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In search for a perfect shape of polyhedra:
Buffon transformation

Veronika Schreiber, Alexander P. Veselov and Joseph P. Ward

Abstract. For an arbitrary polygon generate a new one by joining the centres of consecutive

edges. Iteration of this procedure leads to a shape which is affine equivalent to a regular

polygon. This regularisation effect is usually ascribed to Count Buffon (1707-1788). We

discuss a natural analogue of this procedure for 3-dimensional polyhedra, which leads to

a new notion of affine B -regular polyhedra. The main result is the proof of existence

of star-shaped affine B -regular polyhedra with prescribed combinatorial structure, under

partial symmetry and simpliciality assumptions. The proof is based on deep results from

spectral graph theory due to Colin de Verdiere and Loväsz.

Mathematics Subject Classification (2010). Primary: 52B10; Secondary: 58C40.

Keywords. Affine polyhedra, spectral graph theory.

According to David Wells [Well] the following puzzle first appeared in Edward
Riddle's edition (1840) of the Recreations in Mathematics and Natural Philosophy
of Jacques Ozanam, where it was attributed to Count Buffon (1707-1788), a French

naturalist and the translator of Newton's Principia.
Consider an arbitrary polygon. Generate a second polygon by joining the

centres of consecutive edges. Repeat this construction (see Fig. 1).

1. Introduction

Figure 1

Iterations of Buffon transformations
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It is easy to see that the process converges to a point - the centroid of the

original vertices (and therefore the centroid of the vertices of any polygon in the

sequence). Buffon observed a remarkable regularization effect of this procedure:
the limiting shape of the polygon is affine regular. Here a polygon is called affine

regular if it is affine equivalent to a regular polygon.
In fact a similar phenomenon was already observed since Roman times. When

creating mosaics Roman craftsmen achieved more regular pieces by breaking the

corners, so effectively using the same procedure [Mos], The explanation of Buffon

puzzle is based on simple arguments from linear algebra, see, e.g., [BGS, Warl]
and next section.

The situation here is different from the theory of the pentagram map, initiated

by R. Schwartz in 1990s and extensively studied in recent years, where the

dynamics is nonlinear, quasi-periodic and integrable in Arnold-Liouville sense

(see [KS, OST] and references therein).
In this paper we will study the following natural 3-dimensional version of the

Buffon procedure [VW], Let P be a simplicial polyhedron in R3, which is a

polyhedron having all faces triangular. Define its Buffon transformation B(P) as

the simplicial polyhedron with vertices B(v), where for each vertex v of P the

new vertex B(v) is defined as the centroid of the centroids of all edges meeting
at v. The question is what is the limiting shape of Bn(P) as n goes to infinity.

Unfortunately, the answer in general is disappointing: the limiting shape will
be one-dimensional. Indeed the same arguments from linear algebra show that this

shape is determined by the subdominant eigenspace of the corresponding operator
on the graph T(P), which is the 1-skeleton of P (see the details below), and

this eigenspace generically has dimension 1. This means that in order to have a

sensible limiting shape we need to add some assumptions on the initial polyhedron
P.

Let G c 0(3) be one of the symmetry groups G T, 0,1 of the Platonic

solids: tetrahedron, octahedron/cube, icosahedron/dodecahedron respectively.
Assume that the combinatorial structure of the initial polyhedron P is G -invariant,
which means that G faithfully acts on the graph r(P).

Our main result is the following theorem.

Theorem 1. Let P be a simplicial polyhedron in R3 with G -invariant combinatorial

structure. Then for a generic P the limiting shape obtained by repeatedly

applying Buffon procedure to P is a star-shaped polyhedron Pg The vertices

of Pg are explicitly determined by the subdominant eigenspace of the Buffon

operator, which in this case has dimension 3.

The proof is based on the deep results from the spectral theory on graphs due

to Colin de Verdiere [CdV] and in particular due to Loväsz et al [HLS, Lovl, LS],
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who studied the eigenspace realisations of polyhedral graphs. Both assumptions
of the theorem, namely simpliciality and platonic symmetry, are essential.

Recall that the polyhedron P is called star-shaped (not to be mixed with
star polyhedra like Kepler-Poinsot) if there is a point inside it from which one

can see the whole boundary of P, or equivalently, the central projection gives a

homeomorphism of the boundary of P onto a sphere. The precise meaning of
the term "generic" will be clear from the next section.

