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A functorial extension of the abelian Reidemeister torsions
of three-manifolds

Abstract. Let F be a field and let G c F \ {0} be a multiplicative subgroup. We

consider the category CobG of 3-dimensional cobordisms equipped with a representation

of their fundamental group in G, and the category VectF of F-linear maps defined

up to multiplication by an element of ±G. Using the elementary theory of Reidemeister

torsions, we construct a "Reidemeister functor" from CobG to VectF ±G. In particular,

when the group G is free abelian and F is the field of fractions of the group ring Z[G],
we obtain a functorial formulation of an Alexander-type invariant introduced by Lescop for

3-manifolds with boundary; when G is trivial, the Reidemeister functor specializes to the

TQFT developed by Frohman and Nicas to enclose the Alexander polynomial of knots. The

study of the Reidemeister functor is carried out for any multiplicative subgroup G c F \ {0}.
We obtain a duality result and we show that the resulting projective representation of the

monoid of homology cobordisms is equivalent to the Magnus representation combined with
the relative Reidemeister torsion.
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1. Introduction

Let Cob be the category of 3-dimensional cobordisms introduced by Crane

and Yetter [CY], and whose definition we briefly recall. The objects of Cob

are integers g > 0, and correspond to compact connected oriented surfaces Fg
of genus g with one boundary component. Indeed, we fix for every g > 0 a

model surface Fg whose boundary is identified with S1, and we also fix a

base point * on dFg S1. The morphisms g- -> g+ in the category Cob are

the equivalence classes of cobordisms between the surfaces Fg_ and Fg+. To

be more specific, a cobordism from Fg_ to Fg+ is a pair (M, m) consisting
of a compact connected oriented 3-manifold M and an orientation-preserving
homeomorphism m : F(g_,g+) 9M where

two such pairs (M, m) and (Mr,m') are equivalent if there exists a

homeomorphism / \ M -> M' such that m! f\$M om- We shall denote a pair
(M, m) simply by the upper-case letter M, with the convention that the boundary-

parametrization is always denoted by the lower-case letter m; besides, we denote

by m± : F*± -> M the restriction of m composed with the inclusion of 9M into
M. Thus the cobordism M "runs" from the bottom surface 9_M := m-(Fg_)
to the top surface 9+M := m+(Fg+). The degree of the cobordism M is the

integer g+-g-.
The composition N o M of two cobordisms M, N in Cob is defined by

identifying 9+M to d-N and, for any integer g > 0, the identity of the object

g is the cylinder Fg x [—1,1] with the obvious boundary-parametrization. Our
model surfaces F0, F2,... also come with an identification of the boundary-
connected sum FgfoFh with the surface Fg+h f°r anY g,h> 0. Thus the category
Cob is enriched with a monoidal structure ®: the tensor product g ® h of two

integers g,h is the sum g + h, and the tensor product M <g>N of two cobordisms

M, N is their boundary-connected sum M$$N.
Let now G be an abelian group. The category Cob can be refined to

the category CobG of cobordisms equipped with a representation of the first

integral homology group in G. To be more specific, an object of CobG is

a pair (g,<p) consisting of an integer g > 0 and a group homomorphism
cp : Hi(Fg;Z) G. A morphism (g+,<^+) in the category CobG

F(g->g+) ~Fg- (S1 x [—1,1]) Fg+;
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is a pair (M,<p) where M e Cob(g_,g+) and <p : Hi(M;Z) -> G is a group
homomorphism such that cp o m±?* <p±. The composition of two morphisms
(M,<p) e CobG((g_,<p_), (g+,<p+)) and (A, f) e CobG((A_, V'-), (A+, ^+)), such

that (g+,<^+) (A_,^_), is defined by

(A, xfr) o (M, := (A o M, \j/ +

where iVoM is the composition in Cob and f + cp : H\(N o M\Z) -> G

is defined from <p and xj/ by using the Mayer-Vietoris theorem. The monoidal

structure of Cob also extends to the category CobG: the tensor product of objects
is

(g, <p) ® (h, f) := (g + h, cp ® f)
where Hi(Fg+h;Z) H^FgfoF^Z) is identified with H\(Fg\ Z) 0 Hi(Fh\ Z),
and the tensor product of morphisms is

(Af, <p) ® (A, VO := (Mfla A, cp © VO

where //i(MftaA;Z) is identified with Z) 0 //i(A; Z).
Consider now a commutative ring and fix a subgroup G c Rx of its

group of units. Let grMod^ ±G be the category whose objects are Z-graded
/Gmodules and whose morphisms are graded /Glinear maps of arbitrary degree,

up to multiplication by an element of ±G. The usual tensor product of graded
/Gmodules defines a monoidal structure on the category grMod^ ±G: here the

tensor product a of two graded /Glinear maps a : U -> U' and b : V -> V'
is defined with Koszul's rule, i.e. we set (a ®b)(u ® v) := (—1 ®b(v)
for any homogeneous elements u e U, v e V. In this paper, we construct and

study two functors from CobG to grMod^ ±G for some specific rings R and

specific subgroups GcF.
Our first functor is based on the "Alexander function" introduced by Lescop

[Les]. For any compact orientable 3-manifold M with boundary, this function is

defined on an exterior power of the Alexander module of M relative to a boundary

point, and it takes values in a ring of Laurent polynomials. Lescop's definition
proceeds in a rather elementary way using a presentation of the Alexander module.

Theorem I. Let G be a finitely generated free abelian group, and let Z[G] be

its group ring. Then there is a degree-preserving monoidal functor

A := AG : CobG —> grModZ[G]±G

which, at the level of objects, assigns to any (g, cp) the exterior algebra of the

<p-twisted relative homology group of the pair (Fg,

The Z[G] -linear map A(M,<p) associated to a morphism (M,<p) of CobG is

defined in a very simple way from the Alexander function of M using the
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decomposition of 9M into two parts, 9_M and 9+M. The fact that the Alexander
function gives rise to a functor on the category of cobordisms is somehow implicit
in [Les], where Lescop studies the behaviour of her invariant under some specific
gluing operations. As it contains the Alexander polynomial of knots in a natural

way, we call A the Alexander functor.
Since the works of Milnor [Mill] and Turaev [Turl], it is known that the

Alexander polynomial of knots and 3-manifolds can be interpreted as a special
kind of abelian Reidemeister torsion. We follow this direction to define our second

functor, which we call the Reidemeister functor. In the sequel, the category
grMod^ ±q associated to a field R := F and a subgroup G of Fx F \ {0} is

denoted by grVectF ±G.

Theorem II. Let ¥ be a field and let G be a subgroup of Fx. Then there is a

degree-preserving monoidal functor

R := Rf,g : CobG — grVectF ±G

which, at the level of objects, assigns to any (g, cp) the exterior algebra of the

<p-twisted relative homology group of the pair (Fg,

The construction of the functor R uses the elementary theory of Reidemeister

torsions, but note that we need to consider cell chain complexes which are

not necessarily acyclic. When G is a finitely generated free abelian group and

F := Q(G) is the field of fractions of Z[G], we recover the functor A by
extension of scalars. Thus it suffices to study the functor R and this is done using
basic properties of combinatorial torsions. For instance, we compute its restriction
to the monoid of homology cobordisms (which includes the mapping class group
of a surface): we find that the representation induced by R is equivalent to the

Magnus representation combined with the Reidemeister torsion of cobordisms

relative to the top surface. We also give a formula for R in terms of Heegaard

splittings and we show that R satisfies some duality properties, which generalize
the symmetry properties of the Alexander polynomial of knots and 3-manifolds.

It is expected that Turaev's refinements of the Reidemeister torsion [Tur2, Tur3]

can be adapted to refine R to a kind of "monoidal" degree-preserving functor from
CobG to the category grVectF of graded F -vector spaces: the sign ambiguity would

presumably be fixed using homological orientations on the manifolds, while the

ambiguity in G would be dispelled by adding Euler structures. (Observe however

that, since we use Koszul's rule and we allow morphisms in grVectF to have

non-zero degree, this category is not monoidal in the usual sense of the word.)
We now explain how our constructions are related to prior work. Soon after the

emergence of quantum invariants of 3-manifolds in the late eighties, there were
several works which showed how to interpret the classical Alexander polynomial



A functorial extension of the abelian Reidemeister torsions of three-manifolds 165

in this new framework. A more general problem was then to extend the Alexander

polynomial to a functor from a category of cobordisms to a category of vector

spaces following, as closely as possible, the axioms of a TQFT [Aty]. This

problem was solved by Frohman and Nicas who used elementary intersection

theory in U(l)-representation varieties of surfaces [FN1]. (See also [FN2] for
a much more general construction using PU(A)-representations.) Later, Kerler
showed that the Frohman-Nicas functor is in fact equivalent to a TQFT based

on a certain quasitriangular Hopf algebra [Kerl]. The Alexander polynomial of a

knot K in an integral homology 3-sphere N is recovered from this functor by
taking the "graded" trace of the endomorphism associated to the cobordism that

one obtains by "cutting" N \ K along a Seifert surface of K. It turns out that,

in the case G {1}, the Alexander functor A is equivalent to the Frohman-
Nicas functor. Note that the way how their functor determines the Alexander

polynomial is somehow extrinsic, in that it goes through the choice of a Seifert
surface. On the contrary, the functor A for G Z intrinsically contains the

Alexander polynomial of oriented knots in oriented integral homology 3-spheres

by considering any knot of this type as a "bottom knot" in the manner of [Hab],
i.e. by regarding its exterior as a morphism 1 -> 0 in CobG. Since this functorial
extension of the Alexander polynomial applies to cobordisms M equipped with
an element of H1(M;Z), it should be regarded as a kind of HQFT with target

K(Z, 1) - see [Tur6] - rather than a TQFT.

Our constructions are also related to the work of Bigelow, Cattabriga and

the first author [BCF], which provides a functorial extension of the Alexander

polynomial to the category of tangles instead of the category of cobordisms.

To describe this relation, let TangCob be the monoidal category whose objects

are pairs of non-negative integers (g,n) - corresponding to surfaces Fg with n

punctures - and whose morphisms are cobordisms with tangles inside. Clearly
the category TangCob contains the category Cob of [CY] as well as the usual

category Tang of (unoriented) tangles in the standard ball; for any abelian group
G, there is an obvious refinement TangCobG of the category TangCob. When G

is the infinite cyclic group generated by t, the usual category Tang+ of oriented

tangles in the standard ball can be regarded as a subcategory of TangCobG by

only considering those representations of tangle exteriors that send any oriented
meridian to the generator t. The functors A and R constructed in this paper could
be extended to the category TangCobG using similar methods, but with more

technicality. When G is infinite cyclic, the restriction of the resulting functor
A : TangCobG -> grModZ[G] ±G to Tang+ would coincide with the "Alexander

representation of tangles" constructed in [BCF]. We also mention Archibald's
extension of the Alexander polynomial [Arc], which is based on diagrammatic
presentations of tangles: her invariant seems to be very close to the invariant
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constructed in [BCF] and is stronger since it is defined without ambiguity in ±G.
Finally, our approach is related to the work of Cimasoni and Turaev on

"Lagrangian representations of tangles" [CT1, CT2]. These representations are

functors from the category Tang+ to the category of "Lagrangian relations"

(which generalizes the category of Z[t±l]-modules equipped with non-degenerate
skew-hermitian forms) and, for string links, they are equivalent to the (reduced)
Burau representation [LDi, KLW]. The constructions of [CT1, CT2] could be

adapted to the case of cobordisms in order to obtain a functor from Coög to the

category of "Lagrangian relations" over the ring Z[G]. In the case of homology
cobordisms, the resulting functor would be equivalent to the (reduced) Magnus
representation but it would miss the relative Reidemeister torsion: so it would be

weaker than the functor A.

The paper is organized as follows. A first part deals exclusively with the

Alexander functor: §2 gives the construction of the functor A (Theorem I) and

§3 explains how the classical Alexander polynomial of knots is contained in A.

Next, the Reidemeister functor is constructed in §4 (Theorem II) and is proved
to be a generalization of A in §5. (Thus, we provide two different proofs of the

functoriality of A.) Starting from there, we focus on the study of R and indicate
the resulting properties for A. The abelian Reidemeister torsions of knot exteriors
and closed 3-manifolds are shown to be determined by R in §6. The functor R

restricts to a projective representation of the monoid of homology cobordisms,
which we fully compute in §7. We also explain in §8 how to calculate R using
Heegaard splittings of cobordisms, and we prove in §9 a duality result for R

which involves the twisted intersection form of surfaces. Finally, the paper ends

with a short appendix recalling the definition and basic properties of the torsion
of chain complexes.

Notation and conventions. Let R be a commutative ring. The exterior algebra
of an R -module N is denoted by

AN 0 A' N where A°N R;
i >0

the multivector tq A • • • A Uj e A1N defined by a finite family v (tq,..., vt)
of elements of N is still denoted by v. If N is free of rank n, a volume form
on N is an isomorphism of R -modules AnN -> R.

