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A functorial extension of the abelian Reidemeister torsions
of three-manifolds

Vincent FLoreNs and Gwénaél MASSUYEAU

Abstract. Let F be a field and let G C F \ {0} be a multiplicative subgroup. We
consider the category Cobg of 3-dimensional cobordisms equipped with a representation
of their fundamental group in G, and the category Vecty i of I -linear maps defined
up to multiplication by an element of +G. Using the elementary theory of Reidemeister
torsions, we construct a “Reidemeister functor” from Cobg to Vectp 4. In particular,
when the group G is free abelian and F is the field of fractions of the group ring Z[G],
we obtain a functorial formulation of an Alexander-type invariant introduced by Lescop for
3-manifolds with boundary; when G is trivial, the Reidemeister functor specializes to the
TQFT developed by Frohman and Nicas to enclose the Alexander polynomial of knots. The
study of the Reidemeister functor is carried out for any multiplicative subgroup G C F\{0}.
We obtain a duality result and we show that the resulting projective representation of the
monoid of homology cobordisms is equivalent to the Magnus representation combined with
the relative Reidemeister torsion.
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1. Introduction

Let Cob be the category of 3-dimensional cobordisms introduced by Crane
and Yetter [CY], and whose definition we briefly recall. The objects of Cob
are integers g > 0, and correspond to compact connected oriented surfaces Fg
of genus g with one boundary component. Indeed, we fix for every g > 0 a
model surface F, whose boundary is identified with S 1 and we also fix a
base point * on dF, = S'. The morphisms g_ — g4 in the category Cob are
the equivalence classes of cobordisms between the surfaces Fg_ and Fg . To
be more specific, a cobordism from F,_ to Fg _ is a pair (M,m) consisting
of a compact connected oriented 3-manifold M and an orientation-preserving
homeomorphism m : F(g—,g+) — dM where

F(g_,g+) = —Fg_ USlx{—l} (S1 X [_1’ 1]) USIX{I} Fg-i-;

two such pairs (M,m) and (M',m') are equivalent if there exists a home-
omorphism f : M — M’ such that m" = f|yp o m. We shall denote a pair
(M, m) simply by the upper-case letter M , with the convention that the boundary-
parametrization is always denoted by the lower-case letter m ; besides, we denote
by my : Fy, — M the restriction of m composed with the inclusion of dM into
M . Thus the cobordism M “runs” from the bottom surface 0_M = m_(Fq_)
to the rop surface 04 M := m(Fg ). The degree of the cobordism M is the
integer g4+ —g—.

The composition N o M of two cobordisms M, N in Cob is defined by
identifying 04+ M to d_N and, for any integer g > 0, the identity of the object
g is the cylinder Fy x [—1,1] with the obvious boundary-parametrization. Our
model surfaces Fy, F1, F>,... also come with an identification of the boundary-
connected sum FgfiyF), with the surface Fy4p for any g, 2 > 0. Thus the category
Cob is enriched with a monoidal structure ®: the tensor product g ® & of two
integers g,k is the sum g+ /&, and the tensor product M ® N of two cobordisms
M, N is their boundary-connected sum M fyN .

Let now G be an abelian group. The category Cob can be refined to
the category Cobg of cobordisms equipped with a representation of the first
integral homology group in G. To be more specific, an object of Cobg is
a pair (g,¢) consisting of an integer g > 0 and a group homomorphism
¢ Hi(Fg;Z) - G. A morphism (g—,¢—) — (g+,9+) in the category Cobg
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is a pair (M,¢) where M € Cob(g_,g+) and ¢ : Hi(M;Z) — G is a group
homomorphism such that ¢ o m+ « = ¢+. The composition of two morphisms

(M’ @) € CObG((g—’ §0_), (g-i-’ §0+)) and (N’ l/f) € CObG((h—’ W—)7 (h-i-’ w-i-))’ such
that (g4, ¢4) = (h_,¥_), is defined by

(N, ¥) o (M, ) := (N oM,y +¢)

where N o M is the composition in Cob and ¢ + ¢ : Hi(N o M;7Z) — G
is defined from ¢ and ¥ by using the Mayer—Vietoris theorem. The monoidal
structure of Cob also extends to the category Cobg : the tensor product of objects
is

&P &hy):=Eg+he®y)
where H(Fgyp:Z) = H{(FgllgFp; Z) is identified with Hy(Fg;Z) ® H(Fy: Z),
and the tensor product of morphisms is

(M.9) ® (N.¥) := (Mi3N.¢ & V)

where H{(M$yN;Z) is identified with H{(M;7Z) ® H1(N; 7).

Consider now a commutative ring R and fix a subgroup G C R* of its
group of units. Let grModg L s be the category whose objects are Z-graded
R-modules and whose morphisms are graded R-linear maps of arbitrary degree,
up to multiplication by an element of +G. The usual tensor product of graded
R-modules defines a monoidal structure on the category grMody i : here the
tensor product ¢ ® b of two graded R-linear maps a : U — U’ and b :V — V'
is defined with Koszul’s rule, i.e. we set (¢ ® b)(u @ v) := (—1)?Mlg () @ b(v)
for any homogeneous elements u € U,v € V. In this paper, we construct and
study two functors from Cobg to grModg . for some specific rings R and
specific subgroups G C R*.

Our first functor is based on the “Alexander function” introduced by Lescop
[Les]. For any compact orientable 3-manifold M with boundary, this function is
defined on an exterior power of the Alexander module of M relative to a bound-
ary point, and it takes values in a ring of Laurent polynomials. Lescop’s definition
proceeds in a rather elementary way using a presentation of the Alexander module.

Theorem 1. Let G be a finitely generated free abelian group, and let 7.[G] be
its group ring. Then there is a degree-preserving monoidal functor
A:=Ag: CObG —> ngOdZ[G],ﬂ:G

which, at the level of objects, assigns to any (g,¢) the exterior algebra of the
@ -twisted relative homology group of the pair (Fg,x).

The Z[G]-linear map A(M, ) associated to a morphism (M,¢p) of Cobg is
defined in a very simple way from the Alexander function of M using the
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decomposition of dM into two parts, d_M and d4 M . The fact that the Alexander
function gives rise to a functor on the category of cobordisms is somehow implicit
in [Les], where Lescop studies the behaviour of her invariant under some specific
gluing operations. As it contains the Alexander polynomial of knots in a natural
way, we call A the Alexander functor.

Since the works of Milnor [Mill] and Turaev [Turl], it is known that the
Alexander polynomial of knots and 3-manifolds can be interpreted as a special
kind of abelian Reidemeister torsion. We follow this direction to define our sec-
ond functor, which we call the Reidemeister functor. In the sequel, the category
grModg 1 associated to a field R :=TF and a subgroup G of F* =T \ {0} is
denoted by grVecty 4 ¢ .

Theorem II. Let F be a field and let G be a subgroup of F*. Then there is a
degree-preserving monoidal functor

R:= RIE"G : CObG —_—> ngeCt]F,iG

which, at the level of objects, assigns to any (g, @) the exterior algebra of the
@ -twisted relative homology group of the pair (Fg,*).

The construction of the functor R uses the elementary theory of Reidemeister
torsions, but note that we need to consider cell chain complexes which are
not necessarily acyclic. When G is a finitely generated free abelian group and
F := Q(G) is the field of fractions of Z[G], we recover the functor A by
extension of scalars. Thus it suffices to study the functor R and this is done using
basic properties of combinatorial torsions. For instance, we compute its restriction
to the monoid of homology cobordisms (which includes the mapping class group
of a surface): we find that the representation induced by R is equivalent to the
Magnus representation combined with the Reidemeister torsion of cobordisms
relative to the top surface. We also give a formula for R in terms of Heegaard
splittings and we show that R satisfies some duality properties, which generalize
the symmetry properties of the Alexander polynomial of knots and 3-manifolds.

It is expected that Turaev’s refinements of the Reidemeister torsion [Tur2, Tur3]
can be adapted to refine R to a kind of “monoidal” degree-preserving functor from
Cobg to the category grVecty of graded F -vector spaces: the sign ambiguity would
presumably be fixed using homological orientations on the manifolds, while the
ambiguity in G would be dispelled by adding Euler structures. (Observe however
that, since we use Koszul’s rule and we allow morphisms in grVecty to have
non-zero degree, this category is not monoidal in the usual sense of the word.)

We now explain how our constructions are related to prior work. Soon after the
emergence of quantum invariants of 3-manifolds in the late eighties, there were
several works which showed how to interpret the classical Alexander polynomial
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in this new framework. A more general problem was then to extend the Alexander
polynomial to a functor from a category of cobordisms to a category of vector
spaces following, as closely as possible, the axioms of a TQFT [Aty]. This
problem was solved by Frohman and Nicas who used elementary intersection
theory in U(1)-representation varieties of surfaces [FNI1]. (See also [FN2] for
a much more general construction using PU(N)-representations.) Later, Kerler
showed that the Frohman—Nicas functor is in fact equivalent to a TQFT based
on a certain quasitriangular Hopf algebra [Kerl]. The Alexander polynomial of a
knot K in an integral homology 3-sphere N is recovered from this functor by
taking the “graded” trace of the endomorphism associated to the cobordism that
one obtains by “cutting” N \ K along a Seifert surface of K. It turns out that,
in the case G = {1}, the Alexander functor A is equivalent to the Frohman—
Nicas functor. Note that the way how their functor determines the Alexander
polynomial is somehow extrinsic, in that it goes through the choice of a Seifert
surface. On the contrary, the functor A for G = 7Z intrinsically contains the
Alexander polynomial of oriented knots in oriented integral homology 3-spheres
by considering any knot of this type as a “bottom knot” in the manner of [Hab],
i.e. by regarding its exterior as a morphism 1 — 0 in Cobg . Since this functorial
extension of the Alexander polynomial applies to cobordisms M equipped with
an element of H'!(M:;Z), it should be regarded as a kind of HQFT with target
K(Z,1) — see [Tur6] — rather than a TQFT.

Our constructions are also related to the work of Bigelow, Cattabriga and
the first author [BCF], which provides a functorial extension of the Alexander
polynomial to the category of tangles instead of the category of cobordisms.
To describe this relation, let TangCob be the monoidal category whose objects
are pairs of non-negative integers (g,n) — corresponding to surfaces F, with n
punctures — and whose morphisms are cobordisms with tangles inside. Clearly
the category TangCob contains the category Cob of [CY] as well as the usual
category Tang of (unoriented) tangles in the standard ball; for any abelian group
G, there is an obvious refinement TangCob, of the category TangCob. When G
is the infinite cyclic group generated by ¢, the usual category Tang, of oriented
tangles in the standard ball can be regarded as a subcategory of TangCobg by
only considering those representations of tangle exteriors that send any oriented
meridian to the generator ¢. The functors A and R constructed in this paper could
be extended to the category TangCob, using similar methods, but with more
technicality. When G is infinite cyclic, the restriction of the resulting functor
A : TangCobg — grModg ;.1 to Tang, would coincide with the “Alexander
representation of tangles” constructed in [BCF]. We also mention Archibald’s
extension of the Alexander polynomial [Arc], which is based on diagrammatic
presentations of tangles: her invariant seems to be very close to the invariant
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constructed in [BCF] and is stronger since it is defined without ambiguity in £G .

Finally, our approach is related to the work of Cimasoni and Turaev on
“Lagrangian representations of tangles” [CTl, CT2]. These representations are
functors from the category Tang, to the category of “Lagrangian relations”
(which generalizes the category of Z[t*!]-modules equipped with non-degenerate
skew-hermitian forms) and, for string links, they are equivalent to the (reduced)
Burau representation [LDi, KLW]. The constructions of [CTI, CT2] could be
adapted to the case of cobordisms in order to obtain a functor from Cobg to the
category of “Lagrangian relations” over the ring Z[G]. In the case of homology
cobordisms, the resulting functor would be equivalent to the (reduced) Magnus
representation but it would miss the relative Reidemeister torsion: so it would be
weaker than the functor A.

The paper is organized as follows. A first part deals exclusively with the
Alexander functor: §2 gives the construction of the functor A (Theorem I) and
§3 explains how the classical Alexander polynomial of knots is contained in A.
Next, the Reidemeister functor is constructed in §4 (Theorem II) and is proved
to be a generalization of A in §5. (Thus, we provide two different proofs of the
functoriality of A.) Starting from there, we focus on the study of R and indicate
the resulting properties for A. The abelian Reidemeister torsions of knot exteriors
and closed 3-manifolds are shown to be determined by R in §6. The functor R
restricts to a projective representation of the monoid of homology cobordisms,
which we fully compute in §7. We also explain in §8 how to calculate R using
Heegaard splittings of cobordisms, and we prove in §9 a duality result for R
which involves the twisted intersection form of surfaces. Finally, the paper ends
with a short appendix recalling the definition and basic properties of the torsion
of chain complexes.

Notation and conventions. Let R be a commutative ring. The exterior algebra
of an R-module N is denoted by

AN = @A’N where A°N = R;

i>0

the multivector v{ A--- Av; € A'N defined by a finite family v = (vy,...,v;)
of elements of N is still denoted by v. If N is free of rank n, a volume form
on N is an isomorphism of R-modules A" N — R.

