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In search for a perfect shape of polyhedra:
Buffon transformation

Veronika ScHREIBER, Alexander P. VeseLov and Joseph P. WaRrD

Abstract. For an arbitrary polygon generate a new one by joining the centres of consecutive
edges. Iteration of this procedure leads to a shape which is affine equivalent to a regular
polygon. This regularisation effect is usually ascribed to Count Buffon (1707-1788). We
discuss a natural analogue of this procedure for 3-dimensional polyhedra, which leads to
a new notion of affine B-regular polyhedra. The main result is the proof of existence
of star-shaped affine B -regular polyhedra with prescribed combinatorial structure, under
partial symmetry and simpliciality assumptions. The proof is based on deep results from
spectral graph theory due to Colin de Verdieére and Lovisz.

Mathematics Subject Classification (2010). Primary: 52B10; Secondary: 58C40.

Keywords. Affine polyhedra, spectral graph theory.

1. Introduction

According to David Wells [Well] the following puzzle first appeared in Edward
Riddle’s edition (1840) of the Recreations in Mathematics and Natural Philosophy
of Jacques Ozanam, where it was attributed to Count Buffon (1707-1788), a French
naturalist and the translator of Newton’s Principia.

Consider an arbitrary polygon. Generate a second polygon by joining the
centres of consecutive edges. Repeat this construction (see Fig. 1).

FiGure 1
Iterations of Buffon transformations
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It is easy to see that the process converges to a point — the centroid of the
original vertices (and therefore the centroid of the vertices of any polygon in the
sequence). Buffon observed a remarkable regularization effect of this procedure:
the limiting shape of the polygon is affine regular. Here a polygon is called affine
regular if it is affine equivalent to a regular polygon.

In fact a similar phenomenon was already observed since Roman times. When
creating mosaics Roman craftsmen achieved more regular pieces by breaking the
corners, so effectively using the same procedure [Mos]. The explanation of Buffon
puzzle is based on simple arguments from linear algebra, see, e.g., [BGS, Warl]
and next section.

The situation here is different from the theory of the pentagram map, initiated
by R. Schwartz in 1990s and extensively studied in recent years, where the
dynamics is nonlinear, quasi-periodic and integrable in Arnold-Liouville sense
(see [KS, OST] and references therein).

In this paper we will study the following natural 3-dimensional version of the
Buffon procedure [VW]. Let P be a simplicial polyhedron in R*, which is a
polyhedron having all faces triangular. Define its Buffon transformation B(P) as
the simplicial polyhedron with vertices B(v), where for each vertex v of P the
new vertex B(v) is defined as the centroid of the centroids of all edges meeting
at v. The question is what is the limiting shape of B”(P) as n goes to infinity.

Unfortunately, the answer in general is disappointing: the limiting shape will
be one-dimensional. Indeed the same arguments from linear algebra show that this
shape is determined by the subdominant eigenspace of the corresponding operator
on the graph I'(P), which is the 1-skeleton of P (see the details below), and
this eigenspace generically has dimension 1. This means that in order to have a
sensible limiting shape we need to add some assumptions on the initial polyhedron
P.

Let G C O(3) be one of the symmetry groups G = T, O, of the Platonic
solids: tetrahedron, octahedron/cube, icosahedron/dodecahedron respectively. As-
sume that the combinatorial structure of the initial polyhedron P is G -invariant,
which means that G faithfully acts on the graph I'(P).

Our main result is the following theorem.

Theorem 1. Let P be a simplicial polyhedron in R® with G -invariant combina-
torial structure. Then for a generic P the limiting shape obtained by repeatedly
applying Buffon procedure to P is a star-shaped polyhedron Pg. The vertices
of Pp are explicitly determined by the subdominant eigenspace of the Buffon
operator, which in this case has dimension 3.

The proof is based on the deep results from the spectral theory on graphs due
to Colin de Verdieére [CdV] and in particular due to Lovész et al [HLS, Lovl, LS],
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who studied the eigenspace realisations of polyhedral graphs. Both assumptions
of the theorem, namely simpliciality and platonic symmetry, are essential.

Recall that the polyhedron P is called star-shaped (not to be mixed with
star polyhedra like Kepler-Poinsot) if there is a point inside it from which one
can see the whole boundary of P, or equivalently, the central projection gives a
homeomorphism of the boundary of P onto a sphere. The precise meaning of
the term “generic” will be clear from the next section.

