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The lower central series of a right-angled Artin group

Richard D. Wade

Abstract. We give a description of Droms, Duchamp and Krob's extension of Magnus'

approach to the lower central series of the free group to right-angled Artin groups. We also

describe how Lalonde's extension of Lyndon words to the partially commutative setting

gives a simple algorithm to find a basis for consecutive quotients of the lower central series

of a RAAG.

Mathematics Subject Classification (2010). Primary: 20F36, 20F14; Secondary: 20F12,

20F40.
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1. Introduction

One can often translate problems concerning Lie groups to the world of Lie
algebras. When we linearise a problem our life is much easier: we understand

vector spaces and their endomorphisms very well, and we may use our knowledge
here to give us information about the underlying Lie group. This paper looks at

how such methods are also beneficial for studying discrete groups, at least in

respect to their lower central series.

Let G be any group. One may form a Lie Z-algebra by taking the direct

sum 5Z~t Yi(G)/y,+i(G), where y, (G) is the i th term in the lower central

series, and the bracket operation is given by taking commutators in G. If G is

a free group the picture is very nice indeed. The Lie algebra one attains is a free
Lie algebra, and the structure theory of free Lie algebras allows one to obtain
information about free groups and their automorphisms.

This Lie algebra correspondence is well-known. It is covered in detail in

Magnus' classic textbook on combinatorial group theory [MKS, Chapter 5], and

also appears in Bourbaki [Bou], The aim of this paper is to give a description
of the analogous theory for right-angled Artin groups, or RAAGs. These can
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be thought of as modified free groups, where some pairs of basis elements are

allowed to commute. Any graph r determines a right-angled Artin group Ar as

follows: suppose that E and V are the edge and vertex sets of T and let t and

r be the maps that send an edge to its initial and terminal vertices respectively.
The group Ar then has the presentation:

Ar (v e L|[t(e), z{e)\ : e e E).

In particular, there is a generator for each vertex of T and a commutator relation

corresponding to each edge. Graphs with no edges determine free groups, and

complete graphs determine free abelian groups. The RAAG moniker is popular in

geometric group theory but these groups also enjoy interesting combinatorial and

algorithmic properties (particularly in the context of cryptography) and appear

throughout the literature as (free) partially commutative groups, graph groups,
trace groups, and semifree groups.

After replacing the free Lie algebra above with a free partially commutative

Lie algebra, the description of the lower central series algebra and its resulting
applications also holds in this more general setting. These results are not new,
however we feel that a unified summary of key results of Droms, Duchamp, Krob,
and Lalonde [Dro, DK1, DK2, Lall, Lal2, KL] will make a useful reference. It
is worth noting that Papadima and Suciu also have a beautifully succinct, if less

hands-on, proof of this correspondence in their work [PS].
The algebraic approach in this paper has much wider implications than one

might initially guess. The author uses Duchamp and Krob's work in [Wad] to give

strong restrictions on how higher-rank lattices in semisimple Lie groups can act

on right-angled Artin groups. We will see below that this Lie theory viewpoint
allows us to prove that RAAGs are residually torsion-free nilpotent; this is used

by Linnell, Okun, and Schick in their proof of the strong Atiyah conjecture for
RAAGs [LOS], The work of Wise and Agol shows that the fundamental group
of every closed hyperbolic 3-manifold is virtually a subgroup of a RAAG [Ago],
Such groups are therefore virtually residually torsion-free nilpotent.

The paper is set out as follows: in Section 2 we review a classical construction
that builds a a Lie algebra Eg from any central filtration Q {G,}~j of a

group. This is a generalisation of the construction of the Lie algebra associated

to the lower central series mentioned before. It is functorial in the sense that if
you have two central filtrations Q \Gt} and H {Hl} of groups G and H
respectively, and <p ' G -» H is a homomorphism such that <p(G,) c H, for all

i, then there is an induced algebra homomorphism Lg —Ln.
In Section 3 we build up a host of free partially commutative objects

associated to a right-angled Artin group. Of central importance is the free partially
commutative monoid M, which may be viewed as the monoid of positive elements
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in Af. We define U to be the free Z-module on M. The module U inherits

a graded algebra structure, with the grading coming from word length in M.
One can extend U to an algebra U°° by allowing infinitely many coefficients

in a sequence of elements of M to be nonzero. The algebra U°° behaves very
much like an algebra of formal power series. For instance, if v\,...,vn are the

generators of Ap and vi,..., v„ are the associated elements of the monoid, then
1 + Vj is a unit in U°° with inverse

(1 + Vj)-1 1 - Vj + Vj2 - Vi3 H

If we define U* to be the group of units of U °°, the mapping i>,- i-> 1 + Vi gives

an embedding

fi : Ar -* U*.

called the Magnus map. We define a sequence of subsets V {Dk}^f=l of Ar
by saying that g e Dk if and only if ji(g) is of the form:

p(g) 1 + elements of U of degree > k.

Proposition 4.11. For all k, the set Dk is a subgroup of Ay and these subgroups

satisfy:

(1) V is a central filtration of Ar-
(2) Dk+\ 51 F>k and Dk/Dk+\ is a finitely generated free abelian group.

(3) yk(Ar) C Dk.

As p. is injective n^LjDk {1}, and this fact combined with properties (1)

and (2) imply that a right-angled Artin group is residually torsion-free nilpotent.
If C is the central filtration given by the lower central series, then property (3)

implies that we have a Lie algebra homomorphism Lc —* Lv. We finish our
study of the Magnus map by using it to give a new proof of the normal form
theorem for words in right-angled Artin groups.

The algebra U has an associated Lie algebra C(U) consisting of the elements

of U and bracket operation [a,b] ab —ba. In Section 5, we study the Lie
subalgebra Lp of C(U) generated by the set V {vi,..., v„}. For this, we use

Lalonde's description of the free partially commutative Lie algebra determined by
the graph T [Lall, Lal2]. One first defines a subset LE(M) c M known as the

set of Lyndon elements of M. These have a very rigid combinatorial structure.

In particular there is a way of assigning a bracketing to each Lyndon element;

given a subset X {x\,... ,xr) of a Lie algebra L, this bracketing induces a

Z-module homomorphism fx ' Z[L£(M)] -> L. When X V, the induced

map fv ' Ij[LE(M)\ -> Lp is an isomorphism. This gives a basis of Lp as a

free Z-module, and allows us to give a universal defining property of Lp:
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Theorem 5.25. Let L be a Lie algebra, and suppose that X {x\,... ,xr} is

a subset of L that satisfies

[xi, Xj ] — 0 if Vi and vj are connected by an edge in T.

Then there is a unique algebra homomorphism fix Lr ^ L such that

fixOi) Xi for 1 <i <r.