Let X be a topological space with base point x. The maximal abelian cover
of X based at = is denoted by py : X — X, and the preferred lift of x is
denoted by * . (Here we assume the appropriate assumptions on X to have a
universal cover.) For any oriented loop « in X based at », the unique lift of «
to X starting at % is denoted by @ .
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Unless otherwise specified, (co)homology groups are taken with coefficients
in the ring of integers Z; (co)homology classes are denoted with square brackets
[—]. For any subspace Y C X such that » € Y and any ring homomorphism
@ Z[H1(X)] = R, we denote by H?(X,Y) the ¢-twisted homology of the pair
(X,Y), namely

H?(X,Y) = H(C*(X,Y)) where C®(X,Y) := R ®zm,xn C(X . px'(Y)).

If (X’,Y’) is another pair of spaces and f : (X’,Y') — (X,Y) is a contin-
uous map, the corresponding homomorphism H(X') — H(X) is still denoted
by f. If a base point ' € Y’ is given and f(*’) = %, the R-linear map
H*/(X',Y') — H®(X,Y) induced by f is also denoted by f.

Acknowledgements. This work was partially supported by the French ANR
research project “Interlow” (ANR-09-JCJC-0097-01). The authors would like to
thank the referee for some useful comments.

2. The Alexander functor A

We firstly review the Alexander function of a 3-manifold with boundary
following [Les]. (Note that the terminology “Alexander function” has a very
different meaning in [Tur2].) Next, we construct the Alexander functor A. In this
section, we fix a finitely generated free abelian group G; the extension of a
group homomorphism ¢ : A — G to a ring homomorphism Z[A] — Z[G] is still
denoted by ¢.

2.1. The Alexander function. Let M be a compact connected orientable 3-
manifold with connected boundary. We fix a base point x € dM and a
group homomorphism ¢ : H{(M) — G. The genus of M is the integer
gM):=1— (M), i.e. the genus of the surface oM .

Lemma 2.1. There exists a presentation of the Z[G]-module H{(M,*) whose
deficiency is g(M).

Proof. We consider a decomposition of M with a single O-handle, s 1-
handles and r 2-handles. Since the boundary of M has genus g(M), we
have s —r = g(M). This handle decomposition defines a 2-dimensional complex
X C M onto which M deformation retracts. The complex X has a single 0-
cell (which we assume to be x), s 1-cells and r 2-cells. Thus we obtain a
presentation of the Z[G]-module H{(M,*) ~ H{(X,*) with s generators and
r relations. ]
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We now simplify our notation by setting g := g(M) and H := H{” (M, x).

Definition 2.2 (Lescop [Les]). Consider a presentation of the Z[G]-module H
with deficiency g:

(2.1) H=yi.....Ve4r|P1:-..,0r).

Let I' be the Z[G]-module freely generated by the symbols yq,...,ye4r, and
regard pi,...,p, as elements of I'. Then the Alexander function of M with
coefficients ¢ is the Z[G]-linear map Aﬁl : A8 H — Z|G] defined by

AS Ui A AUg) VI A AYgir =PLA-Apr ATUT A=A Ty €AETT

for any uy,...,ugy € H, which we lift to some uy,..., ug €' in an arbitrary
way.

The map Aj, can be concretely computed as follows: if one considers the
r x (g + r) matrix defined by the presentation (2.1) of H, and if one adjoins to
this matrix some row vectors giving uy,...,ug in the generators yi,...,Ve4r,
then J‘% (U1 A+ Aug) is the determinant of the resulting (g +7) x (g + r)
matrix. It is shown in [Les, §3.1] that, up to multiplication by a unit of Z[G]
(i.e., an element of +G), the map Aj, does not depend on the choice of the
presentation (2.1).

Let Q(G) be the field of fractions of Z[G]. The following lemma, which is
implicit in [Les], shows that either the Alexander function is trivial or it induces
by extension of scalars a volume form on Hgp := Q(G) ®z[c] H .

Lemma 2.3. We have dimHg > g, and A}, # 0 if and only if dimHgp = g.

Proof. Let A be the r x (g +r) matrix with entries in Z[G] corresponding to the
presentation (2.1) of the Z[G]-module H . The multiplication v — vA defines a
linear map Q(G)" — Q(G)8*" whose cokernel is Hg . Therefore

dim Hp = (g +r) —rank A.

Clearly, we have rank A <r so that dimHgp > g.

Assume that dim Hp > g and let A’ be a matrix obtained by adding g
arbitrary rows to A. Then rank A < r so that all the minors of A of order r
vanish. By expanding the determinant of A’ successively along the last g rows,
we see that detA’ = 0 and deduce that A}, = 0.

Assume that dim Hp = g. Then rank A = r so that A has a non-zero minor
D of order r. Let 1 <i; <--- <ig < g+ r be the indices of the columns of
A not pertaining to D. Then A5, (y;, A---Ayi,) =D #0. O
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2.2. Definition of A. In order to define a functor A, we associate to any object
(g,¢) of Cobg the exterior algebra

A(g.¢) := A H (Fg, %)

of the Z[G]-module H?(Fg,*) = H{(Fg,*), which is free of rank 2g. Next,
we associate to any morphism (M, ¢) € Cobg ((g—. ¢-). (¢+.9+)) a Z[G]-linear
map

AM, @) : AHY (Fg_,%) —> A H{ T (Fg, , %)

of degree dg := g4+ —g— as follows. We denote by [/ the interval m(x x [—1,1]),
which connects the base point of the bottom surface d_M to that of the top
surface 34 M. We set H := H{ (M. 1), Hy := H/*(Fg ., %) and g := g4 +g_.
Then, for any integer j > 0, the image A(M, ¢)(x) € A/t H, of any x € A H_
is defined by the following property:

Vy e A8 T Hy, A (NMm_(x) A AT mi(y)) = o(AM, @) (x) AY).

Here o : A%6+H, — Z[G] is an arbitrary volume form on H,. Due to the
choices of w and of the presentation of H, the map A(M, ¢) is only defined up
to multiplication by an element of +£G . Besides, observe that A(M, ¢) is trivial
on A/ H_ for any j < max(0,—d¢) and any j > min(g,2g_).

The next two lemmas show that the above paragraph defines a monoidal functor
A from Cobg to grModyg 1+ » Which proves Theorem I of the Introduction. The
first lemma is related to Property 6 of the Alexander function in [Les], while the
second lemma seems to be new.

Lemma 2.4. For any morphisms (M, ¢) € Cobg((g—,¢—-),(g+,0+)) and (N, V) €
Cobg ((h—, ¥-). (hy.¥+)), we have

(2.2) A((M, ) ® (N, ¥)) =AM, ¢) @ AN, ).
Proof. Weset g =g+ +g—, h:=hy+h_, 6g . =gy+—g—, $h:=hy—h_ and
o
HY = H*(Fg, . %), HY = H*(Fy, %), He:= H**(Fg, 14, %)
HM .= HY(M. 1), HY :=HV(N.I1), H:=H®V(Mt;N,I).
In the statement of the lemma and in the proof below, we identify
_ _ _ M N
A((g+. 9+) ® (h, Y1) =A(g+ + he,px ® Y1) = AH: = A(HY & HY)
in the obvious way with

AHMY @ AHY = A(gs, p+) ® Alhs, Ux).
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Since the intersection of M and N in Mf{yN is a 2-disk which retracts onto
I, the Mayer—Vietoris theorem gives an isomorphism HM @ HN S HLUIf
rank HM > g, then A% = 0 by Lemma 2.3 so that A(M,p) = 0; the same
lemma applied to N shows that

rank H = rank HM + rank HY > g + h

so that A((M, ) ® (N,¥)) =0 and (2.2) trivially holds true. Therefore, we can
assume in the sequel that rank(H™) = g and rank(H") = .

Let x :=xM @ xVN e NNHM @ A/JHYN C A’/ H_: we aim at showing that
a:=A((M,9) ® (N,¥))(x) is equal to

a' = (MM, 9) & AN, 1)) () = (— 1) AM, 9)(xM) @ AN, ) (xV).

(Recall that we are using Koszul’s rule in the definition of the tensor product
of morphisms in the category grModyzg)+g-) It is enough to prove that,
for any integers p,q > 0 such that p+¢q = (g +h) — (i + j) and any
yi=yM@yN e APHM @ ATHY C APTIH ., the identity

(2.3) w@any)=w@d Ay)

holds true up to multiplication by an element of £G independent of x,y (and,
in particular, independent of i, j, p,q). In the sequel, we fix some volume forms
oM and oV on HM and HY respectively, and we assume that the volume

form @ on Hy = HY @ HY is defined by

(2.4) o AV) = oM W) - oV (v)

for any u € A6+ HM and v € A?*+ HY . By definition of A, we have

(2.5) w(any) = Aﬁﬁth (Aim_(xM) AN _(xNY A NP (M) A Aqn+(yN)) )

If p > g—1i, then i + p > rank(HM) by our assumptions, so that
ANm_(xM)y A APmy(yM) e APTPHM s torsion; we deduce that w(a A y) = 0;
on the other hand, the degree of A(M,)(xM)AyM e AHM is i+ +p > 2g+
so that w(a’ A y) = 0 as well; thus (2.3) trivially holds true if p > g —1i. If
p<g—i,then ¢ >h—j and the same conclusion applies. Therefore, we can
assume in the sequel that p=g—i and g=h—j.

To proceed, we consider a presentation HM = (y1,...,ve4r|p1s...,0r)
and a presentation HN = (1y--os ths | C1,-.., ). By the above-mentioned
isomorphism between H™ @& HY and H, we obtain a presentation

H:(Vla---ayg—l—r,lil,--wﬂh—i-s|p1a---,,0ra§1,---a§s)~
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Note that, with these choices of presentations, the matrix corresponding to H is
the direct sum of the matrices corresponding to H™ and HY . Therefore, we get

wa ny) Z (DI AL (N m_ (M) A AT (vM))
AR (AT n_(xN) A Ay (v))
= (= 1)!sHPEED M (AM, ) (x™) A yM) - ™ (AN ) (V) A yP)
(1) (AM, @) (M) A yM A AN Y)Y ) A pY)
= (=1)sTPEEDTLUEM g (AM, ) (x™) AAWN. Y (xV) A yM Ay V)
= (=DECHTM (@ A y). -

Lemma 2.5. For any morphisms (M, ¢) € Cobg((g—, ¢-), (g+,9+)) and (N, ) €
Cobg ((h—, ¥-), (h+, ¥4)) such that (g4,¢4) = (h—,y—), we have

AN, ¥) o (M, 9)) = AN, ¥) 0 A(M, ¢).
The next subsection is devoted to the proof of Lemma 2.5.

2.3. Proof of the functoriality of A. We use the notations of Lemma 2.5 and
we set

g =g-+8g+ h:=h_+hy, [fi=g +hy,
g =g4+—g-, h:=hy—h_, 8f =hy—g_,
HM .= HY(M. 1), HY :=HY(N,I), H:=H/T(NoM,I).

Let v = (v1,...,v2, ) be a basis of Hf+(Fg+,*): we set mv; := m4(v;) and
nv; :=n_(v;) for all i =1,...,2¢4+. We consider presentations of the following
form:

HM — (muy,...,mvag ur, ..., up |81, .00, Grgse),s

HY = (v, ..., AV, W1, ..., W | P1,-- s Ps—8h)-

Applying the Mayer—Vietoris theorem to N o M, we obtain that the Z[G]-module
H is generated by

(2.6) MUy, ..., MUg AV, ..., AVU2p_,UL,..., Up, W1, ..., Ws

subject to the relations {1,....848¢.P1.-. ., Ps—8p, MVI—NVL, ..., MV2g, —NV2g .
In the sequel, we set H_ := H{ (Fy_,x) and Hy := H;/'+(Fh+,*). Let
xeA/H_ and y € A/77H,: we wish to compute

A%jfl (Ajm_(x) A Af_jn+(y))
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using the previous presentation of H . For this, we perform some computations
in AKT" where k :=4g, +r+s and T denotes the free Z[G]-module generated
by the k symbols listed at (2.6). Set {: =1 A= Alrisg, Pi=P1 A" A Ps—8h-
Then, we have

CAPA (MU —nv) A A(Mmugg, —nvzg, ) A AMm_(x) AN T (y)

= Z (=DIPlep - & A p Amup ARVE A A m_(x) AN T np(y)
P

- Z (=DIPIGFDgp . (§ AMUPp A Ajm_(x))
P

A (p/\nvp/\ Af_jn+(y)) e AFT.

Here the sums are taken over all parts P C {l,...,2¢g+}, P denotes the
complement of P, mvp is the wedge of the mv; for i € P, nvp is the
wedge of the nv; for i € P and ep is the signature of the permutation PP
(where the elements of P in increasing order are followed by the elements of P
in increasing order). A sign (—1)$=U+IPD s missing in the second sum but,
since the presentation of H¥ is arbitrary of deficiency %, we can assume that
its number of relations (s — &) is even.

