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The index of isolated umbilics on surfaces
of non-positive curvature

Francisco Fontenele and Frederico Xavier

Abstract. It is shown that if a C2 surface M c M3 has negative curvature on the

complement of a point q e M, then the Z/2-valued Poincare-Hopf index at q of either

distribution of principal directions on M — {q} is non-positive. Conversely, any non-positive

half-integer arises in this fashion. The proof of the index estimate is based on geometric-

topological arguments, an index theorem for symmetric tensors on Riemannian surfaces,

and some aspects of the classical Poincare-Bendixson theory.
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To Professor Jorge Sotomayor,
on the occasion of his 70th birthday

1. Introduction

The distributions of principal directions on a surface in I3, defined on the

complement of the umbilical set (i.e., the locus where the principal curvatures

coincide), have been the object of intense scrutiny since the early days of
differential geometry. For both technical and geometric reasons, most of these

investigations were conducted under the hypothesis that the surface is real analytic,

or at least of class C3, although one needs only C2 regularity in order for the

fields of principal directions to be continuous.

The aim of this work is to establish an estimate for the local index of these

fields, under a natural curvature restriction, but with optimal regularity:
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Theorem 1.1. Let McM3 be a C2 surface, q e M. Assume that the Gaussian

curvature of M is negative at every point of M other than q. Then, the Z/2-
valued Poincare-Hopf index at q of either distribution of principal directions on

M — {q} is non-positive.

We observe that the theorem is sharp. Indeed, if the Gaussian curvature remains

negative at q, then the distributions of principal directions extend continuously
to M, and so the index is zero. On the other hand, given any negative number

j e Z/2 one can construct a surface as in the statement of the theorem, even a

minimal one (i.e., with vanishing mean curvature), that has an isolated umbilic
of index j ([SX3]).

When the surface in question is minimal, the conclusion in Theorem 1.1 can
be verified using the holomorphic data in the Weierstrass representation of the

surface.

The main point of the present work is that, surprisingly, Theorem 1.1 applies to
surfaces that are merely C2, and not only to those CM surfaces that are minimal.
Since complex analysis is no longer available in this more general setting, new
tools have to be introduced in order to estimate the index. Loosely speaking,
the replacement for complex analysis is, when properly augmented, the classical

qualitative theory of planar dynamical systems.

Umbilic points are notoriously elusive geometric objects. For instance, on a

surface of positive curvature the index of an isolated umbilic need not be positive.
In other words, the "dual" statement of Theorem 1.1 does not hold. Indeed, inverting
surfaces satisfying the hypotheses of Theorem 1.1 on suitable spheres - a process
that does not change the index of the umbilic -, one can produce surfaces of
positive Gaussian curvature exhibiting an umbilic whose index is any prescribed

negative half-integer.

By analogy with the above mentioned sharpness of Theorem 1.1, one might
naively expect that every positive half-integer could be realized as the index of
an isolated umbilic on a surface of positive curvature. In stark opposition to this

expectation, it is actually predicted that on any sufficiently regular surface, without

any curvature restrictions whatsoever, the index of an isolated umbilic should be

at most one. This is the well-known local Caratheodory conjecture, also known

as the Loewner conjecture. We refer the reader to [Bol], [Bro], [FNB]-[GH],
[GS]-[Ham2], [Iva]-[Xav] for a sample of the many works, old and new, on this

very challenging problem, as well as on various aspects of the global study of
principal foliations.

It is worth to point out that, if true, the local Caratheodory conjecture would

imply, by the Poincare-Hopf theorem, the Caratheodory conjecture (the statement
that any C2 immersion of the 2-sphere into M3 has at least two umbilical points;
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see [GK] for a solution of this conjecture that has been proposed recently).
To put our results in perspective, we re-iterate that Theorem 1.1 is sharp and

verifies the C2 version of the local Caratheodory conjecture in a geometrically
important special case, but with a stronger conclusion. Thus, Theorem 1.1 represents
a contribution to the interface between classical differential geometry and classical

dynamical systems that stands on its own, since it cannot be subsumed by the

resolution of the Caratheodory conjecture. On the other hand, we hasten to add

that there is no expectation that the present method can be used to tackle the

said conjecture, given our strong reliance on negative curvature.
Over the years, the task of estimating the index of isolated umbilics has proven

to be an arduous one, often involving lengthy and intricate arguments (e.g., [Iva]).
Against this backdrop, it is pleasing that the proof of Theorem 1.1, albeit delicate

in its own right, is rather conceptual. The arguments are based on an index

theorem for abstract symmetric tensors on Riemannian surfaces, elements of the

classical qualitative theory of two-dimensional dynamical systems, and a modicum
of topology and classical differential geometry. Although the main result is new,
the subject matter lends itself to a more expository style and, accordingly, full
details are provided.

