a word in W(V). We define |w|, the multidegree of a word

w = vyl ---vpk to be the element of N” with ith coordinate given by

Z €j.

pj=i
If w,w e W(V), we write w < w’ if there exist wy,w, € W(V) and vertices
v;,v; that are connected by an edge in I' so that:

w = wWiVijvjws,
w' = wivjviws.

We then define an equivalence relation on W(V) by saying that w ~ w’ if there
exist wy,...,w, € W(V) such that

4
W=W] < Wy << Wy, =W,

Let M = W(V)/ ~. Let w be the equivalence class of w under the equivalence
relation ~ . If w; ~ w| and w, ~ wj; then wyw, ~ wjw;, therefore
multiplication of words in W(V') descends to a multiplication operation on M,
with an identity element given by the equivalence class of the empty word.
Similarly, if w ~ w’ then |w| = |w’| and |w| = ||w’||, so we may define the
length and multidegree of an element m € M to be the respective length and
multidegree of a word in W(V') representing m. Length and multidegree are
additive with respect to multiplication, so that if m;,m, € M we have:

|mq.ma| = |mq| + |m2|
[my.mz| = [|m1] + [Im2]|
This gives the free Z-module on M a graded algebra structure in the following

way:

Proposition 3.1. Let U be the free Z—module with a basis given by elements of
M. Let U; be the submodule of U spanned by the elements of M of length i.
Then U = &2,U; and multiplication in M gives U the structure of a graded
associative 7 -algebra.
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We will distinguish elements of U from Ar by writing positive words in
{V1,...,vn} rather than {vq,...,v,}.

3.2. U, an ideal X, and the group of units U*. Let U be the algebra
extending U by allowing infinitely many coefficients of a sequence of positive
elements to be non-zero. Any element of U® can be written uniquely as a
power series a = Z;’io a;, where a; is an element of U;. We say that a; is the
homogeneous part of a of degree i, and ao is the constant term of a. Each
a; is a linear sum of elements of M; = {m € M : |m| = i}, so is of the form
ai = Y pep; *mm, where Ay € Z. If a =3 2 a; and b = Y 2 b; then the
homogeneous part of a.b of degree i is

i
C;i = E ajb,-_j.
j=0

If a©®, 4™ 4@ . is a sequence of elements of U, then the sum Yt a‘h)
does not always make sense. However, if the set

S; ={j :a? #0}

is finite for all i we define )72 ja'/) to be the element of U with homogeneous
part of degree i equal to
>
A7,

JE€S;

Let X be the ideal of U generated by vy,...,vy. Alternatively, X is the set
of elements of U™ with a trivial constant term. In a similar fashion, X* is the
ideal of U containing all elements a € U* such that ¢; =0 for all i < k.

Let U* be the group of units of U®. One can show (cf. Proposition 4.2)
that a € U* if and only if a = £1 + x for some x € X . Note that this is much
larger than the group of units of U : there is an embedding of Ar into U™* called
the Magnus morphism, or Magnus map (Proposition 4.4).

4. The Magnus map

To make U easier to work with, we would like to treat it as a (noncom-
mutative) polynomial algebra. Specifically, we would like to have an idea of
‘substitution’ of elements of U ‘into other elements of U°’. For instance,
given a positive word w = vp, ...vp, in W(V) and Q;,...,Q, in U* we may
define w(Q1,...,0Qn) = Qp, --- Op, € U™. Suppose that Qy,..., Q, satisfy

4 QiQ; =0;0; for all i,j such that v; and v; span an edge in T".
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If w and w’ are words such that w < w’ then

w(le---s Qn) = wl(Qla---’Qn)'

It follows that if w and w’ represent the same element of M, the above equality
also holds. Therefore we may define m(Q;,..., Q) = w(Q1,...,Q,), where w
is any word in the equivalence class m. This definition respects multiplication in
M , so that for m,m, € M we have:

(5) mi(Q1...., Qn)m2(0Q1, ..., @n) = mimz(Q1, ..., On).

We can’t quite substitute variables in any element of U® with this level of
generality; for example it is not possible to set x =1 in

l+x+x24+x>+---.

However, as long as Q1,..., Q, have a trivial constant part (in other words they
all lie in the ideal X') this problem does not occur.

Proposition 4.1. Let Qy,...,Q, be elements of X which satisfy condition (4).
Then the mapping

Vi = 0

may be extended to an algebra morphism ¢ : U — U°.
Proof. Let a =} 2qa;, with a; =}, 0 Amm. We define:

$@)= > Amm(Q1.....Qn)
meM;
If |m| =i then as Q; € X for all j, it follows that m(Q,..., Q,) lies in
X' . Therefore the smallest nonzero homogeneous part of ¢(a;) is of degree at
least i. Hence the sum ¢(a) = Y72, ¢(a;) is well defined. It is clear from
the definition that ¢ is well-behaved under addition and scalar multiplication.
Equation (5) tells us that ¢ also behaves well under multiplication, and is an
algebra homomorphism. L]

Such substitutions make our life much easier while working in U°; this is
exemplified by the following three propositions:

Proposition 4.2. If a is of the form a =1+ ;2 a;, then a € U* and
(o o]
a_l=1—(a1—I—a2+---)+(a1+a2—+—---)2—...=1—I—Zci.
i=1

i—1 i ;
Here ¢y = —ay and ¢; = =) ;_ycjai—j = —) ;_,ajci—; recursively.
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Proof. One first checks that if @ = 1+ v; then the element ¢! = 1 —vj+v;2—---
satisfies a.a™! = a~l.a = 1. We then attain the general formula for an element
of the form a = 14+ x with x € X by applying the algebra homomorphism given
by Proposition 4.1 under the mapping v; — x for all i. The recursive formula is
obtained by equating homogeneous parts in the equation a '.a =a.a™' =1. [0