Let us call polyhedron P affine B-regular if B(P) is affine equivalent
to P. In dimension 2 this is equivalent to affine regularity (see next section).
Thus the Buffon procedure produces affine B -regular version Pr from a generic

polyhedron P with the above properties. As far as we know the notion of the

affine regularity for polyhedra with non-regular combinatorial structures was not
discussed in the literature before.

For a generic polyhedron P with combinatorial structure of a Platonic solid
the corresponding polyhedron Pr is affine regular, which means that it is affine

equivalent to the corresponding Platonic solid. For the Archimedean and Catalan

solids however, this is no longer true, see the example of pentakis dodecahedron

(dodecahedron with pyramids build on its faces) on Fig. 2 and in the Appendix.

Leonardo da Vinci's drawing of pentakis dodecahedron from Luca Pacioli's book "De
divina proportione" and Mathematica image of its Buffon realisation. Leonardo's

version is different both from Catalan and Buffon realisations and probably corresponds

to the so-called cumulated dodecahedron having all the edges of equal length.

Figure 2



264 V. Schreiber, A. P. Veselov and J. P. Ward

Note that there are plenty of polyhedra P with G -invariant combinatorial

structures, which can be constructed from the Platonic solids using Conway

operations [Con], In particular, one will have a simplicial polyhedron by applying
to any such P the operation, which Conway called kis and denoted by k,
consisting of building the pyramids on all the faces. Many examples of the

corresponding combinatorial types can be found in chemistry and physics literature
in relation with the famous Thomson problem, see, e.g., [Edm],

For non-simplicial polyhedra the Buffon transformation usually breaks the

faces, which in general are not recovering even in the limit (see Fig. 8 in

Appendix B).

The platonic symmetry keeps the limiting shape 3-dimensional, preventing
collapse to lower dimension. The dihedral symmetry is not enough: one can

check that a polyhedron with prismatic combinatorial structure will collapse to
the corresponding affine regular polygon.

The star-shape property of the limiting shape is probably the strongest we can

claim since the convexity may not hold as the example of the triakis tetrahedron

shows (see Fig. 7 in the Appendix).
The structure of the paper is as follows. In Section 2 we start with the

(well-known) solution of the Buffon puzzle for polygons to explain the main
ideas and relation to linear algebra. Then, in Section 3, we define the Buffon
transformation for polyhedra and review the classical Steinitz theorem which

gives graph-theoretical characterisation of 1-skeletons of convex polyhedra. In
Section 4 we introduce the main tools from spectral graph theory: the Colin
de Verdiere invariant and null space realisation for polyhedral graphs studied by
Foväsz et al. In Section 5 we use them and representation theory of finite groups
to prove our main result. In Appendix A we present the character tables for the

polyhedral groups and the corresponding decomposition of the space of functions

on the vertices of Platonic solids into irreducible components. In Appendix B we

give the spectra of the Buffon operators for some combinatorial types and the

corresponding shapes of affine B -regular polyhedra. Appendix B takes almost a

half of the paper, but we thought that it would be instructive to show all the

aspects of the Buffon approach in various specific examples.

2. Buffon transformation for polygons

Consider an arbitrary n -gon P with vertices described by the column vector

r [ri,r2, ...,r„], rt K2
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(and an integer n > 3). Generate a second polygon P' by joining the centres

of the consecutive edges of P. The corresponding transformation acts on the

vertices of P as follows:

r'i ~(r, + ri+i).

In matrix form this can be described as

r Br

where " l
2 2

0 0
"

B
0

2
1

2 * 0

1

_ 2 0 0
1

2 _

After k transformations we obtain a polygon with the vertices

rk Bkr.

Following Buffon we claim that for generic initial polygons P the limiting shape

of the polygons Pk as k increases becomes affine regular. Recall that a polygon
is affine regular if it is affine equivalent to a regular polygon.

To prove this we use the following result from Linear Algebra (see, e.g.,
Theorems 5.1.1, 5.1.2 in [Wat]).

Theorem 2 (Subspace Iteration Theorem). Let A be a real matrix and let

Spec(A) {Ai, A.2,..., A„} be the set of its eigenvalues (in general, complex
and with multiplicities) ordered in such a way that

|Ai| |A2| |Ajt| > |Ajt+1| > > |A„|.

Let W and W' be the dominant and complementary invariant subspaces
associated with A],..., A^ and A^+i,...,A„ respectively and m dim W. Then

for any m -dimensional subspace U Cl" such that U IT W' {0} the image of
U under the iterations of A

An(U) -+ W
n-+ oo

tends to the dominant subspace in the Grassmannian Gm(M").