2. An index theorem for abstract symmetric tensors

A continuous symmetric tensor field A of type (1,1), defined on a Riemannian
surface M, is said to have an isolated A-singularity at q e M if there exists

a neighborhood V of q such that the eigenvalues of A(p) are unequal for any

p e V — {q}. This condition is equivalent to the requirement that the traceless

part A{p) — |(trA(p))I of A{p) be non-zero for all p ^ q. If the eigenvalues
of A(q) are distinct, then q is automatically an isolated A-singularity (one then

thinks of q as being a "removable" A-singularity).
Under the above conditions, there are two continuous line fields on M — {q},

not necessarily orientable, which correspond to the diagonalizing directions of
A. Given a continuous field of directions £ on V — {q}, denote by A£ the

field of directions obtained by applying A{p) to any vector generating the one-
dimensional subspace £(/?) of TPM. We write j(A) for the index at q of either

of the two fields of diagonalizing directions of A. Similarly, j(rj) stands for the

index at q of a line field rj with an isolated singularity at q.
For the more general definition of local index of a totally real n-form (the case

n 1 corresponds to a direction field), as well as the proof of the two-dimensional

Poincare-Hopf theorem in this context, see [FNB].
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Theorem 2.1. Let A be a continuous symmetric tensor field of type (7,7) on a

Riemannian 2-manifold M, and q e M an isolated A -singularity. Then, for every
continuous field of directions £ on a punctured neighborhood of q, one has

(2.1) 2j(A) j((A - IM)/) £) + _/(£)•

Remarks. One should think of £ as being a "test" line field. For instance, if £

is chosen to be one of the continuous fields of eigendirections of A, each term
on the right hand side of (2.1) equals J (A). As another illustration to see that
2 is the correct factor in the left hand side, let A be a continuous symmetric
tensor field on a compact orientable surface M of non-zero genus, with the

property that the set F\ where A is a multiple of the identity is finite. Let £ be

a continuous line field on M with a finite set F2 of singularities. Applying (2.1)

around each point in Fi U F2, and summing, one sees from the Poincare-Hopf
theorem that both sides of (2.1) equal 2/(M).

Proof Formula (2.1) was first established in [SX3], under the more restrictive

assumptions that A is a smooth tensor and £ is a smooth vector field; here, A

and £ are only assumed to be continuous, and £ is allowed to be an unorientable
line field. This extra generality requires a new line of argument.

Let X > /x be the eigenvalues of A and U a neighborhood of q such that

X(p) > p(p) whenever p e U — {q}. The continuous distributions Dx and Dß
of eigenspaces determined by A on U — {q} have the same index at q, and this

common value is, by definition, the index j(A) of A at q. Let B A — ^(trA)7,
so that trT? 0 everywhere, and let

a b

b —a

be the matrix representation of B with respect to an orthonormal frame {e\,e2}
in (a possibly smaller neighborhod) U. Observe that the continuous vector field
X := aei + be2 has no zeros on U — {q}.

Let C c U be a Jordan curve around q and y : [0,1] U a positive
parametrization of C (relative to the orientation determined by {e\,e2} on U).
Let V(t) cos 0(0^1 + sin 9(t)e2 be a continuous unit vector field along y
such that V(t) generates Dx(y(t)), for every t e [0,1]. By definition,

0(1) - 0(0)
(2.2) j(Dx)

2tt

(Notice that since L(l) ±L(0), 0(1) differs from 0(0) by a multiple of 7t,
and thus j(Df) e ^Z.) Consider the continuous vector field W along y defined

by
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(2.3) Wit) cos(2 0(0) ex + sin(2 0(0) e2.

We claim that W(t) is orthogonal to (—bei +a^2)(y(0)? f°r t e [0,1].
In fact, since V(t) is an eigenvector of A(y(t)) (and hence of B(y(t))) and

sin 0(0 <?i — cos 0(0 e2 is orthogonal to V(t), one has

0 (B(V(t)), sin 0(0 e\ — cos 0(0 e2)

(cos 6(t)(ae\ + be2) + sin 6(t)(be\ — ae2), sin 0(0 £i — cos 0(0 e2)

—&(cos2 0(0 — sin2 0(0) + 2a sin 0(0 cos 0(0
—b cos(2 0(O) + sin(2 0(O)

(cos (2 0(0) e\ + sin(2 0(0) £2, —+ 0^2)

(2.4) (W(t),-bex +ae2),

which proves the claim.