Proposition 4.3. Let x,y € X. Then the following formulas hold:

(6) Q+x)A+»A 4+ =1+y+ (xy—yx) Y (-Dx,
i=0

7 A+ +»NA+0)7' A+ ) =14y —yx) Y (D) Hxly/,
i,j=0

Proof. As in the proof of Proposition 4.2, we first note that these identities hold
for x =v; and y =v; for any i and j. For the general case, we wish to apply
Proposition 4.1. If xy = yx then we may pick any pair i, j and study the algebra
homomorphism induced by the mappings v; = x, vj = y, and vi — 0 when
k#i,j.If xy# yx then M is not commutative so I" is not complete: in this
case pick vertices v; and v; that do not span an edge in I', and use the same
map as above. O

Proposition 4.4. The mapping v; + 1 + v; induces a homomorphism p: Ar —
U*.

Proof. The mapping v; + 1+v; induces a homomorphism 1 : F(V) — U* from
the free group on the set V. If [v;,v;] =1 in Arp then vjvj—vjv; =0 in U,
therefore by Equation (7), relations in the standard presentation of Ar are sent
to the identity in U™, and 7t descends to a homomorphism u: Ar — U*. [

The homomorphism p is called the Magnus map, and is the central object of
study in this section. Its first extension to RAAGs was established by Droms [Dro],
who used it to show that RAAGs are residually torsion-free nilpotent, and we
essentially follow his approach here. Our first task is to gain some understanding
of the image of a generic element of Ar under p.

Definition 4.5. We say that an element m € M is square-free if for all words
w € W(V) representing m there exists no element v € V(I") such that vv occurs
as a subword of w.

We will now relate square-free elements of M to reduced words representing
elements of Ar. (Note that our words representing elements of Ar are in
W(V U V1) rather than just W(V)).
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Definition 4.6. Let g € Ar and suppose that w = wvpl---v,f is a word
representing g with e¢; € Z. We say that w is fully reduced if e; # 0 for
all i and for all j >i such that vy, = vp, there exists i </ < j such that v,
and v,, do not span an edge in I'.

We define three moves on the set of words of the form w = vp} -+ vk

(M) Remove v, if ¢; =0,

(M2) Replace the subword v&i v, t} with v T E i = piyt.

1

e;j . Ci+1 . €i+1, e :
(M3) Replace the subword vyl vy, 1, with vy, vt if vy, and vp, .,

span an edge in I.

Given any word w representing g we may find a fully reduced representative
of g by applying a sequence of moves of the form (Ml), (M2), and (M3).
Moves of type (M3) are called swaps. If w = vplvp2---v,F is fully reduced then
Vpi ¥py - Vpi 18 square-free. The following key lemma shows that we can find this
square-free form in the kth homogeneous part of w(g). We will use wu(g); to

denote the i th homogeneous part of w(g).

Lemma 4.7. Let g be a nontrivial element of Ar. There exists k € N such that
k is the largest integer such that there is a square-free element m € My with
nonzero coefficient A, in the decomposition of u(g)x. This element is unique.
Furthermore, if vplvy2 -+ vy is a fully reduced representative of g then | =k,

Vp - Vpy =m, and ej---e] = Ap.
Proof. By an induction argument on e¢; , we have

pph) =1+ eivp + Vgiui

for some u; € U*. Therefore if vjlvp2---v,k is a fully reduced representative of

g, we have:

p(g) = (v )pu(vp2) -+ (k)
- (1 +e1vp, + vglul)(l + exvp, + vgzuz) (1 + exVp, + nguk)-

In this expansion we see that any positive element occurring with length greater
than k& must contain Vgi as a subword for some i, and the only element of length
k without such a subword is m = vp, ---vp,, with coefficient A,, = e;---ex. As
1(g) is independent of the choice of fully reduced representative of g, every
fully reduced representative v{l' ...vcﬁ must satisfy | =k, with vg, -+ vg, = m

and f1--- f1 = Am. O
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We have shown that for every nontrivial g € Ar there exists k > 0 such that
u(g)r is nontrivial.

Corollary 4.8. The homomorphism  : Ar — U* is injective.
We may now use p to study the lower central series of Ar.

Definition 4.9. Let g € Ar. We define the derivation §(g) of g to be equal to
w(g)x, where k is the smallest integer > 1 such that u(g)x # 0. If no such &
exists, then g =1 and we define §(g) = 0.

The derivation § : Ar — U satisfies the following properties:

Lemma 4.10. Let g,h € Ar and suppose that §(g) = u(g)r and 8(h) = u(h);.
(1) For all integers N, 8(gV) = Nu(g)x.
() If k <1 then 5(gh) = 8(hg) = pn(g)k.
() If k=1 and pu(g)k + p(h); #0 then

8(gh) = é(hg) = (gl + p(h);.
4 If k=1 and p(g)r + n(h); =0 then either

gh =1 or §(gh) € X**1.

(5) If p(@)ip(h); — ph)ip(g)k # 0 then

8([g, h]) = p(@rp(h); — p(h)r (k-

6) If n(Qrp(h) — pn(h)iu(g) =0 then either

[g,h] = 0 or 8([g,h]) € X*+I+1,

Proof. Parts (2) , (3) and (4) follow from standard properties of multiplication
in U®. Part (1) follows from part (3), an induction argument on N > 0, and
induction on N < 0. Parts (5) and (6) follow from Equation (7) in Proposition
4.3. ]

Let Dy ={g € Ar : u(g); = 0if 0 <! < k}. Alternatively, Dy is the set of
elements g € Ar such that either g = 1 or §(g) € X*.