We use this in Section 6 to construct a chain of algebra homomorphisms

Lr —> Lc —» Lp —>• L p

and show that the composition of the three maps is the identity on Lr. In fact:

Theorem 6.3. Lp, Lc, and Lp are isomorphic as graded Lie algebras.

Furthermore, the central filtrations C and V are equal, so that y/c(Ap) £>/.

for all k > 1.

We are now able to use Lyndon elements and Lp to describe the lower central
series of dp in more detail. For instance, Proposition 4.11 now implies:

Theorem 6.4. If k e N, then y^fdrVy/t+i (dp) is free-abelian, and dp/y^(dp)
is torsion-free nilpotent.

We have attempted to make this work as self contained as possible. In

particular, we do not assume any results concerning free Lie algebras, which
allows the theory of free Lie algebras and the free partially commutative Lie
algebras studied here to be developed in parallel. This comes at the cost of
assuming certain facts about the combinatorics of words in RAAGs. We hope
that this trade-off is beneficial for the reader. A wonderful aspect of Magnus'
approach to the study of free groups is how nicely the overall structure of his work
translates to right-angled Artin groups. An avid reader is encouraged to compare
Section 4 of this paper with Section 5.5 of [MKS]. The statements contained in
this paper are adapted to deal with the more general setting of RAAGs, however

very little work needs to be done in ensuring the proofs then follow through as

well.

2. Lie algebras from central filtrations

Let G be a group. Let Q {Gfc}/t>i be a sequence of subgroups of G such

that for all k, I:
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(Fl) Gi G,

(F2) Gk+1 < Gk,

(F3) [Gk,Gi] C Gk+i.

We say that Q is a central filtration, or a central series of G. The above conditions

imply that Gk < G and Gk+\ < Gk for all k. The results in this section are

classical (see, for example, Chapter 2 of [Bou]) and we will state them without

proof.
One example of a central filtration is y(G) {yk(G))k>i, the lower central

series of G. This is defined recursively by yi(G) G and yk+\(G) [G, yk{G)\.
Where it is clear which group we are using, we shall simply write yk (or y)
rather than yk(G) (or y(G)). An easy induction argument shows that the lower

central series is contained in all central filtrations of G:

Proposition 2.1. Let Q {Gk} be a central filtration of G. Then yk C Gk for
all k.

Central filtrations tell us about residual properties of groups. We say that a

central filtration Q is separating if n^lxGk {1}.

Proposition 2.2. Suppose that Q is a central filtration of G that is separating.
Furthermore, suppose that each consecutive quotient Gk/Gk+\ is free-abelian.
Then:

(1) Gk is a normal subgroup of G.

(2) For all k the group G/Gk is torsion-free nilpotent.

(3) G is residually torsion-free nilpotent.

Each central filtration Q also gives rise to a Lie algebra Lq over Z. To

describe this, we first have to take a short detour to look at some commutator
identities. We use the convention that for x,y e G we have [x,y] xyx~1y~1,
and for conjugation we write yx yxy~l.

Lemma 2.3. Let x,y,z be elements of G. Then the following identities hold:

(1)

(2)

(3)

xy [x,y]-y

[xy,z] X[y,z].[x,z] [x,[y,z]].[y,z].[x,z],
[x,yz] [x,y].y[x,z] [x, y].[y, [x, z]].[x, z],

As well as the Witt-Hall identity:

[[x,y},yz\[\y,z],zx].[[z,x],xy] 1.
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The reader should be aware that the above equations are different to those

that occur in many group theory text books; the commutation and conjugation
conventions we use are set up for left, rather than right, actions. The Witt-Hall
identity implies the following '3 subgroup' theorem:

Theorem 2.4 (Hall, 1933). Let X, Y and Z be three normal subgroups of G.
Then

Now let Q {G,},>i be any central filtration of G. Let Lgyl Gl/Gl+1.
As [G,,G,] c G2i C Gj+i each Lgtl is an abelian group, and we can form
a Z-module Lg ®fLlLg^l. Any element in Lg is of the form J2ixiGi+1,
where each x, e G, and only finitely many xt are not equal to the identity.

The Witt-Hall identity can be seen as a group theoretic version of the Jacobi

identity in a Lie algebra. In fact, one can use the above set of commutator
relations to show the following:

Proposition 2.5. The bracket operation

gives Lg the structure of a graded Lie Z-algebra.

The identities (2) and (3) imply that if G has a generating set {xi,...,x„}
then any consecutive quotient yk(G)/yk+i(G) of terms in the lower central series

is generated by elements of the form [xM, [x,2, [•••\xik_i,xlk\ •••]]].yk+\{G). In

particular:

Proposition 2.6. If G is generated by {xi,...,x„} then Ly(g) A generated by
the set {xiyi(G),... ,x„yi(G)}.

We finish this section with a useful observation:

Proposition 2.7. Let Q {G,} and % {//,} be central filtrations of
groups G and H respectively. Let (p G —» H be a homomorphism such

that 4>(G,) C 4>(H,) for all i e N. Then <p induces a graded Lie algebra
homomorphism $ : Lg —> Lji, defined by:

[[X,Y],Z]c[[Y,Z],X].[[Z,X],Y]

4>(^x,G1 + i) ^2fi(x,)Hl+i.
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3. The cast

In this section we introduce a host of partially commutative structures
associated with a finite graph T. As in the introduction, we will assume that F
has its vertices labelled This is also our preferred generating set of
the right-angled Artin group Ar, so that [u(-,vj] 1 in dp if there is an edge
between the vertices u,- and vj in V.

3.1. The monoid M and algebra U. Let W(V) be the set of positive words

in {ui,..., u„}. The empty word is denoted by 0 or 1. We write |iu| to denote

the length of a word in W(V). We define ||iu||, the multidegree of a word

tu Vp\ vepkk to be the element of Nr with i th coordinate given by

T.'i-
pj=I

If iu,tu' e W(V), we write w <-> w' if there exist iui,tU2 e W(V) and vertices

Vi, Vj that are connected by an edge in T so that:

tU W\ViVjW2,

w' W\ Vj Vj XJÜ2'

We then define an equivalence relation on W(V) by saying that tu ~ tu' if there

exist tui,..., tun e W(V) such that

tu tui -o- 1U2 •*> • • -o- tu„ tu'.

Let M W(V)f Let w be the equivalence class of tu under the equivalence
relation ~ If tui ~ tu, and w2 ~ w'2 then wiw2 ~ w\w'2, therefore

multiplication of words in W(V) descends to a multiplication operation on M,
with an identity element given by the equivalence class of the empty word.

