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A true relative of Suslin’s normality theorem

Bogdan Nica

Abstract. We prove a normality theorem for the “true” elementary subgroups of SL;(A)
defined by the ideals of a commutative unital ring A. Our result is an analogue of a
normality theorem, due to Suslin, for the standard elementary subgroups, and it greatly

generalizes a theorem of Mennicke.
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1. Introduction

Let A be a unital commutative ring, and let n > 2. The elementary
subgroup E,(A) is the subgroup of SL,(A4) generated by the elementary matrices
eij(a) = 1, + ae;j, where i # j and a € A. Studying the size of E,(4) in
SL,(A) is fraught with surprises and subtleties, but there is one fact which is
reassuringly general: if n > 3 then E,(A) is normal in SL,(A). This is Suslin’s
Normality Theorem [Sus].

Ideals define relative elementary subgroups. The normal elementary subgroup
E, () corresponding to an ideal mw of A is the normal subgroup of E,(A)
generated by the elementary matrices with coefficients in z:

Eu() = (eij(a) :a € w0 # j)E,(4)-

In fact, Suslin proved the following relative normality theorem. What we have
referred to as the Normality Theorem is the absolute case 7 = A.

Theorem 1 (Suslin). Let n > 3. Then E, () is normal in SL,(A).

Taking just the subgroup closure of the elementary matrices with coefficients
in an ideal & gives rise to the true elementary subgroup F,(m):
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Fu(m) = (ejj(a) 1a € m,i # j).

The notation is the one proposed by Tits [Tit], while the terminology is ours. Our
main result is a relative normality theorem for the true elementary subgroups.
Once again, the Normality Theorem appears as the absolute case 7 = A.

Theorem 2. Let n > 3. Then F,(x) is normal in the subgroup {g € SL,(A) :
g mod = is diagonal}.

Warming up the cold truth of the theorem is a short story explaining how we
were led to this result. The setting is the most familiar case, A = Z. Then the
absolute elementary subgroup E,(Z) exhausts SL,(Z). But what becomes of the
relative elementary groups?

In 1965, Mennicke [Menl] proved the following remarkable fact: for n > 3,
the normal elementary subgroup E,(N) = {(e;;(N) : i # j)) coincides with the
principal congruence subgroup I'y(N) = {g € SL,(Z) : g = 1, mod N}. The
proof is elementary, though somewhat intricate. Using earlier observations of
Brenner, Mennicke was then able to derive the Normal Subgroup Theorem stating
that every normal subgroup of SL,(Z), n > 3, is either central or it contains
a principal congruence subgroup. The Congruence Subgroup Property, that
every finite-index subgroup of SL,(Z), n > 3, contains a principal congruence
subgroup, is an immediate consequence.

More than three decades later, in 2000, Mennicke [Men2] published the
following counterpart of his 1965 result: for n > 3, the true elementary
subgroup F,(N) = (e;;(N) : i # j) coincides with the congruence subgroup
Ay(N)={g€SL,(Z): g =1, mod N, g;; =1 mod N2}. Mennicke’s approach
to this more recent - in fact, surprisingly recent - theorem is significantly more
complicated. It is, in a sense, an unnecessary proof: a short and conceptual
argument shows that Mennicke’s two theorems on elementary subgroups - Theorem
E and Theorem F, so to speak - are equivalent. This equivalence can be formulated
in the generality of commutative rings, the key ingredient being a 1976 theorem
of Tits, stated below. As I have recently learnt from Andrei Rapinchuk, the
equivalence was noted soon after [Men2] was circulated in preprint form. To
the best of my knowledge, the equivalence does not appear in the literature, so
it seems worthwhile to discuss it. As it turns out, Theorem 2 will fit in this
discussion.

Here is Tits’ theorem, the SL, case of a result proved in [Tit] for Chevalley
groups. Incidentally, we expect that our Theorem 2 can be generalized, as well,
in the context of Chevalley groups.