Let A be a topological space with base point *. The maximal abelian cover
of X based at * is denoted by px : X -> X, and the preferred lift of * is

denoted by * (Here we assume the appropriate assumptions on X to have a

universal cover.) For any oriented loop a in X based at *, the unique lift of a
to X starting at * is denoted by a
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Unless otherwise specified, (co)homology groups are taken with coefficients

in the ring of integers Z; (co)homology classes are denoted with square brackets

[—]. For any subspace Y C X such that * e Y and any ring homomorphism
cp : Z[Hi(X)\ -> R, we denote by H(p(X, Y) the cp-twisted homology of the pair
(X,Y), namely

H*{X, Y) H(CV(X, F)) where CV(X, F) := R ®nHl(X)] C(X p?{Y)).

If (Xf, Yr) is another pair of spaces and / : (Xf, Yf) -> (X, Y) is a continuous

map, the corresponding homomorphism H(Xf) -> H(X) is still denoted

by /. If a base point *' e Y' is given and /(*') *, the R-linear map
-> H(p(X, Y) induced by / is also denoted by /.

Acknowledgements. This work was partially supported by the French ANR
research project "Interlow" (ANR-09-JCJC-0097-01). The authors would like to
thank the referee for some useful comments.

2. The Alexander functor A

We firstly review the Alexander function of a 3-manifold with boundary

following [Les]. (Note that the terminology "Alexander function" has a very
different meaning in [Tur2].) Next, we construct the Alexander functor A. In this

section, we fix a finitely generated free abelian group G; the extension of a

group homomorphism cp : A —> G to a ring homomorphism Z[A\ Z[G] is still
denoted by cp.

2.1. The Alexander function. Let M be a compact connected orientable 3-
manifold with connected boundary. We fix a base point * e dM and a

group homomorphism <p : H\(M) —> G. The genus of M is the integer

g(M) := 1 —/(M), i.e. the genus of the surface 9M.

Lemma 2.1. There exists a presentation of the Z[G]-module (M, *) whose

deficiency is g(M).

Proof We consider a decomposition of M with a single 0-handle, s 1-

handles and r 2-handles. Since the boundary of M has genus g(M), we
have s — r= g(M). This handle decomposition defines a 2-dimensional complex
X c M onto which M deformation retracts. The complex X has a single 0-
cell (which we assume to be *), s 1-cells and r 2-cells. Thus we obtain a

presentation of the Z[G]-module //f(M, *) 2^ H\ (X, *) with s generators and

r relations.
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We now simplify our notation by setting g := g(M) and H := //f (M, *).

Definition 2.2 (Lescop [Les]). Consider a presentation of the Z[G] -module H
with deficiency g:

(2.1) H {Yl,...,Yg+r \pi,...,pr).

Let T be the Z[G]-module freely generated by the symbols yi,...,yg+r, and

regard p\,..., pr as elements of T. Then the Alexander function of M with
coefficients cp is the Z[G] -linear map : Ag H -> Z[G] defined by

Avm(ui A-" A Ug) - Y\ A - - - A Yg+r Pi A • • • A pr A U\ A • • • A Ug G Ag+rT

for any u\,... ,ug e H, which we lift to some iT\ uf e T in an arbitrary

way.

The map .4^ can be concretely computed as follows: if one considers the

r x (g + r) matrix defined by the presentation (2.1) of //, and if one adjoins to
this matrix some row vectors giving u\,...,ug in the generators yi,..., Yg+r,
then a ••• a ug) is the determinant of the resulting (g + r) x (g + r)
matrix. It is shown in [Les, §3.1] that, up to multiplication by a unit of Z[G]
(i.e., an element of ±G), the map AfM does not depend on the choice of the

presentation (2.1).
Let Q(G) be the field of fractions of Z[G]. The following lemma, which is

implicit in [Les], shows that either the Alexander function is trivial or it induces

by extension of scalars a volume form on Hq := Q(G) <8>z[G] H.

Lemma 2.3. We have dim Hq > g, and ^ 0 if and only if dim Hq g.

Proof. Let A be the rx(g + r) matrix with entries in Z[G] corresponding to the

presentation (2.1) of the Z[G] -module H. The multiplication v i-> vA defines a

linear map Q(G)r Q(G)8+r whose cokernel is Hq. Therefore

dim Hq (g + r) — rank A.

Clearly, we have rank A < r so that dim Hq > g.
Assume that dim Hq > g and let Af be a matrix obtained by adding g

arbitrary rows to A. Then rank A < r so that all the minors of A of order r
vanish. By expanding the determinant of Af successively along the last g rows,
we see that det Af 0 and deduce that Afu 0.

Assume that dim Hq g. Then rank A r so that A has a non-zero minor
D of order r. Let l<ii<-'<ig<g-\-r be the indices of the columns of
A not pertaining to D. Then A^m{Yi\ a • • • a ylg) D/ 0.
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2.2. Definition of A. In order to define a functor A, we associate to any object
(g, cp) of Coög the exterior algebra

A(g,<p):=AH*(Fg,*)

of the Z[G]-module H(p(Fg,ir) which is free of rank 2g. Next,

we associate to any morphism (Mycp) e Cobg((£-, <£>-), (g+, <p+)) a Z[G]-linear
map

A(M, <p) : A Hf-(Fg_,*) — A H*+(Fg+,+)

of degree 8g := g+ — g- as follows. We denote by I the interval m(* x [— 1,1]),
which connects the base point of the bottom surface 9_M to that of the top
surface d+M. We set H := H± := Hp (Fg±, and g := £++g-.
Then, for any integer j > 0, the image A(M,<p)(x) e AJ+SgH+ of any x e AJ H-
is defined by the following property:

Vy e A8~J H+, Am (AJm-(x) A A8~Jm+(y)) co(A(M, <p)(x) A y).

Here co : A2g+//+ -> Z[G] is an arbitrary volume form on //+. Due to the

choices of co and of the presentation of H, the map A(M, cp) is only defined up
to multiplication by an element of ±G. Besides, observe that A(M,cp) is trivial
on AJ H- for any j < max(0, —$g) and any j > min(g, 2g_).

The next two lemmas show that the above paragraph defines a monoidal functor
A from CobG to grModz[G],±G> which proves Theorem I of the Introduction. The

first lemma is related to Property 6 of the Alexander function in [Les], while the

second lemma seems to be new.

Lemma 2.4. For any morphisms (M,<p) e CobG((g-, <p~), (g+, <p+)) and (N,f) e

CobG«A-, V-)> (h+> f+))> we have

(2.2) A((Af, cp) ® (N, f)) A (AT, <p) ® A(Af, V)-

Proof. We set g := h := h+ + A_, <5g := g+ — g-, $z := h+ — /?_ and

< := <*(F,±. tff := »*±<Fi±. := Hf±®^(Fw+i±,

Hn := H := I).
In the statement of the lemma and in the proof below, we identify

A((g±, <9±) ® (A±, V±)) A(g± + h±,<p± © V±) AÄ± A(#± ©

in the obvious way with

AHg ® Afff A(g±,<p±) ® A(A±, ^i).
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Since the intersection of M and N in is a 2-disk which retracts onto

I, the Mayer-Vietoris theorem gives an isomorphism HM 0 HN H. If
rankHM > g, then 0 by Lemma 2.3 so that A(M,<p) =0; the same

lemma applied to N shows that

rank H rank HM + rank HN > g + h

so that A((M, cp) 8 (N, VO) 0 and (2.2) trivially holds true. Therefore, we can

assume in the sequel that rank(//M) g and rank(HN) h.
Let x := xM 8 xN e AlH^ 8 AJ c Al+J H- \ we aim at showing that

a := A((M, <p) 8 (N, i/s))(x) is equal to

af := (A(M, <p) 8 A(iV, ^))(x) (-l)^A(M, (p)(xM) 8 A(iV,

(Recall that we are using Koszul's rule in the definition of the tensor product
of morphisms in the category grModZ[G] ±G.) It is enough to prove that,
for any integers P,q > 0 such that p + q (g + h) — (i + j) and any

y ;= yM 8 yN A^7//^ 8 AqH+ c A^+^Tf+, the identity

(2.3) co(a Ay) a)(af A y)

holds true up to multiplication by an element of ±G independent of x,y (and,

in particular, independent of i,j,p,q). In the sequel, we fix some volume forms
coM and coN on H+ and H+ respectively, and we assume that the volume
form co on H+ H+ 0 H+ is defined by

(2.4) co(u A v) coM(u) - coN(v)

for any u e A2g+H+ and v e A2h+H+ By definition of A, we have

(2.5) w(aAy) A^N (Alm-(xM) A AJti-(xN) A Apm+(yM) A Aqn + (yN)).

If p > g — i, then i + p > rank(//M) by our assumptions, so that

Alm-(xM) A Apm+(yM) e Al+PHM is torsion; we deduce that co(a Ay) 0;
on the other hand, the degree of A(Af, cp){xM) AyM e AH+ is i+8g + p > 2g+
so that co(af A y) 0 as well; thus (2.3) trivially holds true if p > g — i. If
p < g — i, then q > h — j and the same conclusion applies. Therefore, we can

assume in the sequel that p g — i and q h — j
To proceed, we consider a presentation HM (yi,..., yg+r \ pi,..., pr)

and a presentation HN (/xi,..., /jlh+s I £i> • • • > • By the above-mentioned

isomorphism between HM 0 HN and H, we obtain a presentation

H (yi,...,yg+r,/xi,...,/x/,+^ |pi,...,pr,^i,...,^).
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Note that, with these choices of presentations, the matrix corresponding to H is

the direct sum of the matrices corresponding to HM and HN. Therefore, we get

a>(a a y) (2=5) (-1 )ls+p{s+])AVM (Alni-(xM) a A8-lm+(yM))

•4(A;«-(/)aA^«+(/))
— (_iys+P(s+J)a)M(h(M, (p)(xM) A yM) • coN(H.N, \j/)(xN) A yNj

(— iys+p(s+J^a)(/K(M, (p)(xM) A yM A A(N, r)r)(xN) A yN)

(-iys+P^+^+P(J+s^a)(/K(M, <p)(xM) A A(N, tfr)(xN) A yM A yN)

(~l)g{s+h)o)(a' Ay).

Lemma 2.5. For any morphisms (M, (p) e Cobg((&-> <P~), (g+><P+)) and (N, if/) e

Cobsuch that (g+,(p+) (/z_,^_), we have

A ((N, f) o (AT, <p)) A(N, f) o A(Af, <p).

The next subsection is devoted to the proof of Lemma 2.5.

2.3. Proof of the functoriality of A. We use the notations of Lemma 2.5 and

we set

£ :=£- + £+, h:=h- + h+, f := g- + h+,

8g'-=g+-g-, Sh:=h+-h-, 8f := h+- g-,
Hm Hf(M, I), HN \= Hf(N,I), H := Hf+<P(N oM,I).

Let v — (vi,... ,V2g+) be a basis of Hf+ (Fg+,*): we set mvt m+(v,) and

nvt := n-(vt) for all i 1,..., 2g+. We consider presentations of the following
form:

Hm {mvi,...,mv2g+,ui,...,ur \ £1,..., C+Sg),

Hn {nvi,... ,nv2h-,wi,... ,ws\ pi,..., ps~Sh).

Applying the Mayer-Vietoris theorem to iVoM, we obtain that the Z[G]-module
H is generated by

(2.6) mvi,... ,mv2g+,nv\,... • • • > wr, wi,..., ws

subject to the relations £i,..., t,r+8g, pi,..., ps-8h> mv\ —nvi,..., mv2g+ —nv2g+.
In the sequel, we set H- := H^~{Fg_,F) and //+ := ///r+(T)l+, *). Let

x G AJH- and y G Af~J H+ : we wish to compute

(a]m-(x) A A/_/«+Oo)
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using the previous presentation of H. For this, we perform some computations
in AkT where k := 4g+ + r + s and T denotes the free Z[G] -module generated

by the k symbols listed at (2.6). Set £ := £i A • • • A t,r+8g> P '•= Pi A • • • A ps~8h •

Then, we have

£ A p A (mt?i — wui) A • • • A (mn2g+ — A AJm~(x) A Aj/r~-/n+(y)

^ (— 1)'p'ap • £ A p A mvp A nnp- A AJm-(x) A Aj/r~-/n + (y)
p

^ (—l)'p'^+1^p • ^£ A mup A Aym_(x)^

A^pA A A^~yn+(y)^ e AkF.

Here the sums are taken over all parts P c {l,...,2g+}, P denotes the

complement of P, mvp is the wedge of the mvt for i e P, nv-p is the

wedge of the nvt for i e P and sp is the signature of the permutation PP
(where the elements of P in increasing order are followed by the elements of P
in increasing order). A sign (— l)(^~^)G+lpl) is missing in the second sum but,
since the presentation of HN is arbitrary of deficiency A, we can assume that
its number of relations (s — Sh) is even.