To apply this to our case first note that

B=l-(1 + T),

where the n x n matrix
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"
0 1 0 0

"

0 0 1 0

1 0 0 0

has the property Tn I and the eigenvalues are n -th roots of unity. The spectrum
of B is therefore

Spec(B) + ^sj, Sj e^rJ ,j =0,1 « — l|.

The eigenvalues of maximum modulus, other than A0 1, are Ai \ + \e22^~

and its complex conjugate A2 \ + \e~2Tr Ai.
The dominant subspace W in this case corresponds to Ao 1 and is generated

by the corresponding eigenvector v0 (1,1,...,1):

W {(r,r, ...,r)}.

The previous result can be interpreted that as n increases Bn(P) converges to
a point. To see the limiting shape we should look at the subdominant invariant
subspace corresponding to Ai and A2.

Geometrically one can do this by assuming that the centroid of the vertices
is at the origin (centre of mass condition). This means that we restrict the action

of B on the invariant subspace

Vc {(ri,...,r„) : ri H V rn 0}.

This eliminates the eigenvalue Ao 1 and the new dominant subspace W

corresponding to Ai \ + |e, A2 X\ is precisely the one describing the

limiting shape. One can easily check that

/ 1 \ / 1 \ / 1 \ / 0 \
e e cosf

cosf
sin2-f

sinfe2

'
£2

a + b

V en~l V en~l / V / V /
Choosing a and b to be orthogonal unit vectors we see that the corresponding
vertices form a regular polygon. In general, the dominant subspace W describes

all affine regular polygons. The other eigenspaces correspond to the affine regular
"polygrams".

For example, when n 5 we have the eigenvalues



In search for a perfect shape of polyhedra 267

1 1 2zn T-Ai — - + -e « Ä2 — Ai,

and the corresponding eigenspaces

(\s
COS^r-

An
5

6n
5

8n

w cos

COS

COS

w

1 1 47ZI

A3 —I—e~$~
2 2

1

COS^f

COS^f

COS^f

y cos^f

+ b

0 \
sin^f
sin^f
sin^f

\ sin?T

+ b

0

sin^f
sin^f
sin^f

y sin^f

A4 — A3

describing the affine regular pentagons and pentagrams respectively:

Figure 3

Regular pentagon and pentagram

3. Buffon transformation for polyhedra

Recall first some basic notions of graph theory and the relation with polyhedra.
A graph T (V, £) consists of a finite set V (vertices), together with a subset

£ c V x V (edges). We will assume that the graph has no loops [/,/], i e V and

is undirected which means that for each edge [;, j] e £ we also have [j, /'] e £.
We say that the vertices i and j are adjacent and write i ~ j if there is an

edge [/, j ] e £ connecting them. The degree dt of a vertex i is the number of
the adjacent vertices.

A graph is connected when there is a path between any two vertices. A graph
is called 3-connected if for every pair of vertices i and j there are at least three
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paths from i to j, whose only vertices (or edges) in common are i and j.
Equivalently a graph is 3-connected if it remains connected after removal of less

than 3 vertices.

A graph is called planar if an isomorphic copy of the graph can be drawn in
a plane, so that the edges which join the vertices only meet (intersect) at vertices.

For every polyhedron P one can consider the 1-skeleton r(P), which is the

graph formed by the vertices and edges of P.

One of the oldest results in polytope theory is a remarkable theorem by Ernst
Steinitz. It is often referred to as the Steinitz' fundamental theorem of convex

polyhedra and gives a completely combinatorial characterization of the graphs T,

which can be realised as 1-skeletons of 3-dimensional polytopes (see [Gru, Zie]).

Theorem 3 (Steinitz, 1922). A graph T is isomorphic to the 1-skeleton of a

3-dimensional convex polyhedron P if and only if F is planar and 3-connected.

The proof given by Steinitz uses a combinatorial reduction technique. A

sequence of transformations of T into simpler graphs lead to the tetrahedral

graph K4. Reversing the order of these operations one obtains a polyhedral
realization of the original graph T.

A graph is called regular when every graph vertex has the same degree.

