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Ergodicity and indistinguishability in percolation theory

Sébastien MARTINEAU

Abstract. This paper explores the link between the ergodicity of the cluster equivalence
relation restricted to its infinite locus and the indistinguishability of infinite clusters. It is
an important element of the dictionary connecting orbit equivalence and percolation theory.
This note starts with a short exposition of some standard material of these theories. Then, the
classical correspondence between ergodicity and indistinguishability is presented. Finally,
we introduce a notion of strong indistinguishability that corresponds to strong ergodicity,
and obtain that this strong indistinguishability holds in the Bernoulli case. We also define an
invariant percolation that is not insertion-tolerant, satisfies the Indistinguishability Property
and does not satisfy the Strong Indistinguishability Property.

Mathematics Subject Classification (2010). Primary: 82B43; Secondary: 37A20.

Keywords. Percolation, orbit equivalence relation, Cayley graphs, ergodicity, strong ergod-
icity, indistinguishability.

Introduction

Orbit equivalence is a branch of ergodic theory that focuses on the dynamical
properties of equivalence relations. Its fruitful interactions with other mathematical
fields are numerous: operator algebra theory [MN, Pop], foliation theory [Con,
Lev], descriptive set theory [JKL, KM] ... Among the many concepts of the field,
a fundamental one is the notion of ergodicity: an equivalence relation defined on
a probability space is said to be ergodic if every saturated set has measure 0 or
1. It is striking to see how a definition that is usually given in the group action
context can easily be stated in the seemingly static framework of equivalence
relations.

The other fundamental notion considered in this article, indistinguishability,
belongs to percolation theory, a branch of statistical physics. Percolation is
concerned with the study of random subgraphs of a given graph. These subgraphs
are generally far from connected, and one is naturally interested in their infinite



286 S. MARTINEAU

connected components — or infinite clusters. A difficult theorem due to Lyons
and Schramm [LS] states that, under some hypotheses, if several infinite clusters
are produced, they all “look alike”. This is the Indistinguishability Theorem (see
Theorem 15).

Its equivalence to some form of ergodicity should not be surprising: in both
cases, when one asks a nice question, all the objects — in one case the points
of the space lying under the relation, in the other one the infinite clusters —
give the same answer. This connection is well-understood (see [Gab2, GL] and
Proposition 3.2.4). In the orbit equivalence world, a hard theorem due to Chifan
and Joana (see [CI] and Theorem 11) allows one to get from this ergodicity a
stronger form of ergodicity.

In this paper, we define a notion of strong indistinguishability and prove
its equivalence to strong ergodicity: this is Theorem 16. In particular, Bernoulli
percolation satisfies the Strong Indistinguishability Property (see Corollary 3.4.4).
We also define an invariant percolation that is not insertion-tolerant, satisfies the
Indistinguishability Property and does not satisfy the Strong Indistinguishability
Property (see Section 3.5). Indistinguishability results are usually hard to prove
for non insertion-tolerant percolations: for instance, such a result is expected to
hold for the Wired Uniform Spanning Forest but remains conjectural.!

This paper is self-contained, so that the orbit equivalence part can be read
without prerequisite by a percolation theorist and vice versa. The first section
presents what will be needed of orbit equivalence theory. The second one deals
with percolation theory. The third and last section recalls the classical correspon-
dence between ergodicity and indistinguishability and explores the correspondence
between strong ergodicity and the notion of strong indistinguishability defined in
this article.

Terminology. If R is an equivalence relation defined on a set X, the R-class
of x is
[x]r :={y € X : xRy}.

A subset A of X is said to be R-saturated, or R-invariant, if

Vx € A, [x]r C A.

The R -saturation of a subset A of X is the smallest R-saturated subset of X
that contains A. Concretely, it is | J,cq [*]r-

! Posterior to the present article, this conjecture has been confirmed: see [HN] for a proof and
precise statements.
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1. Orbit equivalence theory

This section presents standard definitions and theorems from orbit equivalence
theory. For details relative to Section 1.1, one can refer to [Kec]. For subsections 1.2
to 1.7, possible references are [Gab3] and [KM].

1.1. Generalities on the standard Borel space. A measurable space X is called
a standard Borel space if it can be endowed with a Polish topology inducing
its o -algebra. For instance, {0, 1} endowed with the product o -algebra is a
standard Borel space. A measurable subset of a standard Borel space is called a
Borel subset.

The following general results on standard Borel spaces will be used without
explicit mention.

Theorem 1. Any Borel subset of a standard Borel space is itself a standard Borel
space.

Let X and Y be two measurable spaces. A bijection f : X — Y is a Borel
isomorphism if f and f~! are measurable. If X = Y, we speak of Borel
automorphism.

Theorem 2. Let X and Y be standard Borel spaces. If f : X — Y is a
measurable bijection, then f~' is automatically measurable, hence a Borel
isomorphism.

Theorem 3. Every non-countable standard Borel space is isomorphic to [0, 1].
In particular, the continuum hypothesis holds for standard Borel spaces.

1.2. Countable Borel equivalence relations. Let ' be a countable group and
I' ~n X be a Borel action of it on a standard Borel space. By Borel action, we
mean that every y € I' induces a Borel automorphism of X. Such an action
induces a partition of X into orbits. Let us consider R (or Rr. x ) the relation
“being in the same orbit” and call it the orbit equivalence relation of T’ ~, X . It
is a subset of X2. Since T' is countable, the following assertions hold:

e R is countable, i.e. every R-class is (finite or) countable,
e R is Borel, as a subset of X2.

The following theorem provides the converse:

Theorem 4 (Feldman-Moore, [FM]). Every countable Borel equivalence relation
on a standard Borel space is induced by a Borel action of some countable group.
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In other words, every countable Borel equivalence relation on a standard Borel
space is an orbit equivalence relation. This is why the theory of “countable Borel
equivalence relations” is called “orbit equivalence theory”.

1.3. Measure invariance. When dealing with a Borel action of I' on a
probability space, it makes sense to speak of invariance of the probability
measure. The purpose of this subsection is to define this notion for countable
Borel equivalence relations. To begin with, one needs to know how the standard
Borel space behaves when it is endowed with a probability measure.

Definition. A standard probability space is a standard Borel space endowed with
a probability measure.

Theorem 5. Every atomless standard probability space (X, ) is isomorphic to
[0, 1] endowed with its Borel o -algebra and the Lebesgue measure, i.e., there is
a measure-preserving Borel isomorphism between (X, ) and ([0, 1],dx).

Throughout this paper, standard probability spaces will implicitly be assumed
to be atomless.

Having a nice measured space to work on is not enough to provide a notion of
invariance of the measure: to do so, one needs relevant transformations, presented
below.

Definition. If R is a countable Borel equivalence relation, [R] denotes the group
of the Borel automorphisms of X whose graph is included in R. A partial Borel
automorphism of X is a Borel isomorphism between two Borel subsets of X .
One denotes by [[R]] the set of partial Borel automorphisms whose graph is
included in R.

Remark. In the literature, X is often equipped with a “nice” probability measure,?
and one often uses [R] and [[R]] to denote the objects defined above quotiented
out by almost everywhere agreement. In this paper, we will stick to the definition
we gave, which can be found in [KM].

As exemplified by the theorem below, these Borel automorphisms allow us
to mimic intrinsically the “group action” definitions in the “orbit equivalence”
setting.