In the sequel, we omit the "tilde" notation to distinguish elements of AH from
their lifts to AT. Note that, in the above sums, the multivector ^ Amvp aAjm-{x)
has degree (r + 8g) + |P| + j which is greater than 2g+ + r as soon as

1^1 > g~j\ similarly, the multivector p A nvy A A^~Jn + {y) has degree

(s — Sh) + (2— \P\) + (/ — j) which is greater than 2h- + s as soon as

1^1 < g~ j ; since 2g+ + r and 2h- + s are respectively the numbers of generators
of Hm and HN in the above presentations, the summand corresponding to P
vanishes for | P \ > g — j and for | P \ < g — j Therefore the above sums are

actually indexed by the subsets P c {1,..., 2g+} having cardinality g — y and

we get

£ A p A (mvi — nv\) A • • • A (mv2g+ — nv2g+) A AJm~(x) A A f~Jn + (y)

^ Sp • (£ A mvp A AJm-(x)) A (p A nvy A A f~Jn + {y))
I P\=g-j

where we have set s'p := (—l)lp^y+1^p. The summand is here equal to

s'p • (£ A mvp A Aym_(x)) A (p A nvy A Af~Jn+(y))

£p - (A?M{mvp A AJm-(x))'(mv A u))

A (Atf(nv-p A Af~Jn + (y))-(nv A w))

sfp - A?M{mvp A AJ m-(x))A^(nv-p A A f~Jn+{y)) - {mv A nv Au Aw).
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We deduce that

AsIm{Aj m-{x) A Af~Jn + {y))

^ s'p • AvM{mvp A AJm-(x)) A^(nv-p A A?~Jn+(y))
\P\=g-j

AfN( Y, s'p ' AvM(mvp A AJm-(x)) nv-p A h.f~Jn + (y)^
I P\=g-J

-4]^( ^2 (—l)^P^p-o(A(M,<p)(x)Avp)-nVpAAf~Jn+(y)j.
I P\=g-J

We can assume that the basis v of f/f+( Fg+, *) is compatible with the chosen

volume form co, in the sense that a>(vi a ••• a V2g+) — 1. Observe that, for all
z e A>+** Hp (Fg+ *), we have the identities

z= ^ ay co(z A vp) - v-p ^ (— 1)'^' • £p • co(z A np) • v-p

\P\=g-j \P\=g-j
where the sums range over all subsets P c {1,..., 2g+} of cardinality g — j
Hence

a22m{Ajm-(x) a A/_7n+(j)) A^(AJ+Sgn-A(M, <p)(x) a A/_7n+(j))
Ö>(A(W, «(A(M,?)(X))aj).

It follows that (a((A, \jf) ° (M, <p))(x) A y) (A(A, t^)(A(M, (p){x)) A y),
which concludes the proof of Lemma 2.5.

3. Alexander functor and knots

In this section, we relate the functor A to the classical Alexander polynomial
of knots. We fix a finitely generated free abelian group G; the extension of a

group homomorphism <p : A -> G to a ring homomorphism Z[A] -> Z[G] is still
denoted by (p.

3.1. The Alexander polynomial of a topological pair. Given a finitely generated

Z[G]-module N and an integer / > 0, the / -th Alexander polynomial of N is

the greatest common divisor of all minors of order n — i in an m x n presentation
matrix of N. This algebraic invariant is denoted by At N e Z[G]/ =b G.

Let (X, F) be a pair of topological spaces, and assume that they have

the homotopy type of finite CW-complexes. Consider a group homomorphism
<p : H\(X) -> G. The Alexander polynomial of (X, F) with coefficients <p is

A*(Z, Y) := A0tff (Z, F) e Z[G]/ =b G.

If F is empty, we set A^(Z) := A0Hf(X).
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3.2. The Alexander function in genus one. Let M be a compact connected

orientable 3 -manifold with connected boundary, and fix a base point * e dM. Let
also <p : H\(M) -> G be a group homomorphism. The next lemma generalizes

Property 1 of the Alexander function given in [Les].

Lemma 3.1. Assume that g(M) 1 and that <p is not trivial. Then, for any
he H := Hf (M, *), we have

C Av(M)-d*(h) if nmk<p(Hi(M))>2,
Am( ^ | AV(M) -j—-j if rank^(//i(M)) 1 and t is a generator.

Here 3* : H —> Z[G] is the connecting homomorphism Hf{M, -> Hq (*) in
the long exact sequence of the pair (M, *), followed by the canonical isomorphism

We shall deduce Lemma 3.1 from the following.

Lemma 3.2. If cp is not trivial, then A(p(M) Ai //^(M, *).

Proof The long exact sequence in cp -twisted homology for the pair (M, *) gives

0 — Hf (M) — H\{M, — *() — H*(M) — 0.

Since the Z[G] -module Hq (*) 22 Z[G] is torsion-free, we deduce that

(3.1) Tors Hf(M) 22 Tors H\{M, *).

Besides, the above exact sequence implies that

rank H\ (M) — rank H\ (M, *) + 1 — rank Hq (M) 0.

We now show that rank//^ (M) 0. By considering a cell decomposition of M
with * as a single 0-cell and some 1-cells e\,...,er, we see that

Hg(M) ~ Z[G]/((gl l))ideal

where gt := <K[g]) e G. Thus we have the short exact sequence of modules

0 — /„ — Z[G] — H*(M) — 0,

where is the ideal generated by the <p{h) — 1 for all h e H\(M). By tensoring
with the field of fractions 2(G), we obtain

0 —> 2(G) ®Z[G] h — 2(G) — 2(G) ®Z[G] H*(M) — 0.

Since cp is not trivial, 2(G) ®z[G] ^ 7^ 0 so that 2(G) ®z[G] Hq(M) 0.

Hence

(3.2) rank H\(M, rank H\(M) + 1.

We conclude thanks to (3.1) and (3.2) using the following:
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Fact. [Bla, Lemma 4.10]. Let N be a finitely generated Z[G]-module.
Then

1° if i < raHk(A'),
I Aj_mnkj/v(Tors Af) ifi>vmk(N).1

Proof of Lemma 3.1. Observe that, for any oriented loop p in M based at *,
we have 9*([p]) (p([p]) — 1. Thus, the greatest common divisor of 9*(//) is

gcd9*(//) gcd {<p(x) -l\xe HX(M)} g Z[G]/ ± G.

Since <p is assumed to be non-trivial, we deduce that

gcd3,(H)=j1 if > 2.

\ t — 1 if rank^(//i(M)) 1 and t is a generator.

Therefore, we have to prove that

(3.3) AUK) A*(M)vM(h) A«(M)- fk)(H-
gcd d*(H)

For this, we consider a presentation H (yi,..., yr+i I Pi, • • •, Pr) and let A be

the associated r x (r + 1) matrix. We have

r + l
Vz!,...,zr+1 eZ[G], AvM(ziyi-\ 1- zr+1yr+i) ^(-l)I+r+1 det04,)z,

I 1

where Aj is the matrix A with the i -th column removed. Then Lemma 3.2 gives

(3.4) A<P(M) A XH gcd

It follows that A(p(M) 0 if and only if 0. In that case (3.3) trivially
holds true: thus we assume in the sequel that A^ ^ 0. Lemma 2.3 implies that

rank// 1: it follows that any two Q(G)-linear maps Q(G) <S>z[G] H -> Q(G)
are linearly dependent. Since A^ ^ 0 and 9* ^ 0, we deduce that there exist

non-zero elements D,E e Z[G] such that

(3.5) WheH, A^(h) j-d*(h)

or, equivalently, Dd*(h) EA^M{h) for all h g H. Hence

D gcd9*(//) E gcd Am(H) and we deduce from (3.4) that

13 61 - A<P(M)
1 }

E gcd9*(//)

The identity (3.3) is then deduced from (3.5) and (3.6).
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3.3. The functor A on knot exteriors. Let K be an oriented knot in an oriented

homology 3-sphere N. The Alexander polynomial of K is classically defined as

where Mk is the complement of an open tubular neighborhood of K in N, G is

the infinite cyclic group spanned by t, and <pk H\ (Mk) -> G is the isomorphism
mapping an oriented meridian /x c dMx of K to t. Note that A(K) is a Laurent

polynomial in the variable t, which is defined up to multiplication by a monomial
±tk for he Z.

We make Mk a morphism 1 -> 0 in the category Cob by choosing a boundary-
parametrization m : F(1,0) -> 8Mk such that /x_ := m_1(/x) is contained in the

bottom surface F\ and goes through the base point *. Set H- := HfKm~(F\, *).
The following proposition shows that the knot invariants A(K) and A(Mk,<Pk)

carry the same topological information. This is deduced from Lemma 3.1 applied
to M := Mk

Proposition 3.3. With the above notation and for any h e AlH-, we have

where 9* : H- Z[G] is the connecting homomorphism for the pair (Fi,*). In
particular; we have A (K) A(Mk, <Pk)([f -]) -

In this section, we construct the Reidemeister functor R. We fix a field F and

a subgroup G of Fx. In this section, the extension of a group homomorphism
cp : A —> G to a ring homomorphism Z [A] —> F is still denoted by cp.

4.1. The Reidemeister function. We use the elementary theory of abelian
Reidemeister torsions to construct an analogue of the Alexander function considered

in §2.1. Let M be a compact connected orientable 3-manifold with connected

boundary, and let cp : H\(M) G be a group homomorphism. We fix a base

point * g 9M and we set g := g(M) 1 — /(M).

Lemma 4.1. We have H® (M, *) 0 if i 0 or i > 2. Moreover; we have

A(K) := A(pK(MK) A0 H\k(Mk) g Z[G]/ =b G

4. The Reidemeister functor R

dim H\ (M, g + dim H*(M, *).
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Proof. Since dM is non-empty, M deformation retracts to a connected 2-
dimensional complex whose only 0-cell is *: the first assertion follows. Moreover,

we have

-g X(M) - 1 /(AT, - dim + dim H%(M,

Denote H := H\ (M, *) and assume in this paragraph that dim H g.
We choose a cell decomposition of M where * is a 0-cell: by Lemma 4.1,

the homology of the -twisted cell chain complex C^(M, *) is concentrated

in degree 1. For every dimension i e {0,..., 3}, let n, > 0 be the number of
relative /-cells of (M, *) and order them ...,in an arbitrary way. For

every cell a of (M, *), we also choose an orientation of a and a lift a of a to
the maximal abelian cover M of M. Thus, we get a basis c := (c3, c2, ci, c0)

of the F -chain complex C^(M, *) where, for every / e {0,..., 3}, the basis of
the F -vector space C^ (M, *) is given by ct := (l <8><7j!\ 1 <g) On})- Then we
consider the function H8 -> F defined by

(4.1) (h h i— I t(C*(M,*);c,(Ai,...A)) if äi A---AÄ* ^0,1'"'' g | 0 otherwise.

Here r (C;c,h) denotes the torsion of the finite F -chain complex C with basis

c and homological basis h: see §A.l. It follows from the definition of the torsion
that the map (4.1) is multilinear and alternate: see Lemma A.2.

Definition 4.2. The Reidemeister function of M with coefficients cp is the F

linear map : A8H F defined by (4.1) if dim H g and by := 0 i

dim H ^ {

the map is only defined up to multiplication by an element of ±G c F. It
remains to justify that e Hom(Ag//, F)/=b G defines a topological invariant

Because of the choice of the orders, orientations, and lifts of the cells of (M, *),
M

..w ^of M (i.e., it does not depend on the choice of the cell decomposition). Note that

we do not need Chapman's result on the topological invariance of the torsion of
CW-complexes [Cha, Coh] since we are considering here manifolds of dimension
3. Specifically, using Whitehead's theory of smooth triangulations and the fact that
the Reidemeister torsion of CW-complexes is invariant under cellular subdivisions,
we obtain that the above definition of applied to a smooth triangulation of
(M, *) produces an invariant of smooth 3-manifolds. (See [Mil2, §9] or [Tur3,

§3] for similar arguments which are valid in any dimension.) Next, we appeal

to the 3-dimensional Hauptvermutung to conclude that is an invariant of
topological 3-manifolds. Thus, we can consider in Definition 4.2 an arbitrary cell

decomposition of (M, *) provided it can be subdivided to a smooth triangulation
of M.
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4.2. Definition of R. The definition of the functor R from the Reidemeister

function 1Z goes parallel to the definition of A from A (see §2.2). Thus we
associate to any object (g, cp) of Coög the exterior algebra

R(g,<p) := A Hf(Fg,*)

of the F-vector space //^(Fg,*) //^(Fg,*), which has dimension 2g. Next,

we associate to any morphism (M,cp) from (g_,<^_) to (g+,<^+) an F-linear

map
R(M, <p) : A H\~ (Fg_, *) —> A H*+ (Fg+, *)

of degree 8g := g+ — g- in the following way. We set H := H\(M, I) where

I ;= m(* x [—1,1]), H± := //^(F^,*) and g := + g_. Then, for any

integer j > 0, the image R(M, <p)(x) g Ay+^//+ of any x e AJ H- is defined

by the following property:

Vy G A8~JH+, 1Z^M (AJm-(x) A Ag_/m+(y)) &>(R(M, <p)(x) a y).

Here co : A2^+//+ -> F is an arbitrary volume form which is integral in the

following sense: regarding H+ as F ®z[iA(^+)] Hi(Fg+, *; Z[#i(Fg+)]), we

assume that co arises from an arbitrary volume form on the free Z[Hi{Fg+)]-
module //i(Fg+,*;Z[//i(Fg+)]). Due to the choices of this volume form and of
the ordered/oriented lifts of the cells to M the map R(M, cp) is only defined

up to multiplication by an element of ±G c F. Besides, R(M,p) is trivial on
AJ H- for any j < max(0, —8g) and any j > min(g, 2g_).

The next two lemmas show that the above paragraph defines a monoidal
functor R : Coög -> grVectF ±G> which proves Theorem II of the Introduction.