Let P be a simplicial polyhedron in R3 with vertices r\,...,rn. Define the

Bujfon transformation B(P) as a new polyhedron with the vertices being the

centroids of all edges, which meet at a vertex [VW, War2]:

(1) B(n) +rJ^
j~i

1

where d, is the degree of the vertex rt.
Consider also the linear Bujfon operator B : T(V) -> V(V), where F{V) is

the vector space of functions on the vertices of the graph V r(P), defined by
the same formula:

(2) B(f)(i) £-L(/(/) + /(y)), /ej(v).
j~i

1

Remark. One can define the Buffon transformation Bp by taking the centroids

of the centroids of all the faces meeting at a vertex [VW, War2], but for simplicial
polyhedra P we have a simple relation for the corresponding operators

which means that the result of the Buffon procedure on faces will be the same

as the one on edges.
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The matrix of the Buffon transformation in a natural basis in J"(V) has the

form

(3) B=l-{I + D~lA)=l-{I + P),

where A is the adjacency matrix: Ai} 1 if f is adjacent to j and 0 otherwise,
D the diagonal matrix with the degrees of vertices di on the diagonal, and P is

the matrix of transition probabilities of the Markov chain describing the random

walk on graph r : Pi} \jd} when j is adjacent to i and 0 otherwise (see

[Lov2]).
Note that unless T is a regular graph, matrix B is not symmetric. In order

to bring it to a symmetric form we introduce the normalized adjacency matrix

(4) N D~?AD~^

with matrix elements Nl} 1 / ^/dt d} if i is adjacent to j and 0 otherwise. It
is easy to see that

B i(7 4- D~?ND?) + N)Di,

so B is conjugated to the symmetric matrix B — 1/2(7 + N).
In particular, this means that all the eigenvalues of B are real. The maximal

eigenvalue is A0 1 and the corresponding eigenvector is (1,..., I )T.
Now we ask the same question: what is the limiting shape of Bn(P) when

n goes to infinity?
By the same arguments using the Subspace Iteration Theorem the answer

is given by the subdominant eigenspace of the corresponding Buffon operator
B. In general it is one-dimensional, which means that the limiting shape is

one-dimensional. However, if we assume additional symmetry we have a three-

dimensional limiting shape. To see this we need some results from spectral graph

theory, which we present in the next section.

4. Colin de Verdiere invariant and null space representation

In 1990 Yves Colin de Verdiere [CdV] introduced a new spectral graph invariant

/r(T). Roughly speaking, yu.(F) is the maximal multiplicity of the second largest

eigenvalue of the matrices C with the property CtJ C]t >0 for adjacent i
and j, Cij 0 for non-adjacent i and j and arbitrary diagonal elements Ca.
The precise definition is as follows.

Let T be a connected undirected graph with the vertex set {1Let
My denote the set of symmetric matrices M (M,y) e associated with
T satisfying
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(< 0, ij e E
(1) Mij

n • * *{= 0, I] iE
(2) M has exactly one (simple) negative eigenvalue.

M is said to satisfy the Strong Arnold Property if the relation MX 0 with a

symmetric n x n matrix X such that Xij 0 for any adjacent i and j and for
i j implies that X 0. This property is a restriction, which excludes some

degenerate choices of the edge weights and the diagonal entries.

The Colin de Verdiere invariant p. (r) is the largest corank of matrices from
the set My satisfying the Strong Arnold Property. A matrix M e My with
corank p (r) is called a Colin de Verdiere matrix of F.

After the change of sign and shift by a scalar matrix C cl — M the corank,
which is the dimension of the null space of M becomes the multiplicity of the

second largest eigenvalue of C

Colin de Verdiere characterised all the graphs with parameter p (r) < 3.

A graph is called outerplanar if it can be drawn in the plane without crossings
in such a way that all of the vertices belong to the unbounded face of the drawing.

Theorem 4 (Colin de Verdiere, 1990).

• A (O < 1 if and only if T is a path;

• P (O <2 if and only if T is outerplanar;

• I1 (r) < 3 if and only if T is planar.

The planarity characterization is a remarkable result, which will be important
for us. The "only if' part is relatively simple and follows from Kuratowski's
characterisation of the planar graphs [Har], The original proof of the "if' part
was quite involved. Van der Holst [Hol] substantially simplified it and showed

that for 3-connected planar graphs the Strong Arnold property does not play any
role.

Corollary 4.0.1 (Van der Holst, 1995). For any matrix M from My the corank

of M can not be larger than 3.