Theorem 6. Let R be a countable Borel equivalence relation on a standard
probability space (X, ). The following assertions are equivalent:

2Here, “nice” means “R-invariant”, which will be defined using [R] (as defined above).
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e there exist I' a countable group and T ~ X a measure-preserving Borel
action of it such that R = Rrx,

e every Borel action of a countable group that induces R preserves i,

e every element of [R] preserves L.

When any of these equivalent properties is satisfied, we say that the measure [
is preserved by R, or that it is R-invariant.

Henceforth, (X, u) will always be an atomless standard probability space and
the equivalence relations we will consider on it will always be measure-preserving
countable Borel equivalence relations.

Remark. There is no uniqueness theorem (analogous to Theorem 3 or Theorem 5)
for the object (X,u,R). This is why orbit equivalence theory is not empty.
Another fact to keep in mind is that the space X /R essentially never bears a
natural standard Borel structure, even though R is Borel.

1.4. Amenability and hyperfiniteness. Amenability of a group can be defined
in many equivalent ways. For our purpose, the following characterization will be
enough.

Theorem 7. A countable group T is amenable if and only if there exists a Reiter
sequence, i.e. f, € £'(T") such that:

e Vn, f, =0 and || ful1 =1,
o Vy el fu—vy- fulh — 0.

In the theorem above, T' acts on £1(T") via y - f() := f(y~'n). Taking
the inverse of y guarantees that this defines a left action. Besides, the action it
induces on indicator functions corresponds to the natural action I ~, Subsets(I"),
i.e. we have y - 14 =1,.4.

With this theorem in mind, the following definition of amenability for
equivalence relations is natural.

Definition. Let R be a countable Borel equivalence relation on (X, ). One

says that R is w-amenable if and only if there is a sequence of Borel functions
fn: R — R™T such that:

o VxeX, Y epp fa(x,¥) =1,

e there is a full-measure R-invariant Borel subset A C X such that

V() €(AxAHNR, Y |falx,2) = faly2)| =2 0.

z€[x]Rr
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Comment. In the definition above (and in others), one can indifferently require
A to be R-invariant or not. Indeed, it can be deduced from Theorem 4 that the
R -saturation of a p-negligible set is still y-negligible. (Recall that all considered
equivalence relations are tacitly assumed to preserve the measure.)

Proposition 1.4.1 shows that this definition is a nice extension of the classical
notion of amenability (for countable groups) to equivalence relations.

Notation. Let ' », X be a Borel action of a countable group on a standard
Borel space. If X is endowed with an atomless probability measure p that is
I"-invariant, we will write ' ~, (X, n).

Proposition 1.4.1. Let T" ~, (X, ) be a measure-preserving action of a countable
group. If T is amenable, then Rr~x is p-amenable. Besides, if I' n X is free,
then the converse holds.

It is easy to see that finite equivalence relations (i.e. whose classes are finite)

are amenable: one just needs to set f,(x,y) = m]lye[x] » - The proof naturally

extends to hyperfinite equivalence relations, defined below.

Definition. An equivalence relation R on a standard Borel space X is said to
be hyperfinite if it is a countable increasing union of finite Borel equivalence
subrelations. (No measure appears in this definition.) If p is an R-invariant
probability measure on X, the relation R is hyperfinite j-almost everywhere if
there is a full-measure Borel subset A C X such that RN (A x A) is hyperfinite.

Example. The group I's, := @, cn Z/2Z is the increasing union of the subgroups
Iy := @,<ny Z/2Z. Hence, any Rr,~x is hyperfinite. Besides, T is
amenable: set f, = %. Hence, any Rr_ ~(x,.) iS @-amenable.

Theorem 8 (Connes-Feldman-Weiss, [CFW]). Let R be a Borel countable
equivalence relation on (X,p). The relation R is p-amenable if and only if
it is hyperfinite | -almost everywhere.

1.5. Ergodicity.

Definition. Let I" ~, (X,u) be a measure-preserving action. It is said to be
ergodic if, for every I -invariant Borel subset B of X, either u(B) = 0 or
pn(B) =1.

Definition. An equivalence relation R on a standard probability space (X, u) is
said to be ergodic (or w-ergodic) if, for every R-invariant Borel subset B of
X, either w(B) =0 or u(B) =1.
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Remark. Let I ~, (X, ) be a measure-preserving group action. Let B be a
subset of X . Notice that it is the same for B to be I'-invariant or Rrn x -invariant.
This means that the following assertions are equivalent:

e Vyel,y-B=B,
e Vxe€ B,Vy € X, xRrrnxy = y € B.

In particular, I' ~, X is ergodic if and only if Rr. x is ergodic.

The Bernoulli example. Let I be an infinite countable group and (X, v) denote
either ([0, 1],Leb) or ({0, 1},Ber(p)) = ({0,1}, (1 — p)éo + pd1). Let A denote
either I' or the edge-set of a Cayley graph of I'. (The notion of Cayley graph
is introduced in Section 2.1.) Let S be the equivalence relation induced by the
shift action of T on (E4,v®4) defined by

Y (0a)aca = (0y-1.4)ac4.

This equivalence relation preserves v®4 and is ergodic.

The following theorem states that the amenable world shrinks to a point from
the orbital point of view.

Theorem 9 (Dye, [Dye]). Every countable Borel equivalence relation that
is ergodic and hyperfinite -almost everywhere is isomorphic to the orbit
equivalence relation of the Bernoulli shift (Z ~ ({O,I}Z,Ber(l/2)®z)). This
means that if R is such a relation on a standard probability space (X, 1),
there are

e a full-measure R -invariant Borel subset A of X,

e a full-measure 7,-invariant Borel subset B of {0,1}%,

e a measure-preserving Borel isomorphism f : A — B

such that ¥x,y € A, xRy <= f(X)Rz 0,132 ().

1.6. Strong ergodicity. The notion of strong ergodicity, presented in this sub-
section, is due to Schmidt [Sch].

Definition. Let I' ~, (X, ) be a measure-preserving action. A sequence (Bj)
of Borel subsets of X is said to be asymptotically T -invariant (with respect to
p) if

Vyel, p((y-Bn)ABy) — 0.
The action I'" ~ (X, ) is said to be strongly ergodic if, for every asymptotically
I"-invariant sequence of Borel sets (Bj),

#(Bn)(1 — pu(Bn)) — 0.
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Remark. It is clear that strong ergodicity implies ergodicity: if B is invariant,
set B, := B for all n and apply strong ergodicity. What may be less clear is
that the converse does not hold. In fact, the unique ergodic amenable relation
is not strongly ergodic. To prove this, consider the action of €, .y Z/2Z on
(ITpez Z/2Z, (3 (80 + 61))®%) defined by y - x := y + x. This action is ergodic
according to Kolmogorov’s zero-one law, but it is not strongly ergodic — take
By 1= {x € [lez Z/2Z : xp = 0}.

The following two results epitomise the difference between ergodicity and
strong ergodicity.

Proposition 1.6.1. A countable group is finite if and only if it admits no ergodic
measure-preserving action on a standard probability space.

Theorem 10 (Schmidt, [Sch]). A countable group is amenable if and only if it
admits no strongly ergodic measure-preserving action on a standard probability
space.

Making use of [R], one defines strong ergodicity for equivalence relations.

Definition. Let R be an equivalence relation on a standard probability space
(X,un). A sequence (B,) of Borel subsets of X is said to be asymptotically
R -invariant (with respect to 1) if

V¢ € [R], u(¢(Bn)ABy) — 0.

The equivalence relation R is said to be strongly ergodic if, for every asymptot-
ically R-invariant sequence of Borel sets (B,),

w(Bn)(1 — u(By)) njc;o 0.