Let us call polyhedron P affine B-regular if B(P) is affine equivalent
to P. In dimension 2 this is equivalent to affine regularity (see next section).
Thus the Buffon procedure produces affine B -regular version Pp from a generic
polyhedron P with the above properties. As far as we know the notion of the
affine regularity for polyhedra with non-regular combinatorial structures was not
discussed in the literature before.

For a generic polyhedron P with combinatorial structure of a Platonic solid
the corresponding polyhedron Pp is affine regular, which means that it is affine
equivalent to the corresponding Platonic solid. For the Archimedean and Catalan
solids however, this is no longer true, see the example of pentakis dodecahedron
(dodecahedron with pyramids build on its faces) on Fig. 2 and in the Appendix.
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FiGure 2
Leonardo da Vinci’s drawing of pentakis dodecahedron from Luca Pacioli’s book “De
divina proportione” and Mathematica image of its Buffon realisation. Leonardo’s
version is different both from Catalan and Buffon realisations and probably corresponds
to the so-called cumulated dodecahedron having all the edges of equal length.
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Note that there are plenty of polyhedra P with G -invariant combinatorial
structures, which can be constructed from the Platonic solids using Conway
operations [Con]. In particular, one will have a simplicial polyhedron by applying
to any such P the operation, which Conway called kis and denoted by k,
consisting of building the pyramids on all the faces. Many examples of the
corresponding combinatorial types can be found in chemistry and physics literature
in relation with the famous Thomson problem, see, e.g., [Edm].

For non-simplicial polyhedra the Buffon transformation usually breaks the
faces, which in general are not recovering even in the limit (see Fig. 8 in
Appendix B).

The platonic symmetry keeps the limiting shape 3-dimensional, preventing
collapse to lower dimension. The dihedral symmetry is not enough: one can
check that a polyhedron with prismatic combinatorial structure will collapse to
the corresponding affine regular polygon.

The star-shape property of the limiting shape is probably the strongest we can
claim since the convexity may not hold as the example of the triakis tetrahedron
shows (see Fig. 7 in the Appendix).

The structure of the paper is as follows. In Section 2 we start with the
(well-known) solution of the Buffon puzzle for polygons to explain the main
ideas and relation to linear algebra. Then, in Section 3, we define the Buffon
transformation for polyhedra and review the classical Steinitz theorem which
gives graph-theoretical characterisation of 1-skeletons of convex polyhedra. In
Section 4 we introduce the main tools from spectral graph theory: the Colin
de Verdiere invariant and null space realisation for polyhedral graphs studied by
Lovasz et al. In Section 5 we use them and representation theory of finite groups
to prove our main result. In Appendix A we present the character tables for the
polyhedral groups and the corresponding decomposition of the space of functions
on the vertices of Platonic solids into irreducible components. In Appendix B we
give the spectra of the Buffon operators for some combinatorial types and the
corresponding shapes of affine B-regular polyhedra. Appendix B takes almost a
half of the paper, but we thought that it would be instructive to show all the
aspects of the Buffon approach in various specific examples.

2. Buffon transformation for polygons

Consider an arbitrary n-gon P with vertices described by the column vector

r=|[ri,ra,...,mal, i e R?
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(and an integer n > 3). Generate a second polygon P’ by joining the centres
of the consecutive edges of P. The corresponding transformation acts on the
vertices of P as follows:

, |
r; = E(I‘,‘ + rit1).

In matrix form this can be described as

/

r =Br
where - _
2 3,
p=| 22
1 1
.2 00 ... 3]

After k transformations we obtain a polygon with the vertices
r* = B¥r.

Following Buffon we claim that for generic initial polygons P the limiting shape
of the polygons P* as k increases becomes affine regular. Recall that a polygon
is affine regular if it is affine equivalent to a regular polygon.

To prove this we use the following result from Linear Algebra (see, e.g.,
Theorems 5.1.1, 5.1.2 in [Wat]).

Theorem 2 (Subspace Iteration Theorem). Let A be a real matrix and let
Spec(A) = {A1,A2,..., Ay} be the set of its eigenvalues (in general, complex
and with multiplicities) ordered in such a way that

Al =142l = ... = [Ae] > [Akga] Z - 2 [Aal.

Let W and W' be the dominant and complementary invariant subspaces
associated with Ay, ..., Ay and Agyy,..., A, respectively and m = dim W. Then
for any m-dimensional subspace U C R" such that U N W' = {0} the image of
U under the iterations of A

A"(U) — W
n— oo
tends to the dominant subspace in the Grassmannian Gp(R").
To apply this to our case first note that
1
B = 5(1 +7T7),

where the n x n matrix
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0 1 0 ... 0

0 0 1 0
T =

| 100 ... 0|

has the property 7" = I and the eigenvalues are n-th roots of unity. The spectrum
of B is therefore

1 1 i
Spec(B) = {5+ Sei & =e i, | =0,1,...,n—1}.

