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On the Van Est homomorphism for Lie groupoids

David Li-BLanp and Eckhard MEINRENKEN

Abstract. The Van Est homomorphism for a Lie groupoid G == M, as introduced by
Weinstein-Xu, is a cochain map from the complex C°(BG) of groupoid cochains to
the Chevalley-Eilenberg complex C(A4) of the Lie algebroid A of G. It was generalized
by Weinstein, Mehta, and Abad-Crainic to a morphism from the Bott—Shulman—Stasheff
complex Q(BG) to a (suitably defined) Weil algebra W(A). In this paper, we will give an
approach to the Van Est map in terms of the Perturbation Lemma of homological algebra.
This approach is used to establish the basic properties of the Van Est map. In particular, we
show that on the normalized subcomplex, the Van Est map restricts to an algebra morphism.
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1. Introduction

In their 1991 paper, Weinstein and Xu [WX] described an important general-
ization of the classical Van Est map [Est2, Est3, Estl] to arbitrary Lie groupoids
G = M . Recall that the complex of groupoid cochains for G consists of smooth
functions on the space B,G of p-arrows, that is, p-tuples of elements of G such
that any two successive elements are composable. Its infinitesimal counterpart is
the Chevalley-Eilenberg complex C*(A4) = I'(A®*A*) of the Lie algebroid of G.
The generalized van Est map is a morphism of cochain complexes

(1) VE: C®(B.G) — C*(A).

Weinstein and Xu define this map in terms of the following formula, for
f € C®(By,G) and Xy,...,X, € ['(4),

@ X)X VE() =% Y sign() LX) - LX) f.

S€6p

Here the X*# for X € I'(4) are the generating vector fields for certain commuting
G -actions on B,G, and «: M — B,G is the inclusion as trivial p-arrows.

Weinstein and Mehta [Meh] indicated a generalization of (1) to a morphism
of bidifferential complexes,

3) VE: Q*(B.G) — W**(A),

from the Bott-Shulman-Stasheff double complex (i.e. the de Rham complex of the
simplicial manifold B.G) to a certain Weil algebra of the Lie algebroid A. Their
theory was formulated within the framework of supergeometry. Abad and Crainic
[AC] gave a different construction of the Weil algebra and the Van Est map in
terms of classical geometry, using representations up to homotopy. Generalizing a
result of Crainic [Cra], they proved a ‘Van Est theorem’, stating that the map (3)
induces an isomorphism in cohomology in sufficiently low degrees (depending
on the connectivity properties of the fibers of the target map of G).

The Van Est map for groupoids, with its associated Van Est theorem, has a
number of important applications. It arises in the context of integration problems
for Poisson and Dirac manifolds [BCWZ, CF2, CZ] as well as for general Lie
algebroids [Cra, CFI, LGTX]. It is a tool in linearizing groupoid actions and
Poisson structures [CF4, Wei2], and is related to the interplay between Cartan
forms and Spencer operators [CSS, Sal]. Finally, it enters the formulation of index
theorems for foliations and more general groupoids [CM, PPTI, PPT2, PPT3].

The proof of a Van Est theorem in [Cra] involves a certain double complex.
In [AC], this is enlarged to a triple complex. In this paper, we will show that this
double/triple complex, in conjunction with the Perturbation Lemma of homological
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algebra, may in fact be used to give a conceptual ‘explanation’ for the van Est
map itself. The basic properties of the Van Est map follow rather easily from this
approach. For example, one obtains a simple proof of the fact that the Van Est
map restricts to an algebra morphism on the normalized subcomplex, a fact first
proven in [Meh] via different techniques.

Let us briefly summarize this construction for the Van Est map (1). One
begins by considering the principal G -bundles «,: E,G — B,G, where E,G is
the p + 1-fold fiber product of G with respect to the source map s. The tangent
bundle to the fibers of «, defines a Lie algebroid TrE,G . The structure maps
of the simplicial manifold E.G lift to Lie algebroid morphisms; thus TrE.G
is a simplicial Lie algebroid. One thus obtains a double complex, with bigraded
summands C*(TrE,G), and equipped with a Chevalley-Eilenberg differential d
and a simplicial differential §. Let Tot® C(T=EG) be the associated total complex.
Pullback under the map to the base is a morphism of differential spaces

“4) k¥ C®(B.G) — Tot* C(TrEG).

Similarly, the identification TrE¢G = s*A determines a pullback map C(4) —
C(TrEoG), which defines a morphism of differential spaces

(5) e C°(A) — Tot* ((TFEG).

There is also a map ¢ : Tot* C(TrEG) — C*(A) left inverse to ny, defined using
the inclusion A — TrEyG with underlying map M — Ey G . However, since
this inclusion is not a Lie algebra morphism, the map (j is not a cochain map,
in general.