Proposition 4.11. For all k, the set Dy is a subgroup of Ar and these subgroups
satisfy:
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(1) D ={D;i}2, is a central filtration of Ar.
(2) Dy/Dy41 is a finitely generated free abelian group.
(3) vk(Ar) C Dg.

Proof. Parts (2)-(4) of Lemma 4.10 imply that Dy is a subgroup of Ar. By
definition, D; = Ar and Dy, < Dy for all k. Also, if g€ Dy and h € Dy,
then [g,h] € Dy4; by parts (5) and (6) of Lemma 4.10. Therefore D = {D;}
satisfies the requirements (F1), (F2) and (F3) given in Section 2 and is a central
filtration of Ar. For part (2), we define the map ¢ : Dy — Uy by defining

¢(g) = u(g)r. Equivalently:

8(g) if 8(g) = p(gk
0 otherwise, when 8(g) € X*+1.

P(g) = {

Parts (2)—(4) of Lemma 4.10 imply that ¢ is a homomorphism to Uy, with kernel
Dy 1. Therefore the quotient group Dy /Dy, is isomorphic to a subgroup of
Ur. As Uy is a finitely generated free abelian group, so is Dy/Dy4q. Part (3)
is satisfied for all central filtrations of Ar by Proposition 2.1. O

As D is a central filtration of Ar, we have y;(Ar) C D; for all i, and as the
Magnus map is injective, N2, D; = {1}. Hence we may apply Proposition 2.2
to the central filtration D to obtain:

Theorem 4.12. The intersection N{2,vi(Ar) = {1} and Ar is residually torsion-
free nilpotent.

We finish this section with a proof of a normal form theorem for elements
of Ar. This is well-known; Green’s thesis [Gre] contains a combinatorial proof
involving case-by-case analysis. Green’s work also extends more generally to graph
products of groups. We give a proof for RAAGs using the Magnus map. The first
step is an immediate consequence of Lemma 4.7:

Proposition 4.13. Let g € Ar. Let w = v} ---vp,¥ and w' = v{ll ---vg;’ be two
fully reduced representatives of g. Then k = 1[.

In fact, we can prove something much more detailed:

Theorem 4.14. Let g € Ar. Let w = vf!---vek and w' = v]'---v]% be two
fully reduced representatives of g. Then we may obtain w from w’ by a sequence

of swaps (moves of the form v;f. v;ji: - v;f.]::v;; when [vp;,vp; ] =1).
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Proof. We proceed by induction on k. We first look at the element v, g € Ar.
Note that vg2---vek and v, v]!..-vJk are two representatives of v,'g, and
the former representative is fully reduced. By Proposition 4.13 the latter cannot
be fully reduced, so there exists / such that g; = p; and [vp,,v4;] =1 for i <.

If f; # e, then

fi. .o fi—er ... Jfx
Va1 " Vg Vax

is a fully reduced representative of v, 'g, however this also contradicts Propo-
sition 4.13. Therefore e; = f;, and after applying a sequence of swaps to w’
we may assume that v,, = vy, and e; = f;. By induction, vjy2---v,X may be

obtained from v{% ---v,ﬁ‘ by a sequence of swaps, therefore w may be obtained
from w’ by a sequence of swaps. [

Given g € Ar, let init(g) (respectively term(g)) be the set of vertices of T’
that can occur as the initial (respectively terminal) letter of a fully reduced word
representing g. We say that g is positive if g = 1 or g can be written as a
product v} ---vz" with e; > 0 for all i. As any two fully reduced representatives
may be obtained from each other by a sequence of swaps, we have the following
immediate corollaries:

Corollary 4.15. For any g € Ar ~ {1}, the sets init(g) and term(g) form
cliqgues in T" : any pair of vertices in init(g) or term(g) commute.

Corollary 4.16. The monoid M is isomorphic to the set of positive elements of
Ar under multiplication.

5. Lyndon elements of M

Let £(U) be the Lie algebra we obtain by endowing U with the bracket
operation [a,b] = ab — ba. We will now study the Lie subalgebra of L(U)
generated by the set {vy,...,vp}. We call this subalgebra L. The approach is
as follows: we first introduce a subset of M called the set of Lyndon elements,
LE(M). We describe a method for supplying each Lyndon element with a
bracketing. If L is a Lie algebra and X = {x;,...,x,} C L then this bracketing
induces a homomorphism (as Z-modules) ¢x : Z[LE(M)] — L. In the case
that X = {vq,...,vn} C Lr we call this induced homomorphism £, and show
that ¢ is bijective. Thus we obtain a basis of Lr in terms of bracketed Lyndon
elements. In general, if the elements of X satisfy

[x,-,xj] = () it [‘U;‘,Uj] = ]
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then we will show that ¢x£~! : Ly — L is an algebra homomorphism taking v;
to x;. This property will then be used in the next section to show that Lr and
the lower central series algebra of Ar are isomorphic.

We deviate here from the approach in Magnus, and instead follow the paper
of Lalonde [Lall]. The analogous free group version is contained in Chapter 5 of
[Lot], and we must start in this world. We first define a lexicographic order on
the set of positive words W(V):

Definition 5.1. The lexicographic ordering on W(V') is the unique total order <
on W(V) that satisfies the following:

(1) For any nonempty word w, we have @ < w.
(2) If wy; and w, are distinct nonempty words and x,y € W(V) such that
w; = v;x and wy = v;y, then w; < wy if either
(@) i <j or:

(b) i=j  and x < y.

In particular, @ < v; <v; < ... <v,. We state two basic properties of this
order:

Lemma 5.2. Let x,y,z € W(V).
e if y <z then xy < Xxz

o if |x|>|y| and x <y then xz < yz

The above lemma remains valid if we replace all occurrences of strong
inequalities with weak inequalities. The natural projection = : W(V) — M, when
coupled with the ordering of W(V'), gives us a way of choosing a representative
in W(V) for each element of M :

Definition 5.3. Let m € M. Then we define std(m) € W(V), the standard
representative of m to be the largest element of 7~ !{m} with respect to the
lexicographic order.