Lemma 4.3. For any morphisms (M, cp) e Cobg((£-> <P-)> (#+> ^+)) and (N, f) gCobwe have

(4.2) R((4T, cp) <g> (N, f)) V) ® RW V0-

Proof We set g := + g-, h := h+ + A_, <5g := g+ — g-, := h+ — /?_ and

//f H^:=Hp(Fh±,*), H± := Hpeir±(Fg±+h±, *),

HM := f (M, /), /A := //f (Y /), H := Yf0Vr(MttaY /).
Since M and Af intersect in MflgAf along a 2-disk which retracts onto

/, the Mayer-Vietoris theorem gives an isomorphism HM 0 HN H. If
dim{Hm) > g, then RfM 0 by definition, so that R(M, cp) 0; moreover,

dim(//) dim(//M) + dim(//7V) > g + A
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so that R((M, cp) g (N, VO) 0 as well, and (4.2) trivially holds true in that case.

Therefore, we can assume that dim(HM) g and dim(HN) h.
Let xM (xf,...,xf) be a family of vectors in and let

xN (x^,..., x^) be a family of vectors in We consider the element

x:=xM ®xN eAlH^<S>AJH^ c Al+J (H^ ® HÜ) Al+J H-.

We aim at showing that r := R((M, cp) g (N, i/s))(x) is equal to

r' := (R(M, <p) g R(A/) \ff))(x) (—l)l8h • R(M, cp)(xM) g R(A/) \jr)(xN).

It is enough to prove that, for any integers p,q > 0 such that

p + q {g + h) — {i + j) and for any families yM (yf*,..., y^) C and

A CA, • • •. yq c we have

(4.3) co(r A y) co(rf A y)

where y := yM g y^ e APH+ g AqH+ c A/7+^r//+. In fact, we only need to

prove (4.3) up to multiplication by an element of =bG, provided this factor is

independent of i,j,p,q,x and y.
In the sequel, we fix integral volume forms coM and coN on H+ and H+

respectively, and we assume that the volume form co on H+ H+ 0 H+ is

defined by

(4.4) co(u A v) coM(u) - coN(v)

for any u e A2g+H+ v e A2h+H+ (So co is integral too.) By definition of R,

we have

(4.5) coir Ay) Kv°+N (A'm_(xM) A AA Apm+(yM) A A«/i + (A)).

If p > g — i, then we have i + p > dim(HM) by our assumptions and we
obtain Alm-(xM) A Apm+(yM) 0 e Al+PHM ; we deduce that co(r Ay) 0;
on the other hand, the degree of the multivector R(M, <p)(xM) A yM e AH+ is

i + 8g + p > 2g+ so that co(rf a y) 0 as well; thus (4.3) trivially holds true

if p > g — i. If p < g — i, then q > h — j and the same conclusion applies.
Therefore, we can assume that p g — i and q h — j in the sequel.

Since HM 0 HN — H, k := (m-(xM),m+(yM),n-(xN),n+(yN)) is a

basis of H if, and only if, the families kM := (m_(xM), m+(yM)) and

:= (n_(x7V),n+(y7V)) are bases of HM and respectively. If the former
condition is not satisfied, then co(r Ay) is zero by (4.5) and, if the latter condition
is not satisfied, then co(r' A y) is trivial as well since we have
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co(rf Ay) (—l)l8hco (R (M, <p)(xM) A R(A, \f/)(xN) A yM A yN)

(-1y^+PÜ+Sh)^ (r(m, <p)(xM) a yM A R(N, f)(xN) A yN)
} (~lfh+PJ coM (R(M, (p)(xM) a yM) con (R(N, ^)(/)a/)

or, equivalently,

(4.6) co(r' A y) (— l)gh+PJ71^ (Alm-(xM) A Ag~lm+{yM))

K% (äJn-(xN) A Ah~Jn + (yN))

Therefore, we can assume in the sequel that k is a basis of H.
Consider next the twisted cell chain complexes C := C^0^(MflaA, /),

CM := C(p(M, I) and CN := C^(A,/). There is a short exact sequence of
F -chain complexes

(4.7) 0 >- D >- CM © CN >- C >- 0

where D is the (un-)twisted cell chain complex of the disk M n N c
relatively to I. Clearly, D is acyclic. By the multiplicativity property of torsions

(see Theorem A.3 and Example A.4), we obtain

s-T(C-c,k)-T(D;d)-z(n;((kM,kN),k)) x(CM\cM,kM) x{CN\cN,kN)

for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases c,d,cM,cN of the chain complexes. Here s is a sign not depending

on i, j, p,q,x,y, and % is the long exact sequence in homology

0 ^ >0—>Hm®Hn^H—>0^0—>0
induced by (4.7), which we view as a finite acyclic F -chain complex concentrated

in degrees 3,4 and with basis ((kM, kN), k). By definition of k, kM and kN,
we have t(H; {{kM,kN),k)) 1 and, since the intersection disk M n N can be

reduced to I by elementary collapses, the scalar T := r(D;d) belongs to ±G.
We conclude that

a)(r A y) {—l)PJ - r (C;c,k)

(-1 )PJsT~l -r(CM;cM,kM) -r(CN;cN,kN)
{AA {-\y*sT-x-co{r'Ay). D

Lemma 4.4. For any morphisms e CobG((g-,(p-),(g+,(p+)) and (N,\f/) e

Cobg((/z_, t//_), (ft+, i//+)) such that (g+,^+) (ft_,i//_), we have

(4.8) R((A, V) o (AT, <p)) R (A, f) o R(Af, <p).

The next subsection is devoted to the proof of Lemma 4.4.
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4.3. Proof of the functoriality of R. We use the notations of Lemma 4.4 and

we set

g'-=g- + g+, h:=h- + h+, f := g- + h+,

Sg'-=g+~g-, Sh:=h+-h-, Sf := h+- g-,

Hm := Hf{M, I), Hn := Flf (N, I), H := Hf+V(N o M, I),

Km := H%{M, I), Kn := H${N, I), K := Hf+V(N o M, I),

H- := Hf~(Fg_, V := H*+(Fg+,*), H+ := H*+(Fh+,*).

Since iVoM is obtained from M and N by identifying 9+M to d-N, there

is a short exact sequence of chain complexes

(4.9)
0 —> Cv+(Fg+,*) —> Cir(N,I)®C<p(M,I) —> C*+<P(N O M,I) —> 0.

D:= CN:= CM:= C:=

Let T-L be the corresponding long exact sequence in homology:

0 —> >0 KN ® KM ^ K ^ V (~"A?+) HN e HM H 0 0 0

If Km ^ 0, then dim(HM) > g by Lemma 4.1 so that 1Z^ 0 and

R(M, <p) 0; besides, the long exact sequence H implies that ^ / 0 so

that R((Af, V) ° (M,<p)) 0; therefore, (4.8) trivially holds true in that case. If
Kn 0, the same conclusion applies. So, we can assume that KM 0 and

Kn 0 or, equivalently, dim HM g and dim HN h.

Let j g {0and let x (xi,...,xy) and y (jq,..., yf-j) be

families of vectors in //_ and H+ respectively. Let v (tq,..., v2g+) be an

arbitrary basis of V and let cov : A2g+V -> F be the volume form such that

o)v(vi A • • • A V2g+) 1; there exists an otv e F \ {0} such that co av • cov

is the integral volume form chosen in the definition of the functor R. We have

R(M,<p)(x) e AJ+8gV, hence

R(M, (p){x) ^2 £y ' (p){x) A Vp) - Vy
I P\=g-J

where the sum is taken over all subsets P c {1,..., 2g+} of cardinality g — y

P denotes the complement of P, vp (respectively vy) is the wedge of the vt 's

for i g P (respectively i g P), and sy is the signature of the permutation PP
(where the elements of P in increasing order are followed by the elements of
P in increasing order). We deduce that
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(4.10)

©(R(1V,VO(IW?0(jc)) Ay)

— 7Zfl (AJ+Sgri-R(M,(p)(x) A Af~Jn + (y)J

Av( «p' C) W A »p) ' AJ+,g»-(i)f) A A^N+W)
\P\=8-J

— av1'^tf(y H s'p-n'pM(Kg~Jm+(vp) Ah]m-(x))

• AJ+Sgn-(vy) A A f~Jn + (y)^J

avl X] (h8~J M + (Vp) A AJ tfl-(x))
|7>l * 7

-n^(lvJ+&gn-(v-p) Akf~Jn+{y))

where s'p := e-p If K ^ 0, then R((N, f) o (M,<p)) 0; besides,

the long exact sequence in homology V, shows that there exists a w e V \ {0}
such that n-(w) 0e HN and m+(u;) 0e HM; since the basis u of F is

arbitrary in (4.10), we can assume that v\ w. In the last sum indexed by P,
the vector w appears either in up or in vy, so that the corresponding summand

is always zero; it follows that R(N,\l/)(R(M,(p)(x)) A y 0 for any x g AJ H-
and y e A f~JH+ \ therefore, (4.8) trivially holds true in that case. Thus, we can

assume in the sequel that K 0 or, equivalently, dim H /.
It now remains to prove using the above assumptions that, for any families of

vectors x (xi,...,xy) in H- and y (yi,..., y/-j) in H+,

(4.11) co (R((A) \jr) o (M, <p))(x) A y)

a~1 •n^(Ag~Jm+(vp) A Aym_(x))
|7>'_g 7

/R%(AJ+Sgn-(vp) a A/_7n+(j))

where, as in the previous paragraph, u is an arbitrary basis of V. Assume firstly
that k := (m_(x), n + (y)) is not a basis of H. Then

R((Al, V0 o (M,(p))(x)Ay TZ^^(AJm-(x) A Af~Jn + (y))

is zero. Besides, the long exact sequence PL implies that there exists w e V such

that

m+(w) a\m-(xi) + • • • + aym_(xy) g HM,

-n-(w) biti+(yi) H b bf-jn + (yf-j) /A
where üq,... Zq,..., ft/-y e F are not all zeros. If w 0, then we have

AJm-(x) 0 g AJ Hm or A^~7n + (y) 0 g A f~JHN (depending on whether
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we can find a non-zero scalar among the at's or among the bt' s); in both cases,

the second term of (4.11) is trivial. If w ^ 0, then we take a basis v of V such

that v\ w and we easily see that the second term of (4.11) is trivial in that

case too. Therefore, we can assume in the sequel that k (m_(x), n + (y)) is a

basis of H.
We now fix a basis v (tq,..., V2g+) of V such that co(v) 1 and we

prove (4.11) with av 1. Let also kM and kN be arbitrary bases of HM and

Hn respectively. By the multiplicativity property of torsions (see Theorem A.3
and Example A.4), we deduce from (4.9) that

(4.12) r(D;d, v) • r(C;c,k) • r(l~l; (u, (kN,kM),k)^j

±t(CN;cN,kN)-t(CM;cM,kM) eF

for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases d,c,cM,cN of the chain complexes. The sign appearing in
(4.12) depends only on the dimensions of the complexes C, D,CM,CN and

the dimensions of their homology groups. The sequence T-L is viewed here as a

finite acyclic F-chain complex concentrated in degrees 3,4,5; its torsion is

(H;(v,(kN,kM),k))
-l((—«-, m+)(u), lift Of k to Hn 0 Hm)

0kN,kM)

QkN,kM)

((—«_, m+)(u), lift of k to 0 //M)

where the symbol [|] stands for the determinant of the square matrix expressing
a family of vectors a in the basis b of HN 0 HM. We have r(D;d,v) e ±G
since (Fg+, *) has the simple homotopy type of a wedge of circles relative to

its vertex. We deduce from (4.12) that

nik+v
NoM (AJm-(x) A Af Jn + (y))

(kN,kM)
((—«_, m+)(u), lift of k to HN 0 HM)

ßv-nl{kM)-nl{kN)

where ßv e ±G does not depend on j,x,y,kM,kN (but depends on v). The

previous identity makes sense, and holds true, when kM is an arbitrary family of
g vectors in HM and kN is an arbitrary family of h vectors in HN. (Indeed,

if kM is not a basis of HM or kN is not a basis of HN, then both sides of
this identity are zero.) In particular, we obtain for any subset P c {1,... ,2g+}
of cardinality g — j
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a a/ J»+(y))•
(n-(vT), n + (y), m+(vP),m-(x))

((—H — lift of k to ® //^)
ßv TZvm(A8 Jm+(vp) a AJm-(x)) TZ^(ASg+Jn-(vT) a Af ]n+(y)).

By multilinearity of the determinant and using the facts that dim HM g and

dim Hn h, we have

_ - n-(ui) + m+(ui),..., -n-{v2g+) + m+(u2g+), m_(x), « + (y))

((—m+)(u), lift of k to ® //M)

(m+Op), «-(up), m_(x), «+(}>))

Thus we obtain identity (4.11), up to multiplication by an element of ±G not

depending on j,x,y. This concludes the proof of Lemma 4.4.

We show in this section that the functor A is an instance of the functor R.

5.1. A formula for the Reidemeister function. Let M be a compact connected

orientable 3 -manifold with connected boundary, and fix a base point * e dM. Let
also <p : H\ (M) G be a group homomorphism with values in a multiplicative
subgroup G of a field F. We use the same notation as in §4.1, where we have

introduced T^M.