Similarly, if w ~ tu' then |iu| |tu'| and ||tu|| ||iu'||, so we may define the

length and multidegree of an element m e M to be the respective length and

multidegree of a word in W(V) representing m. Length and multidegree are

additive with respect to multiplication, so that if m\,m2 e M we have:

|mi.m2| \mx\ + \m2\

\\mi.m2\\ || wiill + ||wi2||

This gives the free Z -module on M a graded algebra structure in the following
way:

Proposition 3.1. Let U be the free 7j -module with a basis given by elements of
M. Let Ui be the submodule of U spanned by the elements of M of length i.
Then U ®flnUj and multiplication in M gives U the structure of a graded
associative Z -algebra.
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We will distinguish elements of U from Ar by writing positive words in

{vi,..., v„} rather than {tq,..., v„}.

3.2. U°°, an ideal X, and the group of units U*. Let U°° be the algebra

extending U by allowing infinitely many coefficients of a sequence of positive
elements to be non-zero. Any element of U°° can be written uniquely as a

power series a >
where a, is an element of U,. We say that at is the

homogeneous part of a of degree i, and üq is the constant term of a. Each

a, is a linear sum of elements of M, {m e M : \m\ /}, so is of the form

ai HmeM, ^mm, where \m e Z. If a Yl%oai and ft YT=obi then the

homogeneous part of a.ft of degree i is

i

c' J2aJb'-j-
J=0

If a^0\a^\a^2\... is a sequence of elements of U°°, then the sum
does not always make sense. However, if the set

S; (j : a ft 0}

is finite for all i we define a<j) to be the element of U°° with homogeneous

part of degree i equal to

jeS,

Let X be the ideal of U °° generated by vi, Alternatively, X is the set

of elements of U°° with a trivial constant term. In a similar fashion, Xk is the

ideal of U°° containing all elements a e U°° such that a,- 0 for all i < k.
Let U* be the group of units of U°°. One can show (cf. Proposition 4.2)

that a U* if and only if a ±1 + x for some x e X. Note that this is much

larger than the group of units of U: there is an embedding of dp into U* called
the Magnus morphism, or Magnus map (Proposition 4.4).

4. The Magnus map

To make U°° easier to work with, we would like to treat it as a (noncom-
mutative) polynomial algebra. Specifically, we would like to have an idea of
'substitution' of elements of U°° 'into other elements of U°°\ For instance,

given a positive word w vPl vPk in W(V) and Qi,..., Qn in U°° we may
define w(Qi,..., Qn) QPl ••• QPk e U°°. Suppose that Q\,...,Q„ satisfy

(4) QiQj QjQi for all i,j such that u, and vj span an edge in T.
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If w and w' are words such that w w' then

w(Qi,...,Q„) w'(Qi,...,Qn).

It follows that if w and w' represent the same element of M, the above equality
also holds. Therefore we may define m(Q\,..., Qn) w(Q 1,. • •, Qn), where w

is any word in the equivalence class m. This definition respects multiplication in

M, so that for e M we have:

(5) Qn)m2(Qi,..., Qn) m\m2(Q\,..., Q„).

We can't quite substitute variables in any element of U°° with this level of
generality; for example it is not possible to set x 1 in

1 -)- x T" x
'^

-T x 2
"T •

However, as long as Qi,...,Qn have a trivial constant part (in other words they
all lie in the ideal X) this problem does not occur.

Proposition 4.1. Let Qi, Qn be elements of X which satisfy condition (4).
Then the mapping

Vi Qi

may be extended to an algebra morphism f : U°° —» U°°.

Proof. Let a a" ai JlmeM, ^mm We define:

fiPi) ^ ' Xmm(Qi
meM,

If \m\ i then as Q} e X for all j, it follows that m(Q\,..., Qn) lies in
X1. Therefore the smallest nonzero homogeneous part of 4>{ai) is of degree at

least i. Hence the sum f(a) f(ai) is weH defined. It is clear from
the definition that <p is well-behaved under addition and scalar multiplication.
Equation (5) tells us that f also behaves well under multiplication, and is an

algebra homomorphism.

Such substitutions make our life much easier while working in U°° \ this is

exemplified by the following three propositions:

Proposition 4.2. If a is of the form a 1 + ai' tben a e U* and

OO

a
1

1 — (fli + 02 ~l~ ' ' ' ~t~ (a\ "b #2 + — )2 — 1 + ^ '
Ci.

i=i
Here c i —a\ and c, ~ ~ X]j i ajci-j recursively.
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Proof. One first checks that if a 1+Vj then the element a~x 1-Vj + Vj2

satisfies a.a~x a~l.a — 1. We then attain the general formula for an element

of the form a 1 + x with x e X by applying the algebra homomorphism given
by Proposition 4.1 under the mapping Vj i-> x for all i. The recursive formula is

obtained by equating homogeneous parts in the equation a~x.a a.a~x 1.

Proposition 4.3. Let x,y e X. Then the following formulas hold:

OO

(6) (1 + x)(l + y)(l + x)-x 1 +y + (xy-yx) £(-l)V,
1=0

oo

(7) (l+xXi+yXi+jcr^l+y)"1 l + (xy-yx) £ xl yJ.
i,j=o

Proof As in the proof of Proposition 4.2, we first note that these identities hold
for x Vi and y Vj for any i and j. For the general case, we wish to apply

Proposition 4.1. If xy yx then we may pick any pair i, j and study the algebra

homomorphism induced by the mappings Vi i-> x, Vj i-> y, and Vk ^ 0 when

k ± i, j. If xy yx then M is not commutative so T is not complete: in this

case pick vertices u; and u, that do not span an edge in T, and use the same

map as above.

Proposition 4.4. The mapping vt i-> 1 + Vj induces a homomorphism p. : Ar -»
U*.

Proof The mapping v, i-> 1 + v, induces a homomorphism JI: F(V) U* from
the free group on the set V. If [vt, r7] 1 in Ar then vjVj — VjVi 0 in U°°,
therefore by Equation (7), relations in the standard presentation of Ar are sent

to the identity in U*, and ~ß descends to a homomorphism p : Ay —* U*.

The homomorphism p is called the Magnus map, and is the central object of
study in this section. Its first extension to RAAGs was established by Droms [Dro],
who used it to show that RAAGs are residually torsion-free nilpotent, and we

essentially follow his approach here. Our first task is to gain some understanding
of the image of a generic element of Ay under p.

Definition 4.5. We say that an element m e M is square-free if for all words

w e W{V) representing m there exists no element v e F(T) such that vv occurs

as a subword of w.

We will now relate square-free elements of M to reduced words representing
elements of Ar. (Note that our words representing elements of Ar are in

W{V U V~x) rather than just W(V)).
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Definition 4.6. Let g e Ap and suppose that w vp\ • • • vpkk is a word

representing g with e, e Z. We say that w is fully reduced if et f 0 for
all i and for all j > i such that vPl vPj there exists i < I < j such that vPi

and vPl do not span an edge in T.

We define three moves on the set of words of the form w vp\ vePk '

(Ml) Remove vif e, 0.