Remark. One can check that if ' ~, (X, ©) is a measure-preserving action, then
(Bn) is asymptotically I'-invariant if and only if it is asymptotically Rr. x -
invariant. In particular, I' ~ (X, ) is strongly ergodic if and only if Rr~x is
strongly ergodic.

The following theorem will be crucial in Section 3 because it allows us, under
certain conditions, to deduce strong ergodicity from ergodicity. In its statement,
S stands for the relation introduced in the Bernoulli example of Section 1.5 and
(X, p) for its underlying standard probability space.

Theorem 11 (Chifan-loana, [CI]). Let B be a non--negligible Borel subset of
X . Any ergodic equivalence subrelation of (S| B ﬁ) that is not gy -amenable
is strongly ergodic.
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Comment. In fact, [CI] proves a lot more. But since we do not need the full
result of Chifan and loana — whose statement is more technical —, we will stick
to the stated version.

1.7. Graphings. A graphing of a relation R on X is a countable family (¢;) of
partial Borel automorphisms of X that generates R as an equivalence relation:
this means that the smallest equivalence relation on X that contains the graphs
of the ¢;’s is R. In particular, the Borel partial automorphisms that appear in
a graphing belong to [[R]]. The notion of graphing generalises to relations the
notion of generating system.

Notice that the data of a graphing endows each R-class with a structure of
connected graph: put an edge from x to x’ if there is an i such that x belongs
to the domain of ¢; and x’ = ¢;(x). One can do this with multiplicity.

Example. Let I" be a finitely generated group and S a finite generating system
of I'. Let I' n» X be a Borel action on a standard Borel space. For s € S, let ¢
denote the Borel automorphism implementing the action of s~!. Then, (¢s)ses
is a graphing of Rr.x. Let us take a closer look at the graph structure.

Let G = (V,E) = (I', E) denote the Cayley graph of I' relative to S (see
Section 2.1 for the definition). In this example, we will use the concrete definition
of Cayley graphs and take the vertex-set to be I'. If the action is free, then,
for every x, the mapping y — y~!-x is a graph isomorphism between G and
the graphed orbit of x. The only point to check is that the graph structure is
preserved: for all (y,n,x) e I'xI'x X,

(yyn)eE<+=3dseS,n=ys
= IseS, g =5ty

= IseS,nt-x=s5sTy 1 x

&= (' -x,y” ' -x) is an edge.

The point in putting all these inverses is that, in this way, we work only with
Cayley graphs on which the group acts from the left.

To describe how a graph behaves at infinity, a useful notion is that of end.

Definition. Let G = (V, E) be a countable graph. An end of G is a map &
that maps each finite subset K of V' to an infinite connected component of its
complement, and that satisfies the following compatibility condition:

VK. K', KC K' = &(K') C §(K).
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Remark. Every end is realized by some infinite injective path: for every &, there
is an infinite injective path ¢ : N — V' such that, for every finite subset K of
V', the path ¢ eventually lies in &(K). This results from a diagonal extraction
argument.

We now have all the vocabulary needed to state the following theorem, the
graph-theoretic flavour of which will allow us to travel between the world of orbit
equivalence and that of percolation.

Theorem 12. Let R be a countable Borel equivalence relation on X that preserves
the atomless probability measure ..

o If it admits a graphing such that, for -almost every x, the class of x has
two ends (seen as a graph), then R is hyperfinite [ -almost everywhere.

o If it admits a graphing such that, for |-almost every x, the class of x has
infinitely many ends, then R is not “hyperfinite |L-almost everywhere”.

This theorem is corollaire IV.24 in [Gabl]. It is a statement among several of
the kind (see [Ada, Ghy]).

2. Percolation

Percolation is a topic coming originally from statistical mechanics (see [Gri]).
After a foundational paper by Benjamini and Schramm [BS], strong connections
with group theory have developed. This section presents the objects and theorems
that will be needed in Section 3. For more information about this material, one
can refer to [Gab2], [Lyo] and [LP].

2.1. General definitions. From here on, I' will be assumed to be finitely
generated.

Let S be a finite generating set of I". Define a graph by taking I" as vertex-set
and putting, for each y e I' and s € S, an edge from y to ys. This defines a
locally finite connected graph G = (V, E) that is called the Cayley graph of T
relative to S. The action of I' on itself by multiplication from the left induces a
(left) action on G by graph automorphisms. It is free and transitive as an action
on the vertex-set. In fact, a locally finite connected graph G is a Cayley graph
of I' if and only if I" admits an action on G that is free and transitive on the
vertex-set.

We have defined G explicitly to prove that I' admits Cayley graphs, but
further reasonings shall be clearer if one forgets that V = I" and just remembers
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that G is endowed with a free vertex-transitive action of I'. Thus, in order to
get an element of I" from a vertex, one will need a reference point. Let p be
a vertex of G that we shall use as such a reference or anchor point. Any vertex
v € V can be written uniquely in the form y - p.

The action T' ~ E induces a shift action T' ~, Q = {0,1}%. A (bond)
percolation will be a probability measure on 2. It is said to be I'-invariant if
it is as a probability measure on 2.

In what follows, all considered percolations will be assumed to be I'-invariant.
Besides, for simplicity, we will work under the implicit assumption that P is
atomless, so that (2,P) will always be a standard probability space.

A point @ of 2 is seen as a subgraph of G in the following way: V is its
set of vertices and w~!({1}) its set of edges. In words, keep all edges whose
label is 1 and discard the others — edges labeled 1 are said to be open, the other
ones are said to be closed. The connected components of this graph are called
the clusters of w. If v € V, its w-cluster will be denoted by C(w,v). For v € V,
the map @ — C(w,v) is Borel, the set of finite paths in G being countable.
If (u,v) € V2, we will use u T v as an abbreviation for “u and v are in
the same w-cluster”. The number of infinite clusters of w will be denoted by
Noo(®w). The function N, is Borel.

2.2. Independent percolation. The simplest interesting example of percolation
is the product measure Ber(p)®F, for p € (0,1). It will be denoted by P,. Such
percolations are called independent or Bernoulli percolations. One is interested in
the emergence of infinite clusters when p increases. To study this phenomenon,
introduce the percolation function of G, defined as

bg : p — Pp[|IC(w, p)| = 0o].

Endow [0, 1]Z with the probability measure P 1) := Leb([0, 1])®£ . Notice that
P, is the push-forward of Py ;) by the following map:
7 1 [0,11F — {0, 1}
X > (]lx(e)<p)eeE-
Realising probability measures as distributions of random variables suitably
defined on a same probability space is called a coupling. A fundamental property

of this coupling is that, when x € [0,1]® is fixed, p — m,(x) is non-decreasing
for the product order. One deduces the following proposition.

Proposition 2.2.1. The function g is non-decreasing.
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Corollary 2.2.2. There is a unique real number p.(G) € [0,1] such that the
following two conditions hold:

o Vp < p:(G), 65(p) =0,

° Vp > p(9), b(p) > 0.
One calls p.(G) the critical probability of G.

Remark. When p.(G) is not trivial (neither 0 nor 1), this result establishes the
existence of a phase transition. One cannot have p.(G) =0, but p.(G) = 1 may
occur (e.g. it does for Z).

The following theorems describe almost totally the phase transitions related to
the number of infinite clusters.