When it does not vanish, the Reidemeister function 1Z^ is defined as an

alternated product of 4 determinants since the F-chain complex C(p(M, *) has

length 3. We now give a recipe to compute it by means of a single determinant

using Fox's free derivatives. We consider for this purpose a spine X+ of M,
i.e. a 2-dimensional subcomplex X+ of a smooth triangulation of M such that

M retracts to X+ by elementary collapses; we also assume that * is a vertex of
X+. (It is well known that any 3-manifold with boundary has a spine: see for
instance [Mat, Remark 1.1.5].) Next, we choose a maximal tree in the 1-skeleton

of X+ which contains *, and let X be the 2-dimensional CW-complex obtained

from X+ by collapsing that tree to the vertex *. Hence X has a single 0-cell *.
We denote by yi,..., yg+r the 1-cells of X and we denote by R\,..., Rr the

2-cells of X; besides, each of these cells is given an arbitrary orientation. The

((—«_, m+)(u), lift of k to Hn ® HM)

In n i m liin i m I v » I

\P\=g-j

5. Back to the Alexander functor
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fundamental group 7Ti(T) 7Ti(T, *) of the 1-skeleton T := yi U---Uyg+r of X
is freely generated by the oriented loops yi,..., yg+r, hence the free derivatives

$Fl'" '' drl+r 'are defined. Note that the attaching maps
of the oriented 2-cells Ri,...,Rr define some elements pi,..., pr e 7Ti(T).

Lemma 5.1. Let K\,..., icg be oriented loops in T based at * and, for all i e

{1,..., g}, let kt e H ~ H\(X, *) be the homology class of 1 g 1c
t e Cf (X, *).

Then

(5.1) • • A det <p z*

/5a
9/1

9pr

9/ci
9/i

diCg

\9n

dpi \
9/g^+r

9pr
9/g^+r

9/ci
9/g^+r

9/Cj?

9/g^+r /
Here the composition of <p with the isomorphism H\(M) ~ H\(X) induced

by the homotopy equivalence M ~ X is still denoted by <p, and the ring
homomorphism /* : Z[7Ti(r)] Z[7Ti(M)] is induced by the map i : T —> M
which is the inclusion Tel composed with the homotopy equivalence X ~ M.

Proof The lemma is proved in a way similar to Milnor's result relating the

Reidemeister torsion of a knot exterior to the Alexander polynomial of the knot

[Mill, Theorem 4]. (See also [Tur5, Theorem II.1.2].) By assumption, the pair
(M, *) has the simple homotopy type of (X+,*) and, using the multiplicativity
property of torsions (Theorem A.3), it can be checked that the Reidemeister

torsions of (X,*) and (X+,*) are equal for any choice of homological bases.

Therefore we can safely replace M by X in our computation of RfM. Thus we

now consider the <p-twisted cell chain complex

C := CV(X, *) F ®z [//,(*)] C(x, PxH*)).

The lifts y 1,..., y g+r of yi,..., yg+r define a basis c\ (1 ® y 1,...,
1 (g) y^g+r) of C in degree 1. Similarly, the lifts R\,...,Rr of R\,...,Rr
that contain * define a basis := (10 R 1,..., 1 (g R r) of C in degree 2.

Let A' be the square matrix with entries in F defined by the right-hand side

of (5.1), and let A be the r x (g + r) matrix defined by the first r rows of
A!. Observe that A is the matrix of d2 : C2 C\ in the bases c2 and c\.
Since (X,*) has no relative cells in degree 0, H ~ H\{C) is the cokernel of
the linear map Fr —> Fg+r defined by the multiplication v i-> vA. Assume that
dim H > g: then the rank of A is less than r, so that all the minors of A of
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order r vanish; by expanding the determinant of Ar successively along its last g
rows, we obtain that det ,4' 0 and the lemma trivially holds true in that case.

Therefore we can assume that dim H g.
Observe, next, that the last g rows of A' give the vectors ki,...,kg e H

22 Hf (X, *) as linear combinations of the generators [1 ® y i],..., [1 <8> Y g+r]
of H\ (X, *) 22 H. If k := (k\,..., kg) is not a basis of H, then ki,...,kg are

linearly dependent: since the first r rows of Ar give a system of relations for the

previous set of generators, we deduce that det A' 0 and the lemma is trivially
true in that case too. Thus we can assume that A: is a basis of H. Let c be the

basis of C given by c\ in degree 1 and c2 in degree 2. By Lemma 4.1, the

homology of C is concentrated in degree 1 and, for all i e {1,..., g}, 1 ® 21 is

a 1-cycle of C representing kt e H 22 H\(C). So, by definition of the function
V?M, we get

(5.2) A-- - A kg) x (C;c,k)
det (matrix of (d2(c2), 1 <S>k) in the basis c\).

The conclusion follows from the previous two observations.

Remark 5.2. It follows from Lemma 5.1 that the Reidemeister function has the

following integrality property: for all h\,..., hg e Hi (M, *; Z[H\ (M)]), we have

KvM(<p*(hi) A ••• A Mhg))e <p(Z[HUM)])

where cp* : H\(M, *; Z[Hi(M)]) *) is the canonical map.

5.2. Specialization of R to A. We now assume that G is a finitely generated
free abelian group, and we denote by Q(G) the field of fractions of Z [G]. Let
M be a compact connected orientable 3-manifold with connected boundary, and

fix a base point * e dM. Let cp : H\ (M) —> G be a group homomorphism: we
denote by (p% : Z[H\(M)\ Z[G] and by <p : Z[H\(M)\ Q(G) the extensions

of (p to ring homomorphisms. Set

g := g(M), Hz := H?Z(M, *), H := H?(M, *).

Lemma 5.3. We have the following commutative diagram:

A8Hz -A^Z[G]
p>

Agi

A8 H ^ß(G),
V(pKM

where i : Hi —> H 22 Q(G) <S>z[G] denotes the canonical map.
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Proof. We proceed as in §5.1: we consider a spine X+ of M, and we obtain a

2-dimensional CW-complex X with a single vertex * by collapsing a maximal
tree in the 1-skeleton of X+. The cells of X are yi,... ,yg+r in dimension 1,

and Ri,...yRr in dimension 2. Orient yi,...,yg+r and Ri,...,Rr arbitrarily,
and set

Cz := C^(Z,*), C := C*(Z,*) ß(G) ®Z[G] Cz.

Since M deformation retracts to X, //z is isomorphic to Hfz (X, *) so that

//z is the cokernel of d2 : Cz,2 Cz,i- Let y i,..., yg+r be the preferred
lifts of yi,..., yg+r to X and let R \,..., R r be the lifts of R\,..., Rr that
contain * : we denote by A the matrix of d2 in the bases (l ® R i,..., 1 ® R r)
and (l ® yT,...,1® yg+r). This presentation matrix of the Z[G]-module Hz
can be used to compute AfM. Specifically, let k\,...,kg e Hz and assume that
each kt has the form [1 ® 1c t\ where Kt is an oriented loop in the 1-skeleton

of X based at *: then A^(ki a--- A kg) is the determinant of the matrix
obtained from A by adding g rows that express the vectors 1 ® 1 ® 2g
in the basis (1 ® y i,..., 1 ® Y g+r) of Cz,i. We deduce from formula (5.2)
that Atfiki A-- - a kg) RfM{L(k\) a • • • a i(kg)).

The next theorem, which compares the Alexander functor to the Reidemeister

functor, is a direct application of Lemma 5.3.

Theorem 5.4. The following diagram is commutative:

grModz[G],±G

CobG Ö(G)®z[G](—)

grVectg(G),±g

6. Reidemeister functor and knots

We now compute the functor R on knot exteriors and we consider, next,
the situation of closed 3-manifolds. In this section, we fix a field F and

a multiplicative subgroup G of F. The extension of a group homomorphism
cp : H —> G to a ring homomorphism Z[H] —> F is still denoted by cp.

6.1. The abelian Reidemeister torsion of a CW-pair. Let (X, Y) be a pair of
finite CW-complexes, and let cp : Z[//i(X)] —> F be a ring homomorphism. We

consider the -twisted cell chain complex C(p(X,Y) of the pair (X, F), which
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is a finite F -chain complex of length p := dimX. For every i e {0,..., let

nt > 0 be the number of relative i -cells of (X, Y) and order them

in an arbitrary way. For every cell a of {X, F), we also choose an orientation
of a and a lift d of a to the maximal abelian cover X of X. Thus, we obtain

a basis c := {cp,...,cq) of the F-chain complex C<P(X, Y) where, for every
i e {0,, the basis of C^(X, F) is ^ := (l ® df\ 1 ® d^). Recall that
the Reidemeister torsion of the pair (X, Y) with coefficients <p is the scalar

r<P(XY) -=l 0 ^ H«(X,Y)^0,
K ' }' \ r(CV(X,Y);c) if H(p{X, Y) 0,

where r(C; c) denotes the torsion of a finite acyclic F -chain complex C based by

c: see §A.l. The reader is referred to the monograph [Tur4] for an introduction to
this combinatorial invariant. Without further structure on the CW-pair (X, F), the

scalar x(p{X, Y) is only defined up to multiplication by an element of ±(p{H\{X)).
If F 0, we denote it by x(p{X).

6.2. The Reidemeister function in genus one. We now consider a compact
connected orientable 3-manifold M with connected boundary and a group
homomorphism cp : H\(M) -> G. Let * e dM and set H := *). The

M
x(p(M) in genus one.

next lemma relates the Reidemeister function Rf, to the Reidemeister torsion

Lemma 6.1. Assume that g(M) 1 and that <p is not trivial. Then, for any
k e H,

(6.1) nvM(k) T*(M)-d*(k).

Here 9* : H -> F is the connecting homomorphism Hf (M, *) —Hq (*) in the

long exact sequence of the pair (M, *), followed hy the canonical isomorphism

C'

Proof Consider a cell decomposition of M where * is a 0-cell. The short exact

sequence of F -chain complexes

(6.2) 0 — C^(*) — C(p(M) — C<P(M, — 0

C':= C:= C":=

induces the following long exact sequence in homology:

(6.3) H%{M) — H%(M, ->

-* 0 —> H\(M) — H\(M, *) -L H%(*) — Hq (M) —> 0.
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We regard (6.3) as an acyclic F -chain complex H of length 12: let (hf,h,hff) be

the basis of H obtained by choosing bases h',h,h" of H(Cf), H(C), H(C") in
each degree. We choose an orientation and a lift to M for every cell of M and,

for all i g {0,...,3}, we order the i -cells in an arbitrary way. Thus, we obtain
bases c' ,c,c" of the complexes C/,C, C", respectively, which are compatible in
the sense of §A.l. By the multiplicativity property of torsions (see Theorem A.3),
we obtain

(6.4) t(C; c, h) e> r(C"; c', ti) • r(C"; c", h") • x(H; (A7, A, A"))

where s is a sign independent of h,h',h". If //^(M) ^ 0, then x<p(M) 0

by definition, but (6.3) gives H% (M, *) ^ 0 and Lemma 4.1 implies that

dim //f(M, *) > g(M): hence 7= 0 by definition and (6.1) trivially holds

true. Therefore we can assume that H® (M) 0.
Besides Hq(M) 0 since cp is non-trivial: the fact that /(M) 1 — g(M)

is zero implies that Hf (M) 0 as well. Thus the chain complex T-L defined

by (6.3) is concentrated in degrees 2 and 3. Let k e H \ {0} which defines a

basis h" of H(C"), and let h' be the basis of H(C') defined by the canonical

generator of Hq (*). Then we obtain

Besides we have r(C/;c/,A/) 1 by our choices of c' and hf. We conclude

Remark 6.2. If g{M) 0 and cp is not trivial, then V?M : F A°H F is the

zero map. Indeed, pick an oriented loop a in M based at * such that (p([a]) ^ 1;

then 9* : H F does not vanish on [ä] and it follows that dim H > g(M).

6.3. The functor R on knot exteriors. Let K be an oriented knot in a closed

connected oriented 3-manifold N, and denote by Mk the complement of an

open tubular neighborhood of K in N. We assume given a group homomorphism
<Pk Mk G and an oriented closed curve X c dMx such that (Pk([X]) ^ 1.

Thus the Reidemeister torsion x<PK (Mk) g F / =b G is defined.

We make Mk a morphism 1 0 in the category Cob by choosing a boundary-

parametrization m : F(1,0) 9M^, such that A_ := m~1(X) is contained in the

bottom surface F\ and goes through the base point *. Set H- := H\Km~(F\, *).
The following proposition, which is easily deduced from Lemma 6.1, shows that
the topological invariants x(Pk(Mk) and R(Mk,(Pk) are equivalent.

Proposition 6.3. With the above notation and for any h G A1H-, we have

r(n-,(h',h,h")) [9*(h'l)/h'0]{ 1)2+1
a.Ofc)-1.

using (6.4) that x<P{M) — s HvM(k) d*(k) 1.
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where 9* : H- F is the connecting homomorphism for the pair (F\, *). In
particular, we have x(Pk(Mk) R(Mk,(Pk)([ ^ -])/(^a:(W) — 0-

Example 6.4. If G is the infinite cyclic group generated by t, N is a homology
3-sphere and <px maps the oriented meridian /x of K to t, then we know from

[Mill] that r<Pk(Mk) A(K)/(t — 1). Thus we recover Proposition 3.3 by taking
X := /x.