Example 5.4. Let I" be the small example graph given in Figure 1. If m € M is
the element represented by the word viv,v3 then then w~1(m) = {vivov3, V1V3Vs}
and std(m) = vyv3v,.

We then define a total order on M as follows: if a,b € M we say
a < b if and only if std(a) < std(b).

Lemma 5.2 then implies the following:
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V2

U3

FiGure 1
A small example graph I'

Lemma 5.5. Let a,b,c e M
o std(ab) > std(a)std(b) > std(a).
o If b <c then std(a)std(b) < std(a)std(c).
o If la| = |b| and a < b, then std(a)std(c) < std(b)std(c).

5.1. Lyndon words. We now describe the notion of Lyndon words. These were
first introduced by Chen, Fox, and Lyndon in [CFL]. In this paper, the authors
show that in the free group case, the groups Dy introduced in the last section are
equal to the terms of the lower central series of Fj,, and they give an algorithm
to determine a presentation of a consecutive quotient yx/yr+: of the lower
central series for any finitely presented group. This algorithm is quite complicated,
however we shall use the notion of Lyndon elements in M , introduced by Lalonde
in [Lall], to give a simple algorithm to describe yi/yx+: in an arbitrary right-
angled Artin group. Chen, Fox, and Lyndon also relate coeflicients of elements
in u(g) to Fox derivatives. Unfortunately these do not appear to have a natural
analogue in the partially commutative setting.

We say that w; and w, are comjugate in W(V) if there exist x,y € W(V)
such that w; = xy and w,; = yx. Alternatively, w; and w, are conjugate if
they are conjugates in the free group F, in the usual sense, where W(V) is
viewed as a subset of F,. The conjugacy class of w in W(V) is the set of all
elements conjugate to w in W(V). A word w is primitive if there does not exist
x,y € W(V)\ {@} such that w = xy = yx. Equivalently, each nontrivial cyclic
permutation of w is distinct from w.

Definition 5.6. w € W(V) is a Lyndon word if it is nontrivial, primitive and
minimal with respect to the lexicographic ordering in its conjugacy class.

Example 5.7. If V = {v;,v,.v3,v4} then v; is a Lyndon word for all i, and
vivav1v3 and vyvivy are Lyndon words. The word vyv; is not a Lyndon word
as it is not primitive, and vj;vsvyv, is not a Lyndon word as it is not minimal
in its conjugacy class (the word vjvavivs is).
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There is an assortment of equivalent definitions of Lyndon words.

Theorem 5.8 ([CFL], Theorem 1.4). Let w € W(V). The following are equivalent:
(1) w is a Lyndon word.
(2) For all x,y € W(V)~{D} such that w = xy, one has w < y.

(3) Either w = v; for some i or there exist Lyndon words x and y with x <y
such that w = xy.

The third of these characterisations is particularly appealing, as it allows one
to build up a list of Lyndon words recursively.

Example 5.9. If V = {vy,v2,v3}, then the Lyndon words of length less than or
equal to 3 are:

V1, V2, V3,
v1V2, V1V3, V2U3,

U1V1V2, V1V1V3, V1V2V3, UV2U203, UV1V2V02, V1U3V3, U2V3V3.

Note that the decomposition of a Lyndon word of length > 1 as a product of
two smaller Lyndon words assured to us by part (3) of Theorem 5.8 is not always
unique. In this example vyv,v3; may be decomposed as v;.vavs and vyvz.v3.

5.2. Lyndon elements. Lyndon elements are the natural generalisations of
Lyndon words to the partially commutative setting. Defining conjugation here is
more tricky. We first say that two elements m;,m, of M are transposed if there
exist x,y € M such that m; = xy and m, = yx. Unfortunately transposition is
not an equivalence relation; if I" is the graph shown in Figure 1, then

V2V1V3 <>¢rans. V1V3V2 = V1V2V3 <>¢rans. V3V1V2,

however v3vjv, cannot be obtained from wv,viv; by a single transposition. We
therefore say two elements of M are conjugate if one can be obtained from the
other by a sequence of transpositions. Equivalently, two elements are conjugate
in M if and only if they are conjugate in Ar in the group theoretic sense (when
M is viewed as a subset of Ar). The set of all elements in M conjugate to m
is its conjugacy class. We say that m is primitive if there do not exist nontrivial
x and y in M such that m = xy = yx.

Definition 5.10. m € M is a Lyndon element if it is nontrivial, primitive, and
minimal with respect to the ordering of M in its conjugacy class.
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Given g € Ar, we remind the reader that iniz(g) is the set of vertices that
can appear as the initial letter in reduced words representing g.

Proposition 5.11 ([KL], Corollary 3.2). If m is a Lyndon element, then init(m)
is a single vertex.

Given m € M, we say that v; € {(m) if either v; € supp(m) or there exists
vj € supp(m) such that [v;,v;] # 1. Equivalently v; € {(m) if and only if either
v;i € supp(m) or vym # mv;. In a similar fashion to Lyndon words, there is a
selection of equivalent definitions of Lyndon elements.

Theorem 5.12 ([KL], Propositions 3.5, 3.6, and 3.7). Let m € M. The following
are equivalent.

(1) m is a Lyndon element.
(2) For all x,y € M ~{1} such that m = xy, one has m < y.

(3) Either |m| = 1 or there exist Lyndon elements x,y such that x < y,
init(y) € {(x) and m = xy.
(4) std(m) is a Lyndon word.

Once again, the third part of the classification gives a simple recursive process
for writing down Lyndon elements.

