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A true relative of Suslin's normality theorem

Bogdan Nica

Abstract. We prove a normality theorem for the "true" elementary subgroups of SL^(d)
defined by the ideals of a commutative unital ring A. Our result is an analogue of a

normality theorem, due to Suslin, for the standard elementary subgroups, and it greatly

generalizes a theorem of Mennicke.
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1. Introduction

Let A be a unital commutative ring, and let n > 2. The elementary
subgroup En(A) is the subgroup of SL„(A) generated by the elementary matrices

etJ(a) \n + aetJ, where i ^ j and a e A. Studying the size of En(A) in

SL„(A) is fraught with surprises and subtleties, but there is one fact which is

reassuringly general: if n > 3 then En(A) is normal in SLn(A). This is Suslin's

Normality Theorem [Sus].

Ideals define relative elementary subgroups. The normal elementary subgroup

En(rt) corresponding to an ideal n of A is the normal subgroup of En(A)
generated by the elementary matrices with coefficients in n:

E^(tt) ((etj(a) : a E 7t,i j}}En(A)-

In fact, Suslin proved the following relative normality theorem. What we have

referred to as the Normality Theorem is the absolute case it A.

Theorem 1 (Suslin). Let n > 3. Then En(7t) is normal in SL^(A).

Taking just the subgroup closure of the elementary matrices with coefficients

in an ideal ti gives rise to the true elementary subgroup
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Fft C7^) — (eij iß) a £ 7i, i 7^ 7) •

The notation is the one proposed by Tits [Tit], while the terminology is ours. Our
main result is a relative normality theorem for the true elementary subgroups.
Once again, the Normality Theorem appears as the absolute case n A.

Theorem 2. Let n > 3. Then Fn(jt) is normal in the subgroup {g e SL„(^4) :

g mod 7r is diagonal}.

Warming up the cold truth of the theorem is a short story explaining how we

were led to this result. The setting is the most familiar case, A Z. Then the

absolute elementary subgroup En(Z) exhausts SLn(Z). But what becomes of the

relative elementary groups?
In 1965, Mennicke [Menl] proved the following remarkable fact: for n > 3,

the normal elementary subgroup En(N) ((etJ(N) : i ^ j)) coincides with the

principal congruence subgroup Tn{N) {g e SLn(Z) : g \n mod N}. The

proof is elementary, though somewhat intricate. Using earlier observations of
Brenner, Mennicke was then able to derive the Normal Subgroup Theorem stating
that every normal subgroup of SL„(Z), n > 3, is either central or it contains

a principal congruence subgroup. The Congruence Subgroup Property, that

every finite-index subgroup of SLn(Z), n > 3, contains a principal congruence
subgroup, is an immediate consequence.

More than three decades later, in 2000, Mennicke [Men2] published the

following counterpart of his 1965 result: for n > 3, the true elementary
subgroup En(N) (etJ(N) : i ^ j) coincides with the congruence subgroup

An(N) {g e SLn(Z) : g ln mod N, gn 1 mod N2}. Mennicke's approach

to this more recent - in fact, surprisingly recent - theorem is significantly more

complicated. It is, in a sense, an unnecessary proof: a short and conceptual

argument shows that Mennicke's two theorems on elementary subgroups - Theorem

E and Theorem F, so to speak - are equivalent. This equivalence can be formulated
in the generality of commutative rings, the key ingredient being a 1976 theorem

of Tits, stated below. As I have recently learnt from Andrei Rapinchuk, the

equivalence was noted soon after [Men2] was circulated in preprint form. To

the best of my knowledge, the equivalence does not appear in the literature, so

it seems worthwhile to discuss it. As it turns out, Theorem 2 will fit in this
discussion.

Here is Tits' theorem, the SL„ case of a result proved in [Tit] for Chevalley

groups. Incidentally, we expect that our Theorem 2 can be generalized, as well,
in the context of Chevalley groups.