The eigenvalues of maximum modulus, other than Ay =1, are A; = %»Jr

2mi

and its complex conjugate A, = 1 + 1= =1;.
The dominant subspace W in this case corresponds to Ao = 1 and is generated
by the corresponding eigenvector vo = (1,1,...,1):

e n

D=

W = {(r,r,...,r)}.

The previous result can be interpreted that as n increases B"(P) converges to
a point. To see the limiting shape we should look at the subdominant invariant
subspace corresponding to A; and A,.

Geometrically one can do this by assuming that the centroid of the vertices
is at the origin (centre of mass condition). This means that we restrict the action
of B on the invariant subspace

Ve ={(r1,....tn) ir1 + -+ 1 =0}

This eliminates the eigenvalue A9 = 1 and the new dominant subspace W
corresponding to Ay = 3 + 36, A, = A; is precisely the one describing the
limiting shape. One can easily check that

(1 (1) (1 (O
€ \ E cosz‘nﬂ SinzT’r \
W= g2 , g2 _l, cos4—n’E Py sin%’ "

et ) \ o) NP R U

Choosing a and b to be orthogonal unit vectors we see that the corresponding
vertices form a regular polygon. In general, the dominant subspace W describes
all affine regular polygons. The other eigenspaces correspond to the affine regular
“polygrams”.

For example, when n =5 we have the eigenvalues
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I 1 2xi — 1 1 ami —
Al =§+§€ n ,12=A1,A3=§+§e 5, Aa = A3
and the corresponding eigenspaces
1 0 )
cosgsl'— sinzs"
W ={<a cos‘%’ +b sin‘%’ -
6 6
wsg5 sm85
n T
CoS3 sin<g
’
1 0
cos%"- sin“?’r
W' =1{a cos%" +b szns?” >
2w 2w
COS? szné?
JT T
cos sin=

describing the affine regular pentagons and pentagrams respectively:

o

FiGURE 3
Regular pentagon and pentagram

3. Buffon transformation for polyhedra

Recall first some basic notions of graph theory and the relation with polyhedra.

A graph T = (V, ) consists of a finite set 1V (vertices), together with a subset
E CVxV (edges). We will assume that the graph has no loops [i,i], i € V and
is undirected which means that for each edge [i, j] € £ we also have [j,i] € £.

We say that the vertices i and j are adjacent and write i ~ j if there is an
edge [i, j] € £ connecting them. The degree d; of a vertex i is the number of
the adjacent vertices.

A graph is connected when there is a path between any two vertices. A graph
is called 3-connected if for every pair of vertices i and j there are at least three



268 V. ScHREIBER, A.P. VeseLov and J.P. WArRD

paths from i to j, whose only vertices (or edges) in common are i and ;.
Equivalently a graph is 3-connected if it remains connected after removal of less
than 3 vertices.

A graph is called planar if an isomorphic copy of the graph can be drawn in
a plane, so that the edges which join the vertices only meet (intersect) at vertices.

For every polyhedron P one can consider the /-skeleton I'(P), which is the
graph formed by the vertices and edges of P.

One of the oldest results in polytope theory is a remarkable theorem by Ernst
Steinitz. It is often referred to as the Steinitz’ fundamental theorem of convex
polyhedra and gives a completely combinatorial characterization of the graphs T,
which can be realised as 1-skeletons of 3-dimensional polytopes (see [Gru, Zie]).

Theorem 3 (Steinitz, 1922). A graph T is isomorphic to the I-skeleton of a
3-dimensional convex polyhedron P if and only if T is planar and 3-connected.

The proof given by Steinitz uses a combinatorial reduction technique. A
sequence of transformations of I' into simpler graphs lead to the tetrahedral
graph K,. Reversing the order of these operations one obtains a polyhedral
realization of the original graph T.

A graph is called regular when every graph vertex has the same degree.

Let P be a simplicial polyhedron in R3 with vertices rq,...,r,. Define the
Buffon transformation B(P) as a new polyhedron with the vertices being the
centroids of all edges, which meet at a vertex [VW, War2]:

(1) Bri) =Y oo

J~1

where d; is the degree of the vertex r;.