Example 5.13. If T'" is the small example graph of Figure 1, then the Lyndon
elements of length < 3 are:

v1, VU2, V3
V1V2, V1VU3
V1U1V2, V1V103, V1V2V2, V1VU2V3, U1VU3V3

The words given here are a subset of the set of Lyndon words on {vi,v,,vs}.
So for example, the Lyndon word v,v3; does not represent a Lyndon element as
v3 & {(v2) = {v1,v2}. As with Lyndon words, the decomposition of a Lyndon
element of length > 1 as a product of two Lyndon elements is not necessarily
unique. In this example vjv,v3 has two possible decompositions as v;v,.v3 and
V1V3.V2.

5.3. The standard factorisation of a Lyndon element. We now give each
Lyndon element a unique °‘bracketing’. If m is a Lyndon element of length
greater than 1, there may exist many pairs of Lyndon elements x and y such that
m = xy. If y is minimal as we run through all such pairs of Lyndon elements in
M , we say that S(m) = (x, y) is the standard factorisation of m. The standard
factorisation behaves well with respect to standard representatives:
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Theorem 5.14 ([Lal2], Proposition 2.1.10). Let a € M be a Lyndon element. If
S(a) = (x,y) is the standard factorisation of a, then std(a) = std(x)std(y).

Note that if x,y are two Lyndon elements of M with x < y then std(x),
std(y) and std(x)std(y) are Lyndon words. As each Lyndon word is strictly
less than its nontrivial conjugates,

(8) std(x)std(y) < std(y)std(x).

We shall use this trick repeatedly in the work that follows. There is one final
combinatorial fact we need before we can move on:

Theorem 5.15 ([Lal2], Proposition 2.3.9). Suppose that a and b are Lyndon
elements with a < b and init(b) € {(a) (in particular, ab is a Lyndon element).
Then S(ab) = (a,b) if and only if |a| =1 or S(a) = (x,y) and y > b.

Example 5.16. We now have a recursive way of giving a bracketing to any
Lyndon element. Given m € M, take its standard factorisation S(m) = (a,b),
and define the bracketing on m to be equal to [[a],[p]], where [_] denotes
the bracketing on a and b respectively. In our small example graph, the only
interesting case is std(vjvav3) = v1v3v2 = std(vyv3)std(vz). We then obtain the
following bracketing on Lyndon elements of length 3:

[v1, V1, v2]], [v1, [v1, vs]], [[v1, va], v2], [[v1s vs], v2], [[v1, v3], vs].

5.4. A basis theorem for the algebra Ly. Let LE(M) be the set of Lyndon
elements of M. Let Z[LE(M)] be the free Z-module with basis LE(M).

Definition 5.17. Let L be a Lie algebra, and let X = {x1,x2,...,Xx4} be a

subset of L. Let ¢x : Z[LE(M)] — L be the Z-module homomorphism defined
recursively as follows:

¢x (Vi) = x; for all i
¢x (@) = [px (x), dx (y)] if la| > 1 and S(a) = (x, y).

Example 5.18. Let Lr be the Lie subalgebra of L£(U) generated by the set
V ={vy,...,vn}. We attain a Z-module homomorphism ¢y : Z[LE(M)] — Lr.
We write ¢y = £. The map £ can be thought of as the bracketing procedure for
Lyndon elements described above.

The following technical lemma gives us a way of understanding the bracket
operation in L(U).
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Lemma 5.19. Suppose that f = Y ,.,opb and g = ) ..;Bcc are two
homogeneous elements in U, so that |b| = |b'| for all b,b’ € I and |c| = ||
for all ¢ € J. Let x be the minimal element in I with o, nonzero and y be
the minimal element in J with B, nonzero. Suppose that x and y are Lyndon
elements, x <y and init(y) € {(x), so that xy is a Lyndon element. Then

o [f.g| is a homogeneous element of U™ of degree |xy|;
e xy is the minimal element of M with nonzero coefficient in ([, g];
o The coefficient of xy in [f.g] is axpBy.

Furthermore, if f and g are homogeneous with respect to multidegree, so that
o)l = ||| for all b,b" € I and |c| = ||¢'|| for all c,c" € J, then [f,g] is
homogeneous with respect to the multidegree |xy]||.

Proof. We have:

) [fg1=) "> apBelbe —cb),
bel ceJ
where we may assume that » > x and ¢ > y, and |bc| = |cb| = |xy|. If either

b > x or ¢ >y then by Lemma 5.5:

std(bc) = std(b)std(c)
> std(x)std(y)
= stdld).

By the identities in Lemma 5.5 and the identity (8) we also have:

std(ch) > std(c)std(b)
> std(y)std(x)
> std(x)std(y)
= §tdla).
Hence c¢b > xy for all b€ I,c € J and bc > xy with equality if and only if
b =x and ¢ =y, so the coefficient of a in the above sum is «,f,. The final
remark about homogeneity with respect to multidegree follows as if f and g

are homogeneous with respect to multidegree then ||bc|| = |cb| = ||xy| for all
bel and c € J. O

Proposition 5.20. For each a € LE(M), there exists a subset I C M and a set
of nonzero integers {ap}pe; indexed by I such that

la) =) apb.

bel
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Furthermore, a € I with oy = 1, and for all b € I we have ||b| = |a| and
h>a.

Proof. We proceed by induction on |a|. If |a| =1 then £(a) = a and we are
done. Suppose that |a| > 1. Let S(a) = (x,y) be the standard decomposition of
a. By our inductive hypothesis we may write

£(x) =) apb and £(y) = ) fec

bel ceJ
with b > x, ¢ > y and |b|| = ||x||, |lc|| = ||y|| for all b € I and ¢ € J.
Furthermore we may assume oy = f, = 1. As {(a) = [{(x),£(y)] the result
follows from Lemma 5.19. 0

A consequence of the above theorem is that the image of LE(M) under ¢
forms a linearly independent set.