Theorem 3 (Tits). Let n > 3. Then En(jt2) is contained in En(7t).
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Mennicke's complicated proof of the identity F„(A0 An(N) can be

circumvented, but there is something worth saving. Most of Mennicke's argument
in [Men2] goes into proving the weaker statement that Fn(N) is normalized

by Aft (AO [Men2, Ihm.2]. In a subsequent remark, Mennicke adds that such a

normality relation holds, more generally, for arithmetic Dedekind rings. Our main
theorem proves much more: normality holds in any commutative ring, and with

respect to a larger congruence subgroup. The proof is also much simpler.

2. The Suslin factorization and applications

Following Suslin [Sus], we factorize conjugates of elementary matrices into
products of elementary matrices and "suspended" SL2 matrices.

Let g e SLfl(A), where n > 2, let a e A, and fix i ^ j. We start by writing

g~lel}{a)g +a(g_1e!7g) 1 n+a-vw
where v is the i -th column of g~l, and w is the j -th row of g. If we further
let wr denote the i -th row of g, then it can be verified that

W ckl(viek ~ vkei), Cki := wkw't - wtw'k gjkga - gjiglk
k<l

where ek (0,..., 1..., 0) is the k-th basic row vector. As {yiek — vkei)v 0,
we get

g~le,j(a)g 1 „ + ^2acu -v(viek -vkei) (ln + acki v(viek - Vfcf?/)).

k<l k<l

Next, we decompose each factor \n + acki • v(viek — vkei) as

(ln + acki (vkek + viel)(viek - vkei)} ]~[ {ln + ackivses(viek - vkei)^

\ *kl
1+ acktvkvi -ackiv{ \

ackivf \-ackivkvi J

n (in + ackivsvi • esk)(ln - ackivsvk • esi).

s^k,l

In the first displayed line, ek denotes the k-th basic column vector. In the

second displayed line, (*y)*kl g SLn(A) is the (k, /) -suspension of the matrix

(*yt) g SL2(A), namely the matrix obtained from the identity matrix ln by

grafting x in the (k,k)-entry, y in the (kj)-entry, z in the (/,£)-entry,
respectively t in the (/,/)-entry.
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Notation. For x,y,z e A, we define the symbol

Then the above computation can be summarized as the following Suslin

factorization:

g_1e!y(a)g Y\ (S(vk,vi\ackt)*kl ]~[ esk(ackivsvi) esi(-ackivsvk)}.
k<l S^k,l

For the remainder of the section, we assume that n > 3. Recall that n denotes

an ideal of A. Our commutator convention is that [g,h\ g~lh~lgh.

2.1. Proof of Suslin's Theorem 1. Row- and column-reductions lead to the

commutator identity

^1 + xyz —x2z CP

y2z 1 — xyz 0

v 0 0 1

which shows that S(x,y;z)* e En(jt) whenever z g jr. Here, the notation

S(x,y;z)* stands for any suspension of S(x,y;z). The Suslin factorization yields
that g~lelJ{a)g e Fn(n) whenever a e n.

2.2. Proof of Tits' Theorem 3. In fact, we will prove the stronger assertion that

En(n2) is contained in the commutator subgroup [Fn(jt)fFn(7t)]. We start from
the following commutator identity, generalizing the one of the previous paragraph:

-X2Z\Z21 + xyzxz2
y2z\z2 \—xyz\z2 0

0 01
(A 1 0 xz\

0 1 yz\
L0 0 1

/ 1

0

\J>*2

0 (P

1 0

-xz2 1,

We see that S(x,y;ziz2)* e \Fn(jt)fFn(7t)] for zi,z2 e jr. Observe, on the other

hand, that symbols enjoy the additivity rule S(x,y;z + zf) S(x,y;z)S(x,y;zf).
Therefore S(x,y;z)* e \Fn(jt)fFn(7t)] for z e n2. We also have that etJ(z) e

[Fn(7t),Fn(7t)] for z e it2 (and i ^ j, as usual). This follows from the relations

etJ(u + v) etJ {u)etJ (v), respectively etJ(uv) [elic(u),eicj(v)'\ for distinct i,j,k.
And so, by the Suslin factorization, we find that g~lelJ{a)g e [F„(7t),F„(7t)]
whenever a e n2.
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2.3. Proof of Theorem 2. We claim that 5(x,y;z)* e En(n) whenever y,z e n
(or, symmetrically, x,z e n). Indeed, row and column operations over n
(indicated by r, respectively c) allow for the following transition:

^1 + xyz
2XzZ 0^ ^1 + xyz

y2z l -xyz 0
c

y2z

0 0 V \ -y
i —

2XzZ xz^
r,r 0

(-y
1 -- xyz

0
yz

l)
r

2—XzZ

1 -xyz
0

2—XzZ

1 — xyz
-x2yz

0

\°

c,c
0

1 - xyz
-x2yz 1

0

yz
+ xyz j

The last matrix is a suspension of 5(1,x; —yz), hence in En(n) by what we have

learned in the proof of Tits' theorem. We conclude from the Suslin factorization
that (a)g e (it) whenever a e n and g e SLn(A) has all off-diagonal
entries in jr.

3. Congruence subgroups versus elementary subgroups

The elementary subgroups En(n) and En(jr), corresponding to an ideal n of
A, are relative versions of the absolute elementary subgroup En (A). We will now
introduce two subgroups which play a similar role with respect to SL„ (A). In the

particular case of A Z, we have already encountered them in the Introduction.
The principal congruence subgroup is the subgroup

r„(7r) {g G SLn(A) : g \n mod tt},

that is the kernel of the reduction homomorphism SL^(A) —> SEn(A/jt). Its

elementary counterpart is the normal elementary subgroup En(n). The relation
between En(jr) and En(jt) has been investigated since the 1960s, and it is crucial
for understanding the subgroup structure of SL„ (A), as well as for the purposes
of lower algebraic K -theory.

The congruence analogue of the true elementary subgroup En{it) is the

subgroup

A„(it) {g e SL„ (A) : g l„ mod jt, gH 1 mod jt2}.

It seems quite suggestive to think of An(n) as the secondary congruence
subgroup.
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Susiin's Theorem 1 says that a normality feature, which is obviously enjoyed

by rn(n) for n > 2, turns out to be satisfied by En(n) as soon as n > 3.

This intuition, that visible congruence facts have hidden elementary analogues in

"higher rank", is what guided us towards Theorem 2. Indeed, it is easy to check

that An(n) is normal in

QnW {g G SL^(^) : g mod n is diagonal}

for n > 2, by using the diagonal multiplicativity (gh)n gu hn mod
7r2 for g,h e Qn(n). In more detail, Suslin's theorem hinges on having

S(x,y;z)* g En(n) for z e 7r, a higher rank refinement of the obvious fact
that S(x,y;z) e T2(7r) for z e 7r. In the proof of Theorem 2, the claim
that S(x,y;z)* e ¥n(n) for y,z e n is suggested by the obvious fact that

S(x,y;z) g A2(n) for y,z e n.
We may gather the elementary and the congruence subgroups we have defined

in the following diagram. The arrows denote inclusions, all being obvious except
for the dashed one which is the content of Tits' theorem, and which in addition

requires the "higher rank" assumption n > 3.

r„(7r)

En(7t)

F„(tt)

r„(7r2)

En(jT2)

Consider the reduction homomorphism r : rn(n) -> $ln(7t/7t2), given by

g i-> g — ln mod 7r2. Here Qin(7t/jt2) denotes the additive group of n x n

matrices over 7r/7r2. As

1=rU" =1+~ ^ m°d 7r2

for each g e Tn{it), the range of r lies within the zero-trace subgroup
s[n(7t/7t2). Now 5[n(jt/7t2) is generated by {äetJ : i ^ j,a g tt} together
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with {ael+\l+\ — aen : i ^ n,a e n). The off-diagonal generators are visibly in
the range of r, as \n + aetJ \-+ äetJ Given a e n, note that