Consider also the linear Buffon operator B : F(V) — F(V), where F(V) is
the vector space of functions on the vertices of the graph I' = I'(P), defined by
the same formula:

(2) B(f)(i) =)

J~i

1

5 FO+ ). f e FW).

Remark. One can define the Buffon transformation Br by taking the centroids
of the centroids of all the faces meeting at a vertex [VW, War2], but for simplicial
polyhedra P we have a simple relation for the corresponding operators

4 1
Br = -B——1I,
F=33% 3

which means that the result of the Buffon procedure on faces will be the same
as the one on edges.
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The matrix of the Buffon transformation in a natural basis in (V) has the
form

_1 s, 1
(3) B=_(I+D"'4)=(I+P),

where A is the adjacency matrix: A;; =1 if i is adjacent to j and O otherwise,
D the diagonal matrix with the degrees of vertices d; on the diagonal, and P is
the matrix of transition probabilities of the Markov chain describing the random
walk on graph I' : P;; = 1/d; when j is adjacent to i and O otherwise (see
[Lov2]).

Note that unless I' is a regular graph, matrix B is not symmetric. In order
to bring it to a symmetric form we introduce the normalized adjacency matrix

) N =D24AD"2

with matrix elements N;; = 1/,/d;d; if i is adjacent to j and O otherwise. It
is easy to see that

I 1
B = (I + D IND}) = 2D7(1 + N)D3,

so B is conjugated to the symmetric matrix B = 1/2(1 + N).

In particular, this means that all the eigenvalues of B are real. The maximal
eigenvalue is A9 = 1 and the corresponding eigenvector is (1,...,1)7.

Now we ask the same question: what is the limiting shape of B”(P) when
n goes to infinity?

By the same arguments using the Subspace Iteration Theorem the answer
is given by the subdominant eigenspace of the corresponding Buffon operator
B. In general it is one-dimensional, which means that the limiting shape is
one-dimensional. However, if we assume additional symmetry we have a three-
dimensional limiting shape. To see this we need some results from spectral graph
theory, which we present in the next section.

4. Colin de Verdiere invariant and null space representation

In 1990 Yves Colin de Verdiere [CdV] introduced a new spectral graph invariant
w(I'). Roughly speaking, w(I') is the maximal multiplicity of the second largest
eigenvalue of the matrices C with the property C;; = C;; > 0 for adjacent i
and j, C;; =0 for non-adjacent i and j and arbitrary diagonal elements C;;.
The precise definition is as follows.

Let T" be a connected undirected graph with the vertex set {1,...,n}. Let
Mr denote the set of symmetric matrices M = (M;;) € RV*V associated with
I' satisfying
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<0, ijekE
1) Mi; J
=0, ij¢E

(2) M has exactly one (simple) negative eigenvalue.

M is said to satisfy the Strong Arnold Property if the relation M X = 0 with a
symmetric n x n matrix X such that X;; = 0 for any adjacent i and j and for
i = j implies that X = 0. This property is a restriction, which excludes some
degenerate choices of the edge weights and the diagonal entries.

The Colin de Verdiére invariant u(I') is the largest corank of matrices from
the set Mr satisfying the Strong Arnold Property. A matrix M € Mr with
corank wu (I') is called a Colin de Verdiere matrix of T".

After the change of sign and shift by a scalar matrix C = ¢/ — M the corank,
which is the dimension of the null space of M becomes the multiplicity of the
second largest eigenvalue of C.

Colin de Verdiere characterised all the graphs with parameter w (I') < 3.

A graph is called outerplanar if it can be drawn in the plane without crossings
in such a way that all of the vertices belong to the unbounded face of the drawing.

Theorem 4 (Colin de Verdiere, 1990).
e (') <1 ifand only if T is a path;
e (') <2 if and only if T is outerplanar;
e (') <3 if and only if T is planar.

The planarity characterization is a remarkable result, which will be important
for us. The “only if” part is relatively simple and follows from Kuratowski’s
characterisation of the planar graphs [Har]. The original proof of the “if” part
was quite involved. Van der Holst [Hol] substantially simplified it and showed
that for 3-connected planar graphs the Strong Arnold property does not play any

role.

Corollary 4.0.1 (Van der Holst, 1995). For any matrix M from Mty the corank
of M can not be larger than 3.

In [Lovl] Lovasz found an explicit way of constructing the Colin de Verdiere
matrix for any 3-connected planar graph I' using the Steinitz realisation of I" as
a l-skeleton of a convex polyhedron P. This result will be crucial for us, so we
will sketch here the main steps of his construction following [Lovl].