The simplicial manifold E.G admits a canonical simplicial deformation
retraction onto M C E.G. This determines a homotopy operator s for the
simplicial differential § on the double complex C*(TrE.G). We will prove:

Proposition. The composition ¢ o (1 + hod)™': Tot* C(TxEG) — C*(A) is a
cochain map, and is a homotopy inverse to .

This proposition is a fairly direct application of the Basic Perturbation Lemma
of homological algebra, due to Brown [BRO] and Gugenheim [Gug] (cf. Appendix
B). We will take the composition

(6) VE: (5o (1 +hod) P ok™: C®(B.G) — C*(A)

as a definition of the Van Est map. A more refined version of the Perturbation
Lemma, due to Gugenheim-Lambe-Stasheff [GLS] (cf. Appendix B) applies to
cochain complexes with additional algebra structures. These conditions are not
satisfied for the double complex C*(TrE.G), but they do apply to the normalized
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subcomplex. We thus recover the result of Weinstein-Xu [WX] that the Van Est
map restricts to a ring homomorphism on the normalized subcomplex.

The method generalizes to the Van Est map (3) for the Bott-Shulman-Stasheff
double complex. To this end, we will develop a new geometric description of
the Weil algebra W(A) of a Lie algebroid, as sections of a suitably defined Weil
algebroid. 1t may be regarded as a translation of the super-geometric approach
of Weinstein and Mehta, and is of course equivalent to the description given by
Abad-Crainic [AC]. Working with the triple complex W**(TrE.G) we use the
Perturbation Lemma to define the Van Est map:

(7) VE=o(l+hod) " ok™: Q*(B.G) — W**(A).

Here d’ is the Chevalley-Eilenberg differential on W**(Tr E.G). Again, we find
that VE restricts to an algebra morphism on a normalized cochains.

Our final result is a direct formula for (7), generalizing Equation (2). Any
section X € I'(A) defines two kinds of contraction operators 15(X) and 1x(X)
on W(A), of bidegrees (—1,—1) and (—1,0), respectively. (If M = pt so that
A = g is a Lie algebra, we have W74 (g) = S9g* @ APg*, and the two contraction
operators are contractions on Sg* and Ag*, respectively.)

Theorem. For ¢ € Q4(B,G), X1,...,Xp € I'(A), and any n < p,

U Xp) -+ UXn4 )15 (Xn) -+ 15(X1) VE(¢)
1, , +1, ;
=5 Y eOLX ) LOOE NIy (X EE g,
SEG,
Here 1: M — B,G is the inclusion as constant p-arrows, and €(s) is +1 if the
number of pairs (i,j) with 1 <i < j <n but s(i) > s(j) is even, and —1 if
that number is odd.

Our main motivation for developing our approach to the Van Est map are
integration problems for group-valued moment maps. This will be explained in a
forthcoming paper.

Acknowledgments. We thank Marius Crainic, Rui Fernandes, Theodore Johnson-
Freyd, and Xiang Tang for discussions and helpful comments.

2. Lie groupoid and Lie algebroid cohomology

We begin with a quick review of Lie groupoids, Lie algebroids, and the
associated cochain complexes. For more detailed information, see for example,
Mackenzie [Mac], Moerdijk and Mréun [MM] or Crainic-Fernandes [CF3].
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2.1. The De Rham complex of a simplicial manifold. The basic definitions for
simplicial manifolds are recalled in Appendix A. In short, a simplicial manifold is
a contravariant functor X : Ord — Man. Here Man is the category of manifolds,
with morphisms the smooth maps, and Ord is the category of ordered sets
[p] = {0,...,p} for p = 0,1,2,..., with morphisms the nondecreasing maps
[p'] = [p]. One denotes X, = X([p]). Of special significance are the face maps
di: Xp — Xp,—1 and degeneracy maps €;: X, — Xp+1, induced by the morphism
[p — 1] — [p] omitting i, respectively the morphism [p + 1] — [p] repeating i .

The simplicial de Rham complex of X, is the double complex 2°(X,), with
the simplicial differential

p+1
8= (=13} : QU(Xp) > Q1(Xp41),
i=0
of bidegree (1,0) and the second differential d = (—1)?dgy of bidegree (0, 1)
where dg; is the de Rham differential. The two differentials commute in the
graded sense, i.e. dé + dd = 0, and both are graded derivations relative to the
cup product

(8) $UP = (D7 pr" ¢ A (pr)*¢'

Here pr: Xp4+, — X, and pr': Xp4, — X,y are the front face and back face
projections, induced by the morphisms [p] — [p + p'], i — i, respectively
[Pl = [p+pli—p+i.lf Se > Xo is a simplicial vector bundle, with
the property that the simplicial maps S. are fiberwise isomorphisms, then the

simplical differential § extends to sections of S, in an obvious way, and the
cup-product generalizes to a product

Q4(Xp. Sp) ® Q1 (Xpr, Spy) — Q1T (Xpsr . (S @ 8" pi )

Note however that only the simplicial differential § is defined on Q°*(X,, S.);
the second differential is defined if S, comes with a flat simplicial connection.