(M2) Replace the subword vep'vep\~^_\ with vPi+e,+> if p, p,+\.
(M3) Replace the subword vp'vPl*J with if vPi and vPl+l

span an edge in r.

Given any word w representing g we may find a fully reduced representative
of g by applying a sequence of moves of the form (Ml), (M2), and (M3).
Moves of type (M3) are called swaps. If w — vp\ vep\--- vePk is fully reduced then

VpiVP2 • • • vPk is square-free. The following key lemma shows that we can find this

square-free form in the k th homogeneous part of pig). We will use ß(g)i to
denote the / th homogeneous part of ß(g).

Lemma 4.7. Let g be a nontrivial element of Ar There exists k e N such that
k is the largest integer such that there is a square-free element m e with

nonzero coefficient Xm in the decomposition of p,(g)k This element is unique.
Furthermore, if vp j vef2 •vefl is a fully reduced representative of g then I k,
Vpi •• • Vpi m, and e\ et Xm.

Proof. By an induction argument on <?, we have

MK;) 1+^Vp. +v*iq

for some iq e U*. Therefore if vp\ vp\ • • • vpkk is a fully reduced representative of
g, we have:

ß(g) ß(vp\)ß(vep22) ß(vpkk)

(l +eivp, +*p,Mi)(l +e2vP2 +vp2"2)-'-(l +^vPk +Vpkuk)-

In this expansion we see that any positive element occurring with length greater
than k must contain v^. as a subword for some i, and the only element of length
k without such a subword is m vPl •••vPk, with coefficient Xm e\ e/c. As

)i(g) is independent of the choice of fully reduced representative of g, every
fully reduced representative v{\ Vq\ must satisfy I k, with vqi • • vqi m

and fx ft Xm.
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We have shown that for every nontrivial g e Ar there exists k > 0 such that

p(g)k is nontrivial.

Corollary 4.8. The homomorphism pt : Ar -> U* is injective.

We may now use p, to study the lower central series of Ar.

Definition 4.9. Let g & Ar. We define the derivation S(g) of g to be equal to

p(g)k-, where k is the smallest integer > 1 such that p(g)k f 0. If no such k
exists, then g 1 and we define 8(g) 0.

The derivation 8 : Ar ->• U satisfies the following properties:

Lemma 4.10. Let g, h e Ar and suppose that 5(g) p(g)k and 8(h) p(h)i.

(1) For all integers N, 8(gN) Np(g)k.

(2) If k < I then 8(gh) 8(hg) p(g)k.

(3) If k I and ß(g)k + ß(h)i 7^ 0 then

S(gh) 8(hg) p(g)k + p(h)i.

(4) If k I and p(g)k + p(h)i 0 then either

gh 1 or 8(gh) e Xk+l.

(5) If p(g)kp(h)i — p(h)ip,(g)k 0 then

S([g,h]) p(g)kp,(h)i - p(h)ip(g)k.

(6) If p(g)kp(h)i — p(h)ip,(g)k 0 then either

[g,h\ 0or 8([g,h])eXk+l+1.

Proof Parts (2) (3) and (4) follow from standard properties of multiplication
in U°°. Part (1) follows from part (3), an induction argument on N > 0, and

induction on N < 0. Parts (5) and (6) follow from Equation (7) in Proposition
4.3.

Let Dk {g e Ar : ß(g)i 0 if 0 < / < k}. Alternatively, Dk is the set of
elements g e Ar such that either g 1 or 5(g) e Xk.

Proposition 4.11. For all k, the set Dk is a subgroup of Ar and these subgroups

satisfy:
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(1) V {Dt is a central filtration of Ar.

(2) Dk/Dk+1 is a finitely generated free abelian group.

(3) yk{Av) c Dk.

Proof Parts (2)-(4) of Lemma 4.10 imply that Dk is a subgroup of Ar. By
definition, D\ Ar and Dk+i < Dk for all k. Also, if g e Dk and h e Dj,
then [g,h\ e Dk+i by parts (5) and (6) of Lemma 4.10. Therefore V {£),}
satisfies the requirements (Fl), (F2) and (F3) given in Section 2 and is a central

filtration of Ar- For part (2), we define the map f : Dk -»• Uk by defining
<P(g) ß(g)k- Equivalently:

<P(g)
ifS^) P'(8)k

(o otherwise, when 5(g) e Xk+l.

Parts (2)-(4) of Lemma 4.10 imply that <p is a homomorphism to Uk, with kernel

Dk+1. Therefore the quotient group Dk/Dk+\ is isomorphic to a subgroup of
Uk. As Uk is a finitely generated free abelian group, so is Dk/Dk+l. Part (3)
is satisfied for all central filtrations of Ar by Proposition 2.1.

As V is a central filtration of Ar, we have y,(Ar) C D, for all i, and as the

Magnus map is injective, n~j £>, {1}. Hence we may apply Proposition 2.2

to the central filtration V to obtain:

Theorem 4.12. The intersection y,(Ar) {1} and Ar is residually torsion-

free nilpotent.

We finish this section with a proof of a normal form theorem for elements

of Ar - This is well-known; Green's thesis [Gre] contains a combinatorial proof
involving case-by-case analysis. Green's work also extends more generally to graph

products of groups. We give a proof for RAAGs using the Magnus map. The first

step is an immediate consequence of Lemma 4.7:

Proposition 4.13. Let g e Ar. Let w vep\ vepkk and w' v{\ Vq\ be two

fully reduced representatives of g. Then k — I.

In fact, we can prove something much more detailed:

Theorem 4.14. Let g e Ar. Let w vep\ •••vePk and w' v(\ Vqk be two

fully reduced representatives of g. Then we may obtain w from w' by a sequence
of swaps (moves of the form vep\i)Pl+\ vPl^\vep\ when [vPl,vPl+1] 1).
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Proof. We proceed by induction on k. We first look at the element vpf g e At.
Note that vp\ • • • vepkk and vff Vq\ Vqk are two representatives of vPle' g, and

the former representative is fully reduced. By Proposition 4.13 the latter cannot
be fully reduced, so there exists I such that qt p1 and [vPl,vqi] 1 for i < /.
If fi e i, then

yfl V^~ei • • •
91 1l Ik

is a fully reduced representative of vff g, however this also contradicts Proposition

4.13. Therefore e\ //, and after applying a sequence of swaps to w'

we may assume that vPl vqi and e\ f\. By induction, vp\--- vePk may be

obtained from • • v{k by a sequence of swaps, therefore w may be obtained

from w' by a sequence of swaps.

Given g e Ay, let init(g) (respectively term{g)) be the set of vertices of T
that can occur as the initial (respectively terminal) letter of a fully reduced word

representing g. We say that g is positive if g — 1 or g can be written as a

product vf • vekk with e, > 0 for all i. As any two fully reduced representatives

may be obtained from each other by a sequence of swaps, we have the following
immediate corollaries:

Corollary 4.15. For any g e ,4p ^ {1}, the sets init(g) and term(g) form
cliques in T : any pair of vertices in init(g) or term(g) commute.