Proposition 2.2.3. For all p € (0, 1), the random variable N takes a P, -almost
deterministic value, which is 0, 1 or oco. This value is 0 if p < p.(G) and I or

oo if p > pc(9)-

Theorem 13 (Héiggstrom-Peres, [HP]). There is exactly one real number p,(G) €
[pc(G), 1] such that the following two conditions hold:

e Vp< pu(g)a]P)p[Noo = [] =0,
o Vp> pu(G),Pp[Neoc = 1] = 1.
One calls p,(G) the uniqueness probability of G.

If T is amenable, Proposition 2.5.1 gives p.(G) = p,(G). The converse is
conjectured to hold. A weak form of the converse has been established by Pak
and Smirnova-Nagnibeda [PS] and used in [GL] to prove Theorem 14, which
provides a positive answer to the “measurable Day-von Neumann Problem™:

Theorem 14 (Gaboriau-Lyons, [GL]). If " is not amenable, then there is a
measurable ergodic essentially free action of F, on ([0,1]F, Leb([0,1])®T) such
that the orbit equivalence relation associated with the Bernoulli shift of I" contains

R]FZW[O’I]F )

Comment. Theorem 14 has important consequences. For instance, it is invoked
in [IKT] to show that if I" is not amenable, then its ergodic actions cannot be
classified up to isomorphism. Compare this result with Theorem 9.

Proposition 2.2.4 ([PLPS2]). If T' is non-amenable, then p.(G) <1 and there
is no infinite cluster P, (gy-almost surely.
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Conjecture 1. If p.(G) < 1, then there is no infinite cluster P, (g)-almost surely.

The phase transition theorems are roughly summarized in the picture below.
Remember that the quantities p., p, and 1 may coincide.

0 No =0 Pe N =00 Pu N =1 1
1 1 ]
I L I 1

2.3. Generalised percolation. The notion of generalised percolation presented
in this subsection is due to Gaboriau [Gab2].

Let '  (X,P) be a Borel action on a standard probability space. Assume
that it is provided together with a I'-equivariant map

n:X - Q={01F,

the space {0,1}f being endowed with the shift action. This will be called a
generalised (I -invariant) percolation. As for percolations, we will omit the “T"-
invariant” part of the denomination.

To begin with, let us see how this notion is connected to that presented in
Section 2.1. If a generalised percolation is given, then 7,P — the pushforward of
P by m — is a I'-invariant percolation that may have atoms. Conversely, if one
is given a I'-invariant atomless percolation, one can consider the Bernoulli shift
action I' n, X = Q together with 7 : X — Q the identity. Via this procedure,
one can redefine in the percolation setting any notion introduced in the generalised
framework.

Notice that the m,’s of the standard coupling, introduced at the beginning of
Section 2.2, provide interesting examples of such generalised percolations.

This setting provides the same atomless measures on €2 as the previous one,
but it gives us more flexibility in the way we speak of them. In the next subsection,
we will discuss properties of clusters. The usual setting allows us to speak of
properties such as “being infinite”, “having three ends”, “being transient for simple
random walk”. The generalised one will allow us, if we consider I' ~ [0, I]E
together with m,, , to speak of “the considered p;-cluster contains an infinite
Po-cluster”.

2.4. Cluster indistinguishability. In this subsection, we work with a given
generalised percolation. The action is denoted by I' ~, (X, P) and the equivariant
map by .

Notation. We call vertex property — or property — a Borel I' -INvARIANT Boolean
function on X x V, i.e. a Borel function

P : X xV — {true, false}
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that is invariant under the diagonal action of I". If W C V, we write P+ (x, W)
for “all the vertices in W satisfy P(x,.)”. More formally, we define

PY(x,W):=“YveW, P(x,v)”.

We also set
e P7(x,W):="“VYve W,-P(x,v)”,
o PE(x, W) :=“Pt(x,W)Vv P (x, W)".

The expression P*(x, W) means “all the vertices in W agree on P(x,.)”.

Example. The degree of a vertex in a graph is its number of neighbors. “The
vertex v has degree 4 in m(x) seen as a subgraph of G” is a property.

Definition. We call cluster property a property P such that P(x,v) <= P(x,u)

m(x) .
as soon as u <— v. In words, it is a vertex property such that, for any x, the
function P(x,.) is constant on 7z (x)-clusters.

Example. The previous example is usually not a cluster property: for most Cayley
graphs G, there are subgraphs of G where some component has some vertices
of degree 4 and others of other degree. “The m(x)-cluster of v is infinite”, “the
m(x)-cluster of v is transient”, “the m(x)-cluster of v has a vertex of degree 4”
are cluster properties.

Counter-example. “The 7 (x)-cluster of v contains p” is not a cluster property,
because of the lack of I'-invariance. It is to avoid such “properties” that
I'-invariance is required in the definition of vertex properties: allowing them
would automatically make any indistinguishability theorem false since they can
distinguish the cluster of the origin from the others.

Example. Here is another example of cluster property, which can be (directly)
considered only in the generalised setting. Consider X = [0,1]®¥ and 0 < pg <
p1 < 1. We take w = m,, (see Section 2.2). The property “the 7w, (x)-cluster of
v contains an infinite m,,(x)-cluster” is a cluster property. It has been considered
by Lyons and Schramm in [LS] to derive the Héggstrom-Peres Theorem from
indistinguishability.

To formalise the indistinguishability of infinite clusters, one needs to speak of
cluster properties and infinite clusters. Thus, we set

VZ(x) :={v eV :|C(r(x),v)| = oo}.
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Definition. The considered generalised percolation will be said to satisfy (in-
finite cluster) indistinguishability (or one will say that its infinite clusters are
indistinguishable) if, for every cluster property P,

P[P*(x, VE(x))] = L.

Of course, this notion is empty as soon as P[Ny(7(x)) < 1] =1, e.g. for P,
when I' is amenable.

Remark. Assume momentarily that I" ~ (X,P) is ergodic and that the
infinite clusters are indistinguishable. Then for every cluster property P, by
indistinguishability,

P[P*(x,VE(x)) or P™(x,VI(x))] = 1.

Besides, by ergodicity, P[P (x,VZ(x))] and P[P (x,VZE(x))] are 0 or L
Altogether, these identities guarantee that

P[P*(x,VE(x)]=1 or P[P (x,VI(x))]=1.

To state the Indistinguishability Theorem in its natural form, we need to
introduce the notion of insertion-tolerance.

2.5. Insertion-tolerance. In this subsection, we work with non-generalised
percolations.

Definition. If (w,e) € Q x E, one denotes by w® the unique element of 2
equal to @ on E\{e} and taking the value 1 at e. One sets I1° : v > ®. A
percolation is said to be insertion-tolerant if for every Borel subset B C 2, for
every edge e,

P[B] > 0 = P[II°(B)] > 0.

Example. For any p € (0, 1), the percolation P, is insertion-tolerant.

Proposition 2.5.1. If T" is amenable and if P is an insertion-tolerant percolation
on G, then P[Noo(w) < 1] =1.

Remark. Proposition 2.5.1 improves results obtained in [BK, GKN]. For a proof
of the general statement, see [LP].

Proposition 2.5.2 ([LS], Proposition 3.10). If P is an insertion-tolerant perco-
lation on G that produces a.s. at least two infinite clusters, then it produces a.s.
infinitely many infinite clusters and each of them has infinitely many ends.
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Now that insertion-tolerance has been introduced, we can state the Indistin-
guishability Theorem of Lyons and Schramm ([LS]).

Theorem 15 (Lyons-Schramm, [LS]). Any insertion-tolerant percolation has
indistinguishable infinite clusters.

2.6. Percolation and orbit equivalence. In this subsection, we work with a
generalised percolation, where the action is denoted by I' ~, (X,P) and the
equivariant map by .