Occasionally it is better to work with the normalized subcomplex Q *(Xe, Se),
consisting of forms that pull back to zero under all degeneracy maps. The
normalized forms are a subalgebra with respect to the cup product.

Any manifold M can be regarded as a simplicial manifold, by taking M, = M
in all degrees and all simplicial structure maps to be the identity. The simplicial
differential § on Q°(M,) is given by the identity in odd degrees p > 0 and zero
otherwise.

2.2. Lie groupoids. Let G = M be a Lie groupoid. The source and target maps
are denoted by s,t: G — M ; they are submersions onto a submanifold M C G
of units. Elements of G are viewed as arrows
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g
mo <— ngy

from my = s(g) to mo = t(g). If ¢ and g’ are elements with s(g) = t(g’), then
we write gg’ for their groupoid product. The groupoid inverse will be denoted by
g+ g . Suppose H = N is a second Lie groupoid. A smooth map H — G is
called a morphism of Lie groupoids if it restricts to a map of units and intertwines
all the structure maps for the Lie groupoids. It is depicted as a diagram

9) H—=N

G—M

If the map (fi,s): H — G s x, N is a diffeomorphism, then we say that G acts
on N along . In this case, G x N := G x, N is called the action groupoid,
its target map

t: Gx N —> N, (g,n)— g.n=1t(g,n)

is called the action map, and the map u: N — M is the moment map for the
action. In particular, G acts on its space M of units; here N = M, with p the
identity map. A principal G -bundle

;

is a manifold P with a G -action along u, together with submersion «: P — B
such that k ot =k os as maps G x P — B, and such that the map

(11) (t,s):Gx P > P xg P

is a diffeomorphism.
To define the cochain complex for a Lie groupoid G = M, let

ByG ={(g1.....8p) € G| s(gi)) =t(gi+1). i =1,....,p—1}
be the manifold of p-arrows

(12) mo - my & my - L my,

with base points my,...,m, € M. For p =0 we put BoG = M . Then B,G is a
simplicial manifold: the map BG(f): B,G — B, G defined by a nondecreasing
map f:[p’] — [p] takes the p-arrow (12) to the p’-arrow

g &5 8
Mgy <— My) < Mgy <= <—Mf(p),
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where g is obtained by composition of arrows (or insertion of trivial arrows).
That is, g; = gr@)+1°-&ra+n for f(i) < f( + 1), and g; = m; for f(i) =
S +1). In particular the degeneracy maps ¢;: B,G — B,11G, i =0,...,p
repeat the i-th base point, by inserting a trivial arrow, while the face map
di: B,G - B,_1G, i =0,..., p drops the i-th base point m;:

(g2,---.8p) i =0,
(81, 8p) = 3(g1,...,8i&i+1,.-..8p) 0<i<p,
(g1,---,8&p—1) i = p.

For p =1 we have do(g) = s(g), 091(g) = t(g). The de Rham complex Q°(B.G)
of this simplicial manifold is a bidifferential algebra, called the Bott-Shulman-
Stasheff complex, after [BSS, Shu]. A §-cocycle in Q4(ByG) = Q4(M) is (by
definition) a G -invariant ¢-form on M, and a §-cocycle o € Q4(B1G) = Q4(G)
is a multiplicative g-form on G, i.e. the pull-back under groupoid multiplication
Mult: B,G — G equals the sum prjo + prj o.

The differential algebra Q°(B,G) = C*(B,G) (with the simplicial differential
8) is the complex of differentiable groupoid cochains. The inclusion of units
t: M — G, regarded as a groupoid morphism from M = M to G = M,
defines an injective morphism of simplicial manifolds M, = B,M — B,G, with
image the trivial p-arrows. The complex of germs Q°*(BeG)y is defined to be
the quotient of Q2°(B.G) by the ideal of forms vanishing on some neighborhood
of M, C B,G. Similarly we define C°*°(B.G)p . Note that these are also defined
for local Lie groupoids.

For each of the complexes considered above, there are also the normalized
subcomplexes. These will be denoted 5°°(B.G), Q*(B.G), and so on.