In the sequel, we omit the “tilde” notation to distinguish elements of AH from
their lifts to AT'. Note that, in the above sums, the multivector {Amvp AA m_(x)
has degree (r + dg) + |P| + j which is greater than 2g, + r as soon as
|P| > g — j; similarly, the multivector p A nvy A A’7In,(y) has degree
(s — &) + Qg+ —|P]) + (f — j) which is greater than 2Ah_ + s as soon as
|P| < g—j;since 2g4++r and 2h_+s are respectively the numbers of generators
of HM and HY in the above presentations, the summand corresponding to P
vanishes for |P| > g — j and for |P| < g — j. Therefore the above sums are
actually indexed by the subsets P C {1,...,2¢+} having cardinality ¢ — j, and
we get

AP A (MU —nvy) A A(Mmuzg, —nvgg, ) A A m_(x) A Af_jn+(y)
= Z ep - (L Amvp AN mM_(x)) A (p Anve AN TTng(y)
|Pl=g—Jj
where we have set & := (—1)/P1G+Dep . The summand is here equal to
ep - (C Amup AN m_(x)) A (p Anve AN TTng(y))
= & - (A}, (mvp A AV m_(x))-(mv Au))
A (A%(nvﬁ/\ AT i (3))-(nv A w))

=ép -Aﬁl(mvp A Ajm_(x))AK,(nvF/\ Af_j71+(y)) -(mv AnvAUAW).
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We deduce that
n . .
AV (N m_(x) A A I (p)
= Z gp - AL (mup A Nm_(x)) - A% (nvp A A T ny(y))

|Pl=g—Jj
= AN X el A A () g A )
|P|l=g—j
=4 (X (—1)|P|8p-a)(A(M,(p)(X)/\vp)-nv?/\Af_jn_,_(y)),
|P|=¢g—j

We can assume that the basis v of H {p T(Fg 4, %) is compatible with the chosen
volume form w, in the sense that w(vy A--- A vy, ) = 1. Observe that, for all
z € NN HIT(Fy %), we have the identities

z = Z ep-w(z Avp) - vF = Z (—1)|P|~8p-a)(2/\vp)~v7
|Pl=g—Jj |Pl=g—Jj
where the sums range over all subsets P C {l,...,2g4} of cardinality g — ;.
Hence

AR (A m_(x) AN T g () = A (AT HEn_AM, ¢)(x) A AT g (1))
= o (AN, ¥)(A(M, 9)(x)) A y).

It follows that  (A((N,v¥)o(M,9))(x) Ay) = o (AN, ¥)(AM, p)(x)) Ay),
which concludes the proof of Lemma 2.5.

3. Alexander functor and knots

In this section, we relate the functor A to the classical Alexander polynomial
of knots. We fix a finitely generated free abelian group G ; the extension of a
group homomorphism ¢ : A — G to a ring homomorphism Z[A] — Z[G] is still
denoted by ¢.

3.1. The Alexander polynomial of a topological pair. Given a finitely generated
Z|G]-module N and an integer i > 0, the i-th Alexander polynomial of N is
the greatest common divisor of all minors of order n —i in an m xn presentation
matrix of N . This algebraic invariant is denoted by A; N € Z[G]/ £ G.

Let (X,Y) be a pair of topological spaces, and assume that they have
the homotopy type of finite CW-complexes. Consider a group homomorphism
¢ : Hi(X) — G. The Alexander polynomial of (X,Y) with coefficients ¢ is

A?(X,Y):= AoH](X,Y) € Z[G]/ £ G.
If Y is empty, we set A?(X):= AgH{(X).
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3.2. The Alexander function in genus one. Let M be a compact connected
orientable 3-manifold with connected boundary, and fix a base point x € dM . Let
also ¢ : H{(M) — G be a group homomorphism. The next lemma generalizes
Property 1 of the Alexander function given in [Les].

Lemma 3.1. Assume that g(M) = 1 and that ¢ is not trivial. Then, for any
heH:=H{(M,x), we have

A?(M) - 9«(h)  if ranko(H1(M)) = 2,

A](f/[(h) = A(p(M) a*( )

if rankop(H{(M)) =1 and t is a generator.

Here 0. : H — Z|G] is the connecting homomorphism H{(M,*) — H§ (%) in
the long exact sequence of the pair (M, x), followed by the canonical isomorphism
H{ (x) ~ Z[G].

We shall deduce Lemma 3.1 from the following.
Lemma 3.2. If ¢ is not trivial, then A®(M) = A H{ (M, *).
Proof. The long exact sequence in ¢-twisted homology for the pair (M, x) gives
0— H{ (M) — H{(M,x) — HJ(x) — HJ(M) — 0.
Since the Z[G]-module H{ (x) =~ Z[G] is torsion-free, we deduce that
(3.1) Tors HY (M) =~ Tors H{ (M, x).
Besides, the above exact sequence implies that
rank H{ (M) —rank HY (M, ) + 1 —rank Hj (M) = 0.

We now show that rank Hy (M) = 0. By considering a cell decomposition of M

with % as a single O-cell and some 1-cells eq,...,e,, we see that
HY (M) = Z[G]/{(g1 = 1), -, (& = D)igea
where g; := ¢([e;]) € G. Thus we have the short exact sequence of modules

0—> I, — Z[G] — Hj (M) — 0,

where [, is the ideal generated by the ¢(h)—1 for all 7 € H{(M). By tensoring
with the field of fractions Q(G), we obtain

0 — Q(G) ®zi61 lp — Q(G) — Q(G) ®z6) Hy (M) — 0.

Since ¢ is not trivial, Q(G) ®z(g] I, # 0 so that Q(G) Qzg) HY (M) = 0.
Hence

(3.2) rank HY (M, x) = rank H{ (M) + 1.
We conclude thanks to (3.1) and (3.2) using the following:
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Fact. [Bla, Lemma 4.10]. Let N be a finitely generated Z|G]-module.
Then
0 if i <rank(N),

Ai(N) = { Ai—rank N (Tors N)  if i > rank(N).

[

Proof of Lemma 3.1. Observe that, for any oriented loop p in M based at ,
we have 0.([p]) = ¢([p]) — 1. Thus, the greatest common divisor of d,(H) is

ged . (H) = ged{o(x) — 1 |x € H{(M)} € Z[G]/ £ G.
Since ¢ is assumed to be non-trivial, we deduce that

1 if ranko(H{(M)) > 2,

‘da* H —
gcd 9.(H) { t —1 if ranko(H;(M)) =1 and ¢ is a generator.

Therefore, we have to prove that

x (h)

33 (h)=AN(M) —————.

(3.3) Afy ) = AP (M) - s

For this, we consider a presentation H = (y1,...,Vr+1]|p1,-..,pr) and let A be

the associated r x (r + 1) matrix. We have

r+1

VZl, ey Zr41 € Z[G], A&(le/l + e+ Zr+1)/,~+1) = Z(—l)i+r+1 det(Ai)Zi
i=1

where A; is the matrix A with the i -th column removed. Then Lemma 3.2 gives
(3.4) A*(M) = AH = ged AY,(H).

It follows that A“(M) = 0 if and only if A5, = 0. In that case (3.3) trivially
holds true: thus we assume in the sequel that Af,[ # 0. Lemma 2.3 implies that
rank H = 1: it follows that any two Q(G)-linear maps Q(G) ®zig] H — Q(G)
are linearly dependent. Since A;’(d # 0 and d. # 0, we deduce that there exist
non-zero elements D, E € Z[G] such that

D
(3.5) Yhe H, A (h) = T 04 (h)
or, equivalently, Dd.(h) = EAf,[(h) for all h € H. Hence
D gedo.(H) = E ged Aj"f,l(H ) and we deduce from (3.4) that
D A? (M)
3.6 —_ =
(3-6) E  gcd oy (H)

The identity (3.3) is then deduced from (3.5) and (3.6). ]
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3.3. The functor A on knot exteriors. Let K be an oriented knot in an oriented
homology 3-sphere N . The Alexander polynomial of K is classically defined as

A(K) := AYK (Mg) = Ag HPX(Mg) € Z[G]/ £ G

where My is the complement of an open tubular neighborhood of K in N, G is
the infinite cyclic group spanned by ¢, and ¢ : H{(Mg) — G is the isomorphism
mapping an oriented meridian u C dMg of K to ¢. Note that A(K) is a Laurent
polynomial in the variable 7, which is defined up to multiplication by a monomial
+tk for k e Z.

We make Mg a morphism 1 — 0 in the category Cob by choosing a boundary-
parametrization m : F(1,0) — 0Mg such that pu_ := m~(u) is contained in the
bottom surface F; and goes through the base point x. Set H_ := H{*"~ (Fy, ).
The following proposition shows that the knot invariants A(K) and A(Mk, ¢x)
carry the same topological information. This is deduced from Lemma 3.1 applied
to M = Mg.

Proposition 3.3. With the above notation and for any h € A' H_, we have

A(K) - 0x()/(t = 1) if i =1,

A(M h) =
(Mg, ok )(h) {O otherwise,

where 0. : H- — Z[G] is the connecting homomorphism for the pair (Fy,*). In
particular, we have A(K) = A(Mg,ox)([1-]).

4. The Reidemeister functor R

In this section, we construct the Reidemeister functor R. We fix a field F and
a subgroup G of F*. In this section, the extension of a group homomorphism
¢ : A — G to a ring homomorphism Z[A] — F is still denoted by ¢.

4.1. The Reidemeister function. We use the elementary theory of abelian Rei-
demeister torsions to construct an analogue of the Alexander function considered
in §2.1. Let M be a compact connected orientable 3-manifold with connected
boundary, and let ¢ : H;(M) — G be a group homomorphism. We fix a base
point x € dM and we set g :=g(M) =1— y(M).

Lemma 4.1. We have H;’)(M, *)=01if i =0 or i >2. Moreover, we have

dim HY (M, x) = g + dim Hy (M, ).
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Proof. Since dM is non-empty, M deformation retracts to a connected 2-
dimensional complex whose only O-cell is x: the first assertion follows. Moreover,
we have

—g = x(M)— 1= y(M,») = —dim HY (M, x) + dim HY (M, x). 0

Denote H := H{(M,x) and assume in this paragraph that dimH = g.
We choose a cell decomposition of M where x is a 0O-cell: by Lemma 4.1,
the homology of the ¢-twisted cell chain complex C¥(M, ) is concentrated
in degree 1. For every dimension i € {0,...,3}, let n; > 0 be the number of
relative i-cells of (M, x) and order them ol(i), . .,(r,g.) in an arbitrary way. For
every cell o of (M, %), we also choose an orientation of ¢ and a lift & of ¢ to
the maximal abelian cover M of M. Thus, we get a basis ¢ := (c3,¢2,c¢1,¢9)
of the T -chain complex C¥(M, x) where, for every i € {0,...,3}, the basis of
the FF-vector space C(M,*) is given by ¢; := (1 ®61(i), | ®6,g)) Then we
consider the function H® — [ defined by

t(C‘p(M, *);c,(h,l,...,hg)) if hiy Ao ANhg #0,
0 otherwise.

4.1) (hl,...,hg)H{

Here t (C;c,h) denotes the torsion of the finite F-chain complex C with basis
¢ and homological basis %: see §A.l. It follows from the definition of the torsion
that the map (4.1) is multilinear and alternate: see Lemma A.2.

Definition 4.2. The Reidemeister function of M with coefficients ¢ is the F -
linear map RY, : AH — F defined by (4.1) if dimH = g and by RY, :=0 if
dimH # g.

Because of the choice of the orders, orientations, and lifts of the cells of (M, %),
the map R‘pM is only defined up to multiplication by an element of +G C F. It
remains to justify that R%, € Hom(A$ H,F)/+ G defines a topological invariant
of M (i.e., it does not depend on the choice of the cell decomposition). Note that
we do not need Chapman’s result on the topological invariance of the torsion of
CW-complexes [Cha, Coh] since we are considering here manifolds of dimension
3. Specifically, using Whitehead’s theory of smooth triangulations and the fact that
the Reidemeister torsion of CW-complexes is invariant under cellular subdivisions,
we obtain that the above definition of Rfd applied to a smooth triangulation of
(M, %) produces an invariant of smooth 3-manifolds. (See [Mil2, §9] or [Tur3,
§3] for similar arguments which are valid in any dimension.) Next, we appeal
to the 3-dimensional Hauptvermutung to conclude that Rz(fJ is an invariant of
topological 3-manifolds. Thus, we can consider in Definition 4.2 an arbitrary cell
decomposition of (M, =) provided it can be subdivided to a smooth triangulation
of M.
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4.2. Definition of R. The definition of the functor R from the Reidemeister
function R goes parallel to the definition of A from A (see §2.2). Thus we
associate to any object (g,¢) of Cobg the exterior algebra

R(g.¢) := A H (Fg. )

of the F-vector space HY(Fg,x) = H{(Fg,*), which has dimension 2g. Next,
we associate to any morphism (M, ¢) from (g—,¢_) to (g+,¢+) an F -linear
map

R(M,p): A H{p_(F _,x)— A Hf*(Fng’*)

of degree 8¢ := g+ — g— in the following way. We set H := H{(M,I) where
I = m(k x[-1,1])), Hy := H{pi(ng,*) and g := g4+ + g—. Then, for any
integer j > 0, the image R(M,¢)(x) € A/t H_ of any x € A/ H_ is defined
by the following property:

Vy e AT Hy, RY (MNm_(x) AAE T my(y)) = o(R(M, 9)(x) A Y).

Here w : A*6+H, — F is an arbitrary volume form which is integral in the
following sense: regarding H; as F OZH) (Fe, )] Hi(Fg , % Z[H(Fg )], we
assume that w arises from an arbitrary volume form on the free Z[H(Fg, )]-
module Hy(Fg, ,x;Z[H1(Fg,)]). Due to the choices of this volume form and of
the ordered/oriented lifts of the cells to M , the map R(M,¢) is only defined
up to multiplication by an element of =G C . Besides, R(M,¢) is trivial on
AJH_ for any j < max(0,—&) and any j > min(g,2g_).

The next two lemmas show that the above paragraph defines a monoidal
functor R: Cobg — grVecty g, which proves Theorem II of the Introduction.