6.4. The situation of closed 3-manifolds Let N be a closed connected ori-
entable 3-manifold, and let <p : Hi(N) -> G be a non-trivial group homomorphism.

We wish to compute the Reidemeister torsion x(p(N) with coefficients

cp : Z[H\(N)] -> F from the Reidemeister functor R. For this, we have to transform

N into a cobordism. Note that removing an open 3-ball B from N and

regarding N \ B as an element of Cob(0,0) is not fruitful, since the functor R

maps this morphism to zero (see Remark 6.2).
We proceed in the following (rather indirect) way. Choose a knot K c N such

that (p([K]) ^ 1. Consider the complement Mk of an open tubular neighborhood
of I in iV, and fix a parallel p c 9Mk of K. Let <px '• H\(Mk) G

be the homomorphism obtained from <p by restriction to Mk C N. Make

Mk a morphism 1 ^ 0 in Cob by choosing a boundary-parametrization
m : F(1,0) 8Mk such that p_ := m_1(p) is contained in the bottom surface

Fi and * e p-.

Proposition 6.5. With the above notation, we have

eF/±o-

Proof There is a formula describing (under certain circumstances) how the abelian

Reidemeister torsion changes when a solid torus is glued along a 3 -manifold with
toroidal boundary: see [Tur5, §VII.l]. This formula applies to our situation and

gives

xIPk{Mk) (<p([K]) — 1) • x(p{N).

We conclude by applying Proposition 6.3 to X := p.

As an application, we relate the functor A to the Alexander polynomial of
closed 3-manifolds. Thus, we now assume that G is a finitely generated free

abelian group and we take F := Q(G). We consider the Alexander polynomial
of N with coefficients cp, namely

A*(AO A0 H^Z(N) e Z[G]/± G

where cpz - Z[H\(N)\ Z[G] is the extension of <p : H\(N) G.
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Proposition 6.6. With the above notation, we have

A(MK,(pK)([p-])

a<p(n) _
J (<P([K}) - l)2AGV)-i A(MK,<pK)(\p-])

if rank<p(Hi(N)) > 2,

if rank^(//i(A^)) 1.
(tn-1 + + * + 1)2

In the second case, t e (p{H\{N)) w a generator and n e N w such that

(p([K]) tn.

Proof Proposition 6.5 and Theorem 5.4 give

R(Afc,<Pjs:)([p-]) A(Mjj:,yg)([p-])
(?([*]) - l)2 C^C[AT]) - 1)

Besides, according to [Turl], we have

(6.5) T9(N) \ AJit A /..7r'^ 10 e 0(G)/ ± G.

r«vAn - I if rank<P(Hx(N)) > 2,

A<p(N)/(t - l)2 if rank^(//i (N)) 1.
(6.6) x(p{N)

We conclude by combining (6.5) with (6.6).

7. The monoid of homology cobordisms

In this section, we fix an integer k > 1, an abelian group G and a group
homomorphism xj/ : Hi(Fjc) -> G. We shall compute the functors A and R on
the monoid of homology cobordisms over the surface Fk.

7.1. Homology cobordisms. A homology cobordism over Fk is a morphism
M : k -> k in the category Cob such that m± : Hi(Fjc) -> H\(M) is an

isomorphism. The set of equivalence classes of homology cobordisms defines a

submonoid

C{Fk) C Cob(Jfc,Jfc).

We restrict ourselves to homology cobordisms M such that the composition

Hi (Fk) Hi (M) Hi (Fk) G

coincides with f. Thus we obtain a submonoid

C*(Fk) c C(Fk),

which we also view as a submonoid of CobG((£, f), (k, f)) by equipping every
cobordism M of the above form with the homomorphism
\jz := \j/ o ml1 xj/ o mfl : FL\ (M) G.
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Example 7.1. A homology cylinder is a homology cobordism M over Fk such

that m_ m+ : Hi(Fk) -> H\(M). Homology cylinders constitute a submonoid

XC(Fk) of C(Fk) such that XC(Fk) c C^(Fk), whatever \fr is.

7.2. The Magnus representation. Assume now that G is a multiplicative
subgroup of a field F The extension of f : Hi(Fk) -> G to a ring homomorphism

Z[Hi(Fk)\ -> F is still denoted by f. We set

H+ := Hf(Fk,*)

and, when we are given an Me C^(Fk), we denote H := Hf (M, I). The

fact that the map m± : Hi(Fk) -> H\(M) is an isomorphism of abelian groups
implies that m± : H^ -> H is an isomorphism of F -vector spaces. (See [KLW,
Proposition 2.1] for a similar statement.) Consequently, we are allowed to set

r^(M) := mfl om_ : H^ This results in a monoid homomorphism

r* :C*(Fk) — Aut(H*),

which is called the Magnus representation. See [Sak3] for a survey of this
invariant.

7.3. The restriction of R to homology cobordisms. The Reidemeister functor
restricts to a monoid homomorphism

R : C+(Fk) — grVectF?±G(A//^, AH*).

We now compute this projective representation of the monoid C^(Fk).

Proposition 7.2. For any M e C^(Fk) with top surface 9+M, we have

R(Af, f) xt(M, 9+M) • A (r^(Af)) : A//^ — A//^

where x^(M, 9+M) A t/ie Reidemeister torsion of (M, 9+M) as defined in §6.1.

Proof. We shall prove a slightly more general statement: let V"± • (Fk) -> G

be any group homomorphisms and assume that M e C(Fk) is a cobordism such

that f- o ml1 ^+° ^+x : (M) G. Then we claim that

(7.1) R(M,f) A(Af, d+M) A(my om-) : AH- — AH+

where H± := Hp(Fk, and \jr := rj/± o/;?"1. (The proposition is the particular
case where f- : Hi(Fk) -> G.)

To prove this claim, we set g := g(M) 2k, H := Hf(M, I) and let
h (hi,..., ftg) be a basis of H. In order to compute 1Z^(hi A • • • A ftg), we
consider the short exact sequence of F -chain complexes:
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(7.2) 0^ C*+(Fk,*) C^(M, — C*(M,d+M)->-0.
C':= C:= C":=

The complex C" is acyclic while C' and C have their homology concentrated

in degree 1. Therefore, the long exact sequence in homology H induced

by (7.2) is concentrated in degrees 4 and 5 where it reduces to the map

m+ :H+ H\(Cf) -> HX(C) H.
There exists a wedge of circles Si v- • • v Sg based at * onto which the surface

Fjc retracts by elementary collapses. Let h' h'g) be the basis of H+
obtained by lifting each of the loops Si,...,Sg to the maximal abelian cover of
Fjc. Then we have

t(CV,A0 e±G cF

for any choice of ordered/oriented lifts of the relative cells of (F^, *) inducing a

basis c' of C'. Besides, by the multiplicativity property of torsions (see Theorem

A.3), we have

t(C; c, h) e> r(C"; c', ti) • r (C";c") • r (H; (A', hj) eF\ {0}

for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases c',c,c" of the chain complexes. Here s is a sign not depending

on h and 1-L is regarded as an acyclic F-chain complex based by (h\h). We

deduce that

11* (fn A--- Ahg) r{C\c,h) x*{M, 3+M) [m+(h')/

x*(M, 3+M)-[h/m+(h%

(Here the identities are up to multiplication by an element of ±G not depending

on h.)
To proceed, we consider any integer j > 0 and any x e AJH-. Let

co : A8 H+ -> F be the volume form defined by co(h[ A • • • A h'g) 1. (Note that

(o is integral.) Then, for any y e A8~J //+, we have

co(R(M, yjr){x) A y) 1Z^[AJ m-(x) A A8~Jm+(y))

t^(M, 9+M) • [(AJm-(x) A A8~Jm+(y))/m+(A')]
t^(M, 9+M) • [ (A-7 (m^1m_)(x) A y)/ A']

t^(M, 9+M) • co (A-7 (m^1m_)(x) A y).

We conclude that R(M, VOM t^(M, 9+M) • A7(m^1m_)(x) up to multiplication

by an element of ±G not depending on x, which proves (7.1).
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7.4. The restriction of A to homology cobordisms. Assume now that the abelian

group G is finitely generated and free, and assume that F := Q(G). We denote

by fz : Z[Hi(Fk)\ -> Z[G] the extension of f G to a ring
homomorphism and we set H% := The Alexander functor restricts

to a monoid homomorphism

A : C*(Fk) — grModZ[G]>±G(AH*, AH*).

This projective representation of the monoid (F^) is computed as follows.

Proposition 7.3. For any M e C^{Fjf), we have the commutative diagram

A TTfA/7 ry

where A^(M, 9+M) is the Alexander polynomial of the pair (M,9+M) as defined
in §3.1.

Proof The proposition can be proved directly from the definition of A, using an

appropriate presentation of the Z[G] -module It also follows from
Theorem 5.4, Proposition 7.2 and the fact that

r^(M, 9+M) A^(M, 9+M) e Z[G]/ =b G.

The latter identity is shown using the fact that M collapses, relatively to 9+M,
onto a cell complex having only 1-cells and 2-cells in equal number. (For
instance, consider the CW-complex resulting from a handle decomposition of M
as discussed in §8.1.) Thus, the computation of both invariants t^(M, 9+M) and

A^(M, 9+M) reduces to the determinant of a same matrix. (See [FJR, Lemma
3.6] for instance.)

Example 7.4. Assume that G := {1} is the trivial group. Then C^(F^) C(Fjc).
Moreover Z[G] Z and Q(G) Q, so that H% Hi(Fjc) and H^
Hi(Fk;Q). Note that A^(M,9+M) 1 since #fz(M,9+M) #i(M,9+M)
is trivial in that case. It follows from Proposition 7.3 that A: AHi(F]c)
-> AHi(Fjc) is induced by the isomorphism (m+)_1m_ : Hi(Fjc) -> Hi(Fjc).

Remark 7.5. If two cobordisms M, M/ e (F^) are homology cobordant, then

we have r^(M) r^(M') (see [Sak2, Theorem 3.6]), but it may happen that

A^(M, 9+M) 7^ A^r(M/,9+M/) (see [MM, Lemma 3.15] for an example). It
follows from Proposition 7.3 that the restriction of A to C^(F^) is stronger than

the representation r^
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8. Computations with Heegaard splittings

Let G be a multiplicative subgroup of a field F. We give a simple recipe
to compute the functor R Rf,g using Heegaard splittings of cobordisms. In
this section, the extension of a group homomorphism p : H -> G to a ring
homomorphism Z[H] -> F is still denoted by p.

8.1. Heegaard splittings. In order to obtain concrete formulas for the functor
R, it is convenient to fix compatible systems of "meridians and parallels" on the

model surfaces. Specifically, we choose on the model surface F\ a meridian a
and a parallel ß, which means the following: a and ß are oriented simple
closed curves in the interior of F\ meeting transversely at a single point
with homological intersection [a] • [ß] +1. Then the identification between

''' tta^i und F\ induces, for any integer k > 1, a system of meridians and

parallels (oq,..., otk, ßi,..., ßk) on the surface Fk.
For any k > 0, we denote by Cq g Cob(0,£) the cobordism obtained from

Fk x [—1,1] by attaching k 2-handles along the curves cq x {—1},..., oik x {—1}.

Similarly, let C° e Cob(/q0) be the cobordism obtained from Fk x [—1,1] by
attaching k 2-handles along the curves ßi x {1ßk x {1}. Observe that

Cjc ° Co Cq g Cob(0,0) is the 3-dimensional ball F0 x [— 1,1]. Thus we shall

refer to and Cq as the upper and lower handlebodies, respectively. (Clearly,
these notions depend on the above choice of meridians and parallels.)

Let also M(Fk) be the mapping class group of the surface Fk, which consists

of isotopy classes of (orientation-preserving) homeomorphisms / : Fk Fk

fixing dFk pointwisely. The mapping cylinder construction, which associates to

any such homeomorphism / the cobordism

C(/) := (Fk x [-1,1 ],(/ x {-1}) U (dFk X Id) U (Id x{l}>),

defines an embedding c : M(Fk) C(Fk) of the mapping class group into the

monoid of homology cobordisms (see §7.1).

Let M g Cob(g_,g+) be an arbitrary cobordism. By elementary Morse

theory, the 3 -manifold underlying M can be obtained from the trivial cobordism

Fg+ x [—1,1] by attaching simultaneously some 1-handles (say, r+ > 0) along
the "bottom surface" Fg+x {—1}, and by attaching subsequently some 2-handles

(say, r_ > 0) along the new "bottom surface." We obtain in that way a Heegaard
splitting of M, i.e. a decomposition in the monoidal category Cob of the form

(8.1) M — (Cr°+ ® ldg+) o c(/) o (C0r" ® ldg_)

where g+ + r+ g- + r_ and / g M(Fg±+r±). See [Ker2, Theorem 5].
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8.2. Computation of R with Heegaard splittings. We now assume that the

above cobordism M comes with a group homomorphism <p : H\ (M) -> G:

(M, cp) e CobG((g-,(p-),(.g+,<p+j).