Corollary 5.21. The map £ : Z[LE(M)] — Ly is injective.
We now go back to the more general situation.

Lemma 5.22. Let L be a Lie algebra, and suppose that X = {x1,...,X,} is a
subset of L that satisfies

[xi, xj] = 0 when [v;,v;] = 1.

Suppose that a is a Lyndon element of M, and v; € V such that [vi,a] =0 in
U. If ¢x is defined as in Definition 5.17, then

[¢x (@), ¢x (vi)] = 0.

Proof. We induct on the length of a. If a = vj for some ; then [v;,v;] = 1.
Therefore [¢x(a), ¢x (vi)] = [xj,x;] = 0. If |a| > 1 then S(a) = (x,y) for
some x,y € LE(M) such that [x,vj] = [y,vj] = 0. Therefore by induction
[px (Vi), dx (x)] = [dx (), ¢x (vi)] = 0, and by the Jacobi identity in L:

[¢x (@), dx (vi)] = [[¢x (x), dx (¥)]. dx (V)]
= —[[px (vi), dx (x)], ox (¥)] — [[Px (¥), Px (Vi)], ¢x (x)]
= _[O= ¢X(y)] - [Os ng(X)]
= 0. O
What follows is the main technical theorem of this section, which will allow

us to extend the Z-module homomorphism ¢y to something that behaves well
with respect to brackets also.
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Proposition 5.23. Let L be a Lie algebra, and suppose that X = {x1,...,Xn}
is a subset of L that satisfies

[xg,xj] =0 if[vi,vj] = I

Let ¢x be the homomorphism defined in Definition 5.17. Let a,b € LE(M) be
such that a < b. Then there exists a subset 1,, C LE(M) and a set of integers
{ac}cer,, indexed by 1,p such that

[px (@) px D) = > ecpx(c).

CEIa,b

Furthermore, each c € 1, satisfies the following:

(Bl) ¢ <b,
(B2) std(c) = std(a)std(b),
(B3) lcll = lladl,

and the sets 1,p and {oc}cer, , are independent of L and X.

Proof. The first step is to define an order < on the set of pairs (a,b) €
LE(M) x LE(M) satisfying a <b. We say (a,b) < (a’,b’) if

e |ab| < |a'b'|, or

e |ab| = |a’b’| and std(a)std(b) > std(a’)std(b’), or

e std(a)std(b) = std(a’)std(b’) and b < b’.
Note that the second criterion is possibly the reverse of what one might expect.
We shall prove Proposition 5.23 by using induction on the order given by <. We

drop the subscript of ¢y for the remainder of this proof. The base case is when
(a,b) = (vy—1,v,) and is trivial. The inductive step splits into two cases.

Case 1. init(b) € L(a).

If |a| = 1, then Theorem 5.15 tells us S(ab) = (a,b), and [¢p(a), p(b)] = ¢(ab)
by definition. Also, ab < b by part 2 of Theorem 5.12, and std(ab) >
std(a)std(b).

If |a] > 1, let S(a) = (x,y). This now splits into two subcases.

Subcase 1. y > b. By Theorem 5.15, we have S(ab) = (a,b), and we are in
exactly the same situation as case 1.

Subcase 2. y < b. We use the Jacobi identity in L:

[$(a), ()] = [[¢(x). p(¥)]. $(b)]
= —[[¢(®). ¢(x)]. (] — [l (). ¢(B)], $(x)]
= [[¢(x), @), d(¥)] + [¢(x), [P (), ¢(B)]]
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We look at the two parts of this sum separately.

The [[¢(x),¢(b)].¢(y)] part: Note that x <a < b, and |xb| < |ab|, so we have
(x,b) < (a,b). Therefore by induction there exists a decomposition:

B, 6] = . ach(c)

CEIx’b

with each ¢ satisfying (B1)-(B3) with respect to (x, ). Then for each ¢, if y <¢
then

std(y)std(c) = std(y)std(x)std(b) by (B2)
> std(x)std(y)std(b) by (8)
= std(a)std(b),

so that (y,c¢) < (a,b). If y = ¢ then [¢p(y),¢(c)] = 0. If ¢ < y then as
std(c) > std(x)std(b) and std(y) < std(b) we have:

std(c)std(y) = std(x)std(b)std(y)
> std(x)std(y)std(b)
= std(a)std(b),

so that (¢, y) < (a,b). In any case, by induction there exists a decomposition:

[6(0).0(M] = D Bad(d)

dele y

with each d satisfying (B1)—(B3) with respect to either (y,c) or (c,y). As the
¢ here satisfies (B1)—(B3) with respect to (x,b) one can check that each d also
satisfies (B1)—(B3) with respect to (a,b) and we have the required decomposition:

[p(). 6@ ¢MN] = D DY acBad(d).

CEIx,b de.[c-,y

The [qb(x), [¢(y),¢(b)]] part: Since y < b and |yb| < |ab| there exists a
decomposition [¢(y),d(b)] =D . I, %cC with each ¢ satisfying (B1)—(B3) with
respect to (y,b). Also for each ¢ we have

std(c) > std(y)std(b)
> std(y)
> std(x),

so that x < ¢ and
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std(x)std(c) = std(x)std(y)std(b)
= std(a)std(b).
Hence (x,c) < (a,b), and by induction we have the decomposition
[px). ¢ = D Bad(d)
dely ¢

with each d satisfying (Bl)-(B3) with respect to (x,c¢). As ¢ < b and
std(x)std(c) > std(a)std(b) each d also satisfies (BI1)-(B3) with respect to

(a,b). This gives our required decomposition
[6(x), [0, 6D = > > acBad(d)
cely pdelyc

Adding the above two parts gives the required decomposition of [¢(a), ¢ (b)], and
finishes the inductive step in this first case.