Lemma 4.3. For any morphisms (M, ) € Cobg((g—, ¢-),(g+,9+)) and (N, ) €
Cobg ((h—,¥-), (h4. V1)), we have

(4.2) R((M,p) ® (N, %)) =R(M, ) ® R(N, ¥).
Proof. We set g . =g+ +g—, h:=hy+h_, g :=g+—g_, h:=hy—h_ and
H:{:‘/I = H{pi(ng,*)» H:{:v = H;,”:I:(Fhia*)’ H:I: = H;o:t@w:t(ng-i-hi’*)a

HM .= HY (M. 1), HY :=HY(N.I1), H:=H®"(MtN,I).

Since M and N intersect in Mfi3N along a 2-disk which retracts onto

I, the Mayer—Vietoris theorem gives an isomorphism H™ @ HY = H.If
dim(H™) > g, then Rfl = 0 by definition, so that R(M, ¢) = 0; moreover,

dim(H) = dim(HY) + dim(HY) > ¢ + h
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so that R((M,¢) ® (N, ¥)) =0 as well, and (4.2) trivially holds true in that case.
Therefore, we can assume that dim(H*) = g and dim(H") = h.
Let xM = (xM, ... xM) be a family of vectors in HM and let

xV = (x{,...,xY) be a family of vectors in HY. We consider the element

x=xM@xN e NN\HM @ AVHN c N'Y(HM @ HY) = A" H_.
We aim at showing that r := R((M, ) ® (N, ¥))(x) is equal to
r' = (R(M, 9) @ RN, 1)) (x) = (=1)"" -R(M, 9) &™) @ RV, ) (™).

It is enough to prove that, for any integers p,g > 0 such that
p+q=(g+h)—(@G+j) and for any families y¥ = (yf”,...,y})”) C HM and
yW=0y.....y¥) c HY, we have

(4.3) w(r Ay)=wl AYy)

where y :=yM @ y¥ e APHY @ AYHY C APT4H, . In fact, we only need to
prove (4.3) up to multiplication by an element of +£G, provided this factor is
independent of i, j, p,q,x and y.

In the sequel, we fix integral volume forms @™ and o™ on HM and HY
respectively, and we assume that the volume form o on Hy = H _ﬁ” e H _{Y is
defined by

4.4) o Av) = oM w) - o™ (v)

for any u € A2+ HM v e A+ HY . (So w is integral too.) By definition of R,
we have

(45) o(rny) = Rygy (Nm_ (M) A A n_(x™) A APmy (pM) A ATny (N)).
If p>g—i, then we have i + p > dim(H™) by our assumptions and we
obtain A'm_(x)AAPm(yM)=0e A'TPHM ; we deduce that w(r Ay) = 0;
on the other hand, the degree of the multivector R(M, ¢)(x™) A yM™ € AHM s

i +68 + p > 2g+ so that w(r’ Ay) =0 as well; thus (4.3) trivially holds true
if p>g—i.If p<g—i,then ¢ >h—j and the same conclusion applies.

Therefore, we can assume that p = ¢ —i and ¢ =& — j in the sequel.
Since HM ¢ HN ~ H, k = (m_(xM),m+(yM),n_(xN),n+(yN)) is a
basis of H if, and only if, the families k¥ := (m_(x™),m4(y™)) and

kN = (n—(xN),ny(y")) are bases of HM and HY respectively. If the former
condition is not satisfied, then w(r Ay) is zero by (4.5) and, if the latter condition
is not satisfied, then w(r’ A y) is trivial as well since we have
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o' Ay) = (=)0 (RM, o) (x™) ARV, ¥)(xN) A yM A yY)

= (=1)/"PUFDe RM, ) (M) A yM ARV, ) (&Y) A YY)

E ) M (R(M, ) xM) A yM) -0 RN (Y) A V)

or, equivalently,
(4.6) o’ Ay) = (=DEFPIRE (Nm_(xM) A A8 my (yM))
. R% (Ajn_(xN) A Ah_jn+(yN)) .
Therefore, we can assume in the sequel that k& is a basis of H.
Consider next the twisted cell chain complexes C = C¢®V(M{iyN, 1),

CM .= C?(M,I) and CV := CY(N,I). There is a short exact sequence of
F -chain complexes

4.7) 0 D cMgCN C 0

where D is the (un-)twisted cell chain complex of the disk M NN C M{yN
relatively to 7. Clearly, D is acyclic. By the multiplicativity property of torsions
(see Theorem A.3 and Example A.4), we obtain

e-1(Cie k) -t(Did) -t (H; (kM kM), k) = (CM;eM kM) - (CV; eV k)

for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases ¢, d,c™, ¢V of the chain complexes. Here ¢ is a sign not depending
on i,j,p,q,x,y, and H is the long exact sequence in homology

0— - —>0—>HMgpHY  H —50—0—0

induced by (4.7), which we view as a finite acyclic F -chain complex concentrated
in degrees 3,4 and with basis ((k™,k%), k). By definition of k, k™ and k%,
we have 7(H;((k™,k"),k)) =1 and, since the intersection disk M NN can be
reduced to I by elementary collapses, the scalar 7 := 7(D;d) belongs to +G.
We conclude that
wo(r Ay)'E (=) 7 (Cie k)
= (=) er™! -t(CM;cM,kM) . r(CN;cN,kN)

(L0 (=D& T (' A y). ]

Lemma 4.4. For any morphisms (M, ¢) € Cobg((g—, ¢-),(g+,¢+)) and (N, ) €
Cobg ((h—, Y-), (h+,¥4)) such that (g+,¢+) = (h—,¥-), we have

(4.8) R((N.¥) o (M, 9)) =R(N.¥) oR(M, ¢).

The next subsection is devoted to the proof of Lemma 4.4.
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4.3. Proof of the functoriality of R. We use the notations of Lemma 4.4 and
we set

gi=g-+gy, h:=h_+hy, fi=g_+hy,

&g =g+—8-, Sh:=hy—h_, 8f =hy—g-,
HM .= H?(M,I), HY :=H/(N,I), H:=H/T(NoM,I),
KM .= H¢M, 1), KN :=HYN.I), K:=H/T"WNoM.I),
H_:=HY (Fy_,%), V:=H'" (Fg, %), Hy:=H/"(F, . .

Since N o M is obtained from M and N by identifying 0, M to d_N, there
is a short exact sequence of chain complexes
4.9)

0—> CO(Fy ,%x) — CY(N.)®C*(M,I) — CVT*(N o M,I) — 0.

D:= CN:= CM:.= C:=

Let H be the corresponding long exact sequence in homology:

(—n—,m4)
—>

0> —>0>kKNoKM S K>V HY e H™ - H - 0—0—0.

If KM +# 0, then dim(HM) > g by Lemma 4.1 so that Ry, = 0 and
R(M,p) = 0; besides, the long exact sequence H implies that K # 0 so
that R((N,y¥) o (M, ¢)) = 0O; therefore, (4.8) trivially holds true in that case. If
K%Y +#£ 0, the same conclusion applies. So, we can assume that K™ = 0 and
KN =0 or, equivalently, dim H™ = g and dim HY = .

Let j € {0,...,f}, and let x = (x1,...,x;) and y = (y1,...,yr—;) be
families of vectors in H_ and H, respectively. Let v = (vy,...,v24,) be an
arbitrary basis of V and let @’ : A%%+V — F be the volume form such that
w’(v1 A --- Avag,) = 1; there exists an a, € F \ {0} such that @ = ay - @"
is the integral volume form chosen in the definition of the functor R. We have
R(M, ¢)(x) € ATV hence

RIM,p)(x) = D ep- 0" (RIM,@)(x) Avp) - vp
|P|=g—j

where the sum is taken over all subsets P C {1,...,2g4} of cardinality g — j,
P denotes the complement of P, vp (respectively vy ) is the wedge of the v;’s
for i € P (respectively i € P), and e is the signature of the permutation PP
(where the elements of P in increasing order are followed by the elements of
P in increasing order). We deduce that
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(4.10)
o (RN, ) (R(M, 9)(x)) A )
= RY, (Af+5gn_R(M, ©)(x) A Af‘jn+(y))
= R}/\I[( Z (C'Fa)v(R(M’ ‘P)(x) /\UP) 'Aj+8gn_(vﬁ) /\Af_fn+(y))
|Pl=g—j
= Ry (D e RE (AT mr) A A ()
|P|l=g—j -Aj+5gn_(v?) A Af_jn+(y))

=o' Y e Ry (A5 my(vp) A N m_(x))
|Pl=g—Jj ; i
Ry (A En_(vp) A AT ns(y))

where &p = g5+ (=1)/E) If K # 0, then R((N,v¥) o (M, p)) = 0; besides,
the long exact sequence in homology H shows that there exists a w € V \ {0}
such that n_(w) =0 € HY and m4(w) =0 e HM; since the basis v of V is
arbitrary in (4.10), we can assume that v; = w. In the last sum indexed by P,
the vector w appears either in vp or in vy, so that the corresponding summand
is always zero; it follows that R(N, ¥)(R(M,¢)(x)) Ay =0 for any x € A/ H_
and y € A7 H ; therefore, (4.8) trivially holds true in that case. Thus, we can
assume in the sequel that K = 0 or, equivalently, dim H = f .

It now remains to prove using the above assumptions that, for any families of
vectors X = (xg,...,x;) in H_ and y = (y1,...,yr—j) in Hy,

4.11) o (R((N,¥) o (M, 9))(x) A Y)
=ay! Z e Ry (A7 my(vp) A AV m_(x))
Pl=s=J -R}C (A% n_(vp) A A g ()

where, as in the previous paragraph, v is an arbitrary basis of V. Assume firstly
that k := (m—_(x),n(y)) is not a basis of H. Then

R((N.¥) o (M.9))(x) Ay = Ryt (M m_(x) A A I ni(y))

is zero. Besides, the long exact sequence 7 implies that there exists w € V' such
that

my(w) =aym_(x1) +---+a;m_(x;) € HM,

—n_(w) =biny(y1) + -+ by_jni(yr—;) € HY

where ay,...,aj,by,...,bp_; € F are not all zeros. If w = 0, then we have
AMm_(x)=0e AVHM or A7 In,(y) =0e€ A/7HN (depending on whether
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we can find a non-zero scalar among the «;’s or among the b;’s); in both cases,
the second term of (4.11) is trivial. If w # 0, then we take a basis v of V' such
that v; = w and we easily see that the second term of (4.11) is trivial in that
case too. Therefore, we can assume in the sequel that k = (m_(x),n4(y)) is a
basis of H.

We now fix a basis v = (v1,...,vzg,) of V such that w(v) =1 and we
prove (4.11) with oy, = 1. Let also k™ and k" be arbitrary bases of HM and
HN | respectively. By the multiplicativity property of torsions (see Theorem A.3
and Example A.4), we deduce from (4.9) that

(4.12) t(Dsd,v) - 2(Cie. k) - (H: (v, KN kM), k)
= +7(CY; N k) r(CM M kMY eF

for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases d,c,c™,cVN of the chain complexes. The sign appearing in
(4.12) depends only on the dimensions of the complexes C,D,C™,C¥V and
the dimensions of their homology groups. The sequence H is viewed here as a
finite acyclic F -chain complex concentrated in degrees 3,4, 5; its torsion is

i ((—n_, m.,.)(v), lift of k to HN ©® HM) 1!

(kN kM)

(kN kM)
((—n—.my)(v).tift of k o HN & HM)

T (H; (v, (kY kM), k) =

where the symbol [%] stands for the determinant of the square matrix expressing
a family of vectors @ in the basis b of HY @ HM . We have t(D;d,v) € +G
since (Fg,,x) has the simple homotopy type of a wedge of circles relative to
its vertex. We deduce from (4.12) that

N M
R%Lﬁ(/\jm_(x) AN Ty (p)) - |: k7. k) }

((=n—,my)(v),tiftof k 0 HN & HM)
= By RY KM - RY (kM)

where B, € =G does not depend on j,x,y, k™ k¥ (but depends on v). The
previous identity makes sense, and holds true, when kM is an arbitrary family of
g vectors in HM™ and k% is an arbitrary family of % vectors in H% . (Indeed,
if k™ s not a basis of HM or k¥ is not a basis of H¥ , then both sides of
this identity are zero.) In particular, we obtain for any subset P C {1,...,2g+}
of cardinality g — j
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Rm(mm_mAAf—fn+<y>>.[ (n-0p). 71 0). s o), m- () }

((—n—,my)()lifc of k 0 HN & HM)
= By .731({,1 (Ag—jm+(vP) A Afm_(x)) 'R%(A‘Sgﬂn—(vﬁ) A Af_jn+(J’))-

By multilinearity of the determinant and using the facts that dim HM = g and
dim HY = &, we have

| = (—n-) +myp1),....,—n-(vag,) +my(vag, ), m_(x),n4(y))
- ((—n—,m.,.)(v),lift of k to HYN & HM)

_ Cam | (e e) (). mo(x), n+ (7))
- |P|=Zg—j el |:((—n—,m+)(v),lift of k to HYN @ HM)
= (—=])sU+D Z / [ (n-(vp),n4(y), my(vp), m—(x)) }

&
\Pl=g—j g ((—=n—,my)(v),lift of k to HY & HM)

Thus we obtain identity (4.11), up to multiplication by an element of £G not
depending on j,x,y. This concludes the proof of Lemma 4.4.

5. Back to the Alexander functor

We show in this section that the functor A is an instance of the functor R.