Since X is orthogonal to —be 1 +ae2, it follows from the claim above that

(2.5) 2L0y ±W.
IA I

Let £ be a continuous field of directions on U — {q}. If Z(t) cos (p(t)e\ +
sin cp(t)e2 is a continuous vector field along y such that, for all t e [0,1], Z(t)
generates £(y(0), then

(2-6) y(f)
2n

From (2.3) and (2.5), we obtain

2?(Z(0)) [a cos <p + b sin^Jci + [b cos <p — a sm<p\e2

=b|X|{[cos(20) cos<p + sin(20) sin^Jci

+ [sin(20) cos cp — cos(20) sin cp]e2)

(2.7) ±|W|{ cos (2 0 -<p)ex + sin (2 0 - <p)e2}.

Since Z(0 generates £(y(t)), the equality above shows that, for all t e [0,1],

(2.8) cos (2 9(t) — (p(t))e\ + sin (2 9(t) — <p(t))e2

generates (B£)(y(t)). The lemma now follows from (2.2) and (2.6):

[2 0(1) -<p(l)l- [2 0(0) -<p(0)]jm 2n
2 0(1) -2 0(0) <p(l)-<p(0)

2jv 2JV

2KDX)-m
2xA)-m.
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3. Gradients and degenerate local homeomorphisms

The lemma below is well known for the usual gradient of a planar function.

Here, we work in the context of arbitrary Riemannian surfaces.

Lemma 3.1. Let f be a C1 function defined on an open set U of a C2

Riemannian surface M, and q e U an isolated critical point of f. Then, the

Poincare-Hopf index of V/ at q is at most one. Furthermore, the index of V/
at q is one if and only if f has a strict local maximum, or minimum, at q.

Proof Taking U to be a coordinate neighborhood, U <p(W), If c I2, we

may consider a continuous tensor / on U corresponding to rotation by 7r/2
in the tangent spaces of M. Since J can be continuously deformed into the

identity through pointwise invertible tensors, the index at q of V/ satisfies

y(V/) y(/V/). Notice that /V/ is tangent to the level curves of /.
Likewise, <p*(/V/) is tangent to the level curves of / o cp on W. Hence

y(v/) j(JVf) j{y*(JVf)) j{JVo(/ o V)),

where the last two indices are computed at <p~l(q), J stands for the usual

complex structure in R2, and V0 is the Euclidean gradient. It follows from the

Poincare-Bendixson theory (see, e.g., the exercise on p. 173 of [Har]) that

KJVo(fotp)) < l,

with equality holding if and only if <p~l(q) is a point of local maximum, or
minimum, of / o <p. In particular, y(V/) < 1, and equality holds if and only if
q is an extremum of /.

Under the hypotheses of Theorem 1.1, if q is an umbilic point then the Gaussian

curvature necessarily has to vanish at q, and so the Gauss map is not a local

dilfeomorphism. However, one can still prove that the Gauss map is open. More

generally, using arguments from algebraic topology, it is possible to argue that a

continuous map must be open if it is a local homeomorphism on the complement
of a sufficiently "thin" subset of its domain ([Chu, p. 354]). Fortunately, in the

special case that concerns us, an elementary proof is available:

Lemma 3.2. Let U cl" be open, n > 2, q e U, F : U ^M.n continuous. If
the restriction of F to U — {q} is a local homeomorphism, then F is an open

map.

Proof. (The simple example f(x) x2 shows the need to have n > 2.) Assume,

by contradiction, that F is not an open map. Since the restriction of F to U — {q}
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is a local homeomorphism, there exists an open set U c U, with q e V, such

that F(q) e dF(V). Let B be an open ball centered at q such that B c V. We

are going to need claims (i) and (ii) below:

(i) For every y £ dF(B), y ^ F{q), there exists x £ dB satisfying F(x) y.
Indeed, let (x^) be a sequence in B with F(xk) -> y. Passing to a

subsequence, we can suppose -> x e B. Hence F(xk) -> F(x), and

so F{x) y. Since y ^ F{q), and the image of every point in B — {q}
belongs to the interior of F(B), one has x £ dB.

(ii) Every ball D centered at F{q) contains a point y e dF{B) distinct from
F(g).
Observe that F(q) £ dF(B), otherwise F(q) £ intF(B) C intF(V). Since

F(q) £ D n dF(B), one cannot have D C F(B). Let then z e D — F(B).
Using the continuity of F and the fact that the restriction of F to B — {q}
is a local homeomorphism, we see that D flintF(2?) ^ 0. Since n > 2, one

can choose w £ D n intF(B) such that F(q) lies outside the segment xvz

joining w to z. Since Wz joins a point in the interior of F(B) to a point
in the complement of F(B), it must contain a point y £ dF(B), which is

necessarily distinct from F(q). Since y £ Wz c D, (ii) follows.