Case 2. init(b) € (a).
If || =1 then [¢(a),¢(b)] =0 by Lemma 5.22, and we are done. If |b| > 1,
then we write S(b) = (x,y). By the Jacobi identity in L:

[6(@).0(®B)] = [¢(a).[p(x).¢(M]]
= —[¢(x).[¢(@).d6M]] — [¢(¥). [¢(x). $(a)]]
= [[#(@), 6 ()], 9 (x)] = [[# (@), p(x)], ¢ (M)]-

Again we look at the two separate parts in this sum. First, [[¢(a), ()], d(x)].
As (a,y) < (a,b) by induction there exists a decomposition

[B@), ¢ = D acplc),
c€ly,y

with each ¢ satisfying (B1)—(B3) with respect to (a,y). We would like to show
that ¢ < x and (c,x) < (a,b). Note that the smallest letter (with respect to
the ordering v; < vy < --- < v,) of any Lyndon word must be its initial letter,
otherwise there would be a conjugate of that word that is smaller with respect
to the ordering of M. Let inf(g) denote the smallest letter in supp(g) for any
geM. As |c| = |lay|, we have:

init(c) =inf(c) =inf(ay) <inf(a) =init(a) <init(b) =init(x).
The strict inequality holds in the above as @ < b and init(a) # init(b) because
init(b) € ¢(a). Hence ¢ < x, and
std(c)std(x) > std(a)std(y)std(x)
> std(a)std(x)std(y)
= std(a)std(b)
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Therefore (c,x) < (a,b), and there is a decomposition

(). ¢(0)] = Y Bag(d),

del, x

with each d satisfying the required (B1)-(B3) with respect to (¢, x). Once again
it is not hard to check that 4 also satisfies (B1)-(B3) with respect to (a,b).
For [[¢(a),¢(x)],¢(y)] the same methods apply as before and we will spare the
reader any further details.

This completes the induction proof. The only part we have not covered is the
fact that the sets 7, and {oc}cer,, are independent of X and L, however
this is clear as we did not need use our choice of L or X at any point in the
proof. O

Proposition 5.23 implies that the image of ¢ in L is closed under the bracket
operation, so is a subalgebra of Lr. As Lr is the smallest subalgebra of L(U)
containing {vy,..., vn}, and this set is in the image of £, this means that £ is
surjective. We have shown in Corollary 5.21 that £ is also injective.

Corollary 5.24. The map € : Z[LE(M)] — Lr is bijective.

For our toils, we can now show that Lr satisfies the following universal
property:

Theorem 5.25. Let ' be a graph with vertices vy,...,v,. Let L be a Lie
algebra, and suppose that X = {x,...,xn} is a subset of L that satisfies:

[xi,xj] = Oif v; and v; are connected by an edge in T.
Then there is a unique algebra homomorphism x : Ly — L such that
Yx(vi) =x; for 1 <i <r.

Proof. As Lr is generated by V, if such a map exists then it is unique. Let
Vx = ¢x{~'. As Yy is a Z—-module morphism, we only need to check the bracket
operation on the basis £(LE(M)) of Lr. Let a,b € LE(M) and without loss
of generality suppose that a < b. By Proposition 5.23 there exists I C LE(M)
and a set of integers {&.}ces such that

[£(a). £B)] = D> act(c)

cel

and  [px(a),px(b)] = ) acx (c).

cel
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Therefore

vx (ILG@), L)) = yx () act(c))

cel

=Y acYxl(c)

cel

= Z acpx(c)

cel

= [¢x (@), gx (b)]
= [vx (t@). vx (@) |

6. An isomorphism between Lr and the LCS algebra of Ar

The algebra Lr inherits a grading from L(U) by letting Lr; = Lr N L(U); .
We note that
Lr; = ((a):a € LE(M), |a| = i).

Previously we defined C and D to be the linear filtrations of Ar given by the
lower central series, and the central series {D;} given in section 4 respectively.

Lemma 6.1. Let X = {v;y1(Ar):1 <i <n} C L¢. The algebra homomorphism
Vx : Lr — L¢ given by Theorem 5.25 respects the gradings of Lr and Lc.

Proof. We show that Yx (L) C Lc i by induction on k. As ¥x(vi) = viy1(Ar),
and Lr; is spanned by {vq,...,vn}, the case k = 1 holds. For the inductive
step, pick a € LE(M) such that |a| = k. Let S(a) = (b,c) be the standard
decomposition of a, with |b| =i, |c| = j, and i + j = k. Then by induction
Vx (£(b)) € L¢,; and v¥x(c) € Le,j, hence

¥x (@) = [vx (€®), vx (€©) | € Leiss = Leg =

By Proposition 4.11 we know that yx(Ar) C Dy for all k. Hence by Propo-
sition 2.7 the identity map Ar — Ar induces a graded algebra homomorphism
o:Le— Lp.

Lemma 6.2. The mapping gDy 1 > u(g)x induces a graded algebra homomor-
phism B : Lp — L(U).

Proof. The group Dyyq is the kernel of the homomorphism Dy — Uy given
by g — u(g)r. Therefore the induced map B : Lp — L(U) is well-defined.
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As wu(g)x € L(U)g, this map also respects gradings. The fact that B is a
homomorphism is implied by parts (1), (5) and (6) of Lemma 4.10. O

We now have a chain of graded algebra homomorphisms

Lr 2 fe S Lo B puy,

which allows us to prove our main theorem.