In [Lovl] Loväsz found an explicit way of constructing the Colin de Verdiere

matrix for any 3-connected planar graph T using the Steinitz realisation of F as

a 1-skeleton of a convex polyhedron P. This result will be crucial for us, so we

will sketch here the main steps of his construction following [Lovl],
Recall first the notion of polarity for polyhedra in M3, see, e.g., [Zie], Let

P be any convex polytope in M3, containing the origin in its interior. The polar
polyhedron P* is defined as
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P* {y eR3 : (y,x) < 1 for all x e P},

where denotes the scalar product in R3. It is known that P* is also a convex

polyhedron and the 1-skeleton of P* is the planar dual graph F* (V* ,£*)
with vertices corresponding to the faces of P and edges corresponding to edges

of P [Zie].
Now let P cl3 be Steinitz' realisation of graph T, so that r is isomorphic

to 1-skeleton r(F). We can always assume that P contains the origin inside it.
Consider its polar polyhedron P *.

Let u, and u} be two adjacent vertices of P, and w/ and wg be the

endpoints of the corresponding edge of P*. Then by the definition of polarity
we have

(10/, U;) (lVg,U{) 1.

This implies that w/ — wg is perpendicular to u,-, and similarly to u}. Hence

the vectors wy — wg and the cross-product w, x Uj are parallel and we can find
the coefficients Ml} such that

wy — wg Mlj{ul x Uj).

We can always choose the labelling of w/ and wg in such a way that MtJ < 0.

This defines for adjacent i ± j. For non-adjacent i and j we define

Mij to be zero. To define Mi(- consider the vector

u'i

J~i

Then

Ui X Uj ^ MijUi XUj — wg),
j~i

where the last sum is taken over all edges fg of the face of P* corresponding
to i, oriented counterclockwise. Since this sum is zero we have

Uj xu, 0,

which means that u, and u\ are parallel. Therefore we can define Mu by the

relation

ut —Muul.

Theorem 5 (Loväsz, 2000). The matrix M described above is a Colin de Verdiere

matrix for the graph T.

Indeed by construction M has the right pattern of zeros and negative elements.

The condition u'i —MitUt can be written in the form
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y; m,j Uj o.

j
This means that each coordinate of the u, defines a vector in the kernel of M
and hence M has corank at least 3. But by Corollary 4.0.1 it can not be larger
than 3, so the corank is 3 and thus maximal.

To prove that M has exactly one negative eigenvalue one can use the classical

Perron-Frobenius theorem, see e.g. [Gan],

Theorem 6 (Perron-Frobenius, 1912). If a real matrix has non-negative entries
then it has a nonnegative real eigenvalue A which has maximum absolute value

among all eigenvalues. This eigenvalue A has a real eigenvector with non-

negative coordinates. If the matrix is irreducible, then A has multiplicity 1 and
the corresponding eigenvector can be chosen to be positive.

Choosing sufficiently large c > 0 we have the matrix cl — M, which has

non-negative entries and is irreducible, so we can apply the Perron-Frobenius
Theorem to conclude that the smallest eigenvalue of M has multiplicity 1. It
must be negative since we know that the eigenvalue 0 has multiplicity at least 3.

The fact that there are no other negative multiplicities requires considerable work

using the connectivity of the space of Steinitz' realisations, see [Lovl].
Conversely, having a Colin de Verdiere matrix M e Mr one can consider

the following null space representation v : V {1,2,...,«} —> M3 (see [LS]).
Choose a basis a\,az,a^ in the kernel of M and consider a 3 x n matrix X

with rows being the coordinates of a\, a2,a3. Then the columns u,, i l,...,n
of this matrix give the set of 3-vectors, defining the map v. The problem is that

in general they will not be vertices of a convex polyhedron, but Loväsz [Lovl]
showed that after some scaling u, — ßtu, this is the case (such a scaling he

called proper). At the level of the Colin de Verdiere matrices this corresponds
to the change M -* DMD, where D diag (p.\,..., /i„) is a non-degenerate

diagonal matrix, which obviously preserves the properties of Mr-

Theorem 7 (Loväsz, 2000). For a 3-connected planar graph T any Colin de

Verdiere matrix M e Mr can be properly scaled, so that null space representation
gives a convex polyhedron with 1-skeleton isomorphic to V.

Note that the change of basis in the kernel of M corresponds to a linear
transformation of M3, so the corresponding polyhedron is defined only modulo
affine transformation.

Now we are ready to prove our main result.
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5. Proof of the main theorem

Let G be a Platonic group and T a G -invariant planar 3-connected graph.
We know after Steinitz that T can be realized by a 3-dimensional convex

polyhedron P, but in the presence of symmetry Mani [Man] showed that there

is a symmetric realisation Pq cl3.

Theorem 8 (Mani, 1971). There exists a convex polyhedron Pq c R3 with the

group of isometries isomorphic to G and with 1-skeleton isomorphic to T.