Corollary 4.16. The monoid M is isomorphic to the set of positive elements of
At under multiplication.

5. Lyndon elements of M

Let C(U) be the Lie algebra we obtain by endowing U with the bracket

operation [a,b] — ah — ha. We will now study the Lie subalgebra of C(U)
generated by the set {vi,.. .,v„}. We call this subalgebra Lp. The approach is

as follows: we first introduce a subset of M called the set of Lyndon elements,

LE(M). We describe a method for supplying each Lyndon element with a

bracketing. If L is a Lie algebra and X {jci, x„} c L then this bracketing
induces a homomorphism (as Z-modules) fx ' Z[L£(M)] —>- L. In the case

that X {vj, ...,v„} c Lp we call this induced homomorphism I, and show

that I is bijective. Thus we obtain a basis of Lp in terms of bracketed Lyndon
elements. In general, if the elements of X satisfy

[xi,Xj] 0 if [vi.vj] 1
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then we will show that <px£~l ' Ly —> L is an algebra homomorphism taking Vj

to xi. This property will then be used in the next section to show that Ly and

the lower central series algebra of Ay are isomorphic.
We deviate here from the approach in Magnus, and instead follow the paper

of Lalonde [Lall], The analogous free group version is contained in Chapter 5 of
[Lot], and we must start in this world. We first define a lexicographic order on
the set of positive words W(V):

Definition 5.1. The lexicographic ordering on W(V) is the unique total order <
on W(V) that satisfies the following:

(1) For any nonempty word w, we have 0 < w.

(2) If wi and w2 are distinct nonempty words and x,y e W(V) such that

w\ ViX and w2 vjy, then w\ < w2 if either

(a) i < j or:

(b) i j and x < y.

In particular, 0 < v\ < v2 < < vn. We state two basic properties of this
order:

Lemma 5.2. Let x,y,z e W{V).

• if y < z then xy < xz

• tf \x\ — \y\ and x < y then xz < yz

The above lemma remains valid if we replace all occurrences of strong
inequalities with weak inequalities. The natural projection n : W(V) ->• M, when

coupled with the ordering of W{V), gives us a way of choosing a representative
in W(V) for each element of M:

Definition 5.3. Let m e M. Then we define std(m) e W{V), the standard

representative of m to be the largest element of 7r_1{m} with respect to the

lexicographic order.

Example 5.4. Let T be the small example graph given in Figure 1. If m e M is
the element represented by the word V\V2V3 then then 7r_1(m) {viv2v2, vivsv2}
and std(m) v\v2v2.

We then define a total order on M as follows: if a,b e M we say

a < b if and only if std(a) < std(b).

Lemma 5.2 then implies the following:
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Figure 1

A small example graph T

Lemma 5.5. Let a,b,c e M

• std(ab) > std(a)std(b) > std(a).

• If b < c then std(a)stdfb) < std(a)std(c).

• If l«l > |6| and a < b, then std(a)std(c) < std(b)std(c).

5.1. Lyndon words. We now describe the notion of Lyndon words. These were
first introduced by Chen, Fox, and Lyndon in [CFL], In this paper, the authors

show that in the free group case, the groups Dg introduced in the last section are

equal to the terms of the lower central series of F„, and they give an algorithm
to determine a presentation of a consecutive quotient YklYk+\ of the lower
central series for any finitely presented group. This algorithm is quite complicated,
however we shall use the notion of Lyndon elements in M, introduced by Lalonde

in [Lall], to give a simple algorithm to describe Yk/Yk+i in an arbitrary right-
angled Artin group. Chen, Fox, and Lyndon also relate coefficients of elements

in ß(g) to Fox derivatives. Unfortunately these do not appear to have a natural

analogue in the partially commutative setting.
We say that w\ and w2 are conjugate in IV(V) if there exist x,y e W(V)

such that w\ — xy and w2 yx. Alternatively, vj\ and w2 are conjugate if
they are conjugates in the free group Fn in the usual sense, where W(V) is

viewed as a subset of F„. The conjugacy class of w in W(V) is the set of all
elements conjugate to w in W(V). A word w is primitive if there does not exist

x,y e W(V) \ {0} such that w xy yx. Equivalently, each nontrivial cyclic
permutation of w is distinct from w.

Definition 5.6. w e W(V) is a Lyndon word if it is nontrivial, primitive and

minimal with respect to the lexicographic ordering in its conjugacy class.

Example 5.7. If V {vi,v2, v3, u4} then u, is a Lyndon word for all i, and

W1U2U1U3 and viv\v2 are Lyndon words. The word V\V\ is not a Lyndon word

as it is not primitive, and i'iv2v\v2 is not a Lyndon word as it is not minimal
in its conjugacy class (the word V[ V2V\V2 is).
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There is an assortment of equivalent definitions of Lyndon words.

Theorem 5.8 ([CFL], Theorem 1.4). Let w e W(V). The following are equivalent:

(1) w is a Lyndon word.

(2) For all x,y e W(V) ^ {0} such that w xy, one has w < y.

(3) Either w Vj for some i or there exist Lyndon words x and y with x < y
such that w xy.

The third of these characterisations is particularly appealing, as it allows one

to build up a list of Lyndon words recursively.

Example 5.9. If V — {iq, V2, v3\, then the Lyndon words of length less than or
equal to 3 are:

Ui, V2, v3,

VlV2, V1V3, V2V3,

V\V\V2, U1U1U3, ViV2V3, V2V2V3, ViV2V2, V1V3V3, V2V3V3.

Note that the decomposition of a Lyndon word of length > 1 as a product of
two smaller Lyndon words assured to us by part (3) of Theorem 5.8 is not always

unique. In this example v\v2 v3 may be decomposed as vi.v2v3 and v\v2.v3.

5.2. Lyndon elements. Lyndon elements are the natural generalisations of
Lyndon words to the partially commutative setting. Defining conjugation here is

more tricky. We first say that two elements m\,m2 of M are transposed if there

exist x,y e M such that mi xy and m2 yx. Unfortunately transposition is

not an equivalence relation; if T is the graph shown in Figure 1, then

V2ViV3 trans. V3V3V2 ViV2V3 <+trans. V3V\V2,

however v3viv2 cannot be obtained from v2v\v3 by a single transposition. We

therefore say two elements of M are conjugate if one can be obtained from the

other by a sequence of transpositions. Equivalently, two elements are conjugate
in M if and only if they are conjugate in Ar in the group theoretic sense (when
M is viewed as a subset of Ap )• The set of all elements in M conjugate to m

is its conjugacy class. We say that m is primitive if there do not exist nontrivial

x and y in M such that m xy — yx.