Recall first the notion of polarity for polyhedra in R3, see, e.g., [Zie]. Let
P be any convex polytope in R3, containing the origin in its interior. The polar
polyhedron P* is defined as
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P*={yeR?:(y,x) <1forall x € P},

where (,) denotes the scalar product in R3. It is known that P* is also a convex
polyhedron and the I-skeleton of P* is the planar dual graph T'* = (V*,&*)
with vertices corresponding to the faces of P and edges corresponding to edges
of P [Zie].

Now let P C R® be Steinitz’ realisation of graph T, so that I is isomorphic
to 1-skeleton I'(P). We can always assume that P contains the origin inside it.
Consider its polar polyhedron P*.

Let u; and u; be two adjacent vertices of P, and ws and wg be the
endpoints of the corresponding edge of P*. Then by the definition of polarity
we have

(wr,ui) = (wg,u;) = 1.
This implies that ws — w, is perpendicular to u;, and similarly to u;. Hence
the vectors wy —wg and the cross-product u; x u; are parallel and we can find
the coefficients M;; such that

wf — Wg = ng(ui X Uj).

We can always choose the labelling of wy and w, in such a way that M;; <O0.
This defines M;; for adjacent i # j. For non-adjacent i and j we define
M;; to be zero. To define M;; consider the vector

/4
U; = E M,'jltj.
j~i
Then
/
Ui Xu; = E Miju; X u; = E (wr —wg),

j~i
where the last sum is taken over all edges fg of the face of P* corresponding
to i, oriented counterclockwise. Since this sum is zero we have

7
u,-xui=0,

which means that u; and u: are parallel. Therefore we can define M;; by the
relation
U, = —M;' iUj.

Theorem 5 (Lovasz, 2000). The matrix M described above is a Colin de Verdiere
matrix for the graph T.

Indeed by construction M has the right pattern of zeros and negative elements.
The condition u:. = —M,;;u; can be written in the form
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Z M,‘j Uj = 0.
J

This means that each coordinate of the u; defines a vector in the kernel of M
and hence M has corank at least 3. But by Corollary 4.0.1 it can not be larger
than 3, so the corank is 3 and thus maximal.

To prove that M has exactly one negative eigenvalue one can use the classical
Perron-Frobenius theorem, see e.g. [Gan].

Theorem 6 (Perron-Frobenius, 1912). If a real matrix has non-negative entries
then it has a nonnegative real eigenvalue A which has maximum absolute value
among all eigenvalues. This eigenvalue A has a real eigenvector with non-
negative coordinates. If the matrix is irreducible, then A has multiplicity | and
the corresponding eigenvector can be chosen to be positive.

Choosing sufficiently large ¢ > 0 we have the matrix ¢/ — M, which has
non-negative entries and is irreducible, so we can apply the Perron-Frobenius
Theorem to conclude that the smallest eigenvalue of M has multiplicity 1. It
must be negative since we know that the eigenvalue 0 has multiplicity at least 3.
The fact that there are no other negative multiplicities requires considerable work
using the connectivity of the space of Steinitz’ realisations, see [Lovl].

Conversely, having a Colin de Verdiere matrix M € Mr one can consider
the following null space representation v :V ={1,2,...,n} — R? (see [LS]).

Choose a basis a1,a,az in the kernel of M and consider a 3 xn matrix X
with rows being the coordinates of a;,as,as. Then the columns u;,i =1,...,n
of this matrix give the set of 3-vectors, defining the map v. The problem is that
in general they will not be vertices of a convex polyhedron, but Lovédsz [Lovl]
showed that after some scaling u; — p;u; this is the case (such a scaling he
called proper). At the level of the Colin de Verdiére matrices this corresponds
to the change M — DMD, where D = diag (uy,...,n) iS a non-degenerate
diagonal matrix, which obviously preserves the properties of Mr.

Theorem 7 (Lovész, 2000). For a 3-connected planar graph T any Colin de
Verdiére matrix M € Mr can be properly scaled, so that null space representation
gives a convex polyhedron with I-skeleton isomorphic to T".

Note that the change of basis in the kernel of M corresponds to a linear
transformation of R3, so the corresponding polyhedron is defined only modulo
affine transformation.

Now we are ready to prove our main result.
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5. Proof of the main theorem

Let G be a Platonic group and I" a G -invariant planar 3-connected graph.

We know after Steinitz that I" can be realized by a 3-dimensional convex
polyhedron P, but in the presence of symmetry Mani [Man] showed that there
is a symmetric realisation Pg C R3.

Theorem 8 (Mani, 1971). There exists a convex polyhedron Pg C R® with the
group of isometries isomorphic to G and with I-skeleton isomorphic to T.