Examples 1. (1) Given a manifold M, let Pair(M) = M xM = M be the pair
groupoid, with source map s(m’,m) = m and target map t(m',m) = m’.
The inclusion of units is the diagonal embedding M — M x M, and
the groupoid multiplication reads as (m’,m)(m,,my) = (m},m>), defined
whenever m; = m/. In this example, any p-arrow is uniquely determined
by its base points, and the map taking a p-arrow to its base points defines
an isomorphism Be(Pair(M)) = M**! as simplicial manifolds, where the
simplicial structure on the right hand side comes from the identification of
MPT1 ag the set of maps [p] — M. Thus C%°(BePair(M)) = C®(MPT1),
with the differential given by the formula

p+1

(f)(mo.....mps1) = > (=) f(mo..... 75 .....mpy1).

i=0
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This complex has trivial cohomology. However, the complex C?(Pair(M))as
= C®(MP?*T)y of germs of functions along the diagonal M € MP#?+!
is the Alexander-Spanier complex [Spa], which is known to compute the
cohomology of M with coefficients in R.

(2) More generally, given a foliation & on M, one defines a groupoid Pairz(M),
consisting of pairs of points in the same leaf. The complex CZ(Pairz(M))as
may be seen as a foliated version of the Alexander-Spanier complex; a
coefficient system is a bundle with a fiberwise flat connection.

(3) Let K be a Lie group, acting on a manifold M, and let G = K x M . Then
C*°(B.G) computes the group cohomology of K with coefficients in the
K -module C*°(M).

Any morphism f : G1 — G, of Lie groupoids (cf. (9)), with underlying map
f: My — M;, extends to a morphism of simplicial manifolds f: BeG1 — BeG>,
giving rise to a morphism of bidifferential algebras f*: Q®*(B.G;) — Q2°(B.G1),
and hence of differential algebras f*: C*°(BsG;) — C*°(B.,G1). For example,
the canonical morphism (t,s): G — Pair(M) defines a morphism of differential
graded algebras C®(M°*t!) - C*®(B.G).

2.3. Lie algebroid cohomology. A Lie algebroid is a vector bundle 4 — M
with a bundle map a: A — TM (the anchor) and a Lie bracket on the space of
sections I'(A4) satisfying

[X1, fX2] = f[X1, X2] + (a(X1) f) X2,
for all X1,X, € I'(A) and f € C*°(M). Morphisms of Lie algebroids

(13) B—=N

A —M

are vector bundle maps such that the differential 7pw: TN — TM intertwines the
anchor maps, and with a certain compatibility condition! for the Lie brackets on
sections, due to Higgins-Mackenzie [HM, Mac]. Such a morphism is called an
action of A on N along p if the resulting map B — pu*A is an isomorphism;
in this case B is called the action Lie algebroid and is denoted A x N. Given
an A-action, the composition of pu*: I'(A) — I'(A x N) with the anchor map for

IIf B € A is a subbundle along a submanifold N € M, the condition is that whenever
Xi,X, € T'(A) extend sections Y;,Y, € I'(B), then [X;,X,] extends [Y],Y>]. The general case
may be reduced to this case, by replacing the vector bundle map f by the inclusion B — A x B of
the graph of . (Cf. [LM].)
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A x N defines a Lie algebra morphism I'(4) — ['(TN), X — Xy, such that
XN ~u a(X ) .

The Chevalley-Eilenberg complex of A is the graded differential algebra
C*(A) = I'(A*A*), with product the wedge product, and with the differential
dcg: C*(A4) — C*T1(A) given as
(14)

p

(deed) (Xo, .., Xp) = ) (=1 a(X)$(Xo. ... Xi, ..., Xp)

=0
+ Y D (X X Xow - Xin o Xy Xp).

i<j
Examples 2. (1) Given an action of a Lie algebra ¢ on M, let A =¢tx M be
the action Lie algebroid. Then C*(A4) = C*°(M) ® A*t* is the Chevalley-
Eilenberg complex of ¢ with coefficients in C*°(M).

(2) Given a foliation F on M, let A=TzM C TM be the tangent bundle to
the foliation. Then C*(A4) = Q% (M) is the de foliated Rham complex (i.e.,
the quotient of (M) by forms whose pull-back to leaves are zero).

(3) Given an embedded hypersurface N € M , there is a Lie algebroid A = Ty M
whose sections are the vector fields tangent to N . (For manifolds with
boundary, this is the starting point for Melrose’s b-calculus [Mel].) The
corresponding complex C*(A4) = Q% (M) may be regarded as a space
of forms on M\N developing a ‘logarithmic’ singularity along N . More
generally, given a Lie algebroid P — M and a Lie subalgebroid Q — N
along a hypersurface, there is a Lie algebroid A = [P : Q] whose sections
are the sections o € I'(P) with the property o|y € I'(Q). See Gualtieri-Li
[GL].