Definition 5.10. m e M is a Lyndon element if it is nontrivial, primitive, and

minimal with respect to the ordering of M in its conjugacy class.
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Given ge/lp, we remind the reader that init(g) is the set of vertices that

can appear as the initial letter in reduced words representing g.

Proposition 5.11 ([KL], Corollary 3.2). If m is a Lyndon element, then init(m)
is a single vertex.

Given m e M, we say that v, e £(m) if either vt e supp(m) or there exists

Vj supp(m) such that [v,,«/] yt 1. Equivalently v, e £(m) if and only if either

Vt supp(m) or vxm f mv,. In a similar fashion to Lyndon words, there is a

selection of equivalent definitions of Lyndon elements.

Theorem 5.12 ([KL], Propositions 3.5, 3.6, and 3.7). Let m e M. The following
are equivalent.

(1) m is a Lyndon element.

(2) For all x,y e M \ {1} such that m xy, one has m < y.
(3) Either \m\ 1 or there exist Lyndon elements x,y such that x < y,

init(y) e £(x) and m xy.
(4) std{m) is a Lyndon word.

Once again, the third part of the classification gives a simple recursive process
for writing down Lyndon elements.

Example 5.13. If T is the small example graph of Ligure 1, then the Lyndon
elements of length < 3 are:

ifi, v2, v3

VlV2, V!V3

VlVlV2, U1U1U3, ViV2V2, ViV2V3, ViV3V3

The words given here are a subset of the set of Lyndon words on {ui,U2,U3}.
So for example, the Lyndon word U2U3 does not represent a Lyndon element as

v3 $ ^(v2) {ui, v2}. As with Lyndon words, the decomposition of a Lyndon
element of length > 1 as a product of two Lyndon elements is not necessarily

unique. In this example v\v2v3 has two possible decompositions as viv2.v3 and

ViV3.V2.

5.3. The standard factorisation of a Lyndon element. We now give each

Lyndon element a unique 'bracketing'. If m is a Lyndon element of length

greater than 1, there may exist many pairs of Lyndon elements x and y such that

m xy. If y is minimal as we run through all such pairs of Lyndon elements in

M, we say that S(m) (x, y) is the standard factorisation of m. The standard

factorisation behaves well with respect to standard representatives:
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Theorem 5.14 ([Lal2], Proposition 2.1.10). Let a e M be a Lyndon element. If
S(a) (x,y) is the standard factorisation of a, then std(a) std(x)std(y).

Note that if x,y are two Lyndon elements of M with x < y then std(x),
std(y) and std(x)std(y) are Lyndon words. As each Lyndon word is strictly
less than its nontrivial conjugates,

(8) std(x)std(y) < std(y)std(x).

We shall use this trick repeatedly in the work that follows. There is one final
combinatorial fact we need before we can move on:

Theorem 5.15 ([Lal2], Proposition 2.3.9). Suppose that a and b are Lyndon
elements with a < b and initfb) e £(a) (in particular, ab is a Lyndon element).
Then S(ab) (a,b) if and only if \a\ 1 or S(a) (x,y) and y >b.

Example 5.16. We now have a recursive way of giving a bracketing to any

Lyndon element. Given m e M, take its standard factorisation S(m) (a,b),
and define the bracketing on m to be equal to [[a], [ft]], where [_] denotes

the bracketing on a and b respectively. In our small example graph, the only
interesting case is std(v\v2v2) viv3v2 std(v\v2)std(v2). We then obtain the

following bracketing on Lyndon elements of length 3:

[ui,[Ui,U2]], [vi,[Vi,U3]], [[Ul,V2].V2]. [[Ul,U3], V2], [[Ui, U3], U3].

5.4. A basis theorem for the algebra Lr. Let LE(M) be the set of Lyndon
elements of M. Let 7L\LE(M)\ be the free Z-module with basis LE(M).

Definition 5.17. Let L be a Lie algebra, and let X {x\, x2,..., xn) be a

subset of L. Let fx ' Z[LE(M)\ ->• L be the Z-module homomorphism defined

recursively as follows:

4>x(x\) Xi for all i

fx (a) [fx(x),fx(y)\ if \a\ > 1 and S(a) (x,y).

Example 5.18. Let Lp be the Lie subalgebra of C(U) generated by the set

V {vi,..., v„}. We attain a Z-module homomorphism fy : Z[L£'(M)] —> Ly.
We write fy I. The map I can be thought of as the bracketing procedure for
Lyndon elements described above.

The following technical lemma gives us a way of understanding the bracket

operation in C(U).
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Lemma 5.19. Suppose that f J2bei at>b an<^ 8 Ylcej ßcc are two

homogeneous elements in U°°, so that \h\ — \b'\ for all b,b' e I and \c\ \c'\

for all c e J. Let x be the minimal element in I with ax nonzero and y be

the minimal element in J with ßy nonzero. Suppose that x and y are Lyndon
elements, x < y and init(y) e t,(x), so that xy is a Lyndon element. Then

• [/>.?] is a homogeneous element of U°° of degree \xy\;

• xy is the minimal element of M with nonzero coefficient in [f g] ;

• The coefficient of xy in [fg] is axßy.

Furthermore, if f and g are homogeneous with respect to multidegree, so that

ll^ll ll^'ll for aH b,b' I and ||c|| ||c'|| for all c,c' e J, then [f,g] is

homogeneous with respect to the multidegree Hxy ||.

Proof. We have:

abßc(bc -cb),
beiceJ

where we may assume that b > x and c > y, and \bc\ \cb\ \xy \. If either
b > x or c > y then by Lemma 5.5:

stdfbc) > std(b)std(c)

> std(x)std(y)
std(a).

By the identities in Lemma 5.5 and the identity (8) we also have:

std{cb) > std(c)std(b)
> std(y)std(x)
> std(x)std(y)

std(a).

Hence cb > xy for all b e I,c e J and be > xy with equality if and only if
b x and c y, so the coefficient of a in the above sum is axßy. The final
remark about homogeneity with respect to multidegree follows as if / and g
are homogeneous with respect to multidegree then ||6c|| ||c6|| ||xy|| for all

bei and c e J.

Proposition 5.20. For each a e LE(M), there exists a subset I c M and a set

of nonzero integers {ab}bei indexed by I such that

1(a) — J2abb.
bei
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Furthermore, a e I with aa 1, and for all b e I we have ||/;| ||a|| and
b > a.

Proof We proceed by induction on \a\. If \a\ — 1 then 1(a) — a and we are

done. Suppose that \a\ > 1. Let S(a) — (x, y) be the standard decomposition of
a. By our inductive hypothesis we may write

£(x) ^2,cibb and £(y) y^ßcc
b&I cgJ

with b > x, c > y and ||b|| ||x||, ||c|| ||y|| for all bei and c e J.
Furthermore we may assume ax — ßy 1. As 1(a) [i(x),t(y)\ the result

follows from Lemma 5.19.