5.1. A formula for the Reidemeister function. Let M be a compact connected
orientable 3-manifold with connected boundary, and fix a base point x € M . Let
also ¢ : Hi(M) — G be a group homomorphism with values in a multiplicative
subgroup G of a field F. We use the same notation as in §4.1, where we have
introduced RY,.

When it does not vanish, the Reidemeister function R"’M is defined as an
alternated product of 4 determinants since the I -chain complex C¢(M, x) has
length 3. We now give a recipe to compute it by means of a single determinant
using Fox’s free derivatives. We consider for this purpose a spine X of M,
i.e. a 2-dimensional subcomplex X+ of a smooth triangulation of M such that
M retracts to X by elementary collapses; we also assume that * is a vertex of
XT. (It is well known that any 3-manifold with boundary has a spine: see for
instance [Mat, Remark 1.1.5].) Next, we choose a maximal tree in the 1-skeleton
of Xt which contains x, and let X be the 2-dimensional CW-complex obtained
from X by collapsing that tree to the vertex . Hence X has a single 0-cell «.
We denote by yq,...,yeg4, the 1-cells of X and we denote by Ry,..., R, the
2-cells of X; besides, each of these cells is given an arbitrary orientation. The
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fundamental group m(I") = 7y (I', ) of the 1-skeleton I' := y; U---Uyey, of X
is freely generated by the oriented loops yi,..., Yg+r, hence the free derivatives
5971, cees ayz,—Jr, : Z|m1(T)] — Z[m ()] are defined. Note that the attaching maps
of the oriented 2-cells Ry,..., R, define some elements py,...,p, € m1(I').

Lemma 5.1. Let «i,...,kg be oriented loops in T' based at » and, for all i €
{1,....g}, let ki € H >~ H{(X,*) be the homology class of 1® K; € C{ (X, ).
Then

dy1 0Yg+r
9] _ . ay1 Oyg
G Ryl nkg) =detois| o 0 T
01 a)’g—l—r
1 ayqur/

Here the composition of ¢ with the isomorphism Hy(M) ~ Hi(X) induced
by the homotopy equivalence M =~ X is still denoted by ¢, and the ring
homomorphism iy : Z[n1(I")] — Z[ny(M)] is induced by the map i : I' — M
which is the inclusion ' C X composed with the homotopy equivalence X ~ M .

Proof. The lemma is proved in a way similar to Milnor’s result relating the
Reidemeister torsion of a knot exterior to the Alexander polynomial of the knot
[Mill, Theorem 4]. (See also [Tur5, Theorem II.1.2].) By assumption, the pair
(M, %) has the simple homotopy type of (X, ) and, using the multiplicativity
property of torsions (Theorem A.3), it can be checked that the Reidemeister
torsions of (X, ) and (X™T,*) are equal for any choice of homological bases.
Therefore we can safely replace M by X in our computation of R}fl. Thus we
now consider the ¢-twisted cell chain complex

C = CYX, *)=TF QZ[H, (X)] C(jf\ ,p)?l(*)).

The lifts ¥ 1,..., Y g+r Of y1,...,Yg+r define a basis ¢; := (1® V1,...,
1 ® ¥ g+r) of C in degree 1. Similarly, the lifts Ri,...,R, of Ry,....R,
that contain * define a basis ¢, := (1 ® R L., 1® ﬁr) of C in degree 2.

Let A’ be the square matrix with entries in ' defined by the right-hand side
of (5.1), and let A be the r x (g + r) matrix defined by the first r rows of
A’. Observe that A is the matrix of d, : C; — C; in the bases ¢, and c;.
Since (X, ) has no relative cells in degree 0, H ~ H{(C) is the cokernel of
the linear map F” — F&*" defined by the multiplication v > vA. Assume that

dim H > g: then the rank of A is less than r, so that all the minors of A4 of
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order r vanish; by expanding the determinant of A’ successively along its last g
rows, we obtain that det A’ = 0 and the lemma trivially holds true in that case.
Therefore we can assume that dim H = g.

Observe, next, that the last g rows of A’ give the vectors ki,...,kg € H
~ HY(X,*) as linear combinations of the generators [1 ® 7 1],....[l ® 7 g4+]
of H{p(X,*) ~ H.If k:= (kq,...,kg) is not a basis of H, then ky,..., kg are
linearly dependent: since the first r rows of A’ give a system of relations for the
previous set of generators, we deduce that det A’ = 0 and the lemma is trivially
true in that case too. Thus we can assume that k£ is a basis of H. Let ¢ be the
basis of C given by c¢; in degree 1 and ¢, in degree 2. By Lemma 4.1, the
homology of C is concentrated in degree 1 and, forall i € {1,...,g}, I®Q k; is
a 1-cycle of C representing k; € H ~ H{(C). So, by definition of the function
RS, we get

(5.2) RE (ki A+ Akg) = 7 (Cc.k)
= det (matrix of (92(c2), 1 ® k) in the basis ¢1).

The conclusion follows from the previous two observations. []

Remark 5.2. It follows from Lemma 5.1 that the Reidemeister function has the
following integrality property: for all hy,...,hg € Hi(M,x; Z[H,(M)]), we have

Ry (@x(h) A=+ A ps(he)) € 9(Z[H1(M)))
where ¢. : Hi(M, *; Z[H1(M)]) — H{(M,*) is the canonical map.

5.2. Specialization of R to A. We now assume that G is a finitely generated
free abelian group, and we denote by Q(G) the field of fractions of Z[G]. Let
M be a compact connected orientable 3-manifold with connected boundary, and
fix a base point x € dM . Let ¢ : Hi(M) — G be a group homomorphism: we
denote by ¢z : Z[H{(M)] — Z[G] and by ¢ : Z[H1(M)] — Q(G) the extensions
of ¢ to ring homomorphisms. Set

g = g(M), Hyz = H{pZ(M’ *)’ H = H{p(M, *)_

Lemma 5.3. We have the following commutative diagram:

@

'AM
A% Hy —™ 7[G]

T

A8 H o 0(G),

M

where : Hz, — H >~ Q(G) ®z(6] Hz denotes the canonical map.
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Proof. We proceed as in §5.1: we consider a spine X+ of M, and we obtain a
2-dimensional CW-complex X with a single vertex * by collapsing a maximal

tree in the 1-skeleton of X . The cells of X are yi,...,yg+, in dimension 1,
and Ry,..., R, in dimension 2. Orient yq,...,Ye+, and Ry,..., R, arbitrarily,
and set

Cz = C?2(X,%), C:=C?X,») = Q(G)®zc) Cz.

Since M deformation retracts to X, Hgz is isomorphic to H{Z(X, ) so that
Hyz is the cokernel of 0, : Cz, — Cz,1. Let ¥ 1,..., ¥ g+r be the preferred
lifts of y1,...,Yg+r tO X , and let ﬁl,..., /Iér be the lifts of R;,..., R, that
contain * : we denote by A the matrix of 9, in the bases (1® Ri{....I®R r)
and (1® 71.....1® 7 g4r). This presentation matrix of the Z[G]-module Hz
can be used to compute A}, . Specifically, let ki.....ky € Hz and assume that
each k; has the form [1 ® k ;] where «; is an oriented loop in the 1-skeleton
of X based at x: then Afl(kl A -+ AN kg) is the determinant of the matrix

obtained from A by adding g rows that express the vectors 1 ® ¥ 1,...,1® k¢
in the basis (1® 7 1,....1® VY ¢4,) of Cz,;. We deduce from formula (5.2)
that A%, (k1 A -+ Nkg) = Ry ((ki) Ao Ailkg)). O

The next theorem, which compares the Alexander functor to the Reidemeister
functor, is a direct application of Lemma 5.3.

Theorem 5.4. The following diagram is commutative:

grModz 6 +6
A/
Cobg > 0(G)®z1G1(—)
R

ngeCtQ(G)!iG

6. Reidemeister functor and knots

We now compute the functor R on knot exteriors and we consider, next,
the situation of closed 3-manifolds. In this section, we fix a field F and
a multiplicative subgroup G of F. The extension of a group homomorphism
¢ : H— G to a ring homomorphism Z[H] — F is still denoted by ¢.

6.1. The abelian Reidemeister torsion of a CW-pair. Let (X,Y) be a pair of
finite CW-complexes, and let ¢ : Z[H;(X)] — F be a ring homomorphism. We
consider the ¢-twisted cell chain complex C?(X,Y) of the pair (X,Y), which
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is a finite [F-chain complex of length p :=dim X. For every i € {0,..., p}, let
n; > 0 be the number of relative i-cells of (X,Y) and order them al(i), . ,0,5’;.)
in an arbitrary way. For every cell o of (X,Y), we also choose an orientation
of o and a lift 6 of o to the maximal abelian cover X of X . Thus, we obtain
a basis ¢ := (cp,...,co) of the F-chain complex C¥(X,Y) where, for every
i €{0,..., p}, the basis of C/(X.,Y) is ¢; := (1 ®61(i), | ®(Ar,§ll)) Recall that

the Reidemeister torsion of the pair (X, Y) with coefficients ¢ is the scalar

0 if HO(X,Y) # 0,

‘L'(p(X, Y) = { ‘L’(CW(X, Y);C) if H(p(X, Y) =0,

where t(C;c) denotes the torsion of a finite acyclic F -chain complex C based by
c: see §A.l. The reader is referred to the monograph [Tur4] for an introduction to
this combinatorial invariant. Without further structure on the CW-pair (X, Y), the
scalar t¢(X,Y) is only defined up to multiplication by an element of +¢(H;(X)).
If Y =@, we denote it by t9(X).

6.2. The Reidemeister function in genus one. We now consider a compact
connected orientable 3-manifold M with connected boundary and a group
homomorphism ¢ : Hi(M) - G. Let x € dM and set H := H{(M,x). The
next lemma relates the Reidemeister function Rfl to the Reidemeister torsion
?(M) in genus one.

Lemma 6.1. Assume that g(M) = 1 and that ¢ is not trivial. Then, for any
ke H,

6.1) RS (k) = t9(M) - 04 (k).

Here 9 : H — T is the connecting homomorphism H{(M,x) — H{ (%) in the
long exact sequence of the pair (M, %), followed by the canonical isomorphism
HY(x) ~F.

Proof. Consider a cell decomposition of M where x is a 0-cell. The short exact
sequence of F -chain complexes

(6.2) 0— C%*x) —>C*(M) — C?(M,x) — 0
oy Ci= Cri=

induces the following long exact sequence in homology:

(6.3) 0—0—0—0— HY(M) — H? (M, ) —>

0
—0— H{ (M) — H{(M,*) — HJ(x) — HJ (M) — 0.
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We regard (6.3) as an acyclic F -chain complex #H of length 12: let (', h,h") be
the basis of H obtained by choosing bases %', h,h” of H(C’), H(C), H(C") in
each degree. We choose an orientation and a lift to M for every cell of M and,
for all i € {0,...,3}, we order the i-cells in an arbitrary way. Thus, we obtain
bases ¢’,c,c” of the complexes C’,C,C”, respectively, which are compatible in
the sense of §A.1. By the multiplicativity property of torsions (see Theorem A.3),
we obtain

(6.4) t(Cic,h) =e-t(C'; ' W) -<(C": " h") -t (H; (W h, "))

where ¢ is a sign independent of h,h',h”. If HY(M) # 0, then (M) = 0
by definition, but (6.3) gives HJy(M,*) # 0 and Lemma 4.1 implies that
dim HY (M, *) > g(M): hence R}, = 0 by definition and (6.1) trivially holds
true. Therefore we can assume that Hy (M) = 0.

Besides Hy (M) =0 since ¢ is non-trivial: the fact that y(M) =1—g(M)
is zero implies that H{(M) = 0 as well. Thus the chain complex H defined
by (6.3) is concentrated in degrees 2 and 3. Let kK € H \ {0} which defines a
basis h” of H(C”), and let i’ be the basis of H(C’) defined by the canonical
generator of H(‘f (x). Then we obtain

T(Hs (o)) = [ () /1]
Besides we have ©(C’;c¢’,h’) = 1 by our choices of ¢’ and &'. We conclude
using (6.4) that t®(M) = &- R4, (k) - 3. (k)™ . O

— 3.(k)7L.

Remark 6.2. If g(M) =0 and ¢ is not trivial, then RJ"‘} :F =A°H — T is the
zero map. Indeed, pick an oriented loop o in M based at = such that ¢([a]) # 1;
then d,: H — F does not vanish on [&] and it follows that dim H > g(M).

6.3. The functor R on knot exteriors. Let K be an oriented knot in a closed
connected oriented 3-manifold N, and denote by Mg the complement of an
open tubular neighborhood of K in N. We assume given a group homomorphism
¢k . Mg — G and an oriented closed curve A C Mg such that gg([A]) # 1.
Thus the Reidemeister torsion X (Mg) € F/ + G is defined.

We make Mg a morphism 1 — 0 in the category Cob by choosing a boundary-
parametrization m : F(1,0) — dMg, such that A_ := m~'()1) is contained in the
bottom surface F; and goes through the base point x. Set H_ := H{*"~ (Fy, %).
The following proposition, which is easily deduced from Lemma 6.1, shows that
the topological invariants %% (Mg) and R(Mk, k) are equivalent.

Proposition 6.3. With the above notation and for any h € A H_, we have

9K (Mg) - 0«(h) ifi =1,
0 otherwise,

R(Mk, ¢k )(h) = {



190 V. FLorens and G. MASSUYEAU

where 0« : H_- — F is the connecting homomorphism for the pair (Fi,x). In
particular, we have t%K(Mg) = R(MK,pr)([ A _])/(<pK([)t]) —1).