(4) Given a Poisson structure 7 on M , the cotangent bundle A = T*M acquires
the structure of a Lie algebroid with anchor map a = n*: T*M — TM,
and with bracket the Koszul bracket. The resulting differential on the algebra
C*(A) = X*(M) of multi-vector fields is the Koszul differential d, =[x, ];
its cohomology is the Poisson cohomology of M .

Any morphism of Lie algebroids A; — A,, with underlying map f: M; —
M,, gives rise to a morphism of differential algebras f*: C*(A4,) — C*(A41). As
a special case, the anchor map a: A — TM of a Lie algebroid gives a morphism

a*: Q*(M) =C*(TM) — C*(A).
The infinitesimal counterpart to the bigraded algebra Q(BG) for a Lie groupoid

is the Weil algebra W(A). A geometric model for W(A) will be described in
Section 4.
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2.4. The Lie functor. For any Lie groupoid G = M, the normal bundle
Lie(G) = v(M, G)

of M in G has the structure of a Lie algebroid, with anchor map a: Lie(G) —
TM induced by the difference Tt—Ts: TG — TM, and with the Lie bracket
on sections defined by the identification

I'(Lie(G)) = Lie ('(G))

with the Lie algebra of the infinite-dimensional group of bisections I'(G).
Equivalently, the Lie bracket comes from the identification of sections X €
I'(Lie(G)) with the Lie algebra of left-invariant vector fields X© € ¥(G) (tangent
to t-fibers). The definition of Lie(G) also makes sense for local Lie groupoids, and
it is known that any Lie algebroid A arises in this way. The precise obstructions
for integration to a global Lie groupoid were determined by Crainic-Fernandes
[CMa].

Any G -action on a manifold N gives rise to a Lie(G)-action, with the action
Lie algebroid Lie(G)x N = Lie(G x N). For a principal G -bundle P as in (10),
the action Lie algebroid has an injective anchor map, and identifies Lie(G) x P
with the subbundle ker(T«x) € TP where k: P — B is projection to the base.
We hence have identifications

w* Lie(G) == Lie(G) x P =~ ker(T«),

and a Lie algebroid morphism from ker(7«) to Lie(G). These remarks apply in
particular to the action of G on itself along t, given by multiplication from the
left, as well as to the action along s, given by multiplication from the right. It
identifies t* Lie(G) = ker(T's) and s* Lie(G) = ker(7't). On the level of sections,
t*X = —XR are the generating vector fields for the left action, while s*X = X*
are the generating vector fields for the right action. These vector fields satisfy the
commutation relations

(X{ X=X Xolb X XS = —[Xn Xl X XS =0
The differences X% — X® are the generating vector fields for the conjugation

action of the group I'(G) on G. (There is no conjugation action of G on itself
unless M = pt.) They are tangent to M, and restrict to the vector field a(X).

3. The Van Est map C*°(BG) — C(A)

In his proof of the Van Est theorem for Lie groupoids [Cra], Crainic introduced
a double complex with cochain maps from both the Lie algebroid complex and
the Lie groupoid complex. In this section, we will use this double complex to
define the Van Est map itself.
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3.1. The simplicial principal bundle EG. For any Lie groupoid G = M let
E,G = {(ag....,ap) € GPtl s(ag) =...= s(ap)}.

(cf. [Aba, page 53] and Appendix A), and let 7,: E,G — M be the common
source map, mp(dg,...,dp) = s(ap). The space E,G has the structure of a
principal G -bundle

npl

M
for the G -action g.(ap,...,ap) = (aog™',...,ap, g~ ") along m,, and with the
quotient map «,(ao, ... ap) = (aoay!,... ,ap_la;l). The collection of the spaces

defines a simplicial principal G-bundle E.G — B.G: Regarding E,G as maps
[p] — G whose composition with the source map is constant, the structure
map E,G — E,G for a nondecreasing map f: [p'] — [p] is given by
composition. In particular, the face maps 0;: E,G — E,_;G drop the i-th
entry, while the degeneracy maps ¢;: £,G — E,41G repeat the i-th entry. Any
groupoid morphism G; — G, defines a morphism of simplicial principal bundles
E.Gl — E.G2 .

Remark 1. The simplicial manifold E.G may be equivalently defined as
E,G = B,(GxG), where Gx G is the action groupoid for the action g.a = ag™?!.
Here «, is obtained by applying the functor B, to the groupoid morphism

G x G — G. See [Aba, Definition 3.2.4].