The cluster equivalence relation is defined as follows: two configurations x

and x’ in X are said to be R.;-equivalent if there exists y € I" such that

(%) . .
y l.x=x"and y-p & p. In words, an R.;-class is a configuration up to

I"-translation and with a distinguished cluster — that of the root p.

Every generalised percolation is R.;-invariant, since R.; is a subrelation of
R]" ~AX-

Let S denote the generating set associated with the choice of the Cayley
graph G. For s € S, let @, denote the restriction of x — s~!.x to the x’s
such that the edge (p,s-p) is w(x)-open. If the action of T" on X is free, this
graphing induces on [x]g_, the graph structure of the m(x)-cluster of the anchor
point p. This remark, together with Theorem 12 and Proposition 2.5.2, provides
the following proposition.

Proposition 2.6.1. Let P denote an insertion-tolerant classical percolation.
Assume that

e N is infinite P -almost surely,

e for P -almost every w, the map y +> y - is injective.
Then R.; is not P -amenable.

Remark. This proposition applies to Bernoulli percolations that yield infinitely
many infinite clusters.

3. Ergodicity and indistinguishability

Throughout this section, we will work with a generalised percolation. The
underlying standard probability space will be denoted by (X,P’) and the
equivariant map by .
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3.1. The dictionary. The following array concisely presents the correspondence
between percolation theory and orbit equivalence theory. In the following
subsections, no knowledge of this array will be assumed and we will start from
scratch. However, we think it may be useful to the reader to have all the data
compactly presented in a single place, hence this subsection.

In the following “dictionary”, the bijection ¥ : I'\(X x V) — X induced by

(x,y-p) >y~ !-x is the translator.
Orbit equivalence Percolation
X &, I\(X x V)
y~lox (G, - p)]
m(x)
x € Xeo p <> 00
Borel subset vertex property
R.j-class cluster
R ;-invariant cluster property
ergodicity of R e indistinguishability
¢ s.t. graph(¢) C Ry rerooting
¢ € [R] vertex-bijective rerooting
asymptotically R.;-invariant asymptotic cluster property
strong ergodicity of R P strong indistinguishability
graphing graph structure

3.2. Classic connection. The map P — Bp := {x € X : P(x,p)} realises a
bijection from the set of properties onto the set of Borel subsets of X . Its inverse
map is B — (Pg: (x,y-p) > “(y~'-x,p) € B”). It induces a bijection between
the set of cluster properties and the set of R.;-invariant Borel subsets of X .

Notation. Set the infinite locus to be Xo0 := {x € X : |C(7(x), p)| = oo}.
Remark. This definition coincides with the usual orbit-equivalence definition

{x € X : |[x]r,;| = oo}

as soon as I’ n X is free. Remember that if there is no m in the second
description, this is because it is hidden in R;.

Lemma 3.2.1. Let P denote a property and A a subset of I'. For any x € X,

Pi(x, VE(x)N (A~ p)) &= Vy,z € Xoo N (A-X), (y € Bp < z € Bp).
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Proof. It results from the fact that, for any cluster property P and any x € X,
if one sets A := A1,

PE(x, VE(x) N (A - p)) = {vM,u e VI(x)N (A-p), P(x,u) & P(x,v)}

w(x)
Yo p <—> OO

— (VVo,h €A, and = (P(x,J'o-p) <= (P(x,n 'p)))

m(x)
]/1 'p <> OO

m(yy !-x)
p+—> X

& Yyo,71 € A, and = (P(yy' - x.p) <= (P(y{" - x.p))

m(yytx)
p <—> 00

<= Vy,z€ Xeo N(A-Xx), (y € Bp &< z € Bp). 0

Taking A =T gives the following proposition.

Proposition 3.2.2. Consider a generalised percolation defined by T ~, (X, P) and
a T -equivariant map m : X — Q. Then the considered generalised percolation
has indistinguishable infinite clusters if and only if for every Borel subset B of
X, for P-almost every x € X, the following holds:

Vye XeoN('-x), x € B<= y € B.
Let R denote the restriction of R t0 Xoo X Xoo-

Proposition 3.2.3. Consider a generalised percolation defined by T' ~ (X, P)
and a T -equivariant map n : X — Q. Assume that P[Xs] > 0. Then R
is %-ergodic if and only if for every cluster property P, the conditional

probability ]P’[P(x, P)|p <’i")> oo] is either 0 or 1.

Proof. The relation R is %-ergodic if and only if, for every R,;-invariant
Borel subset B of X, P[B N Xy] € {0,P[Xs]}. The proposition results from
the fact that, for any R.;-invariant Borel subset of X and any x € X,

P[B N Xoo] € {0, P[Xoo]} < P[Pp(x.p) and pﬂoo]e{o,P[pﬁoo]}.
0

Proposition 3.2.4 (Gaboriau-Lyons, [GL]). Consider a generalised percolation
defined by T ~, (X,P) and a T -equivariant map w : X — Q. Assume that
I' n (X,P) is ergodic and P[X]| > 0. Then the considered generalised
percolation has indistinguishable infinite clusters if and only if R is %-
ergodic.
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As a preliminary to the next subsection, we detail the proof of this theorem,
which can be found in [GL].

Proof. Assume that R is ergodic. Let B be a R.;-invariant Borel subset of X .
Then, some B’ € {B,X\B} satisfies P[B’' N X] = 0. Hence, P[|J,cpy ™" -
(B'N Xo0)] =0, so that

]P’[{x €EX:Vye XN x), y EX\BI}} = 1.

The first implication is thus a consequence of Proposition 3.2.2.

The converse statement follows directly from the remark at the end of
Section 2.4 — which makes crucial use of the ergodicity of I' n, X — and
Proposition 3.2.3. U

3.3. Two lemmas on asymptotic invariance. To translate properly the notion
of strong ergodicity from orbit equivalence theory to percolation theory, we will
need the following lemma. Since it holds with a high level of generality, and
since the symbols X and R have a specific meaning in this section, we denote
by (Y, ) a standard probability space and by Ry a countable Borel equivalence
relation on Y that preserves the measure .

Lemma 3.3.1. A sequence (B,) of Borel subsets of Y is w-asymptotically Ry -
invariant if and only if for every Borel (not necessarily bijective) map ¢ : Y — Y
whose graph is included in Ry, the j-measure of ¢ *(B,)AB, converges to 0
as n goes to infinity.

Remark. This result is false if we replace ¢~!(B,) with ¢(B,). Indeed, a Borel
map whose graph is included in Ry may have a range of small measure. For
instance, take the “first-return in [0, [ map” for an action of Z on R/Z ~ [0, 1]
by irrational translation.

Proof. One implication is tautological. To establish the other, assume that (B,)
is asymptotically invariant and take ¢ a Borel map from ¥ to Y whose graph
is included in Ry . There are

e a partition ¥ = | ;.5 Y; of Y into countably many Borel subsets
e and countably many ¢; € [Ry]

such that for all i, the maps ¢ and ¢; coincide on Y;. (This can be proved using
Theorem 4.) Let € be a positive real number. Take N such that p (| |;-y ¥i) < €.
For every i and n, we have,



304 S. MARTINEAU

¢~ (B)ABy = | | Y0 (¢7 (Ba)ABy)
i<N

= | | ¥i n (¢ (Ba)ABY)
i<N

c | ¢ ' (Bn)ABy,
i<N

where A ~ B means that M(AAB) < e. Since 1 (U, <y ¢; ' (Ba)AB,) goes, by
hypothesis, to 0 as n goes to infinity, the lemma is established. O

We will also need the following lemma.