Applying (ii) to a sequence of balls D centered at F(q), with radii

tending to zero, one sees that there exists a sequence (y^) in dF(B), with

yk ^ F{q) for all k, such that y^ F(q). By (i), y^ F(xk) for some sequence
(xjc) in dB. Passing to a subsequence, we can assume that x^ x e dB. By
continuity, F(xk) F(x), and so F{x) F(q). We have then found a point
x £ dB c V — {q} whose image by F belongs to dF(V), contradicting the fact
that the restriction of F to V — {q} is a local homeomorphism.

4. A special homotopy and the proof of Theorem 1.1

Let U C M be a neighborhood of q on which a C1 normal (Gauss) map
£ : U S2 is defined. Choose a £ S2 such that 0 < {a,t=(q)) < 1. Shrinking
J7, one may assume that 0 < (a,%(p)} <1 if p £U.

Denote by a the second fundamental form of M, and consider the height
function / : M R, f(x) {x,a). In particular, the (intrinsic) gradient and

Hessian of / satisfy
(4.1)

V/O) a - (a,l(p))l(p), Hessf(p)(v,v) H(p),a)a(v,v), v e TPM.

The first equation expresses the gradient of the restriction as the orthogonal
projection of the space gradient into the tangent space. The formula for the
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Hessian of the restriction of a function is standard in submanifold geometry, and

can be found, say, in ([Daj, p. 46]).

Writing Hf(p) and A(p) for the linear endomorphisms associated to the

quadratic forms Hess/(/?) and a(p) on TPM, respectively, it is clear from
(4.1) that the indices of the continuous symmetric tensors A and Hp satisfy

j(Hf) j(A).
Using the fact that det A, being the Gaussian curvature, is negative away from

q by hypothesis, it is easy to see that

Mp)-^A(p))l, 0<f < 1,

is a homotopy through invertible maps whenever p ^ q. Indeed, in a diagonalizing
basis at p, the operator above has the matrix representation

-X(p)(l-L)-ß(p^ o

0
'

Since t e [0,1] and the principal curvatures satisfy X(p) > 0 > fi(p) if p ^ q,
it is clear that the diagonal elements are non-zero.

It follows from the invariance of the degree under homotopies which do not
introduce further zeros that, for every continuous non-vanishing vector field q on

U-{q}9
j(Arj) j((A - i(trA)/)77).

Hence, by (4.1), Theorem 2.1 and the fact that (%(p),a) ^ 0 for all p e U,

(4.2) 2j{A) j(Arj) + j{n) j(Hfri) + j(r,).

Applying (4.2) with q V/ (which is a permissible choice, since 0 < {a,^(p)) <
1 implies V/(/>) ^ 0), and using the general formula

(4.3) v(i|V^|2),

which is valid on any Riemannian manifold, with \j/ /, one has

(4.4) 2j(A) j(HfVf) + j(Vf) j (v(i|V/|2)) + j(Vf).

Manifestly, (4.4) provides a formula for the index of the umbilic q (i.e., the index

of the tensor field A) in terms of the indices of two gradient fields.

To conclude the proof of the theorem, we must show that j(A) is non-positive.
If q is not an umbilical (planar) point, the distributions of principal directions
extend continuously across q, in which case j(A) vanishes. Hence, we may
assume that q is an umbilic, that is, \{q) fi(q) 0. In particular, A(q) 0.
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Since V/(/7) ^ 0 for p e U, the term y(V/) in (4.4) vanishes. Hence, it
remains to argue that y(V(^|V/12)) < 0. According to Lemma 3.1, one must
show that the function h ^|V/|2 has an isolated critical point at q, which
is neither a local maximum nor a local minimum. From (4.1) and (4.3), one
has Vh(p) V(^|Vf\2)(p) (a,^(p))A(p)Vf(p). Since A(q) 0, the point
q is critical for h. In order to see that no point p in U — {q} is critical for
A, observe that {a,t=(p)} > 0, V/(/?) ^ 0 and A(p) is invertible (since the

Gaussian curvature det A(p) is negative for p ^ q, by hypothesis). Hence q is

an isolated critical point of A.

We now proceed to show that A has neither a local maximum nor a minimum at

q. A direct calculation gives y/2h(p) |V/(/?)| sin 6(p), where 6{p) e [0, jv]

is the angle between the vectors a and i-(p). Since 0 < (a,%(q)) < 1, it follows
that 6{q) e (0, j). Therefore, in order to show that h does not have an extremum
at q, it suffices to argue that the Gauss map £ U ^ S2 is open. But this is a

consequence of Lemma 3.2 and the inverse function theorem, since the Jacobian

determinant of the normal map is the Gaussian curvature which, by hypothesis,
is negative away from q.
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