The Heegaard splitting (8.1) of M induces a decomposition in the monoidal

category CobG by endowing each submanifold S of that decomposition with the

group homomorphism <p : H\(S) -> G obtained by restricting cp to S c M.
Hence we obtain

R(M, (p) (r(C?+,(p) <g> IdAff+ o R(c(/), <p) o (r(Cq~,<p) <g> IdA#_

where H± := Hf±{Fg±,F) and the symbol (p denotes a representation in G

induced by cp. Thus the computation of R(M,cp) reduces to three cases: upper
handlebodies, lower handlebodies and mapping cylinders.

To describe the values of R in those three cases, we need to fix further
notation. Let k > 0 be an integer and let xj/ : H\(Fk) -> G be a group
homomorphism. We assume that, in our model surface F\, the intersection point
a n ß is connected by an arc to the base point * e dF\: hence the curves

o?i,..., ajc, ßi,..., ßk are now viewed as oriented loops based at * e dF\. We

denote by (af,..., af, bf,..., bf) the basis of Hf (Fk, *) obtained by lifting
these loops to the maximal abelian cover:

(8.2) Vz 1 af := [l 0 ay], bf := [10 ß t].

Then the space AHf (Fk,*) can be identified to AAf <g> Aßf where Af :

{af,... ,af) and ßf := (bf,... ,bf) are the subspaces of Hf (Fk, *)
corresponding to meridians and parallels, respectively.

Lemma 8.1. Let xj/ : H\(Cf) -> G be a group homomorphism and let

x/f- : Hi(Fk) -> G be the restriction of x/r to Fk c dCf. Then the linear

map
R(Cfc' Vf) : ^Hf~(Fk, —> F

is trivial on A1 Ap ® A7 Bp if i 7- k or j 0, and it sends af~ A • • • A ap
to 1.

Proof Set N := Cf £ Cob(k, 0). Since R(N, xj/) has degree —k, it must be trivial
on Ar Hf~ (Fk, *) for r ^ k. It remains to compute

(8.3) R(N, xjf)(x\ A'-Axk) =llf(n-(xi) A-- - An-(xk))

for any xi,... ,xk e Hf~(Fk,*). If one of the xt 's belongs to ßf~, the right-
hand side of (8.3) is zero since, for all j £ {1, ßj bounds a disk in N
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so that n-(bP~) 0. So, we can assume that x\ A • • • A af~ A • • • Aaf~ In
this case, we apply Lemma 5.1 to the obvious spine X X+ of N: the spine

X is a wedge of circles whose 1 -cells y\,..., y^ are obtained by "pushing" the

curves ot\,...,otk in the interior of N. We deduce that the right-hand side of
(8.3) is equal to 1.

Lemma 8.2. Let xj/ : TTi(Cjj) -> G be a group homomorphism and let

xj/+ : H\(Fk) -> G be the restriction of xß to c 9Cq Then the linear

map

R(Ck,f) :F — AHp(Fk,*)

sends the scalar 1 to the multivector af+ A • • • A ap.

Proof. Set Oi, ...,Vk, vk+1,..., v2k) '= (af+,.. ,,ap,bf+,.. -,bf+) and let co

be the volume form on Hp(Fp, *) defined by co(vi A • • • A v2k) 1
• We denote

N := Cq e Cob(0,/:) and write

R(N,f)(l) J2ZP'VP AkHp(Fk,*)
P

where P runs over k-element subsets of {1,...,2k} and vp is the wedge of
the vp 's for all p e P. For any k -element subset P c {1,..., 2k}, we have

(8.4) eP -zp =m (R(N, f)( 1) A Vp) lifj(Akn + (vy))

where P is the complement of P and sp is the signature of the permutation
PP. To compute the right-hand side of (8.4), we apply Lemma 5.1 to the obvious

spine X X+ of N: the spine X is a wedge of circles whose 1-cells y\,..., y^
are obtained by "pushing" the curves ß\,...,ß^ in the interior of N. We obtain
that 1Z^(Akn+(vp)) is trivial except if P {k + 1,...,2k}, in which case it
takes the value 1. We conclude that zp — 1 if P {I,... ,k} and zp — 0

otherwise.

Lemma 8.3. Let f e M{F]f) and let xß± : Hi(Fjc) -> G he group homomor-

phisms such that xj/- xj/+ o f. Denote hy xj/ : Hi(Fjc x G the

isomorphism xß+ o pr, where pr : F^ x [— 1,1] -> F^ is the cartesian projection.
Then

R(c(/), f) : A H+~(Fk, *) — AH?+(Fk, *)
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is induced by the isomorphism f : Hf (F&, *) -a
the matrix of this isomorphism in the bases (a^,..
Hp(Fk,*) is

Hp(Fk,*). Moreover,
b*±)af± b'f±,,ak of

/9/* (a i)
da i da i

9/* GO)
da i

9/* (ßk)\
dai

t+
9/*(ai)

dak
9/* Ol)

dßi

9/* (ak)
dak

9/*OG
dßi

9/* GO)
dak

9/*(pi)
dßi

df*(ßk)

dßi

9/*Ol)
V dßk

9/* (ak)
dßk

9/* GO)
dßk

9/* (ßk)
dßk /

where f*\iti{Fk,+ 7ti(Fk,*) is induced by /.
Proof The first statement follows from (7.1). The second statement is well
known.

8.3. Computation of A with Heegaard splittings. Assume now that G is a

finitely generated free abelian group and take F := Q(G). There are counterparts
of Lemmas 8.1, 8.2 and 8.3 for the Alexander functor A. These counterparts follow
from the same lemmas using Theorem 5.4, or they can be proved independently
using presentations of Z[G] -modules.

For G {1}, we deduce that the functor A is essentially the same thing as the

TQFT constructed in [FN1]. (Compare the formulas given in [Kerl, §3] with the

above lemmas.) However, there are a few technical differences: in particular, we
have considered surfaces with circle boundary, whereas [FN1] works with closed

surfaces.

9. Duality

We prove two duality properties for the Reidemeister functor. In this section,
F is a field where a multiplicative subgroup G is fixed, and we assume that F

is equipped with an involutive automorphism / i-> f such that ~g g~l for all

g e G.

9.1. Twisted intersection form. The first duality satisfied by R involves the

"twisted" intersection forms of oriented surfaces with boundary. We start by

recalling this notion.
Let k > 0 be an integer and set n := 7ri(i^,*). The homotopy intersection

form of Fjc is the pairing X : Z[7r] x Z[7t] -> Z[7r] defined by Turaev in [Tur7].
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We also refer to Papakyriakopoulos' work [Pap] where this form is implicit, and

to Perron's work [Per] where the same form X is re-discovered (and is denoted

there by &>).

The twisted homology group H\(Fk, *; Z[jt]) is identified (as a left Z[jt]-
module) to the augmentation ideal I(n) of Z[n\ in the following way: for any
oriented loop y c Fk based at *, let 7 be the unique lift of y to the universal

cover of Fk starting at the preferred lift T and identify [1(8)7] G H\(Fk,+\Z[n:\)
to [y] — Ig I(rt). Thus, by restricting X to I(n) x we obtain a pairing

(-, -) : Hx(Fk, *; Z[it]) x Hx(Fk, ; Z[n]) — Z[tt].

The derivation properties of X given in [Tur7, Per] imply that (—, —) is sesquilinear
in the sense that

{ax + y, z) a(x, z) + (y, z), (z, ax + y) (z, x)S(a) + (z, y)

for all a e Z[n] and x,y,z e H\{Fk, *; Z[jt]). Here S : Z[7r] -> Z[7r] is the

antipode, i.e. the Z-linear map defined by S(a) a~l for all a e n.
Let now xj/ : H\{Fk) -> G be a group homomorphism: this induces a structure

of right Z[7r]-module on F By identifying Hf (Fk, *) to F ®z[n]Hi(Fk, *; ^M),
we obtain a pairing

(9.1) {-,-):H+(Fk,*)xH+(Fk,*)^W
defined by (/i ®hx>f2®h2) := f\h^(khx,h2]) for all /1(/2 e F and

h\,/z2 g //i(i^,*;Z[7r]). This pairing is sesquilinear in the sense that

{fx + y,z) /(x,z) + (y,z), (z,fx + y) /(z,x) + (z,y)

for all / e F and x, y. z e Hf (F^. *). The pairing (9.1) can also be

defined using Poincare duality (with twisted coefficients) and the fact that

Hf{Fk,J) — Hf{Fk,+) — Hf (Fk, J'), where /, J' are two closed intervals
such that J U J' dFk and J n J' 9/ 9/L In particular, the pairing (9.1)
is non-singular in the sense that (x, —) : Hf (Fk, *) Horn(Hf (Fk, *),F) is an

isomorphism for any x e Hf (Fk, *).
For any integer r > 1, the pairing (9.1) also induces a non-singular sesquilinear

pairing (—, —) : Ar Hf (Fk, *) x Ar Hf (Fk, *) -> F defined by

/(xi,yi) ••• {xi,yr)s

(xi A • • • A xr, y\ A • • • A yr) det

\(xr,yi) ••• (xr,yr),

for all xi,..., xr, yi,..., yr e Hf (Fk, *). For r 0, we set (x, y) := xy for
all x, y e F
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Remark 9.1. The sesquilinear pairing (9.1) is not skew-hermitian. Instead, we
have

(9.2) Vx,yeH+(Fk,*), (x, y) -J^x) + 3*(x)3^)

where 3* : fff (/>.*) -> F is the connecting homomorphism in the long exact

sequence of the pair (F^, *). This identity follows from a similar property for
the homotopy intersection form X: see [Tur7, Per].

9.2. First duality. Let g-,g+ >0 be integers. The dual of an Me Cob (g_,g+)
is the cobordism M e Cob(g+,g_) obtained from M by reversing its orientation
and by composing its boundary-parametrization m : F(g-,g+) -> dM with the

orientation-reversing homeomorphism between

~Fg+ U^ixj-i} (SI x [-1,1]) Usix{i} Fg_

F(g+,g~)

and

-Fg_ U^ixj-i} (SI x [-1,1]) U^ixji} Fg+,

F(g-,g+)

which is given by "time-reversal" (x,t) \-> (x,—t) on the annulus S1 x [—1,1]
and by the identity on F*+ and Fg_.

Theorem 9.2. For any (Mycp) e CobG((g-,(p~),(g+,(p+)) and for any j > 0,

we have

(9.3) Vx 6 AJH-, Vy 6 AJ+SgH+, (R(Af, <p){x), y) [x, R (M, <p) (y))

where 8g g+ — g- and H± Hf±(Fg_t,

Of course, the identity (9.3) only holds true up to multiplication by a constant in
±G (independent of x and y). The pairing (—, —) denotes the twisted intersection
form of //+ (respectively, H-) on the left-hand side (respectively, the right-hand
side) of (9.3).

Proof of Theorem 9.2. Assume that <pf) ° (M",(p") where

and are two morphisms in CobG satisfying (9.3). Then the dual of M is

M o M and it easily follows that (M, cp) also satisfies (9.3). Consequently, and

following the discussion of §8, it is enough to prove (9.3) in the following three

cases: (i) M is a mapping cylinder; (ii) M is a "stabilized" lower handlebody;

(iii) M is a "stabilized" upper handlebody.
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Case (/). Assume that g- g+ =: k and that M c(/) is the mapping
cylinder of an f e M(Fk). Then M c(/_1). Since <p+f cp- : Hi(Fjc) -> G

and since /* : 7ri(F^,*) -> 7ri(F^,*) preserves the homotopy intersection form,
the isomorphism / : //_ -> //+ induced by / : F^ -> F^ preserves the pairings
(9.1). Using the first statement of Lemma 8.3, we obtain (9.3) as follows:

Vx e A7 H-, WyeAJH+, (R(M,<p)(x), y) (A-> f(x),y)
{x,aJrHy))
(x,R(M,<p) (y)).

Interlude. In order to deal with cases (ii) and (iii), we need an explicit formula
for the twisted intersection form (—, —) : Hf (F^, *) x Hf (F^, *) -> F defined by
a group homomorphism xj/ : Hi{F^) -> G. For this, we fix a system of meridians
and parallels (o?i,..., otk>ßi,..., ßk) on F^ as explained in §8.1, and we denote

by (af,..., af, bf,..., bf) the corresponding basis of Hf (F^, *): see (8.2). For

every x,y e Hi(Fjc), set P^(x,y) := (1 — — VKj7)) g F. Then, for an

appropriate choice of meridians and parallels, the matrix of (—, —) in the basis

is

jir jifrJaa

jt
K ba

where
2.4]:

Jaa > jfb > Jfa > are the following lower triangular matrices [Per, Lemma

(9.4)

(9.5)

(9.6)

/ 1 - l) 0

P*iß2,a\) 1 - V(«2)

P^(0f3,ai) P^(a3,a2)

\P^(^,Ofl) P^(ak,a2)

/l/f(0tl)l/f(ß l) 0

P*iß2,ßl) if(ot2)ir(ß2)

P*(a3,ft) P*(a3,ß2)

\P*(ak,ßi) P*((Xk,ß2)

J* —

0

P*(ß:3,an)

V P + (ßk,ai)

P*(ß3,a2)

P*(ßk,a2)

0

P*(ak,ak-i) 1 - xlf(ak)/

0 \
0

P^(ak,ßk~i) ir(ak)ir(ßk)/

0^1 — V(ofi) — V(iöi)
P*(ß2,Ct\) I ~ ~ l/fißl) 0

0

P*(ßk,ak-i) 1 - - t(ßk)/
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(9.7) j Mr _J hh —

l-1r(ßl) 0

P*(ß2,ßl)

P*(ß3,ßl) P*(ß3,ß2)

0

\P*(ßk,ß\) P*(ßk,ß2) ••• P*(.ßk,ßk-1) 1 -1r(ßk)/

Besides, the following notation will be useful in the sequel. Let s e {+,—} be

a sign. We denote by (vsv ,vsge,vsgB+v ,vs2ge) := (a\e,... ,afe, b\e,..., bfe)
the basis of Hs H^e(Fgs,^). For any s-element subset P c {1,...,2gs}, let

Vp e As Hs be the wedge of the vectors vep 's for all p e P and, when this makes

sense, we shall also denote by (v£p)~£ e AsH-e the multivector obtained from

Vp by the transformations a^_£§g and o\e i-> b^_£§g.