3.2. Retraction of EG onto M. For the trivial groupoid M = M we have
E,M = B,M = M in all degrees. The inclusion (: M — G as units is a
groupoid morphism, defining a simplicial map

p: My - E,G, m— (m,---,m)
with 7,01, = idy . In Appendix A.2, we show that there is a canonical simplicial

deformation retraction from E.G onto the submanifold M . In turn, this defines
a homotopy operator for the de Rham complex of E,G. For 0 <i < p let

(16) hpi: E,G — Ep11G, (aog,....ap) — (ag,....a;,m,...,m),
with p +1—i copies of m = s(ap) = ... = s(ap). The homotopy operator is
given by

p—1
(17) h=Y (=" hp_1,)*: QUE,G) > QU(Ep_1G).
i=0
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Thus hé + 6h = id —m )i} . For any morphism of Lie groupoids f: G; — G, the
pullback map f*: Q(E.G,) — Q(E.G,) intertwines the homotopy operators.

Example 1. In particular, the inclusion ¢(: M — G, viewed as a morphism from
M =M to G =3 M, satisfies h o) =1} oh. Note that the simplicial complex
(2(M,),d) is simply

o S o S e S e -

i.e., § is the identity in odd degrees p > 0 and zero otherwise. The homotopy
operator h on this complex restricts to the identity in odd degrees p > 0 and
zero otherwise.

There is also a homotopy operator k for the inclusion of Q(M) — Q(M,)
as the degree 0 piece, with homotopy inverse the projection. The operator k is
the identity in even degrees p > 0 and zero otherwise.

Proposition 1. 7The homotopy operator h: Q*(E.G) — Q°(Ee—1G) has the
following additional properties:

(1) hoh =0.
(2) h is an Q(M)-module morphism, in the sense that

h(a A, ) = ha A,

for all a € Q(E,G) and B € Q(M).
(3) The homotopy operator is an R -twisted derivation, for the algebra morphism
R =mn}oul. That is,

heUa') = ha U Ra' + (=)o U e’

for a € QUE,G) and o' € QU (EyG).

(4) The homotopy operator preserves the normalized subcomplex Q (EeG). The
composition 1} o h vanishes on the normalized subcomplex.

Proof. Part (1) is obtained by duality to its homological counterpart ( Proposition
12). Part (2) follows since m, o h,; = mp—1, Whence h;’i(oz ANr,B) = h;’ia A
(wp—1)*pB. For Part (3), note that

(hp—1,) 0 U R’ i<p-—1,

(hp+pr—1,4) (@ Ua') = .
P (=D U (hyr—1,i—(p—1))*a’ i >p—1

where the sign comes from the sign convention for the cup product. Taking sum
of these terms from i =0 to i = p + p’ — 1, with alternating sign (—1)'*1, the
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sum from i =0 to i = p—1 gives ha U Ra’, while the sum from i = p to
i=p+p —1 gives (—1)?t9aUha’. As for Part (4), it is clear that & preserves
the n~0rmalized subcomplex Q (EeG). The composition t;_l oh = hou, vanishes
on Q2 (E,G) with p > 0 since ¢; vanishes there, and for p = 0 since / vanishes

there. ]

3.3. Van Est Double complex. Let 7rE,G = ker(Tk,) be the tangent bundle
to the foliation F defined by the fibers of the principal bundle «,: E,G — B,G.
As for any principal groupoid bundle (see Section 2.4), we have isomorphisms

n, A= Ax EyG = TrE,G,

and the resulting map Ax E,G — A is a Lie algebroid morphism. In fact, TrE.G
is a simplicial Lie algebroid, and the map to A is a morphism of simplicial Lie
algebroids

Te: TrE.G — A,
where A, = A for all p (with all simplicial structure maps the identity). Following
[AC, Cra] we define the Van Est double complex

(18) C"(TFEG) := C(TrE,G),

with the simplicial differential 6 of bidegree (1,0) and the differential d =
(—1)"dcg of bidegree (0, 1); the extra sign is introduced so that [d, §] = dd+46d =
0. The space C*(TrE.G) is a bidifferential algebra for the cup product

(19) C(TFE;G) ® C (TrEpG) — CY (TrE 1 G)

defined by ¢ U ¢’ = (—=1)"Spr*¢ (pr)*¢’, with the front face projection
pr: E,+,»G — E.G and the back face projection pr': E; 1, G — E..G.

Remark 2. For any fixed r, the complex C*(TrE,G) with differential dcg is
the foliated de Rham complex Q% (E,G) for the fibration «,: E,G — B,G.