Since I' is planar and 3-connected, its Colin de Verdiere invariant w(I") must
be 3. Let M be the Colin de Verdiere matrix given by Lovdsz’ construction
applied to Mani’s version of Steinitz realisation Pg.

Let N be the normalised adjacency matrix (4). We know that the matrix of
the Buffon transformation B is related to N by

1
B= 5D*%ur + N)D?

and that its largest eigenvalue is A9 = 1. Let A; be the second largest eigenvalue
of B. We would like to show that it has multiplicity 3.
To do this consider the symmetric matrix

. 1 1
B=-sN+ (Al - 5)1.
It is easy to see that B € Mr and that the corank of B is precisely the
multiplicity of A;.
Define a parameter family of matrices

(5) M,=(1-0)M—tB, tel01]

where M is the Colin de Verdiere matrix defined above.

Since M; is G -invariant, the group G acts on the kernel of M;. When
t =0 we know that the kernel of M(0) = M has dimension 3 and by Lovisz’
result [Lovl] the corresponding representation of G is standard geometric by the
isometries of Pg.

Since this representation is irreducible and the set of 3-dimensional rep-
resentations of G is discrete, by continuity arguments the kernel will remain
3-dimensional geometric representation for all ¢ € [0, 1], in particular for ¢t = 1.

These arguments will not work only if O collides with another eigenvalue.
But this could not happen with the negative eigenvalue because of the Perron-
Frobenius theorem. In particular, all matrices M, belong to Mr. If this happens
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with a positive eigenvalue we will have the corank of the corresponding M, to
be at least 4, which contradicts the Colin de Verdiere result.

Thus we have proved that the kernel of M; = — B is 3-dimensional, and hence
the same is true for the subdominant eigenspace of the Buffon operator B. The
limiting shape is given essentially by the null space representation construction,
but the proper scaling may not hold. However, the very existence of a proper
scaling [Lovl, LS] and the assumption of simplicity imply that the corresponding
vectors u; are the vertices of a certain star-shaped polyhedron with 1-skeleton
isomorphic to I'. The triakis tetrahedron example below shows that the proper

scaling is indeed not automatic, so the convexity property does not necessary
hold.

This completes the proof of Theorem 1.

6. Concluding remarks

The Buffon regularisation procedure can be interpreted as search of an ideal
shape of a given polyhedron and in that sense can be considered as one of the
earliest examples of the trend, popular in modern differential geometry.

For manifolds this usually leads to the solutions of certain nonlinear PDEs
like the mean curvature flow in the theory of minimal surfaces [Hui] or the
celebrated Ricci flow in Thurston’s geometrization programme [MT]. Our case
is conceptually closer to the description of the minimal submanifolds in the unit
sphere using the eigenfunctions of the Laplace-Beltrami operator, see [KN, Tak].

The main difference with the differential case is that the generic graphs are
much less regular objects than manifolds, even under our assumption of Platonic
symmetry. The crucial thing here is a large multiplicity of the second eigenvalue
of the Buffon operator. How to guarantee this is a good question.

The symmetry assumption seems to be natural. In this relation we would
like to mention an interesting result of Mowshowitz [Mow], who showed that if
all eigenvalues of the adjacency matrix A of a graph are different, then every
automorphism of A has order 1 or 2. Some interesting related results for the
graphs with vertex transitive group action can be found in [IP]. Note that in our
case the group action is far from being vertex transitive.

An interesting question concerns the decomposition of F()) into the ir-
reducible G -modules with respect to the Buffon spectrum. We saw that the
geometric representation always appears at the subdominant level, but we do not
know much about higher levels. For the regular polyhedra the answer is given in
Appendix A.
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It would be interesting to understand what our geometric analysis means for
related random walk on the corresponding graphs.

Finally, a natural question is what happens in higher dimension. We believe
that for the simplicial polyhedra we should expect similar result if we assume
the symmetry under an irreducible Coxeter group. Note that in dimension 4 we
have 6 regular polyhedra with the symmetry groups A4 = S5, By, Fy and Hy,
while in dimension more than 4 we have only analogues of tetrahedron, cube and
octahedron.

Acknowledgements. We are grateful to Jenya Ferapontov, Steven Kenny, Boris
Khesin and Liszl6 Lovdsz for very helpful discussions. Special thanks are to
Graham Kemp, who was part of these discussions for quite a while.

Appendix
A. The symmetry groups of Platonic solids and their characters

The symmetry group of a regular tetrahedron is S4 and is isomorphic to the
permutation group of the vertices.