A consequence of the above theorem is that the image of LE(M) under I
forms a linearly independent set.

Corollary 5.21. The map I : Z\LE(M)] —> Lr is injective.

We now go back to the more general situation.

Lemma 5.22. Let L be a Lie algebra, and suppose that X {x\,... ,xn} is a
subset of L that satisfies

[xi,Xj] 0 when 1.

Suppose that a is a Lyndon element of M, and Vi e V such that [Vj,a] 0 in
U. If fix is defined as in Definition 5.17, then

[fix(a), fix 0] 0.

Proof. We induct on the length of a. If a — Vj for some j then [ry,Vj} 1.

Therefore [fix(a),fix(vl)] [x,,x,] 0. If \a\ > 1 then S(a) (x,y) for
some x,y e LE(M) such that [x,Vj] [y,Vj] 0. Therefore by induction

[fix(\i),fix(x)\ — [fix(y), fix(Vi)] 0, and by the Jacobi identity in L:

[fix (a), fix (y\)] [[fix(x),fix(y)],fix(y0]

~[[<Px(yi),fix(x)],fix(y)\ - [[fix(y),fix(y\)\,fix(x)\
-[0,fix(y)} - [o,fix(x)}
0.

What follows is the main technical theorem of this section, which will allow

us to extend the Z-module homomorphism fix to something that behaves well
with respect to brackets also.
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Proposition 5.23. Let L be a Lie algebra, and suppose that X {x\,... ,xn)
is a subset of L that satisfies

[xi,Xj] 0 if [vi,vj] 1.

Let fx be the homomorphism defined in Definition 5.17. Let a,b e LE(M) be

such that a < b. Then there exists a subset Ia^ C LE{M) and a set of integers
{oec }ceia h

indexed by Ia b such that

[fx(a),fx(b)\ ac<t>x(c).

c^Ia,b

Furthermore, each c e Ia,b satisfies the following:

(Bl) c <b,
(B2) std(c) > std(a)std(b),

(B3) ||c|| \\ab\\,

and the sets Ia,b and {ac}ceiab are independent of L and X.

Proof The first step is to define an order -< on the set of pairs (a,b) e

LE(M) x LE(M) satisfying a < b. We say (a,b) -< (a',b') if
• \ab\ < \a'b'\, or

• \ab\ \a'b'\ and std(a)std(b) > std(a')std(b'), or

• std(a)std(b) std(a')std(b') and b < b'.

Note that the second criterion is possibly the reverse of what one might expect.
We shall prove Proposition 5.23 by using induction on the order given by -<. We

drop the subscript of fx for the remainder of this proof. The base case is when

(a,b) (v„-i,vn) and is trivial. The inductive step splits into two cases.

Case 1. initfb) e £(a).
If \a\ 1, then Theorem 5.15 tells us S(ab) (a,b), and [f(a),f(b)\ f(ab)

by definition. Also, ab < b by part 2 of Theorem 5.12, and std(ab) >

std(a)std(b).
If |a| > 1, let S(a) (x,y). This now splits into two subcases.

Subcase 1. y > b. By Theorem 5.15, we have S(ab) (a,b), and we are in

exactly the same situation as case 1.

Subcase 2. y <b. We use the Jacobi identity in L:

[f(a),f(b)\ [[f(x),f(y)],f(b)\
~[[<P(b),f(x)],f(y)\ - [[f(y),f(b)\,f(x)]
[[<P(x),f(b)],f(y)] + [f(x),[f(y),f(b)]\
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We look at the two parts of this sum separately.

The \\<p(x),<p(b)\,<p(y)] part: Note that x < a < b, and \xb\ < \ab\, so we have

(.x,b) < (a,b). Therefore by induction there exists a decomposition:

[<p(x),<p(b)\ Y ac4>(c)

c^x,b

with each c satisfying (B1)-(B3) with respect to (x,b). Then for each c, if y < c

then

std(y)std(c) > std(y)std(x)std(b) by (B2)

> std(x)std(y)std(b) by (8)

std(a)std(b),

so that (y,c) -< (a,b). If y c then [<p{y),(p{c)\ 0. If c < y then as

std(c) > std(x)std(b) and std(y) < std{b) we have:

std(c)std(y) > std(x)std(b)std(y)
> std{x)std{y)std{b)

std(a)std(b),

so that (c,y) -< (a,b). In any case, by induction there exists a decomposition:

[Hc),<P(y)]= Y Mid)
d&Ic,y

with each d satisfying (B1)-(B3) with respect to either (y,c) or (c,y). As the

c here satisfies (B1)-(B3) with respect to (x,b) one can check that each d also

satisfies (B1)-(B3) with respect to (a,b) and we have the required decomposition:

[[<p(x),<p(b)],<p(y)] £ £ acßd4>(d).

c^x,b d-Ic,y

The [<p(x),[<p(y),<p(b)\\ part: Since y < b and \yb\ < \ab\ there exists a

decomposition [<p(y), 4>(b)\ J2csiy bacc whh each c satisfying (B1)-(B3) with

respect to (y,b). Also for each c we have

std(c) > std{y)std{b)
> std(y)

> std(x),

so that x < c and
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std(x)std(c) > std(x)std(y)std(b)

std(a)std(b).

Hence (x,c) -< (a,b), and by induction we have the decomposition

[0(x),0(c)] J2 ßd4>{d)

dlx,c
with each d satisfying (B1)-(B3) with respect to (x, c). As c < b and

std(x)std(c) > std(a)std(b) each d also satisfies (B1)-(B3) with respect to

(ia,b). This gives our required decomposition

[<p(x), [0(y),0(fi)]] E E Ucßd<P(d)

dlx,c
Adding the above two parts gives the required decomposition of [0(a), <p(b)], and

finishes the inductive step in this first case.

Case 2. init{b) ^ £ (a).
If \b\ 1 then [0(a), 0(/?)[ 0 by Lemma 5.22, and we are done. If \b\ > 1,

then we write S(b) (x, y). By the Jacobi identity in L:

[0(a), 4>(b)] [0(a),[0(x),0(y)]]
-[00*0. [0(a). 0(f)]] - [0(f). [0W.0(fl)l]
[[0(a). 0(f)]. 000] - [[0(a), 0(*)], 000].