Since T is planar and 3-connected, its Colin de Verdiere invariant /z(F) must
be 3. Let M be the Colin de Verdiere matrix given by Loväsz' construction

applied to Mani's version of Steinitz realisation Pg.
Let N be the normalised adjacency matrix (4). We know that the matrix of

the Buffon transformation B is related to N by

and that its largest eigenvalue is Ao 1. Let Ai be the second largest eigenvalue
of B. We would like to show that it has multiplicity 3.

To do this consider the symmetric matrix

It is easy to see that B e My and that the corank of B is precisely the

multiplicity of Ai.
Define a parameter family of matrices

where M is the Colin de Verdiere matrix defined above.

Since Mt is G -invariant, the group G acts on the kernel of Mt. When

t 0 we know that the kernel of M{0) M has dimension 3 and by Loväsz'
result [Lovl] the corresponding representation of G is standard geometric by the

isometries of Pq.
Since this representation is irreducible and the set of 3-dimensional

representations of G is discrete, by continuity arguments the kernel will remain
3-dimensional geometric representation for all t e [0,1], in particular for t 1.

These arguments will not work only if 0 collides with another eigenvalue.
But this could not happen with the negative eigenvalue because of the Perron-

Frobenius theorem. In particular, all matrices Mt belong to My- If this happens

B -D"2(7 + V)£>2

(5) M, (1 -t)M -t B re [0,1]
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with a positive eigenvalue we will have the corank of the corresponding Mt to
be at least 4, which contradicts the Colin de Verdiere result.

Thus we have proved that the kernel of Mi - B is 3-dimensional, and hence

the same is true for the subdominant eigenspace of the Buffon operator B. The

limiting shape is given essentially by the null space representation construction,
but the proper scaling may not hold. However, the very existence of a proper
scaling [Lovl, LS] and the assumption of simplicity imply that the corresponding
vectors w, are the vertices of a certain star-shaped polyhedron with 1-skeleton

isomorphic to T. The triakis tetrahedron example below shows that the proper
scaling is indeed not automatic, so the convexity property does not necessary
hold.

This completes the proof of Theorem 1.

6. Concluding remarks

The Buffon regularisation procedure can be interpreted as search of an ideal

shape of a given polyhedron and in that sense can be considered as one of the

earliest examples of the trend, popular in modern differential geometry.

For manifolds this usually leads to the solutions of certain nonlinear PDEs

like the mean curvature flow in the theory of minimal surfaces [Hui] or the

celebrated Ricci flow in Thurston's geometrization programme [MT]. Our case

is conceptually closer to the description of the minimal submanifolds in the unit
sphere using the eigenfunctions of the Laplace-Beltrami operator, see [KN, Tak],

The main difference with the differential case is that the generic graphs are

much less regular objects than manifolds, even under our assumption of Platonic

symmetry. The crucial thing here is a large multiplicity of the second eigenvalue
of the Buffon operator. How to guarantee this is a good question.

The symmetry assumption seems to be natural. In this relation we would
like to mention an interesting result of Mowshowitz [Mow], who showed that if
all eigenvalues of the adjacency matrix A of a graph are different, then every
automorphism of A has order 1 or 2. Some interesting related results for the

graphs with vertex transitive group action can be found in [IP]. Note that in our
case the group action is far from being vertex transitive.

An interesting question concerns the decomposition of J"(V) into the

irreducible G-modules with respect to the Buffon spectrum. We saw that the

geometric representation always appears at the subdominant level, but we do not
know much about higher levels. For the regular polyhedra the answer is given in

Appendix A.
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It would be interesting to understand what our geometric analysis means for
related random walk on the corresponding graphs.

Finally, a natural question is what happens in higher dimension. We believe

that for the simplicial polyhedra we should expect similar result if we assume
the symmetry under an irreducible Coxeter group. Note that in dimension 4 we
have 6 regular polyhedra with the symmetry groups A4 S5, B4, F4 and H4,
while in dimension more than 4 we have only analogues of tetrahedron, cube and

octahedron.

Acknowledgements. We are grateful to Jenya Ferapontov, Steven Kenny, Boris
Khesin and Läszlö Loväsz for very helpful discussions. Special thanks are to
Graham Kemp, who was part of these discussions for quite a while.

Appendix

A. The symmetry groups of Platonic solids and their characters

The symmetry group of a regular tetrahedron is S4 and is isomorphic to the

permutation group of the vertices.