Theorem 6.3. Ly, L¢, and Lp are isomorphic as graded Lie algebras.
Furthermore, the central filtrations C and D are equal, so that yr(Ar) = Dy
for all k > 1.

Proof. We start by calculating the image of {vy,..., vy} under Bayy. We have

Bayx (vi) = Ba(viyi(Ar))
= B(vi D)
= u(vih
= Vj.

Therefore the image of Bayy is Lr, and as Bayy takes the generators to
themselves, it is the identity map on Lr. In particular, ¢y must be injective.
By Proposition 2.6, the algebra L is generated by the set X, hence ¥y is also
surjective, and is an isomorphism. We now know that L. and Ly are isomorphic
as graded Lie algebras. Then S maps L. isomorphically onto Ly, so the map
« is also injective. Looking at each graded piece, each homomorphism

(v
Vi (Ar)/Vi+1(Ar) — Di/Di41

is injective. We shall use this to show that y;(Ar) = D by induction on k,
and this will complete the proof of the main theorem. Note that D; = y;(Ar)
by definition. Suppose that yx(Ar) = Dy . Then «y is also surjective, so is an
isomorphism. If g € Dy = yx(Ar), then

g€ Dy = gDpy1=1 in Dy /Dy
< o' (gDr+1) =1 in y(Ar)/ve+1(Ar)
— gVk+1(Ar) =1 in yk(Ar)/vi+1(Ar)

< & € Yk+1(Ar).
Hence yx4+1(Ar) = Di41- [

We conclude with an important consequence of Theorem 6.3 and Proposi-
tion 4.11:
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Theorem 6.4. If k € N, then yi(Ar)/vk+1(Ar) is free-abelian, and Ar/yx(Ar)
is torsion-free nilpotent.

Example 6.5. Let I" be the small example graph given in Figure 1. We have
already worked out the bracketing of Lyndon elements of length 3 in Exam-
ple 5.16. The isomorphism given in Theorem 6.3 tells us that y3(Ar)/ya(Ar) is
freely generated by [v1, [v1, v2]]ya(Ar), [v1,[vi,va]]ya(Ar), [[v1.v2], v2]ya(Ar),
[[v1, va], v2]ya(Ar), and [[vy, v3], v3]ya(Ar).

Acknowledgements. The author would like to thank the referee for a careful
reading of the paper and helpful advice and Dawid Kielak for a series of helpful
comments.

References

[Ago] I. AcoL, The virtual Haken conjecture. Doc. Math. 18 (2013), 1045-1087. With
an appendix by Agol, Daniel Groves, and Jason Manning. Zbl 1286.57019
MR 3104553

[Bou] N. Boursaki, Lie groups and Lie algebras. Chapters 1-3. Elements of Mathematics
(Berlin). Springer-Verlag, Berlin, 1989. Zbl 0904.17001 MR 1728312

[CFL] K.-T. Cuen, R.H. Fox and R.C. Lynpon, Free differential calculus. IV. The
quotient groups of the lower central series. Ann. of Math. (2) 68 (1958),
81-95. Zbl 0142.22304 MR 0102539

[Dro] C. Drowms, Graph groups. PhD thesis, Syracuse University, 1983. MR 2633165

[DK1] G. Ducuamp and D. Kros, The lower central series of the free partially
commutative group. Semigroup Forum 45 (1992), 385-394. Zbl 0814.20025
MR 1179860

[DK2] G. Ducuamp and D. Kros, Free partially commutative structures. J. Algebra 156
(1993), 318-361. Zbl 0854.20065 MR 1216472

[Gre] E.R. Green. Graph products of groups. PhD thesis, The University of Leeds,
1990.

[KL] D. KroB and P. LaLonDE, Partially commutative Lyndon words. In STACS 93
(Wiirzburg, 1993), volume 665 of Lecture Notes in Comput. Sci., pages
237-246. Springer, Berlin, 1993. Zbl 0801.68144 MR 1249298

[Lall] P. LaLonDE, Bases de Lyndon des algebres de Lie libres partiellement commuta-
tives. Theoret. Comput. Sci., 117(1-2):217-226, 1993. Conference on Formal
Power Series and Algebraic Combinatorics (Bordeaux, 1991). Zbl 0789.68116
MR 1235180

[Lal2] P. Laronpe, Lyndon heaps: an analogue of Lyndon words in free partially
commutative monoids. Discrete Math. 145 (1995), 171-189. Zbl 0831.68079
MR 1356593



The lower central series of Ar 371

[LOS] P. Linnerr, B. Okun and Th. Schick, The strong Atiyah conjecture for right-
angled Artin and Coxeter groups. Geom. Dedicata, 158:261-266, 2012. Zbl
1275.20042 MR 2922714

[Lot] M. LotHAIRE, Combinatorics on words. Cambridge Univ Press, 1997. Zbl
0874.20040 MR 1475463

[MKS] W. Magnus, A. Karrass and D. Soritar, Combinatorial group theory. Dover
Publications Inc., New York, revised edition, 1976. Presentations of groups
in terms of generators and relations. Zbl 0362.20023 MR 0422434

[PS] S. Parabpima and A.l. Suciu, Algebraic invariants for right-angled Artin groups.
Math. Ann., 334(3):533-555, 2006. Zbl 1165.20032 MR 2207874

[Wad] R.D. Wade. Johnson homomorphisms and actions of higher-rank lattices on right-
angled Artin groups. J. Lond. Math. Soc. (2) 88 (2013), 860-882. Zbl
1291.20028 MR 3145135

(Recu le 4 juin 2014)

Richard D. WabE, Department of Mathematics, University of British Columbia,
Vancouver, BC, Canada. V6T 1722

e-mail: wade @math.ubc.ca

© Fondation I”ENSEIGNEMENT MATHEMATIQUE






	The lower central series of a right-angled Artin group