Theorem 3 (Tits). Let n > 3. Then E,(x?) is contained in F, ().
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Mennicke’s complicated proof of the identity F,(N) = A,(N) can be
circumvented, but there is something worth saving. Most of Mennicke’s argument
in [Men2] goes into proving the weaker statement that F,(N) is normalized
by A,(N) [Men2, Thm.2]. In a subsequent remark, Mennicke adds that such a
normality relation holds, more generally, for arithmetic Dedekind rings. Our main
theorem proves much more: normality holds in any commutative ring, and with
respect to a larger congruence subgroup. The proof is also much simpler.

2. The Suslin factorization and applications

Following Suslin [Sus], we factorize conjugates of elementary matrices into
products of elementary matrices and “suspended” SL, matrices.
Let g € SL,(A), where n > 2, let a € A, and fix i # j. We start by writing

1

g lej(@)g =1, +a(g lejg) =1y +a-vw

where v is the i-th column of g~!, and w is the j-th row of g. If we further

let w’ denote the i-th row of g, then it can be verified that

w =Y cp(viex —vger).  Crl = WEW) — Ww) = gikgil — &Ik
k<l
where e = (0,...,1...,0) is the k-th basic row vector. As (v;ex —vre))v =0,
we get

g leij(@g =1y + Y _ack -v(vier —vie) = [ | (1n + ackr - v(vex — vkez))-
k<l k<l

Next, we decompose each factor 1, + acy; - v(viex — vie;) as

(ln +acks - (vie® + viel)(vrex — vkez)) H (]n + acgvse’ (viex — vkel))

s#k,l
a *kl
[ 1+ ackvey —Ack vy,
ackv} 1 —ackjvgvy
1_[ (Ln 4 ackrvsv; - esk) (1n — ackivsvg - egp).
s#k,l

In the first displayed line, e* denotes the k-th basic column vector. In the
second displayed line, (7 7 )*kl € SL,(A) is the (k,!)-suspension of the matrix
(37) € SLa(4), namely the matrix obtained from the identity matrix 1, by

grafting x in the (k,k)-entry, y in the (k,[)-entry, z in the (/,k)-entry,
respectively ¢ in the ([,[)-entry.
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Notation. For x,y,z € A, we define the symbol

14+ xyz —x%z

y2z  1—xyz

S(x,y;z) = ( ) e SL;(A).

Then the above computation can be summarized as the following Suslin
factorization:

—1 .
g lej@g =] (S(vk,vz,ac‘kl)*kl [T esc(ackrvsvn) esl(_acklvsvk))-
k< skl

For the remainder of the section, we assume that n > 3. Recall that = denotes
an ideal of A. Our commutator convention is that [g,h] = g~ 'h~1gh.

2.1. Proof of Suslin’s Theorem 1. Row- and column-reductions lead to the
commutator identity

14+xyz —x%?z 0 1 0 xz 1 0 0
y?2z  1—xyz O]l=1[]0 1 yz[,|]O 1 0
0 0 1 0 0 1 y —x 1

which shows that S(x,y;z)* € E,(w) whenever z € m. Here, the notation
S(x, y;z)* stands for any suspension of S(x, y;z). The Suslin factorization yields
that g~'e;;(a)g € E,(;r) whenever a € 7.

2.2. Proof of Tits’ Theorem 3. In fact, we will prove the stronger assertion that
E,(7?) is contained in the commutator subgroup [F,(7),F,(w)]. We start from
the following commutator identity, generalizing the one of the previous paragraph:

14+ xyz1zo —x%z1zp O 1 0 xz; 1 0 0
y2z125 Il —xyzy1z, O] = 0 1 yz;1|,] O 1 0
0 0 1 0 0 1 VZp —xzp 1

We see that S(x, y;z122)* € [Fy(m),F, ()] for z1,z, € w. Observe, on the other
hand, that symbols enjoy the additivity rule S(x,y;z+z") = S(x,y;2)S(x,y;z').
Therefore S(x,y;z)* € [F,(n),Fy(x)] for z € n2. We also have that ¢;;(z) €
[Fn(7),Fn(x)] for z € 72 (and i # j, as usual). This follows from the relations
eij(u+v) = e;j(u)e;j(v), respectively e;; (uv) = [ejr (1), ex; (v)] for distinct i, j, k.
And so, by the Suslin factorization, we find that g~ le;;(a)g € [F,(x),Fy ()]
whenever a € 2.
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2.3. Proof of Theorem 2. We claim that S(x, y;z)* € F,(;r) whenever y,z € n
(or, symmetrically, x,z € m). Indeed, row and column operations over =
(indicated by r, respectively c¢) allow for the following transition:

14+xyz —x%?z 0 l+xyz —x?z 0
y2z l—xyz O] y2z 1—xyz 0
0 0 1 —y 0o 1
1 —x?z  xz 1 —x2z xz
Slo o —Xyz Yz w01 —Xxyz yz
-y 0 1 0 —x%yz 1+4xyz
1 0 0
“Slo 1- xXyz yz

0 —x?yz 1+4xyz

The last matrix is a suspension of S(1,x;—yz), hence in F, () by what we have
learned in the proof of Tits’ theorem. We conclude from the Suslin factorization
that g~ 'e;;(a)g € Fu(r) whenever a € 7 and g € SL,(A4) has all off-diagonal
entries in 7.

3. Congruence subgroups versus elementary subgroups

The elementary subgroups E, (7)) and F,(x), corresponding to an ideal = of
A, are relative versions of the absolute elementary subgroup E,(A4). We will now
introduce two subgroups which play a similar role with respect to SL,(A). In the
particular case of A = Z, we have already encountered them in the Introduction.
The principal congruence subgroup is the subgroup

[p(m) ={g € SLy(A4) : g = 1, mod 7},

that is the kernel of the reduction homomorphism SL,(A) — SL,(A/x). Its
elementary counterpart is the normal elementary subgroup E, (). The relation
between E,(7) and [',(x) has been investigated since the 1960s, and it is crucial
for understanding the subgroup structure of SL,(A), as well as for the purposes
of lower algebraic K -theory.

The congruence analogue of the true elementary subgroup F,(w) is the
subgroup

Ap(m) ={g € SL,(4) : g =1, mod , gi; = 1 mod n2}.

It seems quite suggestive to think of A,(mw) as the secondary congruence
subgroup.
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Suslin’s Theorem 1 says that a normality feature, which is obviously enjoyed
by I',(w) for n > 2, turns out to be satisfied by E,(x) as soon as n > 3.
This intuition, that visible congruence facts have hidden elementary analogues in
“higher rank”, is what guided us towards Theorem 2. Indeed, it is easy to check
that A, () is normal in

Qu(w) ={g € SL,(A) : g mod = is diagonal}

for n > 2, by using the diagonal multiplicativity (gh);; = gi; hi; mod
n? for g,h € Qu(r). In more detail, Suslin’s theorem hinges on having
S(x,y;z)* € E,(w) for z € m, a higher rank refinement of the obvious fact
that S(x,y;z) € I'p(w) for z € w. In the proof of Theorem 2, the claim
that S(x,y;z)* € F,(w) for y,z € n is suggested by the obvious fact that
S(x,y;z) € Ap(w) for y,z em.

We may gather the elementary and the congruence subgroups we have defined
in the following diagram. The arrows denote inclusions, all being obvious except
for the dashed one which is the content of Tits’ theorem, and which in addition
requires the “higher rank” assumption n > 3.

Qp ()

|

U ()

™

() E, ()
F
Ly (r?

E, (7'[2)

Consider the reduction homomorphism r : [y(7) — gl,(z/7?), given by
g+ g—1, mod 2. Here gl,(n/mn?) denotes the additive group of n x n
matrices over 7/mw?. As

I=]]gi=1+) (gi—1) mod z

for each g € I',(w), the range of r lies within the zero-trace subgroup
sly(w/7?). Now sl,(m/n?) is generated by {ae; : i # j,a € mw} together
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with {aej;11i+1 —aej; :1 #n,a € 7}. The off-diagonal generators are visibly in
the range of r, as 1, + ae;; — ae;; . Given a € w, note that
—a
—al’