Example 6.4. If G is the infinite cyclic group generated by ¢, N is a homology
3-sphere and @gx maps the oriented meridian pu of K to ¢, then we know from
[Mill] that 9% (Mg) = A(K)/(t —1). Thus we recover Proposition 3.3 by taking
A= .

6.4. The situation of closed 3-manifolds . Let N be a closed connected ori-
entable 3-manifold, and let ¢ : H;(N) — G be a non-trivial group homomor-
phism. We wish to compute the Reidemeister torsion t¥(N) with coefficients
¢ : Z[H{(N)] — F from the Reidemeister functor R. For this, we have to trans-
form N into a cobordism. Note that removing an open 3-ball B from N and
regarding N \ B as an element of Cob(0,0) is not fruitful, since the functor R
maps this morphism to zero (see Remark 6.2).

We proceed in the following (rather indirect) way. Choose a knot K C N such
that ¢([K]) # 1. Consider the complement Mg of an open tubular neighborhood
of K in N, and fix a parallel p C dMg of K. Let ¢ox : Hi(Mg) — G
be the homomorphism obtained from ¢ by restriction to Mg C N. Make
Mg a morphism 1 — 0 in Cob by choosing a boundary-parametrization
m : F(1,0) — 0Mg such that p_ := m~!(p) is contained in the bottom surface
Fp and x € p_.

Proposition 6.5. With the above notation, we have

R(Mk., ox)([ P -])
(p([K]) — 1)?

Proof. There is a formula describing (under certain circumstances) how the abelian
Reidemeister torsion changes when a solid torus is glued along a 3-manifold with
toroidal boundary: see [Tur5, §VIL1]. This formula applies to our situation and

%(N) =

ekF/+G.

gives
K (Mg) = (p([K]) — 1) - T%(N).
We conclude by applying Proposition 6.3 to A := p. [

As an application, we relate the functor A to the Alexander polynomial of
closed 3-manifolds. Thus, we now assume that G is a finitely generated free
abelian group and we take F := Q(G). We consider the Alexander polynomial
of N with coefficients ¢, namely

AY(N) = Ao H{*(N) €Z[G]/+G
where ¢z : Z[|H{(N)] — Z|[G] is the extension of ¢ : H{(N) —> G.
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Proposition 6.6. With the above notation, we have

A(Mk, ox)([p-])

_ ] (p(K])—1)?
AYNY =1 KMk o) ()

([n—l+_|_t+1)2

if rank o(H1(N)) = 2,

if rankp(H{(N)) = 1.

In the second case, t € o(H{(N)) is a generator and n € N is such that
o([K]) =17

Proof. Proposition 6.5 and Theorem 5.4 give
R(Mk.ox)([P-D _ AMk. px)([P-])

6.5 Y(N) = = G)/ +G.
B (T 7 TS T
Besides, according to [Turl], we have
) A?(N) if rank p(H{(N)) > 2,
6.6) W) = { AP(N)/(t —1)* if rank(H{(N)) = 1.
We conclude by combining (6.5) with (6.6). O

7. The monoid of homology cobordisms

In this section, we fix an integer k > 1, an abelian group G and a group
homomorphism ¢ : Hi(F;) — G. We shall compute the functors A and R on
the monoid of homology cobordisms over the surface Fy.

7.1. Homology cobordisms. A homology cobordism over Fj is a morphism
M : k — k in the category Cob such that my : H{(Fy) — Hi(M) is an
isomorphism. The set of equivalence classes of homology cobordisms defines a
submonoid

C(Fy) C Cob(k,k).

We restrict ourselves to homology cobordisms M such that the composition

—1

m— oy ¥
Hy(Fp) — Hi(M) — H\(F}) —G
coincides with 1. Thus we obtain a submonoid
CY (Fy) C C(Fy),

which we also view as a submonoid of Cobg((k, V). (k,¥)) by equipping every
cobordism M of the above form with the homomorphism
yi=yomt=yom': HH{(M)—G.
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Example 7.1. A homology cylinder is a homology cobordism M over F; such
that m_ =my : Hi(Fy) — H{(M). Homology cylinders constitute a submonoid
IC(Fy) of C(Fg) such that ZC(Fy) C C¥(Fy), whatever v is.

7.2. The Magnus representation. Assume now that G is a multiplicative
subgroup of a field I . The extension of ¥ : Hi(F;) — G to a ring homomorphism
Z|H{(Fy)] — F is still denoted by . We set

HY .= HY (F¢, %)

and, when we are given an M € CY(F;), we denote H := Hf”(M,I). The
fact that the map m4 : Hi(Fx) — H;(M) is an isomorphism of abelian groups
implies that m+ : HY — H is an isomorphism of F -vector spaces. (See [KLW,
Proposition 2.1] for a similar statement.) Consequently, we are allowed to set
rV(M):=m7'om_: HY — HY. This results in a monoid homomorphism

rV : CV (Fy) — Aut(HY),

which is called the Magnus representation. See [Sak3] for a survey of this
invariant.

7.3. The restriction of R to homology cobordisms. The Reidemeister functor
restricts to a monoid homomorphism

R:CY(Fy) — grVecty 16 (AHY , AHY).

We now compute this projective representation of the monoid C¥ (Fy).

Proposition 7.2. For any M € CY(Fy) with top surface d;-M , we have
RIM.y) =tV (M, 04 M) - A(r¥ (M) : AHY —> AHY

where ™V (M, 3, M) is the Reidemeister torsion of (M,d,.M) as defined in §6.1.

Proof. We shall prove a slightly more general statement: let ¥4 : Hi(Fx) > G
be any group homomorphisms and assume that M € C(Fy) is a cobordism such
that y_om”! = Yy om!' : H{(M) — G. Then we claim that

(7.1) RIM, ) =tV (M,0:M)-A(mi om_) : AH- — AHy

where Hy := Hf/’i(Fk, x) and ¥ = Y4 om;l. (The proposition is the particular
case where Yy =vy_: Hi(F;) = G.)

To prove this claim, we set g = g(M) = 2k, H = H{/’(M,I) and let
h = (hy,...,hg) be a basis of H. In order to compute R}fl(hl A= Nhg), we
consider the short exact sequence of I -chain complexes:
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(7.2) 0 —> CV+(Fp, %) 5 CV(M, %) — CV(M, ;M) —> 0.
C/._ C._ C//-_

The complex C” is acyclic while C’ and C have their homology concentrated
in degree 1. Therefore, the long exact sequence in homology 7 induced
by (7.2) is concentrated in degrees 4 and 5 where it reduces to the map
my :Hy = H(C') - H{(C) = H.

There exists a wedge of circles S;V---Vv .S, based at » onto which the surface
Fy retracts by elementary collapses. Let i’ = (h),..., hy) be the basis of Hj
obtained by lifting each of the loops S;,...,S, to the maximal abelian cover of
Fy. . Then we have

1(C';c/,h'y e £G CF

for any choice of ordered/oriented lifts of the relative cells of (Fj, ) inducing a
basis ¢’ of C’. Besides, by the multiplicativity property of torsions (see Theorem
A.3), we have

t(Cic,h)y =¢e-t(C;c/ By -<(C": ") - t(H; (W, h)) €F\ {0}

for some appropriate choices of ordered/oriented lifts of the relative cells, which
result in bases ¢’,c,c¢” of the chain complexes. Here ¢ is a sign not depending
on h and H is regarded as an acyclic F-chain complex based by (h',h). We
deduce that

)4+]

RY(hy A Ahg) =1(Cic h) = T4 (M, 3. M) - [my(i')/ h]!
=tV (M, 34 M) - [h/my(R)].

(Here the identities are up to multiplication by an element of £G not depending
on h.)

To proceed, we consider any integer ; > 0 and any x € A/H_. Let
w: A8 Hy — F be the volume form defined by w(h| A---Ahy) = 1. (Note that
w is integral.) Then, for any y € A8~/ H,, we have

w(R(M, ¥)(x) Ay) = R}‘”,I(Ajm_(x) AANETTmy(p))
=V (M, 04 M) - [(AMm_(x) A AETTmy () ) my (R)]
=tV (M, 0:M)-[(A mI'mo)(x) Ay) /1]
=tV (M,0:M) - (N (mI'm_)(x) A y).

We conclude that R(M, ¥)(x) = t¥(M,d+M)- A/ (m7'm_)(x) up to multiplica-
tion by an element of =G not depending on x, which proves (7.1). [
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7.4. The restriction of A to homology cobordisms. Assume now that the abelian
group G is finitely generated and free, and assume that F := Q(G). We denote
by ¥z : Z[H(Fy)] — Z[G] the extension of ¢ : H{(Fx) — G to a ring
homomorphism and we set H% =H 1'” Z(Fy, *). The Alexander functor restricts
to a monoid homomorphism

A:CV(Fy) — gModg gy ca(AHY  AHY).

This projective representation of the monoid CY (Fy) is computed as follows.

Proposition 7.3. For any M € CY(Fy), we have the commutative diagram

AHY A AHY
AHY AHY

AY (M3 M)-Ar¥ (M)

where AY(M, 0. M) is the Alexander polynomial of the pair (M,d:M) as defined
in §3.1.

Proof. 'The proposition can be proved directly from the definition of A, using an
appropriate presentation of the Z[G]-module le Z(M,I). It also follows from
Theorem 5.4, Proposition 7.2 and the fact that

Y (M, 0. M) =AV(M,d,. M) € Z[G]/ £ G.

The latter identity is shown using the fact that M collapses, relatively to d. M,
onto a cell complex having only 1-cells and 2-cells in equal number. (For
instance, consider the CW-complex resulting from a handle decomposition of M
as discussed in §8.1.) Thus, the computation of both invariants t¥(M,d, M) and
AY(M,d,. M) reduces to the determinant of a same matrix. (See [FJR, Lemma
3.6] for instance.) ]

Example 7.4. Assume that G := {1} is the trivial group. Then C¥(Fy) = C(Fy).
Moreover Z[G] = Z and Q(G) = Q, so that Hy = Hi(Fy) and HY =
H\(Fy; Q). Note that AY(M,d, M) =1 since HY?(M,0,M) = H\(M,d+ M)
is trivial in that case. It follows from Proposition 7.3 that A(M,v) : AH{(Fy)
— AH{(Fy) is induced by the isomorphism (my) ‘m_ : H{(Fy) — H{(F}).

Remark 7.5. If two cobordisms M, M’ € C¥(Fy) are homology cobordant, then
we have r¥ (M) = r¥(M') (see [Sak2, Theorem 3.6]), but it may happen that
AY(M, 0. M) # AV (M',0.M’) (see [MM, Lemma 3.15] for an example). It
follows from Proposition 7.3 that the restriction of A to C¥(Fy) is stronger than
the representation rV .



A functorial extension of the abelian Reidemeister torsions of three-manifolds 195

8. Computations with Heegaard splittings

Let G be a multiplicative subgroup of a field F. We give a simple recipe
to compute the functor R = Ry ¢ using Heegaard splittings of cobordisms. In
this section, the extension of a group homomorphism p : H — G to a ring
homomorphism Z[H] — I is still denoted by p.

8.1. Heegaard splittings. In order to obtain concrete formulas for the functor
R, it is convenient to fix compatible systems of “meridians and parallels” on the
model surfaces. Specifically, we choose on the model surface F; a meridian «
and a parallel B, which means the following: o« and g are oriented simple
closed curves in the interior of F; meeting transversely at a single point
with homological intersection [«] e [8] = +1. Then the identification between
Fiffy---49F1 and Fy induces, for any integer k > 1, a system of meridians and
parallels (aq,...,ak, B1,...,Br) on the surface Fy.

For any k > 0, we denote by CF € Cob(0,k) the cobordism obtained from
Fr x[—1,1] by attaching k 2-handles along the curves o; x{—1},..., 0 x{—1}.
Similarly, let C € Cob(k,0) be the cobordism obtained from Fi x [-1,1] by
attaching k& 2-handles along the curves p; x {1},...,Br x {1}. Observe that
CL o CF = CQ € Cob(0,0) is the 3-dimensional ball Fy x [—1,1]. Thus we shall
refer to C,? and Cok as the upper and lower handlebodies, respectively. (Clearly,
these notions depend on the above choice of meridians and parallels.)

Let also M(Fy) be the mapping class group of the surface Fy, which consists
of isotopy classes of (orientation-preserving) homeomorphisms f : Fp — F
fixing 0F; pointwisely. The mapping cylinder construction, which associates to
any such homeomorphism f the cobordism

c(f) == (Fr x [-1,1], (f x {=1}) U (8F x Id) U (Id x{1})),

defines an embedding ¢ : M(Fy) — C(Fy) of the mapping class group into the
monoid of homology cobordisms (see §7.1).

Let M € Cob(g—,g+) be an arbitrary cobordism. By elementary Morse
theory, the 3-manifold underlying M can be obtained from the trivial cobordism
Fg, x [—1,1] by attaching simultaneously some 1-handles (say, r4 > 0) along
the “bottom surface” Fg, x{—1}, and by attaching subsequently some 2-handles
(say, r— > 0) along the new “bottom surface.” We obtain in that way a Heegaard
splitting of M, i.e. a decomposition in the monoidal category Cob of the form

8. M = (€, ®1dg, ) oe(/) o (C;~ @ Tdg.)

where gy +ry =g +7r- and f € M(Fg 4, ). See [Ker2, Theorem 5].
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8.2. Computation of R with Heegaard splittings. We now assume that the
above cobordism M comes with a group homomorphism ¢ : H{(M) — G :

(M, ) € Cobg ((g—.¢-). (g+.9+)).