The full symmetry group of the octahedron is the same as for the cube:

G S4 x Z2. S4 is the rotation subgroup, which is isomorphic to the permutation

group of the 4 long diagonals, and Z2 corresponds to the central symmetry of
the cube.

For the icosahedron and dodecahedron the full symmetry group is known to
be A5 x Z2, where As C S5 is the alternating subgroup of S5 describing the

rotational symmetry and Z2 is again the central symmetry of the solids.

The irreducible representations of the group G H x Z2 have the the

form V\ ® V2, where V\ and V2 are irreducible representations of H and Z2

respectively. Note that V2 is either trivial or sign representation of Z2, which

we will denote respectively by 1 and e. Thus we need only the character tables

of the groups S4 and A5, which in the notations of Fulton and Harris [FH] are

given below in Tables 1 and 2.

With these notations the geometric representations are: V for tetrahedral group
G S4, eV' V' ® s for cube/octahedral group G S4 x Z2 and eY Y <g> e

for icosahedral/dodecahedral group G A5 x Z2.
The corresponding decompositions of the space of functions on the vertices

into irreducible G -modules are

(6) F(T) U ® V
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Table 1

The character table of S4

24 1 6 8 6 3

s4 1 (12) (123) (1234) (12)(34)

U 1 1 1 1 1

U' 1 -1 1 -1 1

V 3 1 0 -1 -1
V' 3 -1 0 1 -1
w 2 0 -1 0 2

Table 2

The character table of A 5

60 1 20 15 12 12

As 1 (123) (12X34) (12345) (21345)

U 1 1 1 1 1

V 4 1 0 -1 -1
W 5 -1 1 0 0

Y 3 0 -1 1 + V5
2

1-V5
2

Z 3 0 -1 1 —\/5
2

l + >/5
2

for tetrahedron,

(7) J-(O) U ® eV' © W

for octahedron,

(8) T(C) U ® sV' ® V ® eU'

for cube,

(9) JF{I) U ®sY ®W © eZ

for icosahedron,

(10) F{D) U ®eY ®W ®eV ®V ®eZ

for dodecahedron.

We have ordered them according to the appearance in the spectrum of the

Buffon operator. It turns out that in all these cases the spectral decomposition
coincides with G -decomposition (see the examples below). Note that the first two
are always trivial and geometric representations in agreement with our result.
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B. Examples of Buffon realizations of polyhedra

For the polyhedra P with combinatorial structure of Platonic solids the Buffon

procedure leads to the polyhedron Pb which is affine equivalent to the regular
realisation of P.

Since in the regular case the Buffon matrix B can be replaced by the adjacency
matrix A the calculations are essentially the same as in [McC], where one can

find a lot more experimental data. The calculation of spectra of regular polytopes
can be found in [ST],

We present here the most instructive examples of Buffon realisations of regular,
Archimedean and Catalan solids. All the calculations and pictures were made using
Mathematica. More details with explicit Buffon realisations can be found in the

Arxiv version of this paper [SVW],
Recall that the Archimedean solids (also referred to as the semi-regular

polyhedra) are the convex polyhedra with faces being regular polygons of two
or more different types arranged in the same way about each vertex. Solids

with a dihedral group of symmetries (e.g., regular prisms and antiprisms) are

not considered to be Archimedean solids. With this restriction there are 13

Archimedean solids. For Archimedean solids the affine B -regular version is

in general is not affine equivalent to the standard one (see below the example of
truncated cube).

The Catalan solids are duals of the Archimedean solids. The Catalan solids

are convex polyhedra with regular vertex figures (of different types) and with
equal dihedral angles. For Catalan solids the affine B -regular versions may not
be convex or, in non-simplicial case, may even not exist (see the examples below).

We start with the regular cases of icosahedron and dodecahedron to show the

relation with G -decomposition and to look at the embeddings related to other

eigenvalues.

Figure 4
The icosahedron and affine great icosahedron



278 V. Schreiber, A. P. Veselov and J. P. Ward

The Icosahedron. The corresponding Buffon spectrum is:

\ m 1 /~\(3) 2(5) 1 / ^0)]
\imTo(5 + Vi) '? •To(5-V5) }

in agreement with (9).

i / r~\ ®The eigenspaces corresponding to the eigenvalues 15 ± V5 J describe

respectively an affine regular icosahedron and affine great icosahedron, which is

one of four Kepler-Poinsot regular star polyhedra (see Fig. 4).