The full symmetry group of the octahedron is the same as for the cube:
G = S4xZy. Sy is the rotation subgroup, which is isomorphic to the permutation
group of the 4 long diagonals, and Z, corresponds to the central symmetry of
the cube.

For the icosahedron and dodecahedron the full symmetry group is known to
be As x Z,, where As C S5 is the alternating subgroup of S5 describing the
rotational symmetry and Z, is again the central symmetry of the solids.

The irreducible representations of the group G = H x Z, have the the
form V; ® V>, where V; and V, are irreducible representations of H and Z,
respectively. Note that 1, is either trivial or sign representation of Z,, which
we will denote respectively by 1 and ¢. Thus we need only the character tables
of the groups S4 and As, which in the notations of Fulton and Harris [FH] are
given below in Tables 1 and 2.

With these notations the geometric representations are: V' for tetrahedral group
G =S4, eV = V' ®e for cube/octahedral group G = Sy xZ, and ¢Y =Y ®¢
for icosahedral/dodecahedral group G = A5 x Z,.

The corresponding decompositions of the space of functions on the vertices
into irreducible G -modules are

(6) FTy=UesV
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TABLE 1
The character table of S4

24 1 6 8 6 3

5i 1 (12) (123) (1234) (12)(34)
U 1 1 1 1 1

U’ 1 —]1 1 —1 1

V 3 1 0 -1 —1
%44 3 -1 0 1 -1
|74 2 0 -1 0 2

TaBLE 2

The character table of As

60 1 20 15 12 12
As 1 (123) (12)(34) (12345) (21345)
U 1 1 1 1
V 4 1 0 -1 -1
w 5 -1 1 0 0
z 3 0 -1 5 =

for tetrahedron,

(7) FO)y=UesV' W

for octahedron,

(8) FCO)=UoseV' oV @elU’

for cube,

) F)=U®YPW PeZ

for icosahedron,

(10) FD)y=UdecY W DeVRVDeZ

for dodecahedron.

We have ordered them according to the appearance in the spectrum of the
Buffon operator. It turns out that in all these cases the spectral decomposition
coincides with G -decomposition (see the examples below). Note that the first two
are always trivial and geometric representations in agreement with our result.
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B. Examples of Buffon realizations of polyhedra

For the polyhedra P with combinatorial structure of Platonic solids the Buffon
procedure leads to the polyhedron Pp, which is affine equivalent to the regular
realisation of P.

Since in the regular case the Buffon matrix B can be replaced by the adjacency
matrix A the calculations are essentially the same as in [McC], where one can
find a lot more experimental data. The calculation of spectra of regular polytopes
can be found in [ST].

We present here the most instructive examples of Buffon realisations of regular,
Archimedean and Catalan solids. All the calculations and pictures were made using
Mathematica. More details with explicit Buffon realisations can be found in the
Arxiv version of this paper [SVW].

Recall that the Archimedean solids (also referred to as the semi-regular
polyhedra) are the convex polyhedra with faces being regular polygons of two
or more different types arranged in the same way about each vertex. Solids
with a dihedral group of symmetries (e.g., regular prisms and antiprisms) are
not considered to be Archimedean solids. With this restriction there are 13
Archimedean solids. For Archimedean solids the affine B-regular version is
in general is not affine equivalent to the standard one (see below the example of
truncated cube).

The Catalan solids are duals of the Archimedean solids. The Catalan solids
are convex polyhedra with regular vertex figures (of different types) and with
equal dihedral angles. For Catalan solids the affine B -regular versions may not
be convex or, in non-simplicial case, may even not exist (see the examples below).

We start with the regular cases of icosahedron and dodecahedron to show the
relation with G -decomposition and to look at the embeddings related to other
eigenvalues.

FiGUrE 4
The icosahedron and affine great icosahedron
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The Icosahedron. The corresponding Buffon spectrum is:

{1(1), % (5 + JE)m , ?5), 1—10 (5 - fs)m}

in agreement with (9).

(3)
The eigenspaces corresponding to the eigenvalues 1—10 (5 -= \/5) describe

respectively an affine regular icosahedron and affine great icosahedron, which is
one of four Kepler-Poinsot regular star polyhedra (see Fig. 4).

The eigenspace corresponding to the eigenvalue % describes the 5-dimensional
realisation of an icosahedron as a 5-simplex: 6 pairs of opposite vertices identified

with 6 vertices of the simplex.

The Dodecahedron. The corresponding Buffon spectrum is

1 3 20 1@ 1@ 4 3)
1(1),_ 3 5 s Y ~ y - T 3_ 5
{ 6( +‘/_) 3 '2 6 6( ‘/_)

in agreement with (10).