Lemma 3.3.2. If ' ~ (Y, ) is a strongly ergodic action and if Z is a Borel
subset of Y of positive measure, then (Z, ﬁ (RrAay)|z) is strongly ergodic.

Remark. If one replaces “strongly ergodic” by “ergodic” in the above statement,
the proof is straightforward: one just needs to take B an R-invariant set and
apply ergodicity to I' - B. The proof gets a bit more technical in the strong case
because one needs to take a suitable T -saturation of B.

Proof. Set R := (Rrny)z- Let (B,) denote a M—ftf)—asymptotically R -invariant
sequence of Borel subsets of Z. It is enough to show that there is a sequence (B;,)
of p-asymptotically I'-invariant subsets of Y satisfying the following condition:

(%) pw(BaA(B, N Z)) —> 0.

n—00

Indeed, by strong ergodicity of the action, the sequence (;(B;)) would then have
no accumulation point other than 0 and 1, so that (B, N Z) would have no
accumulation point other than 0 and w(Z), which concludes the proof together
with condition ().

For any finite subset A of I', set

B, :=()v-(BaUX¥\Z) and B} :=()r-((Z\Bx)U(¥\Z)).
yeA yeA

If A is fixed and finite, the measure of Bf,\, + U B,f\,_ converges to 1 as n goes
to infinity.
Proceeding by contradiction, we assume that there exist n and y in A such
that
limsupu({y €Y :n-y € B, and y -y € Z\B,}) > 0.
n

The measure p being I'-invariant, it follows that
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limsuppu({y €Y : y € B, and ynt-ye Z\Bn}) >0
n

which contradicts the ﬁ-asymptoﬁc R -invariance of (B,). More precisely, the
mapping ¢ : Z — Z that sends y to yn~!-.y if the latter belongs to Z and to
y otherwise contradicts Lemma 3.3.1.

By a diagonal argument, one can find a sequence (A,) of finite subsets of
I such that, setting AP = {yn:v,ne A,}, the following two conditions hold:

e the sequence (A,) is non-decreasing and its union is I,
AD AD
o u(B,t UB,~) — 1.

h—>00

Set B; := B,‘f’; For n large enough, A, contains the identity element, so that
By (BALUBAL) = By 0 Bt = Z 0 B

It follows from this and the second condition that condition () is satisfied. To

show that (B)) is p-asymptotically I'-invariant, take y € I'. Taking n large

enough guarantees that y € A, . The measure u being I'-invariant, we only need

to show that w(B,\y - B,) tends to 0. To do so, it is enough to establish that

)
the measure of B,’,\B,ﬁ ' tends to 0. Notice that
@) )
B,’,\B,ﬁ"_,_ C Y\ ((B;\,’; U B,ﬁ\,ﬁ) N (Ap- Z)) :

Indeed, the sets Blﬁi N(A,-Z) and B,’,f”_ N (A, - Z) are disjoint.
Since Z has positive measure and ' ~ (Y, ) is ergodic, the measure of
A, - Z converges to 1. We conclude using the second condition. L]

3.4. Strong version. Consider P, for p € (p:(G), pu(G)). By Theorems 11, 15
and 2.6.1 and Proposition 3.2.4, its cluster equivalence relation is strongly ergodic
on the infinite locus. One would like to deduce from this information a strong
form of indistinguishability of P,. This idea is due to Damien Gaboriau.

Another way to describe our goal is to say that we look for a proposition
similar to Proposition 3.2.4 for strong notions. This is achieved in Theorem 16.

Again, everything will be stated for a generalised percolation, with the same
notation as previously.

Definition. We call re-anchoring, or rerooting, a Borel map
0: XxV —V
(% 0) > ug ,

that is I'-equivariant under the diagonal action and such that

m(x)
V(x,v) € X xV, uy, <.
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In words, a re-anchoring is a I"-equivariant way of changing of position within
one’s cluster.

Example. If y € T", setting

. 7(x)
ay ._ ) y-v ifve—sy-v
ux’v Clamed .
{ v otherwise

defines a re-anchoring.

Definition. Let (P,) be a sequence of vertex properties. Let P be a percolation.
We will say that (P,) is an asymptotic cluster property (for P) if, for any
rerooting o,

Vo eV, Pl{xe X Py(x,v) &= Py (xu2,)}] — 1.

Remark. For a given rerooting, the convergence above holds for all v as soon
as it holds for one, by I'-invariance and -equivariance.

Remark. This definition of “depending asymptotically only on one’s cluster” is
quite natural if one looks for a translation of strong ergodicity, but it may not be
the clearest definition from a probabilistic point of view. For a probabilistically
more natural definition, see Section 3.6.

Notation. In what follows, A € B means that A is a finite subset of B.

Definition. We will say that P satisfies the Strong Indistinguishability Property
if, for every IP-asymptotic cluster property (P,) and every F € V,
+
P[PEXVE® N F)] — 1.

Remark. Section 3.6 makes the definition of asymptotic cluster property look
like the conclusion of strong indistinguishability.

Lemma 3.4.1. The map (B,) — (Pp,) is a bijection from the set of the P -
asymptotically R.j-invariant sequences of Borel subsets of X onto the set of
P -asymptotic cluster properties. Its inverse map is (Pp) — (Bp,).

Proof. First, let (B,) be a P-asymptotically R.;-invariant sequence of Borel
subsets of X and set P, := Bp,. We show that (P,) is a P -asymptotic cluster
property.

Let o be a rerooting. Since (x,v) > (x,u$,) is I'-equivariant, it induces a
map o : C'\(X x V) - T'\(X x V). Set
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¢p=yodoy,

where 1 is the bijection introduced in Section 3.1. More explicitly, we have
¢: x> y;l-x, where y, is defined by

o
ux,p - Vx ' p'

The graph of this Borel map is a subset of R. By Lemma 3.3.1, the probability
of ByA¢~1(By) goes to 0 as n goes to infinity. As a consequence, (P,) is an
asymptotic cluster property.

Now, let (P,) be a IP-asymptotic cluster property and set B, := Bp,. We
show that (B,) is P -asymptotically R.;-invariant.

Let ¢ € [R]. Since R.; C Rr~ x, one can define a Borel map

Xog—T
X —>Yx

such that Vx € X, ¢(x) =y, ' - x. Define o by u$, ,:=1n:y,-1.,. This is a
rerooting. We have

¢~ (Bn) = {x € X : Pu(¢(x), p)}

xe X :Py(ys' - x,p)}

{x € X : Py(x,yx-p)} Dby I-invariance of P,.
xeX: Pn(x,uﬁyp)}

Since (P,) is a P -asymptotic cluster property, we deduce from this that the
probability of B,A¢~'(B,) tends to 0. Since this holds for every ¢ € [R], the
sequence (B,) is IP-asymptotically R;-invariant. O

Remark. In the previous proof, the use of Lemma 3.3.1 allows us to obtain the
asymptotic-cluster-property condition for all rerootings, while a “literal translation”
would have given it only for the vertex-bijective ones — the rerootings (x,v) > ux,
such that, for every x, the map v +— uy, is bijective. From the percolation point
of view, vertex-bijective rerootings are absolutely non-natural objects: the use of
such a lemma was unavoidable.

From Lemma 3.2.1 and Lemma 3.4.1, one deduces the following statement.