Again we look at the two separate parts in this sum. First, [[0(a), 0(y)], 0(x)].
As (a, j0 (a,b) by induction there exists a decomposition

[0(a), 000] ^ ac0(c),
Ctla,y

with each c satisfying (B1)-(B3) with respect to (a, y). We would like to show

that c < x and (c,x) -< (a,b). Note that the smallest letter (with respect to
the ordering tq < v2 < • • • < vn) of any Lyndon word must be its initial letter,
otherwise there would be a conjugate of that word that is smaller with respect
to the ordering of M. Let inf(g) denote the smallest letter in supp(g) for any

g e M. As || c || ||ay||, we have:

init{c) inf(c) inf(ay) < inf(a) init(a) < init(b) init(x).
The strict inequality holds in the above as a < b and init(a) ^ init(b) because

init(b) ^£(a). Hence c < x, and

std{c)std{x) > std{a)std{y)std(x)

> std{a)std(x)std{y)

std(a)std(b)
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Therefore (c.x) ~< (a,b), and there is a decomposition

[<p(c),<p(x)]= ßd<P(d),
d zlc.x

with each d satisfying the required (B1)-(B3) with respect to (c.x). Once again

it is not hard to check that d also satisfies (B1)-(B3) with respect to (a,b).
For [[<p(a), 4>(x)\, <p(y)] the same methods apply as before and we will spare the

reader any further details.

This completes the induction proof. The only part we have not covered is the

fact that the sets Ia^ and {ac}ceia h are independent of X and L, however

this is clear as we did not need use our choice of L or X at any point in the

proof.

Proposition 5.23 implies that the image of I in Lp is closed under the bracket

operation, so is a subalgebra of Lp • As Lp is the smallest subalgebra of C(U)
containing {vi,...,v„}, and this set is in the image of I, this means that I is

surjective. We have shown in Corollary 5.21 that I is also injective.

Corollary 5.24. The map I : Z[LE(M)\ -> Lp is bijective.

For our toils, we can now show that Lp satisfies the following universal

property:

Theorem 5.25. Let V be a graph with vertices V\,... ,vn. Let L be a Lie
algebra, and suppose that X {x\,... ,xn) is a subset of L that satisfies:

[xi.Xj] 0if Vi and vj are connected by an edge in T.

Then there is a unique algebra homomorphism fix ' Ar —> L such that

fixfi/i) xi for 1 <i <r.

Proof. As Lp is generated by V, if such a map exists then it is unique. Let

fix — 4>xt~l As fix is a Z-module morphism, we only need to check the bracket

operation on the basis l(LE(M)) of Lp. Let a,b e LE(M) and without loss

of generality suppose that a < b. By Proposition 5.23 there exists I c LE(M)
and a set of integers {ac}ce/ such that

\l(a),e(b)\ J2<Xct(c)
Cl

and [4>x(a),<px(b)\ ^2otcfix(c).
eel
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Therefore

fx{[l{a),l(b)]) i/r*(^acf(c))
Cl

^2,acfxt-(c)
Cl

Cl
[<Px(a),<px(b)]

\tx(L(a)),tx(lQ)))

6. An isomorphism between Lr and the LCS algebra of Ar

The algebra Lr inherits a grading from C(U) by letting Lp,; Lp fl £([/),-.
We note that

Lr>, (t{a) : a e LE(M), \a\ i).

Previously we defined C and V to be the linear filtrations of Ar given by the

lower central series, and the central series {D,} given in section 4 respectively.

Lemma 6.1. Let X {u;yi(Ar) : 1 < i <«}cLc. The algebra homomorphism
ifrx : Lr —* Lc given by Theorem 5.25 respects the gradings of Lr and Lc.

Proof. We show that fx(Lr,k) C Lc,k by induction on k. As fx(vi) n,yi(Ar),
and Lp.i is spanned by {vi,...,v„}, the case k 1 holds. For the inductive

step, pick a e LE(M) such that \a\ k. Let S(a) (b,c) be the standard

decomposition of a, with \b\ /, |c| j, and i + j k. Then by induction

tx(l{b)) e Lc,i and fx(c) e Lc,j hence

tyx{t(a)) fx(t(b)),ilfx(Z(c))] e Lc,,+j Lc,k-

By Proposition 4.11 we know that yyt(Ap) C Dk for all k. Hence by Proposition

2.7 the identity map Ar -> Ar induces a graded algebra homomorphism
a : Lq —r Lp.

Lemma 6.2. The mapping gDk+i m* P'(g)k induces a graded algebra homomorphism

ß : Lp -» C(U).

Proof The group Dk+\ is the kernel of the homomorphism Dk 14 given
by g i-i(g)k Therefore the induced map ß : Lp C(U) is well-defined.
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As fi(g)k e C(U)k, this map also respects gradings. The fact that ß is a

which allows us to prove our main theorem.

Theorem 6.3. L p, Lc, and Lp are isomorphic as graded Lie algebras.
Furthermore, the central filtrations C and V are equal, so that yk(Ar) L>k

for all k > 1.

Proof. We start by calculating the image of {vi, under ßafx We have

ßafx (Vi) ßa(viYi(Ar))
ß(viDi)
ß(vi) 1

Therefore the image of ßafx is Ly, and as ßafx takes the generators to

themselves, it is the identity map on Lp. In particular, fx must be injective.
By Proposition 2.6, the algebra Lc is generated by the set X, hence fx is also

surjective, and is an isomorphism. We now know that Lc and Lp are isomorphic
as graded Lie algebras. Then ßa maps Lc isomorphically onto Lp, so the map
a is also injective. Looking at each graded piece, each homomorphism

is injective. We shall use this to show that yk{Ay) — Dk by induction on k,
and this will complete the proof of the main theorem. Note that D\ y\(Ay)
by definition. Suppose that Yk(Ay) Dk - Then Uk is also surjective, so is an

isomorphism. If g e Dk Yk(Ay), then

homomorphism is implied by parts (1), (5) and (6) of Lemma 4.10.

We now have a chain of graded algebra homomorphisms

Lc^Lpt C(U),

air
Yk{Ay)/Yk+\(Ay) —> Dk/Dk+i

g e Afc+i <=> gDk+i — 1

<XkHgDk+i) 1

gYk+l(Ay) 1

g e Yk+l{Ay).

in Dk/Dk+i
in Yk(Ay)/yk+i{Ay)
in yk{Ay)/yk+i{Ay)

Hence yfc+1(Ar) Dk+i.

We conclude with an important consequence of Theorem 6.3 and Proposition

4.11:
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Theorem 6.4. If k e N, then Yk{Af) /Yk+\{Av) is free-abelian, and /Ip/y^Mr)
is torsion-free nilpotent.

Example 6.5. Let T be the small example graph given in Figure 1. We have

already worked out the bracketing of Lyndon elements of length 3 in Example

5.16. The isomorphism given in Theorem 6.3 tells us that y304r)/y4(Ar) is

freely generated by [ui, [vu u2]]y4(Ar), [ui, [^i, u3]]y4(-4r), [["1,^2], ik>]y4C<4r),

[[ft, u3], u2]y4(^r), and [[vu u3], v3]y4(/lr).
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