The eigenspaces corresponding to the second highest eigenvalue A, =
%(3 + «/5) and to its conjugate A¢ = %(3 — «/3) describe respectively affine
versions of the dodecahedron and the great stellated dodecahedron, which is
another Kepler—Poinsot polyhedron (see Fig. 5).

It is a bit puzzling that the remaining two Kepler-Poinsot polyhedra (small
stellated dodecahedron and great dodecahedron) seem to not appear in the Buffon
approach.

The eigenvalue % leads to the 5-dimensional embedding of dodecahedron

with “broken faces”. It would be interesting to understand the geometry of the 4-
dimensional embeddings corresponding to % and é. Since in the second case the
opposite vertices identified it corresponds to the representation V' in agreement

with (10).
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o

FIGURE 5
The dodecahedron and affine great stellated dodecahedron

The Truncated Cube. This is one of the Archimedean solids, for which Buffon
realisation is not affine equivalent to the standard one.
The corresponding Buffon spectrum is:

1 3) 56 2 1 1B 4 3 10
10, = (7+V17) .2 .5 o L5 LS (1-V1T) 2
{ 12( * ) 6 '3 2 '3 12( 6

The facing octagons of the Buffon realisation are not affine regular: one
can check that (x2; — x14) = 3°""f:‘/ﬁ(x1 — x5) while for the regular octagon
(x220 — x14) = (1 + v/2)(x; — x5). Thus the affine B-regular truncated cube
obtained by the Buffon procedure is not an affine version of the regular truncated
cube (see Fig. 6).

FIGURE 6
The truncated cube and affine B -regular truncated cube

Triakis Tetrahedron. This is the Catalan solids dual to the truncated tetrahedron.

This is the simplest case when convexity does not hold for Buffon realisation (see
Fig. 7).
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FIGURE 7
Triakis tetrahedron and its affine B -regular version, which is star-shaped but not convex

The corresponding Buffon eigenvalues are:

L) 1(3) 1(3) 1(1)
12’3 4

In the case of the eigenvalue % the corresponding vertices coalesce together

pairwise and form a general tetrahedron.

The Rhombic Dodecahedron. This is the Catalan solid dual to cuboctahedron.
We will see that it does not admit Buffon realisation.
The corresponding eigenvalues are:

1© 1

(020249 1%, 1 0-5) 0]

The eigenspaces corresponding to %(3 + /3) fail to give polyhedra with
combinatorial structure of the 1-skeleton of the rhombic dodecahedron because of

FiGuUrE 8
The rhombic dodecahedron and the corresponding subdominant
eigenspace realisation: all the faces are broken (non-planar)
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the “broken faces”. A particular graph realisation obtained from the subdominant
eigenspace is shown in Fig. 8.

Pentakis Dodecahedron. This is the Catalan solid dual to the truncated icosa-
hedron, which we mentioned in the Introduction. A version with all edges of
equal length featured on Leonardo’s drawing (see Fig. 2) is called cumulated
dodecahedron.

The corresponding Buffon eigenvalues are:

)
I 1 )
10, — (60 £ 5V54 4725+ 240\/5) — (65+v3%3) ",

'120 " 120
1 8\ 1@
—12-5+,/29-—] .5 ,
24 ( V5 + JE) 2
1 ® 1@ @)
=5 (65— 385) .2 .o (60 +5v5— /725 + 240J§) ,
3
1 48 1
— [ 1Z—f5— 29— ] .- .
24 ( ¥ \/5) 4

The Buffon version is convex and looks quite similar to the usual one, but the
pyramids are slightly higher (see Fig. 9). The ratios of the height of a pyramid to
the distance of its top vertex from the centre in the Catalan and Buffon cases are

1/3(1 = 1/4/5) ~ 0.184 and 1 — 1/12(+/5 4+ /29 + 48/+/5) ~ 0.222 respectively.

The self-intersecting realisations corresponding to other multiplicity 3 eigen-
values are shown at Fig. 10.

FiGURE 9
The pentakis dodecahedron and its affine B -regular version
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Ficure 10

Eigenspace realisation corresponding to Ag = (60 + 5+/5 — v/ 725 + 240+/5)/120
conjugated to A,. The pyramids are built inside and go through the dodecahedron.

* *

FiGure 11
Eigenspace realisations corresponding to two remaining multiplicity 3 eigenvalues
A4 and Ag: great icosahedron and great stellated dodecahedron with extra vertices.
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