Case (//). Assume that M Cq (g>Idg_ where r 8g. Note that (p+(oti) 1

for all i {1,... ,r}, so that (9.4) and (9.5) applied to \j/ := <p+ give
(9.8)
Vi G {1,. ,r},Wj e r + g.}, (ap ,ap) 0, <a?"f,bp) 8tJ <p+ (/*,)

and, combining this with (9.2), we also obtain

(9.9)
V/ {l,...,r},Vy {l,...,r+g-}, (ap ,ap) 0, (bp, ap) -8tJ <p+(ßj).

Let P c {1,..., 2g-} with |P| j and let Q c {1,...,2g+} with

löl r + j It follows from Lemma 8.2 that

(R(M, (p)(vP), Vq) A • • • A A (^p)+, Vq).

According to (9.8), this determinant is zero if the subset B := {g+ +1,..., g+ + r}
is not contained in Q. If B a Q, then we get

(R(M, cp)(Vp), Vq) A • • • A A (^p) + ujj A ujjC)

sB{ap A • • • A a9r+, V+) {(Vp)+, v+c)

SB <p+(ßl •••ßr) {(vj)+, V^c)

where Bc := Q\B and sb is the signature of the permutation BBC (where the

elements of B in increasing order are followed by the elements of Bc in increasing
order). We also deduce from (9.9) that ((^p)+, vpc) 0 if Bc has a non-empty
intersection with A := {1 ,...,r}, and it follows that (R(M,(p)(vJ),Vq) 0 if
dnß/0.

Besides, it follows from Lemma 8.1 that R (M, cp) (vq) is trivial if A n Q ^ 0
or B is not contained in Q. If A n Q 0 and B c Q, we get

(vP, R (M, <p) (vq)) sB (vP, R (M, <p) (vp A VßC)) =sB{vP,(vp)
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We deduce that (R(M, (p)(vp), Vq) cp+(ßi • • • ßr)(vp, R (M, (p) (vq)) for any
P, Q. Since (9.3) is only required to hold true up to multiplication by a constant

in =LG, the theorem is proved in case (ii).

Case (Hi). Assume now that M Cr° ® Idg+ where r —8g. Note that

cp-(ßi) 1 for all z e{l,...,r},so that (9.7) and (9.5) applied to xjr := cp- give
(9.10)
Vi 6 {1 + g+},Wj {1,..., r}, {bf-,bj~) 0, (af-,bj~) 8V <p-(a,)

and, combining this with (9.2), we also obtain

(9.11)
V/ e {l,...,r + g+}, j {1,..., r}, (bp ,bf~) 0, (bp ,af~) -8tJ <p-(at).

Let P c {1,..., 2g-} with |P| j and let Q c {1,...,2g+} with
121 j — r- By Lemma 8.1, R(M,<p)(vJ) is trivial if P does not contain
A := {1,..., r} or P has a non-empty intersection with B := {g~ +1,..., g_ + r}.
If d c P and Pfl5 0, we obtain

(R(M, <p)(vj), vp eA (R(M, <p)(vJ A vjc), vp sA ((vj,e)+, vp
where Ac := P \ A and sa is the signature of the permutation AAC.

Besides, Lemma 8.2 gives

[vp, R (M, <p) (u£)) (up, bp A • • • A bf- A (t^r)
which, according to (9.10), is trivial if P does not contain A. If A c P, we get

(vp,R(M,<p) (vp) eA(vJ A vjc,bp A---Abp A (vp~)
— (vA bp a a bf~) (v^c, (vp~)

sA(p-(ai •••ar)(v2c(vp-).

It follows from (9.11) that [^Äc^v~q)~) 0 if has a non-empty intersection

with B, so that [vj, R (M, <p) (vq)) 0 if P n B ^ 0. We deduce that

(R(M, (p)(vp), Vq) ^_(«i • •-ar) (up, R (M, (ug)) for any P, Q This proves
the theorem in case (iii).

Example 9.3. We consider the situation of §7.3: let xj/ : H\(Fk) -> G be a group
homomorphism and let M e (F^) with k > 1. According to Proposition
7.2, R(M, xjr) is determined by the relative Reidemeister torsion r^(M, 9+M)
and the Magnus representation r^(M) : H^ -> where H^ := Flf (P^,*).
Specializing Theorem 9.2 to j := 0, we obtain the well-known duality theorem

(9.12) r^(M,9+M) r^(M,9_M) e F/± G,
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see [Tur2, Appendix 3]. Next, specializing Theorem 9.2 successively to j := 1

and j := 2, we obtain the invariance property

which is already observed in [Sakl, Theorem 2.4].

Example 9.4. We consider the situation of §3.3: let G be the infinite cyclic

group generated by t and F := ß(G), let Mk be the exterior of an oriented
knot K in an oriented homology 3-sphere and let cpK (Mk) G be the

canonical isomorphism. There is a system of meridian and parallel (a,ß) on F\
and a boundary-parametrization m : F(1,0) ^ 8Mk such that

(i) m-(a) is the oriented meridian of K and m-(ß) is the parallel of K that
is null-homologous in Mk,

(ii) the matrix of : H- x H- -> F in the corresponding basis (a,b) :=

According to Proposition 3.3, the map R{Mk, <Pk) is determined by the Alexander

polynomial A(K). By applying Theorem 9.2 successively to x := a and x := b,
we get

9.3. Second duality. The second duality satisfied by R does not involve the

conjugation / i-> / of the field F, and is an immediate consequence of the

definitions.

Proposition 9.5. For any (M,cp) e CobG((g-,<p~),(g+,<p+)) and j > 0, we have

Vx G AJH-y Vy G A8~J H+, co(R(M, <p){x) A y) (-1)^ • co (x A R(M, (p){y))

where g := g+ + g_, H± := H<^±(Fg±J *) and co : A2g±H± F is an arbitrary
integral volume form.

Despite its simplicity, this proposition turns out to be interesting when it is

combined with Theorem 9.2.

Example 9.6. We use the same notation as in Example 9.3. Let (zi,... ,z2j0
be a basis of H^ arising from of a basis of the free Z[Hi(Fjc)]-module
H\(FiCfir;Z[Hi(Fic)]) and assume that co is given by co(z\ A---A z2k) 1. By
applying Proposition 9.5 to x := z\ A • • • A z2k, we get (M, 9+M) • det r^(M)

r^(M, d-M). Combined with (9.12), this relation gives the symmetry

Vx, z G (r^(M)(x), r^(M)(z)) (x, z),

(9.13) R(MK9<pK)(l) A(K)b g H-.

r^(M,9+M) - det r*{M) r^(M,9+M) gF/±G
which is also observed in [Sak4, Theorem 5.3].
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Example 9.7. We use the same notation as in Example 9.4. Let co be the volume
form on //_ defined by co(a Ab) 1. By applying Proposition 9.5 successively
to x := a and x := k, we obtain R(M^,<^)(1) A(K)b. Combined with
(9.13), we recover the classical symmetry of the Alexander polynomial:

We recall the definition and basic properties of the torsions of chain complexes.
The reader is referred to [Mil2] and [Tur4] for further details and references. In
this appendix, F is a field.

A.l. Definition of the torsion. Given an F -vector space V of finite dimension

n > 0, an n -tuple b (bi,..., bn) of vectors in V and a basis c {c\,..., cn)

of V, we denote by [b/c\ e F the determinant of the matrix expressing b in the

basis c. Two bases b and c are said to be equivalent if [b/c] 1.

Given a short exact sequence of F -vector spaces 0 -> V' -> V -> V" -> 0

and some bases c' and c" of V' and V" respectively, we denote by c'c" the

equivalence class of bases of V obtained by juxtaposing (in this order) the image
of c' in V and a lift of c" to V.

By a finite F -chain complex of length m > 1, we mean a chain complex C

in the category of finite-dimensional F -vector spaces and we assume that C is

concentrated in degrees 0,..., m:

A basis of C is a family c (cm,...,c0) where ct is a basis of Ct for all
i e {0,..., m). A homological basis of C is a family h (hm,..., h0) where ht

is a basis of the i -th homology group Ht(C) for all i e {0,... ,m}. If we have

choosen a basis bj of the space of j -dimensional boundaries Bj(C) := Im9y+i
for all j e {0,..., m — 1}, then a homological basis h of C induces an equivalence
class of bases of Ct for any i: specifically, we consider the basis (bth^bt-i of
Ct obtained by juxtaposition in the following short exact sequences where we
denote Zt(C) := Ker9*:

A(K) A(K) e Z[G]/ ± G.

A. A short review of combinatorial torsions

C dm
^ ^^ — I ^ 1

(A.2)

(A.l) 0 — ZAC) — H, (C) —> 0

and 0 —> Z,(C) —> C, -A Bl-1(C) 0.
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Definition A.l. The torsion of a finite F -chain complex C of length m, equipped
with a basis c and a homological basis h, is the scalar

x(C-c,h) := n [(M,)*>,-i/c,]( 1),T*
e F \ {0}.

1=0

-1V+1

It is easily checked that this definition does not depend on the choice of b0,... ,bm

and, when C is acyclic, we set r(C;c) := r(C;c,0).

The following lemma, which is well known, is a way of viewing the torsion
as a function in homology.

Lemma A.2. Let C be a finite F -chain complex of length m > 1, let
k G {0,...,m} and set ß := dim//^(C). Assume given a basis c (cm,..., c0)

of C and a basis ht of Ht(C) for every i k. Then there is a unique linear

map I : A& Hk(C) -> F such that

x (C; c, (hm,..., Afc+i, v, hk-i,..., fto)) if k is odd,
^ 1 ^ 1 r(^'• • •> hk-i> • • • > ^o))

1

if k is even,

for any basis v (tq,..., t^) of //^(C).

Proof The unicity of I is obvious and, clearly, we can assume that k is odd.

Let s : Hk(C) -> Z^iC) and t : 2?£_i(C) -> Q be F-linear sections of (A.l)
and (A.2), respectively. For any ß -tuple v (tq,..., Vß) of elements of //^(C),
we set

t(v) := |>jfcs(tOr(Ajfc_i)/cit] • Yl [(ft,A,)A,-i/cI](_1),+1 e F

i^k

where b^ s(v) t{bk-1) denotes the family of vectors of Q obtained by juxtaposing
(in this order) b^, s(v) and t{b^-i). The resulting map I : Hk(C)ß -> F is

multilinear and alternate, hence it induces a map I : A & Hk(C) -> F with the

desired property.

A.2. Multiplicativity of the torsion. Consider a short exact sequence of finite
F -chain complexes of length m > 1:

(A.3) 0 ^ C ^ C ^ C" ^ 0.

Let us assume that C/, C, C" are based by c', c, c" respectively, and homologically
based by h',h,hn respectively. We further assume that the bases c',c,c" are

compatible in the sense that ct is equivalent to c[c" for every i e {0,
The short exact sequence (A.3) induces a long exact sequence in homology:
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U := (Hm(C') -> Hm(C) -> Hm{C") -> ••• -> H0(Cf) -> H0(C) -> H0(C")).

We regard EL as an acyclic finite F -chain complex based by

(h\h,h"):=(h'm,hm,h'^...,h'0>ho,K).

The following formula is classical in the theory of combinatorial torsions: see

[Mil2, Theorem 3.2] or [Tur2, Lemma 3.4.2].

Theorem A.3. With the above notation, we have

(A.4) t(C; c, h) e> r(C"; c', ti) • r(C"; c", h") • r (EL; (A', h, h"))

where e is a sign depending only on the dimensions of the F -vector spaces

C[, Q, C/ and Hx (CO, Hx (C), Ht (C") /or a// ie{0 m}.

Example A.4. Assume that C C/ 0 C" and that the chain maps C' -> C and

C C" in (A.3) are the natural inclusion and projection, respectively. For all
i g {0,..., m}, let ct be the basis of Ct C[ 0 Cf obtained by juxtaposing (in
this order) some bases c[ and c" of C[ and C/, respectively; similarly, let ht

be the basis of Ht(C) Ht{C') 0 Ht{C") obtained by juxtaposing some bases

h[ and A" of and respectively. We set c := (cm,...,c0) and

h := (Am,..., ho). Then r(C;c,h) s - r(C/; C, AO • t(C//; c", A'O •
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