The Heegaard splitting (8.1) of M induces a decomposition in the monoidal
category Cobg by endowing each submanifold S of that decomposition with the
group homomorphism ¢ : H{(S) — G obtained by restricting ¢ to S C M.
Hence we obtain

R(M, 9) = (R(CY,.§) ® dan, ) oR(e(/),9) o (R(C;™.¢) ® Tdan_ )

where Hy = H{p t(Fy ,»x) and the symbol ¢ denotes a representation in G
induced by ¢. Thus the computation of R(M,¢) reduces to three cases: upper
handlebodies, lower handlebodies and mapping cylinders.

To describe the values of R in those three cases, we need to fix further
notation. Let k > 0 be an integer and let v : Hi(Fx) — G be a group
homomorphism. We assume that, in our model surface Fy, the intersection point
a N B is connected by an arc to the base point x € dF;: hence the curves
a1,...,0, B1,...,Br are now viewed as oriented loops based at x € dF;,. We
denote by (a'll’, ...,aZ,b}/’,...,bZ’) the basis of Hf/’(Fk,*) obtained by lifting
these loops to the maximal abelian cover:

8.2) Vi=1,...k o' =[1®a;] b/ =[1® B,

;o
Then the space AH{/’(Fk,*) can be identified to AA,’f ® AB;C!’ where AZ’ =

(a]’l’,...,a}f) and B,f = (b}”,...,b}f) are the subspaces of H{”(Fk,*) corre-
sponding to meridians and parallels, respectively.

Lemma 8.1. Ler ¢ Hl(C,g) — G be a group homomorphism and let
Vv_ : Hi(Fy) — G be the restriction of ¥ to F, C HC,?. Then the linear
map

RICY, ) : AHY (Fi, %) — T
is trivial on AiAZ_ ®AfB;f_ if i #k or j #0, and it sends a’i”_ /\---/\a}f_
to 1.

Proof. Set N := C,? € Cob(k,0). Since R(N, ) has degree —k, it must be trivial
on A’H{/” (Fy,) for r # k. It remains to compute

(8.3) RN, ¥)(x1 A+ A xg) = RY (n_(x1) A=+ An_(xg))

for any xi,...,xf € H;”_(Fk,*). If one of the x;’s belongs to B;C/’_, the right-
hand side of (8.3) is zero since, for all j € {l,...,k}, B; bounds a disk in N
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so that n_(b}/’_) = 0. So, we can assume that x; A---Axg = a‘lﬁ_ /\---/\a}f_. In

this case, we apply Lemma 5.1 to the obvious spine X = X+ of N: the spine

X is a wedge of circles whose 1-cells yi,...,yr are obtained by “pushing” the
curves op,...,a in the interior of N. We deduce that the right-hand side of
(8.3) is equal to 1. ]

Lemma 8.2. Let v : H; (Cé‘) — G be a group homomorphism and let
Yy : Hi(Fx) — G be the restriction of ¥ to Fy C dCE. Then the linear
map

R(CE.¥) : F — AH! T (Fy, %)

sends the scalar 1 to the multivector a?* A--- A a;c/“r.
Proof. Set (Vi,..., V%, Vkgis... Vok) i= (a}“,...,aZJr,b;/”F,...,bZ“L) and let w

be the volume form on H1¢r+ (Fy, ) defined by w(vy A---Avyr) = 1. We denote
N = C({‘ € Cob(0,k) and write

RIN.Y)(D) = 3 zp -vp € AFHYF (i %)

P
where P runs over k-element subsets of {1,...,2k} and vp is the wedge of
the v,’s for all p € P. For any k-element subset P C {1,...,2k}, we have
(8.4) EpZp =W (R(N, V(D) Avp) = R}C(Akn.,.(vp))

where P is the complement of P and sp is the signature of the permutation
P P . To compute the right-hand side of (8.4), we apply Lemma 5.1 to the obvious
spine X = XT of N: the spine X is a wedge of circles whose 1-cells yy, ...,y
are obtained by “pushing” the curves f1,..., B¢ in the interior of N. We obtain
that R% (A¥n4(vp)) is trivial except if P = {k + 1,...,2k}, in which case it
takes the value 1. We conclude that zp =1 if P = {l,...,k} and zp = 0
otherwise. [

Lemma 8.3. Let f € M(Fy) and let ¥+ : Hi(Fx) — G be group homomor-
phisms such that y_ = Y4 o f. Denote by ¢ : Hi(Fr x [-1,1]) — G the
isomorphism 4 o pr, where pr: Fy x [—1,1] — Fy is the cartesian projection.
Then

R(c(f), V) : AHY = (Fi, %) —> AH ™ (Fy, %)
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is induced by the isomorphism f : le_(Fk,*) — HI'M(Fk,*). Moreover,
the matrix of this isomorphism in the bases (a;ﬁi,...,a;fi,b;ﬁi,...,b;fi) of
HY%(Fp,») is

0fuler)  Ofulex)  0fe(B1) . 0fe(Bp)
dotq Dot | dorq docy
o @) g2 (@) g2 By g2 B
o o o o
Vi | ofu@)  0felen) 3B 3fe(i)
981 981 381 981
AT YA R YAV YA
B 9Bx 9Bk Bk

where fi : w1 (Fy,x) = w1 (F, %) is induced by f.

Proof. The first statement follows from (7.1). The second statement is well
known. [

8.3. Computation of A with Heegaard splittings. Assume now that G is a
finitely generated free abelian group and take F := Q(G). There are counterparts
of Lemmas 8.1, 8.2 and 8.3 for the Alexander functor A. These counterparts follow
from the same lemmas using Theorem 5.4, or they can be proved independently
using presentations of Z[G]-modules.

For G = {1}, we deduce that the functor A is essentially the same thing as the
TQFT constructed in [FN1]. (Compare the formulas given in [Kerl, §3] with the
above lemmas.) However, there are a few technical differences: in particular, we
have considered surfaces with circle boundary, whereas [FNI] works with closed
surfaces.

9. Duality

We prove two duality properties for the Reidemeister functor. In this section,
F is a field where a multiplicative subgroup G is fixed, and we assume that F
is equipped with an involutive automorphism f + f such that g = g~! for all
geG.

9.1. Twisted intersection form. The first duality satisfied by R involves the
“twisted” intersection forms of oriented surfaces with boundary. We start by
recalling this notion.

Let kK > 0 be an integer and set 7 := my(Fk, x). The homotopy intersection
form of Fy is the pairing A : Z[n] X Z[n] — Z[n] defined by Turaev in [Tur7].
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We also refer to Papakyriakopoulos’ work [Pap] where this form is implicit, and
to Perron’s work [Per] where the same form A is re-discovered (and is denoted
there by w).

The twisted homology group Hi(Fg, *;Z[x]) is identified (as a left Z[x]-
module) to the augmentation ideal [(x) of Z[x] in the following way: for any
oriented loop y C Fi based at =, let y be the unique lift of y to the universal
cover of Fj starting at the preferred lift % , and identify [1Q V] € Hy(Fk, *; Z[x])
to [y] —1 € I(xr). Thus, by restricting A to I(x) x I(w), we obtain a pairing

(—, =) : H(Fg,*; Z[r]) x H{(F, *x; Z|n]) — Z[r].

The derivation properties of A given in [Tur7, Per] imply that (—, —) is sesquilinear
in the sense that

(ax +y,z) = alx,z) +{y.2), (z,ax+y)=(z2,x)S(a) + (z,))

for all a € Z[x] and x,y,z € H{(Fy,; Z[x]). Here S : Z[x] — Z[n] is the
antipode, i.e. the Z-linear map defined by S(a) =a~! for all a € 7.

Let now v : Hi(Fr) — G be a group homomorphism: this induces a structure
of right Z[r]-module on F . By identifying H{”(Fk, *) 10 FQgz 1 H1(Fk, x; Z[r]),
we obtain a pairing

9.1) (— =) : HY (Fg, %) x HY (Fg, ) — F

defined by (fi ® h1, fo ® ha) = fifow((h1,hy)) for all fi, f» € F and
hy,hy € Hi(Fy, x; Z[r]). This pairing is sesquilinear in the sense that
(fx+y.2)=flx.2) +(y.2), (2. fx+y)=flz.x)+(z.y)

for all f € F and x,y,z € H;”(Fk,*). The pairing (9.1) can also be
defined using Poincaré duality (with twisted coefficients) and the fact that
H;”(Fk,J) ~ H;”(Fk,*) ~ Hl'/’(Fk,J’), where J,J’ are two closed intervals
such that J U J' = 0dF; and J NJ' = dJ = dJ’. In particular, the pairing (9.1)
is non-singular in the sense that (x,—) : le(Fk, x) —> Hom(le(Fk, x),[F) is an
isomorphism for any x € Hl‘/’ (Fp,*).

For any integer r > 1, the pairing (9.1) also induces a non-singular sesquilinear
pairing (—, —) : A’H;”(Fk, *) X Arle(Fk, x) — [ defined by

(x1,y1) -+ {x1.yr)
(X1 Ao AXp, VI A A Yp) =det : ] :
(xroy1) - (xrour)

for all xq,...,xr,V1,...,¥r € Hf'/’(Fk,*). For r =0, we set (x,y) := xy for
all x,yelF.
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Remark 9.1. The sesquilinear pairing (9.1) is not skew-hermitian. Instead, we
have

9.2) Vx,y € HY (Fio %), {(x,9) = —(3,x) + 8.(x) 3. ()

where 0 : le (Fy,*) — [ is the connecting homomorphism in the long exact
sequence of the pair (Fg, =). This identity follows from a similar property for
the homotopy intersection form A: see [Tur7, Per].

9.2. First duality. Let g_, g+ > 0 be integers. The dual of an M € Cob(g_, g+)
is the cobordism M < Cob(gy,g_) obtained from M by reversing its orientation
and by composing its boundary-parametrization m : F(g—, g+) — oM with the
orientation-reversing homeomorphism between

—Fg, Usix=13 (ST X [=1,1]) Usixq1y Fg_

F(g+.8-)

and
—Fg_ Usixi—1} (S x [-1, 1]} Usix{1} Fe.

F(g—.g+)

which is given by “time-reversal” (x,t) > (x,—t) on the annulus S! x [-1,1]
and by the identity on F,, and Fg_.

Theorem 9.2. For any (M, @) € Cobg((g_,go_), (g+,<p+)) and for any j > 0,
we have

(9.3) Vx e ANH_, Vye AVT%H,, (R(M, ga)(x),y) = (x, R (ﬁ, (p) (y))

where 8¢ := g4 —g_ and Hy := H{pi(ng,*).

Of course, the identity (9.3) only holds true up to multiplication by a constant in
+G (independent of x and y ). The pairing (—, —) denotes the twisted intersection
form of Hy (respectively, H_) on the left-hand side (respectively, the right-hand
side) of (9.3).

Proof of Theorem 9.2. Assume that (M, ) = (M’, ¢’ )o(M”,¢") where (M’,¢’)
and (M”,¢") are two morphisms in Cobg satisfying (9.3). Then the dual of M is
M’ oﬁ', and it easily follows that (M, ¢) also satisfies (9.3). Consequently, and
following the discussion of §8, it is enough to prove (9.3) in the following three
cases: (i) M is a mapping cylinder; (ii) M is a “stabilized” lower handlebody;
(iii) M is a “stabilized” upper handlebody.
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Case (i). Assume that g_ = g4 =: k and that M = ¢(f) is the mapping
cylinder of an f € M(F;). Then M =c¢(f'). Since ¢, f = ¢_: H{(F;) - G
and since f : w1 (Fg, x) — w1 (Fg,x) preserves the homotopy intersection form,
the isomorphism f : H_ — H, induced by f : Fy — Fj preserves the pairings
(9.1). Using the first statement of Lemma 8.3, we obtain (9.3) as follows:

VxeAH_, Vy e NN Hy, (RIM.p)(x),y) = (A f(x),)
=(x, A7)
— (v.R(7.9) (7).

Interlude. In order to deal with cases (ii) and (iii), we need an explicit formula
for the twisted intersection form (—, —) : Hl'”(Fk, *) X le(Fk, x) — [ defined by
a group homomorphism v : H(F) — G . For this, we fix a system of meridians
and parallels (oq,...,0%, B1,...,Bk) on F; as explained in §8.1, and we denote
by (a‘f, e ,a}f,b}p, e ,b,'f) the corresponding basis of pr(Fk, x): see (8.2). For
every x,y € Hi(Fy), set P¥(x,y) := (1 —¢(x))(1 —y(y)) € F. Then, for an
appropriate choice of meridians and parallels, the matrix of (—,—) in the basis

@?,....al b, ....b)) is
v 14
JV = ( aa Jab )
Jba Jbb
vogvo ¥

where J,,, B g Jl;/’b are the following lower triangular matrices [Per, Lemma
2.4]:

1—v(ay) 0 0 0
PV (wz,1) 1—9(az) O 0
©.4) JU = | PY(as,a1) PY(as,a) - : ,
: : . - 0
PY(ar,01) PY(ax,00) ... PY(ag,o5—1) 1—v(ax)
Yoy (B1) 0 0 0
PY(ar, 1) Yy (B2) O 0
9.5) T =| PV(a3,B1) PV(as,B2) - - : ,
: . - . 0
PY(ax,B1) PY(ax,B2) ... PV(o,Br—1) v()¥(Br)
9.6)
1= (o) — ¥ (B1) 0 0 0
PV (B2, 1) 1—vy(az)—¥(B2) O 0
ba

Iy = PY(B3,a1) PV (B3,a2) : )

: : * s 0
PY(Br,a1) PY (Br,az) coo PY(Br,ak—1) 1—yr(ox) — ¥ (Br)
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1—v(B1) o0 0
PY(B2,1) 1—v(B2) O 0
©.7) Ty =| PV (B3.B1) P¥(B3,B2) ' :
: : . . 0
PY(Bx:B1) PY(Br,B2) .. PV(Bk:Br-1) 1—v(Br)
Besides, the following notation will be useful in the sequel. Let ¢ € {+,—} be
a sign. We denote by (vf,...,v5 ,v5 1 1,..., 05, ) = (@b, ... age by, ... bg

the basis of H, = H{*(Fg,.,*). For any s-element subset P C {1,...,2g.}, let
vp € A°H, be the wedge of the vectors vy ’s for all p € P and, when this makes
sense, we shall also denote by (vp)™® € A*H_, the multivector obtained from
vé, by the transformations a!* a;”__gsg and bY* b;p__;sg.