(j :)C ?)(;"M1" '-Jer2W 12 f A
Taking the (/, i + 1)-suspension, and keeping in mind that äell+\ and äel+h are

already in the image of r, we see that the diagonal differences are in the range
of r. To conclude, the reduction homomorphism r : Tn(n) -> sln(n/n2) is onto,
with kernel Tn(n2). (As an aside, let us point out that An(n) is the preimage
of the zero-diagonal subgroup of sin(n/n2), so Tn(n)/An(n) 22 (n/n2, +)n~l
and An(n)/Tn(n2) 22 (n/n2, +)n2~n. This relative position of An(n) explains
the longer arrows in our diagram. We leave it to the interested reader to check

that Qn(n)/En(n) 22 (GLx{A/n))n~l.)
As the previous argument shows, r(En(n)) r(Tn(n)) and r(F„(7r))

r(An(n)). Thus the elementary subgroups are first-order approximants of the

congruence subgroups, in the sense that

r„(7r) Eft(n) • Tft(7r2), Aft(7r) Fft(7r) • Tn(n2).

We infer that the natural homomorphism Tn(n2)/En(n2) Tn(n)/En(n) is

onto for n > 2. When n > 3, Tits' theorem allows us to insert the coset space

Aft(7r)/Fft(7r) in between, so that we have the following:

Theorem 4. Let n > 3. the inclusions Tn{n2) c An(n) c Tft(7r) induce

surjections

r„(7T2)/E„(7r2) A„(w)/F„(7r) -»• r„(7r)/E„(w).

In particular, for n > 3, the property that Eft(7r) Tft(7r) for every ideal 7r

is equivalent to the property that Fft(7r) An(n) for every ideal n. This is the

conceptual explanation, promised in the Introduction, for the equivalence between

Mennicke's two theorems.

So far, the discussion did not involve Theorem 2. But our theorem does have

something to add to Theorem 4, namely the fact that Aft(7r)/Fft(7r) is actually a

quotient group, and not just a coset space.
Theorem 4 can be applied, for instance, when A is the ring of integers in a

number field K. The Bass - Milnor - Serre solution [BMS] to the Congruence

Subgroup Problem for SLft, n > 3, establishes that each quotient Tn{n)/En{n)
is a finite cyclic group whose order divides the number of roots of unity in K,
and which is furthermore trivial if K admits a real embedding. The same is then

true for the quotient Aft(7r)/Fft(7r).
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4. The case of SL2

For n 2, both Theorem 3 and Theorem 2 fail in general. However, there is

some occasional truth to them.

We illustrate the first point in the familiar case A Z.

Proposition 5. In SL2(Z), the following hold for N > 4:

• F2(V) is not normal in A2(V),

• E2(V2) is not contained in E2(N).

Proof Let

and note that a and ß generate a free group of rank 2, since they can be

simultaneously conjugated into and ^Put
1 + N2 —N2 \

N2 1 — N2J

Iben co e E2(N2) but co F2(V), as otßN ot~l is not a word in aN and ß.
Also co g A2(A^) while co~1aNco £ F2(A^) since aß~NaNßNa~l is not a word

in aN and ß.

On the other hand, we have the following:

Theorem 6 (Vaserstein). Let A he the ring of integers in a number field K which
is neither the rational field Q, nor an imaginary quadratic field Q(<s/—D), and
let 7x he an ideal in A. Then:

F2 (tv) is normal in A2(7t),

• E2(7r2) is contained in F2(7t),

• the natural homomorphism T2{tt2)/E2(jt2) A2(7t)/E2(jt) is an isomorphism.

This is taken from [Vas]. A gap in Vaserstein's paper was later corrected by
Liehl [Lie].

Vaserstein's theorem conforms with the principle that, over an arithmetic ring
with infinitely many units, SL2 should behave like SL„ with n > 3. This principle
was born with Serre's solution [Ser] to the Congruence Subgroup Problem for
SL2. In the case of a ring of integers A as in Theorem 6, Serre's results say
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that each quotient r2(7r)/E2(7r) is a finite cyclic group whose order divides the

number of roots of unity m K, and which is furthermore trivial if K admits

a real embedding By Vaserstem's theorem, the same statement applies to the

quotient A2(7r)/F2(7r)
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