Proposition 3.4.2. A generalised percolation satisfies the Strong Indistinguisha-
bility Property if and only if for every P -asymptotically R.;-invariant sequence
(Bn) of Borel subsets of X, for every A €T,

P[{x€X:Vy,z€ XooN(A-x), y € By &z € By}] — 1.

n—oo
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Proposition 3.4.3. Consider a generalised percolation such that P[Xs] > 0. The
Jollowing assertions are equivalent:

(1) the relation R is W%—T-strongly ergodic,

(2) for every asymptotic cluster property (Py), there exists (e,) € {—, +} such
that

VFEV, P[P (x,VE(x)NF)] — 1,

(3) for every asymptotic cluster property (Py), there exists (€,) € {—, +} such

that

)

(x
P[P,f”(x,p)lp > 00 L.

] n—>00

Proof. Assume that R is strongly ergodic. Let (P,) be an asymptotic cluster
property. Set B, := Bp, . By strong ergodicity, there exists (e,) € {—, +}N
such that P[B™¢" N X tends to 0. (We denote by B* the set B and B~ its
complement.) Hence, forany A €', P [UVGA y-(B™¢ N Xoo)] tends to 0. This
establishes the second statement: specifying the previous sentence for a particular
A solves the case F = A~"!.p.

Taking F = {p} gives (ii) = (iii) and (iii)) = (i) is straightforward. [l

Theorem 16. Consider a generalised percolation such that I ~, (X, P) is strongly
ergodic and P[Xs] > 0. It satisfies the Strong Indistinguishability Property if
and only if R is F[%;T-strongly ergodic.

Proof. If R is strongly ergodic, Proposition 3.4.3 implies that strong indistin-
guishability holds. Conversely, assume strong indistinguishability to hold. Let
(B,) be a E;[;I;Tﬂ—asymptotically R-invariant sequence of Borel subsets of X .
Strong indistinguishability implies that for every y,

]P’[{x EXow: V' X€EXeo = (x€B, & y-xE€ Bn)}] — P[X].
n—o0

This means that (B,) is %-asymptotically (Rr~ x)|x. -invariant. By Lem-

ma 3.3.2, the strong ergodicity of Rr. x entails that the only possible accumu-

lation points of (P[B, N X«]) are 0 and P[Xy]. This ends the proof. Il

From this theorem and the few lines at the beginning of the current subsection,
we can derive the following corollary — even for p = p,(G) if the assumption
of the corollary is satisfied for this parameter.

Corollary 3.4.4. As soon as P, produces infinitely many infinite clusters, it
satisfies the Strong Indistinguishability Property.
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3.5. Classic and strong indistinguishability do not coincide. Obviously, strong
indistinguishability implies the classical one: take P, = P for all n. In this
subsection, we study a particular percolation, and prove that it satisfies the
Indistinguishability Property but not the strong one.

To define this percolation, take I" to be the free group (a,b). Endow it with
the generating system {a,b}. We will use the concrete definition of Cayley graphs
and take the vertex set of G to be I'". Set

®r
)"

The equivariant map m is defined as follows: for each y, among the two edges
{y.ya} and {y, yb}, open the edge {y, yx,} and close the other one. The analogous
model for Z? instead of (a,b) has been extensively studied, see, e.g., [FINR]
and references therein.

1
X :={a,b)' and P:= (—2-8a +

4_

—

T
T

!

T,
T

Theorem 17. The considered percolation satisfies the Indistinguishability Property

_|_

et

but not the Strong Indistinguishability Property.

Proof. In this proof, we will use the height function defined as the unique

morphism

e
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h:T —Z
at—1

br—1.

First, let us prove that strong indistinguishability does not hold. The x -directed
path launched at y is defined by yo :=y and yx41 := prxy, . The elements xj,
are called the steps of the directed path. Set P,(x,y) to be “there are more a’s
than b’s in the first 2n + 1 steps of the x-directed path launched at y”. Let
d denote the graph distance on G. Let y and n denote two elements of I.
Assume that there exists x such that y and n are m(x)-connected. Then, along
the geodesic path from y to 7, the height increases, reaches a unique maximum,
and then decreases. Let 7 be the vertex where this maximum is attained. If y
and n are m(x)-connected, the x-directed paths launched at y and n coincide
with the one launched at t, up to forgetting the first d(y,t) steps of the first
path and the first d(n, r) ones of the second. Thus, the probability of the event

m(x)
y <—n and  Pp(x,y) # Pu(x,m)

is less than the probability that a simple random walk on Z that takes n—d(y, n)
steps ends up in [—d(n,y),d(n,y)]. This is known to go to zero as n goes to
infinity, as n~1/2. Therefore, by Proposition 3.6.1, (P,) is an asymptotic cluster
property. But P,(x,a) and P,(x,b) are independent of probability 1/2. Since
the considered percolation produces only infinite clusters, it cannot satisfy the
Strong Indistinguishability Property.

Now, let us establish the Indistinguishability Property. Let us define the contour
exploration of the cluster of the origin p = 1. Intuitively, we explore the cluster of
the origin (and some vertices of its boundary) using a depth-first search algorithm,
with the following conventions:

e vertices of negative height are ignored,

I and yb~! in its cluster, ya~! is

will be represented to the left of yb~!.

e when a vertex y has its two sons ya~
explored first — in figures, ya~!

Formally, the exploration is defined as follows. If m is an integer, define E‘x,m
to be

{(ys™") 1y €T, selab}, h(y) >m}U{(y.yxy):y €T, h(y) > m}.
Given a configuration x € {a,b}', we define a bijection nexty, from Ex,m to
itself. If (y,y’) € Exm, then nexty m(y,y’) is set to be (y',y”), where y” is

y'b~ ! if y' = ya,
y'a=' if y =y'x, and h(y') > m,

Y if y # y'x, and h(y) = h(y’) + 1,
y'x,»  otherwise.
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The exploration — or exploration in positive time — is defined by

e é = (y0,v1) = (1,x1),
o Vk >0, é = (Vk,Vk+1) = nexty o(€x—1).
Since next, is a bijection, one can also define the exploration in negative time:
e & = (y0,71) = (1,x1),
o Vk <0, & = (Vk, Vk+1) = nexty o(€x—1)-
Whenever there is no explicit mention of negative times, “exploration” will always

be understood as “exploration in positive time”. Define

k(x) := min {k o 0z iyl =10 and 7 200 1}.

Notice that it is almost surely well-defined.

Indeed, for each positive height n, there is a unique couple (Ynx,¥y )
satisfying the following conditions:

e the x-directed path launched at I contains y, , but not y, x,
® VyiVnx €1a,b}
e and h(ypx) =n.

Denote by 7, . the connected component of y, . in the graph defined by z(x)

but where the edges y,xa and y, b have been removed. It is rooted at y, x.
The following facts hold:

e considered as rooted graphs up to isomorphism, the 7, ,’s are i.i.d. critical
Galton—Watson trees,
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e cach T, has probability 1/4 of being explored? by the contour exploration
(it has probability 1/2 of belonging to the cluster of 1 and, conditioned on
this, it has probability 1/2 of being explored in positive time rather than in
negative time)

e and the events and random variables mentioned in the two facts above are
independent.

Since the depth of a critical Galton-Watson tree is non-integrable, by the
independent form of the Borel-Cantelli Lemma, it almost surely occurs that
one of them is explored and reaches height 0.

Thus, the Borel mapping x +— yk_(}c) - x coincides on a full-measure set with
a Borel bijection 7: X — X.

Indeed, k'(x) := min{k < 0 : h(yx) = 0 and yi <1Lx)> 1} is almost surely
well-defined, so that the mapping S : x > yk‘,%x) -x is almost surely well-defined.
For almost every x, T(S(x)) = S(T(x)).