Consider again the simplicial Lie algebroid A.. The corresponding bidifferen-
tial algebra has summands C*(A4,) = C°(A); the simplicial differential § vanishes
on this summand when r is even and is the identity map if r is odd, while
d = (—1)"dcg as before. The map n,: E,G — M lifts to a morphism of simpli-
cial Lie algebroids, TrE,G — A. Regard C*°(B.,G) as a bidifferential algebra
concentrated in bidegrees (e,0). We obtain a diagram

C*(TrEG) <= C®(B.G)

|

C*(4.)

where both maps are morphisms of bidifferential algebras.
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3.4. Definition of the Van Est map. The vector bundle morphism

(20) TrE,G —— E,G

]

Ay ——— M,
defines a morphism of bigraded spaces
ty: C*(TrE.G) — C*(A.).

which is right inverse to nJ. This morphism intertwines &, but usually not d
since (20) is not a Lie algebroid morphism, in general. Homological perturbation
theory (Appendix B) modifies this map, in such a way that it intertwines the total
differentials d + §.

The construction uses a homotopy operator for the differential §. For any fixed
s, the complex C°(TrEl.G) is the simplicial complex of E.G with coefficients
in the simplicial vector bundle

NTFEG =y A¥ A*.

Since the maps 4, ;: E,G — E,11G lift to vector bundle morphisms 7TrE,G =
nfA — TrE,+1G = 7} A, we have a well-defined homotopy operator with
respect to the simplicial differential § given once again by the formula (17),
h =Y .(=1) (hy—1,;)*. On the dense subspace

1) C®(EJG) @coon) C(A) € C(TrELG),

it acts as the given homotopy operator on C*°(E.G), tensored with the identity
operator on C5(A).

Both do/ and hod are operators of bidegree (—1,1) on C*(7TrE.G). Hence
they are nilpotent operators of total degree 0, and 1 +do/k and 1+ hod are
invertible operators of total degree zero. The Perturbation Lemma of homological
algebra (cf. Lemma 5 in Appendix B) gives the following statement:

Lemma 1. The map
Xo(l4+doh)™t: Tot* C(TFEG) — Tot® C(A)

is a cochain map for the total differential d + &, and is a homotopy equivalence,
with homotopy inverse (1 +hod)~!on}.

Here Tot® C(A) indicates the total complex of the double complex C®(A4.).
The inclusion C*(A4) = C*(Ay) C Tot®* C(A) is also a homotopy equivalence,
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with homotopy inverse the projection. (The corresponding homotopy operator
k:C*(A;) —> C°(A,—1) is the identity map for r > 0 even, and O otherwise - cf.
Example 1.) By composing the two homotopy equivalences, and observing that
(14+hod) tont =nf (for degree reasons), we obtain:

Proposition 2. The map
iwo(l+doh)™: Tot* C(TFEG) — C*(A)

intertwines the total differential d + § with the Chevalley-Eilenberg differential.
It is a homotopy equivalence, with homotopy inverse the map nj .

Here (; is regarded as a map on the full double complex, given by 0 on
C*(TrE,G) with r > 0, and similarly = is viewed as a map into the full double
complex. Composing with the cochain map

kX C®(B.G) — CY(TrE.G) C Tot* ((TrEG)

we arrive at the following definition:

Definition 1. Let G = M be a Lie groupoid, with Lie algebroid A = Lie(G).
The composition

(22) VE=5o(l+doh) okl C®(B.G) — C°(A)
is called the Van Est map.

By construction, VE is a cochain map. We will verify in Section 7.2 that it
coincides with Weinstein-Xu’s definition of the Van Est map.

Remarks 1. (1) The map VE is functorial: Let G; — G, be a morphism of
Lie groupoids, and let Ay — A, be the corresponding morphism of Lie
algebroids. From the construction of the Van Est map, it is immediate that
the following diagram commutes:

COO(B.Gz) _— COO(B.Gl)

| Jve

C*(42) —— C*(4y)

(2) Since do/k has bidegree (—1, 1), the Van Est map has the following ‘zig-zag’
form on elements ¢ € C*°(B,G):

VE(¢) = (=1)?i5 o (doh)? ok,
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(3) The Van Est map can also be written
VE =50 (1 + [h,d])~ ! ok*

because (1 + [h,d)™' = (1 +dh)~" + Y 72,(hd)’ and do«* = 0. This
alternative form turns out to be easier to work with, since [/,d] is closer to
being a derivation.

(4) For G a possibly local Lie groupoid, we can consider the differential algebra
of germs C*°(B.G)pr. Using the double complex C*(TrE.G)y of germs
along M C EG one obtains a Van Est map

VEu: C®(BoG)y — C*(A).

For a global Lie groupoid, the map VE factors as the natural projection
C®(B,G) = C*®(B,G)y followed by VE,,.

The Van Est map on the full complex of groupoid cochains fails to be an
algebra homomorphism, in general. However, it does respect products on the
normalized subcomplex [Meh, Proposition 6.2.3].