11\ (1 o\ [1 -1 l4a —a ]
(0 1>(a 1)(0 1):(a 1—a)er2(”) - (

Taking the (i,i + 1)-suspension, and keeping in mind that ae; ;41 and ae;y1; are
already in the image of r, we see that the diagonal differences are in the range
of r. To conclude, the reduction homomorphism r : ', () — sl,(/7?) is onto,
with kernel I',(72). (As an aside, let us point out that A,(w) is the preimage
of the zero-diagonal subgroup of sl,(7w/7?), so T, (w)/A, () ~ (/72 +)"!
and A, (n)/Tu(7?) ~ (n/72, +)”2_”. This relative position of A,(mw) explains
the longer arrows in our diagram. We leave it to the interested reader to check
that Q,(7)/Tu(n) = (GL1(4/7))" ")

As the previous argument shows, r(E,(w)) = r(I'y(w)) and r(F,(mw)) =
r(A,(m)). Thus the elementary subgroups are first-order approximants of the
congruence subgroups, in the sense that

Q1 Qi

Fn(n):En(”)'rn(”2)’ An(”):Fn(ﬂ)'rn(ﬂ2)~

We infer that the natural homomorphism TI',(7?)/E,(n?) — I, (xw)/E,(7) is
onto for n > 2. When n > 3, Tits’ theorem allows us to insert the coset space
An(m)/F, () in between, so that we have the following:

Theorem 4. Let n > 3. Then the inclusions Ty (7?) € A, () € I'y(w) induce
surjections

Fn(ﬂz)/En(JTz) —> Ap(7) /Fp () = () /Ep (7).

In particular, for n > 3, the property that E, () = I',(r) for every ideal =
is equivalent to the property that F,(w) = A, () for every ideal s. This is the
conceptual explanation, promised in the Introduction, for the equivalence between
Mennicke’s two theorems.

So far, the discussion did not involve Theorem 2. But our theorem does have
something to add to Theorem 4, namely the fact that A, (x)/F, () is actually a
quotient group, and not just a coset space.

Theorem 4 can be applied, for instance, when A is the ring of integers in a
number field K. The Bass - Milnor - Serre solution [BMS] to the Congruence
Subgroup Problem for SL,, n > 3, establishes that each quotient I',(x)/E, ()
is a finite cyclic group whose order divides the number of roots of unity in K,
and which is furthermore trivial if K admits a real embedding. The same is then
true for the quotient A, (w)/F,(x).
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4. The case of SL,

For n = 2, both Theorem 3 and Theorem 2 fail in general. However, there is
some occasional truth to them.
We illustrate the first point in the familiar case A = Z.

Proposition 5. In SL,(Z), the following hold for N > 4:
e F2(N) is not normal in Ay(N),
o Ey(N?2) is not contained in Fo(N).

() ()

and note that o and B generate a free group of rank 2, since they can be

Proof. Let

simultaneously conjugated into ((1) «/F ) and ( jﬁ (1)) Put

oo (11 1 0\f1 -1}y _ ([1+N> -—NZ?
(0 1J\NZ 1)\O0 1) N2 1—N2%J°

Then @ € E»(N?) but o ¢ Fo(N), as ¢fV¥a~! is not a word in o« and B.
Also w € Ay(N) while o 'aVw ¢ Fo(N) since afNa¥pNa~! is not a word
in o and 8. O

On the other hand, we have the following:

Theorem 6 (Vaserstein). Let A be the ring of integers in a number field K which
is neither the rational field Q, nor an imaginary quadratic field Q(~/—D), and
let & be an ideal in A. Then:

o Fy(m) is normal in Ay(w),
o Ey(7?) is contained in Fa(rr),

o the natural homomorphism T(n?)/Ey(n?) — As(n)/Fa(m) is an isomor-
phism.

This is taken from [Vas]. A gap in Vaserstein’s paper was later corrected by
Liehl [Lie].

Vaserstein’s theorem conforms with the principle that, over an arithmetic ring
with infinitely many units, SL, should behave like SL,, with n > 3. This principle
was born with Serre’s solution [Ser] to the Congruence Subgroup Problem for
SL,. In the case of a ring of integers A as in Theorem 6, Serre’s results say
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that each quotient I';(x)/E, () is a finite cyclic group whose order divides the
number of roots of unity in K, and which is furthermore trivial if K admits
a real embedding. By Vaserstein’s theorem, the same statement applies to the
quotient A, (m)/Fa(mr).
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