The eigenspace corresponding to the eigenvalue | describes the 5-dimensional
realisation of an icosahedron as a 5-simplex: 6 pairs of opposite vertices identified
with 6 vertices of the simplex.

The Dodecahedron. The corresponding Buffon spectrum is

in agreement with (10).

The eigenspaces corresponding to the second highest eigenvalue X2

i ^3 + -v/5) and to its conjugate | ^3 — a/5^ describe respectively affine

versions of the dodecahedron and the great stellated dodecahedron, which is

another Kepler-Poinsot polyhedron (see Fig. 5).

It is a bit puzzling that the remaining two Kepler-Poinsot polyhedra (small
stellated dodecahedron and great dodecahedron) seem to not appear in the Buffon

approach.

The eigenvalue | leads to the 5-dimensional embedding of dodecahedron

with "broken faces". It would be interesting to understand the geometry of the 4-
dimensional embeddings corresponding to j and f. Since in the second case the

opposite vertices identified it corresponds to the representation V in agreement
with (10).
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Figure 5

The dodecahedron and affine great stellated dodecahedron

The Truncated Cube. This is one of the Archimedean solids, for which Buffon
realisation is not affine equivalent to the standard one.

The corresponding Buffon spectrum is:

Cm 1 / ^\(3) 5(3) 2(1) 1(5) 1(3) 1 / j—\(3) 1(5)]

J 12 ^u) .-s .5 <2 .3 •« }

The facing octagons of the Buffon realisation are not affine regular: one

can check that (X22 — xu) 3+"f^(x\ — x5) while for the regular octagon
(x22 — X14) (1 + 72)(xi — x5). Thus the affine B -regular truncated cube

obtained by the Buffon procedure is not an affine version of the regular truncated

cube (see Fig. 6).

Figure 6

The truncated cube and affine B -regular truncated cube

Triakis Tetrahedron. This is the Catalan solids dual to the truncated tetrahedron.

This is the simplest case when convexity does not hold for Buffon realisation (see

Fig. 7).
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Figure 7

Triakis tetrahedron and its affine B -regular version, which is star-shaped but not convex

The corresponding Buffon eigenvalues are:

In the case of the eigenvalue | the corresponding vertices coalesce together

pairwise and form a general tetrahedron.

The Rhombic Dodecahedron. This is the Catalan solid dual to cuboctahedron.
We will see that it does not admit Buffon realisation.

The corresponding eigenvalues are:

The eigenspaces corresponding to |(3 ± >/3) fail to give polyhedra with
combinatorial structure of the 1 -skeleton of the rhombic dodecahedron because of

j.<'»i(3 + V3)O>,I<6,.i(3-V3f.0<.»j

Figure 8

The rhombic dodecahedron and the corresponding subdominant

eigenspace realisation: all the faces are broken (non-planar)
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the "broken faces". A particular graph realisation obtained from the subdominant

eigenspace is shown in Fig. 8.

Pentakis Dodecahedron. This is the Catalan solid dual to the truncated icosa-

hedron, which we mentioned in the Introduction. A version with all edges of
equal length featured on Leonardo's drawing (see Fig. 2) is called cumulated
dodecahedron.

The corresponding Buffon eigenvalues are:

1(1),— (60 + 5V5+ 0^725 + 240 V5^ —(65+N/385VS).
120 V

V J 120 V

1 / / 48~\(3) 1(4)
— ^12 — >/5 +

y
29 —

~j=j
(65- V385)(S),^( >,-iö ^60 + 5V5-V725 + 240Vsj

1 / / 48~\(3) 1(1)
— 12-V5-./2924 y V Vs) 4

The Buffon version is convex and looks quite similar to the usual one, but the

pyramids are slightly higher (see Fig. 9). The ratios of the height of a pyramid to
the distance of its top vertex from the centre in the Catalan and Buffon cases are

1/3(1 - 1/V5) « 0.184 and 1 - 1/12(^5 + ^29 +48/^5) « 0.222 respectively.

The self-intersecting realisations corresponding to other multiplicity 3

eigenvalues are shown at Fig. 10.

Figure 9

The pentakis dodecahedron and its affine B -regular version
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Figure 10

Eigenspace realisation corresponding to As (60 + 5^5 — V725 + 240%/5)/120

conjugated to A2. The pyramids are built inside and go through the dodecahedron.

Figure 11

Eigenspace realisations corresponding to two remaining multiplicity 3 eigenvalues
A4 and A9: great icosahedron and great stellated dodecahedron with extra vertices.
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