Case (ii). Assume that M = Cj ® Id,_ where r = dg. Note that ¢ (a;) = 1
for all i € {l,...,r}, so that (9.4) and (9.5) applied to ¥ := ¢4 give
(9.8)

Vie{l,....r},Vje{l,....or+g-} (af".aft)y =0, (af",b]T) =8 9 (B)

and, combining this with (9.2), we also obtain

(9.9)

Vie{l,....rhVje{l.....r+g} (aft.alT) =0, (b7T.af"T) = =8 04 (B)).

Let P C {1,...,2¢_} with |P| = j and let QO C {l,...,2g4+} with
|Q| =r + j. It follows from Lemma 8.2 that

(R(M, ) (vp). vg) =(aft A-nart Ap)T, vg)

According to (9.8), this determinant is zero if the subset B := {g4++1,...,g++r}
is not contained in Q. If B C Q, then we get

(RIM, 9)(vp), vJQr) =eplayt Ao nart A (p)Tovg Avge)
= eslal® Ao naf 0P 0

= ep (1 B ((vp)t )

where B¢ := Q \ B and &p is the signature of the permutation BB¢ (where the
elements of B in increasing order are followed by the elements of B¢ in increasing
order). We also deduce from (9.9) that ((v;)"‘, U;c) =0 if B¢ has a non-empty
intersection with A := {1,...,r}, and it follows that (R(M,¢)(vp),v5) = 0 if
ANQ # 3.

Besides, it follows from Lemma 8.1 that R(M, ) (v) is trivial if ANQ # &
or B is not contained in Q. If ANQ =@ and B C Q, we get

(vp.R(M,p) (UJQr ) =g (vp.R(M, ) (v Avie)) =ep{vp, (vE)7).
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We deduce that (R(M,9)(vp),vy) = ¢+(B1---Br)(vp,R(M, @) (vy)) for any
P, Q. Since (9.3) is only required to hold true up to multiplication by a constant
in +G, the theorem is proved in case (ii).

Case (iii). Assume now that M = C? ® Idg, where r = —8g. Note that
o—(Bi) =1 forall i € {1,...,r}, so that (9.7) and (9.5) applied to ¢ := ¢_ give
(9.10)

Vie{l,...,r+g},¥Vje{l,.ry, (bf7,077) =0, (af™,b]") = 8ij p—(i)

and, combining this with (9.2), we also obtain
(9.11)
Vie{l,...,r+gys), je{l,....ry, (bf7.b{7) =0, (b7 af") = —6;j o (o).

Let P C {1,...,2¢_} with |P| = j and let Q C {l,...,2g4+} with
|Q| = j —r. By Lemma 8.1, R(M,¢)(vp) is trivial if P does not contain
A:={l1,...,r} or P has anon-empty intersection with B := {g_+1,...,g_+r}.
If ACP and P N B = &, we obtain

(RIM, 9)(vp), v5) = 4 (RIM, ) (Vg Avge), vh) = a((vge) T v))

where A€ := P\ A and g4 is the signature of the permutation AA€.
Besides, Lemma 8.2 gives

(vp.R(M, ) (vg)) = (vp, bY" Ao ADET A (vg)_)
which, according to (9.10), is trivial if P does not contain A. If 4 C P, we get
(vp.R(M, ) (v})) = ealvg Avge,b]™ A== ADE= A (V)T

= e (07 BE A ABE) (07 (0F))

=g4¢p_(0g - 0y) (vgc, (vg)_).
It follows from (9.11) that (v, (v)”) =0 if A° has a non-empty intersection
with B, so that (v5,R(M,¢)(v5)) = 0 if PN B # @. We deduce that
(R(M, go)(v;),vJQr) = ¢_(1 ~--ozr)(v;,R(M, ) (vg ) for any P, Q. This proves

the theorem in case (iii). ]

Example 9.3. We consider the situation of §7.3: let ¥ : H1(F;) — G be a group
homomorphism and let M € C¥(F;) with k > 1. According to Proposition
7.2, R(M,v) is determined by the relative Reidemeister torsion ¥ (M, 9. M)
and the Magnus representation r¥ (M) : HY — HY, where HY := HY (Fy, ).
Specializing Theorem 9.2 to j := 0, we obtain the well-known duality theorem

(9.12) V(M0 M) =1tV (M, 0_M) €F/+G,
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see [Tur2, Appendix 3]. Next, specializing Theorem 9.2 successively to j =1
and j := 2, we obtain the invariance property

Vx,ze HY, (rY(M)(x),rV(M)(2)) = (x.z),
which is already observed in [Sakl, Theorem 2.4].

Example 9.4. We consider the situation of §3.3: let G be the infinite cyclic
group generated by ¢ and F := Q(G), let Mg be the exterior of an oriented
knot K in an oriented homology 3-sphere and let px : Hi(Mg) — G be the
canonical isomorphism. There is a system of meridian and parallel («,8) on F;
and a boundary-parametrization m : F(1,0) — dMg such that

(i) m_(«) is the oriented meridian of K and m_(f) is the parallel of K that

is null-homologous in Mg,

(ii) the matrix of (—,—): H- x H- — [ in the corresponding basis (a,b) :=
11—t ¢
-7 0
According to Proposition 3.3, the map R(Mk, ¢k ) is determined by the Alexander
polynomial A(K). By applying Theorem 9.2 successively to x :=a and x := b,
we get

(9.13) RMg,ox)(1) = A(K)b € H_.

(@P%™ pYE" Y of Ho := HX™ (Fy, %) is

9.3. Second duality. The second duality satisfied by R does not involve the
conjugation f +— f of the field F, and is an immediate consequence of the
definitions.

Proposition 9.5. For any (M, ¢) € Cobg((g—,¢—),(g+,9+)) and j > 0, we have
Vx e AVH_, Vy e AT Hy, w(R(M,p)(x)Ay) = (—-1)¢ . w (x AR(M , 9)(»))
where g := g4 +g_, Hy := H{pi(ng, *) and w : N*8+tHy — T is an arbitrary

integral volume form.

Despite its simplicity, this proposition turns out to be interesting when it is
combined with Theorem 9.2.

Example 9.6. We use the same notation as in Example 9.3. Let (zy,...,Zk)
be a basis of HY arising from of a basis of the free Z[H,(F})]-module
Hy(Fy,~; Z[H1(F)]) and assume that o is given by w(z; A---Azy) = 1. By
applying Proposition 9.5 to x =z A--- A zgr, we get TV (M, 04 M) -detr¥ (M)
= t¥(M,d_M). Combined with (9.12), this relation gives the symmetry

V(MO M) -detrV (M) =1V (M,0.M) e¢F/+G

which is also observed in [Sak4, Theorem 5.3].
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Example 9.7. We use the same notation as in Example 9.4. Let w be the volume
form on H_ defined by w(a Ab) = 1. By applying Proposition 9.5 successively
to x :=a and x := b, we obtain R(Mg,¢g)(1) = A(K)b. Combined with
(9.13), we recover the classical symmetry of the Alexander polynomial:

A(K) = A(K) € Z[G]/ £ G.

A. A short review of combinatorial torsions

We recall the definition and basic properties of the torsions of chain complexes.
The reader is referred to [Mil2] and [Tur4] for further details and references. In
this appendix, [ is a field.

A.1. Definition of the torsion. Given an I -vector space V of finite dimension
n >0, an n-tuple b = (by,...,b,) of vectors in V' and a basis ¢ = (c1,...,¢n)
of V', we denote by [b/c] € F the determinant of the matrix expressing b in the
basis ¢. Two bases b and ¢ are said to be equivalent if [b/c] =1.

Given a short exact sequence of F -vector spaces 0 - V' -V — V" — 0
and some bases ¢’ and ¢” of V/ and V" respectively, we denote by ¢’c” the
equivalence class of bases of V' obtained by juxtaposing (in this order) the image
of ¢/ in V and a lift of ¢” to V.

By a finite F -chain complex of length m > 1, we mean a chain complex C
in the category of finite-dimensional F -vector spaces and we assume that C is
concentrated in degrees O,...,m:

I d
— e Cryet . Co).

cz(qn

A basis of C is a family ¢ = (¢j,...,c0) where ¢; is a basis of C; for all
i €{0,...,m}. A homological basis of C is a family h = (h,,...,hg) where h;
is a basis of the i-th homology group H;(C) for all i € {0,...,m}. If we have
choosen a basis b; of the space of j-dimensional boundaries B;(C) :=1Imad;4;
for all j € {0,...,m—1}, then a homological basis & of C induces an equivalence
class of bases of C; for any i: specifically, we consider the basis (b;h;)b;—1 of
C; obtained by juxtaposition in the following short exact sequences where we
denote Z;(C) :=Kero;:

(A.1) 0— Bi(C)— Z;(C) — H;(C) —0
(A2) and 0 —> Zi(C) —> Ci ' B;_1(C) —> 0.
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Definition A.1. The rorsion of a finite F -chain complex C of length m, equipped
with a basis ¢ and a homological basis #, is the scalar

m

_1)i+1
o(Cie.h) = [[[Gih)bioa/e] ™ € F\ (o).
i=0
It is easily checked that this definition does not depend on the choice of by,..., by,

and, when C is acyclic, we set 7(C;c) := 1(C;c, D).

The following lemma, which is well known, is a way of viewing the torsion
as a function in homology.

Lemma A.2. Let C be a finite F -chain complex of length m > 1, let
k €{0,...,m} and set B := dim Hy(C). Assume given a basis ¢ = (¢, ..., Co)
of C and a basis h; of H;(C) for every i # k. Then there is a unique linear
map £ : AP H(C) —F such that

t(C;c,(hm,...,hk+1,v,hk_1,...,ho)) if k is odd,

(v1 vp) { t(Cie, (hmy ... hgg1. v, hg—1, ... ho)) ! if k is even,

for any basis v = (vi,...,vg) of Hy(C).

Proof. 'The unicity of ¢ is obvious and, clearly, we can assume that k is odd.
Let s : H(C) - Z;(C) and ¢ : By_1(C) — C; be [ -linear sections of (A.1)
and (A.2), respectively. For any B-tuple v = (vy,...,vg) of elements of Hy(C),
we set

() = [bes@) G- /ei] - [ [Bihobima/ei] T e
i#k
where by s(v) t(br—1) denotes the family of vectors of Cj obtained by juxtaposing
(in this order) by, s(v) and t(bx_;). The resulting map £ : Hy(C)? — F is
multilinear and alternate, hence it induces a map ¢ : ABH;(C) — F with the
desired property. [

A.2. Multiplicativity of the torsion. Consider a short exact sequence of finite
F -chain complexes of length m > 1:

(A.3) 0 ol C c” 0.

Let us assume that C’, C,C"” are based by ¢’, ¢, ¢’ respectively, and homologically
based by i',h,h"” respectively. We further assume that the bases ¢’,c,c¢” are
compatible in the sense that ¢; is equivalent to cjc; for every i € {0,...,m}.

The short exact sequence (A.3) induces a long exact sequence in homology:
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H = (Hu(C") - Hpu(C) = Hp(C") — -+ — Ho(C') — Ho(C) — Ho(C")).
We regard H as an acyclic finite F-chain complex based by
(W h K'Y = (R, iy Iy, - .. B, ho, Bg).

The following formula is classical in the theory of combinatorial torsions: see
[Mil2, Theorem 3.2] or [Tur2, Lemma 3.4.2].

Theorem A.3. With the above notation, we have
(A.4) t(Cic,h) =¢e-t(C'; ' 0')-<(C": " By -t (H; (W, h, W)

where & is a sign depending only on the dimensions of the T -vector spaces
C!.C;,C!" and H;(C'), H;(C), H;(C") for all i €{0,...,m}.

Example A.4. Assume that C = C’' & C” and that the chain maps C’ — C and
C — C” in (A.3) are the natural inclusion and projection, respectively. For all
i €{0,...,m}, let ¢; be the basis of C; = C/ @ C/” obtained by juxtaposing (in
this order) some bases ¢; and ¢ of C; and C/, respectively; similarly, let A;
be the basis of H;(C) = H;(C’) ® H;(C"”) obtained by juxtaposing some bases
h; and h of H;(C’) and H;(C"), respectively. We set ¢ := (¢p,...,co) and
h:= (hm,...,hg). Then t(C;c,h) =e-t(C’;c',h)-t(C";c", h").
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