For almost every x, the points 7(x) and x are in the same I -orbit.
By Theorem 6, the Borel bijective map T preserves the measure P. By
Proposition 3.2.4, it is enough to show that 7 is ergodic. (Indeed, for almost
every x, the point 7(x) and x are in the same R.;-class.)

Let B denote a Borel subset of X and assume that B = T(B). We need to
show that P[B] € {0,1}. Let € > 0. Let C be an event such that

o P[BAC] <,
e C is o(x|g)-measurable for some ball B centered at I.
Denote by R the radius of the ball B and by C the subset of {a,b}® such that
C =Cx l_[{a, b}.
v¢B

Set X, :=T"(x)5. We will show that (X,),>o is an irreducible aperiodic time-
homogeneous Markov chain. Assuming this, we conclude the proof. Since P is
T -invariant, it would result from our assumption that

P[X, € C and X,, € C] — P[X, € C].
n—o0

Using the notation A ~ A’ as abbreviation for P[AAA’] < e, we have

B=BNT"(B)=CNT"C).

Letting n go to infinity, we get |P[B] — P[C]?| < 2¢. Since |P[C]—P[B]| <,
we have |P[B]—IP[B]?| < 4¢. Letting € go to zero, one gets P[B] = P[B]* and
concludes.

30f course, the generations of negative height are not explored.
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Now, let us prove that (X,) is an irreducible aperiodic time-homogeneous
Markov chain. Since (X,) is defined by iteration and restriction of the measure-
preserving transformation 7, if it is a Markov chain, it is necessarily time-homo-
geneous. Let us establish the Markov Property.

To define (Xo,..., X,), one needs to explore a certain set of vertices denoted
by Explo,,(x).

e Conditionally on (Xp,..., X,), the state of the vertices in I'\Explo, (x) is
iid. 382 + 305.

e Define yy to be the point of height R + 1 in the x-directed path launched
at 1. Then, define an auxiliary exploration: it explores the vertices of the
cluster of the origin as previously until it reaches yox;, and then executes the
exploration defined by next, g+ . Notice that, after y,, the vertices explored
by the auxiliary exploration are exactly the ones of height at least R + 1 that
are explored by the usual exploration; besides, they are explored in the same
order. Denote by (y;) the sequence of the vertices of height exactly R + 1
that are visited by any of our two explorations, in the order in which they
are discovered. Set P to be the set of the elements of I' whose expression
as a reduced word starts with a~! or b~!. Conditionally on the data of the
entire auxiliary exploration, the sequence

((771:1 ’ x)IP)kzl

is i.i.d., the common law of its elements being (%Sa + %Sb)‘gp.

The exploration never visits a site of pp - P after one of y,-P for £ > k.
Thus, to establish the Markov Property, it is enough to show that, within some
V- P, the vertices that we explore between the n" and (n + 1) steps of the
construction (in order to define X,4;) and that have already been explored have
their state written in X, . More formally, it is enough to show that if we set

e k_:=min{k <0:yr = 9o},

o ki :=max{k >0:y = o},

o L:={yk:k- =k =01\{}o},

o L':={n:3yeL, h(y)=0and d(y,n) < R},
o R:={yr:0=<k <ki}\{}o},

e R':={n:3yeR, h(y) =0 and d(y,n) < R}
then (LU L") N (R UR') is always included in B. Since £ NR' consists of
the 1 4+ R first vertices visited by the x-directed path launched at 1, it is a

subset of B. To establish LNR' C B, take y in £ and n at height 0 such that
n € R and d(y,n) < R. It results from the respective definitions of £ and R
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that the geodesic path connecting y to the tripod (1, Jp,n) intersects it at a point
x which belongs to the geodesic (1,70). Since 1 and n have the same height,
dk,1) <d(k,n). Thus d(y,1) <d(y,n) and LNR' C B.

The inclusion £'NR C B follows by symmetry. To have the Markov Property,
it remains to show that £'NR’ C B. This results from the fact that if y € £ and
n € R both have height 0, then every point « of the tree spanned by {7o, v, 1,71}
satisfies d(x,1) < max(d(x,y),d(x,n)).

Yo

d(k,1) =d(k,7)

d(k,1) < d(k,n)

d(r,1) < min (d(,7), d(k, 1))

Yo

d(k,1) = d(x,n)

d(r,1) < d(r,7)
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Now, let us establish the irreducibility of the considered Markov chain. Let x
and £ be two elements of {a,b}®. The knowledge of the restriction of x to B
suffices to determine the point at height R + 1 in the x-directed path launched
at 1. Denote it by y(x|z). Imposing on x the following conditions (compatible
since they involve disjoint areas):

® XIB=X>

® Xty = 45

* XyGab—t = b,

o (y®baly(0™!x) 5 =6,
we have Xg = y and 3k > 0, X = £. Thus, the intersection of these two events
has positive probability and (Xj) is irreducible.

a b

To establish the aperiodicity of the Markov chain (X,), apply the previous
argument for y = & = (a)yep with the additional condition x, n+1,-1 = a, which
gives P[Xo = X1 = (a)yen] > 0. ]

Remark. The previous proof not only proves that the infinite clusters are indistin-
guishable, but also that the “height-levels of infinite clusters” are indistinguishable,
which is a stronger statement.

3.6. Complements on asymptotic cluster properties. This subsection provides
equivalent definitions of asymptotic cluster properties. We keep to the usual
notation for generalised percolations.

Notation. If x € X, denote by €"(x) the set of the clusters of m(x).

Proposition 3.6.1. Let (P,) be a sequence of properties. The following assertions
are equivalent:

(1) (Py) is a P-asymptotic cluster property,
(2) VF eV,P[VC € ¢™(x), PF(x,CNF)|] — 1,
n—oQ

(3) Ju € V,Yv € V,P[PE(x, {u, v)u 23 ] — 1,
n—>00

@) Yu € V,Vv € V,P[PE(x, {u, v})|u 253 v] —> 1.
n—00
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Remark. Above, we set P[A|B]:=1 when P[B] =0.

Proof. 'The assertions (iii) and (iv) are equivalent by I'-invariance.

Rewriting (ii) as follows:

VF € V,]P[V(u,v) € Fz,(u & v) = Pni(x,{u,v})] — 1
n—00

clarifies its equivalence* with (iv): one way, take F := {u,v}; the other way,
write F as the finite union of the pairs it contains.

Now assume (i) and establish (iii). We will do so for u = p. Let v=y-p
be a vertex. Applying (i) to the «, introduced at the beginning of Section 3.4,
one gets

]P’[{x €X:Py(x,p) = P,,(x,uﬁj’p)}] —s 1.

n—0oQ

Hence, ifA::{xeX:pZ(j;y-p},

]P’[{x € A5 Pulx.p) = P,,(x,ui,yp)}] — P[A].

But, on A, “Py(x,0) = P, (x,15),)"” means that “ Py(x,p) = Pu(x,v)", 50 that
(iii) is established.

It is now enough to show that (ii) implies (i). Assume (ii). Let o be a rerooting.
Set w(x) :=u% , and take € > 0. Let F € V be such that Plw ¢ F] <e. We
have

(we F and YC € €™ (x), PE(x, FNC)) = PE(x,{p,w}).

(Apply the second hypothesis to the common cluster of p and w.)
The condition on the left hand side being satisfied with probability asymptot-
ically larger than 1 —2¢ (by (ii) and choice of F),

lirr}iianF"[P,jt(x,{p,w})] > 1—2e.

Since this holds for any value of e, the proof is concluded. U
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