Theorem 1. The Van Est map for the trivial G-module restricts to an algebra
morphism VE: C *°(B,G) — C*(A) on the normalized subcomplex.

Proof. The compatibility of the homological perturbation theory with algebra
structures is addressed in the work of Gugenheim-Lambe-Stasheff [GLS] (see
Appendix B, Lemma 5). To apply their result, we need to verify the side conditions
hoh=0, (*oh=0 as well as the Ry := m;-derivation property. But these
follow from Proposition 1, and since

C ®(E,;G) ®coom) C*(4) € CX(TFE,G)

is a dense subspace. L]

3.5. Coeflicients. The theory described above admits a straightforward general-
ization to the case with coefficients. A module over a Lie algebroid A — M
is a vector bundle p: S — M, equipped with a linear A-action. The linearity
condition is the requirement that Ax S — S is a VB-algebroid [GM2, Mac] over
A — M (also called LA-vector bundle). Equivalently, S comes equipped with a
flat A-connection V: I'(S) - I'(4*® S), i.e.

Vx(fo) = fVxo + (a(X) fo.  [Vx.Vy] = Vixr).

(For example, if F is a foliation on M, then a 7rM -module is given by a
vector bundle with a flat connection in the direction of the fibers.) One obtains



On the Van Est homomorphism for Lie groupoids 109

a complex C*°(A4,S) =T'(A*A* ® S), with a differential dcg given by a similar
formula (14) as before, replacing a(X) with Vy. Given another 4-module S’,
the wedge product

C*(A4;S) ®C(A;S) > C(A:S®S), ¢R¢ > p A

is a morphism of differential spaces.

Similarly, a module over a Lie groupoid G == M is a vector bundle p: S - M
with a linear G -action along p, i.e. the action groupoid G x § = S is a VB-
groupoid in the sense of Pradines [Mac, Pra, GMI]. Equivalently, for any groupoid
element ¢ € G the map Ss,) — Sig), v + g.v is linear. There is a similar
definition of modules for local Lie groupoids. Any G -module becomes a Lie(G)-
module for the infinitesimal action.

Given a G -module § — M, we obtain a simplicial vector bundle Be(GxS) —
B.G . We obtain a cochain complex of sections of this bundle, with the simplicial
differential defined as before. (One can also consider the bigraded space of bundle-
valued differential forms, but in order to define a second differential on this space
one needs a G -invariant flat connection on §; see Section 2.1.)

Remark 3. The fiber of B,(G x S) at a p-arrow (gi1,...,8p) (cf. 12) consists
of tuples (vo,...,v,) of elements v; € Sy, , with v;_; = g;.v;. Any such tuple
is determined by the element v,; hence B,(G x S) = B,G xp S.

Consider the G -equivariant simplicial vector bundle Eo(G x S). The common
source map for elements of this bundle defines a vector bundle map onto S,
with underlying map 7. Thus E,(G x S) = 7, S. On the other hand, the total
space of E,(G x S) is a principal bundle over B,(G x S), and the quotient map
identifies Ep(G x S) =k, Bp(G x §).

The vector bundle 7,S = E,(G x S) is a TrEpG-module, hence a double
complex C*(TrE.G,n}S) is defined. By repeating the argument from the last
section, we use the homotopy operator on this double complex to define the Van
Est map

VE=lo(l+hod) ™ ox™: T(B.(G x S)) — C*(4, ).

Given two G-modules S,S’ — M one obtains a commutative diagram for the
normalized subcomplexes

T(Bo(G x §)) @ T(Be(G % S')) —— T(Bo(G x (S ® S)))
VE®VEl lVE
C*(4:S) ® C*(4; S Y, (4SS

The argument is essentially the same as in the case of trivial coefficients, see
Remark 10.
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4. The Weil algebroid

As discussed in Section 2.2, the groupoid cochain complex C*®°(B.G) =
C*°(B.G) extends to the Bott-Shulman-Stasheff double complex 2°*(B.G). To
extend the Van Est map to this double complex, we need a description of the
infinitesimal counterpart W**(A), the Weil algebra of a Lie algebroid A. The
definition of this algebra, and a construction of the corresponding Van Est map,
was given by Mehta [Meh]| and Weinstein (unpublished notes) in terms of super
geometry, and by Abad-Crainic [AC] using their theory of representations up to
homotopy. The geometric model given below, as sections of a “Weil algebroid’, may
be seen as a translation of Mehta-Weinstein’s definition into ordinary differential
geometry.

4.1. Koszul algebroids. Let A — M be any vector bundle. We will define a
‘Koszul algebroid” W(A) as a module of Kéhler differentials for the bundle of
graded algebras AA*. Consider AA* as a bundle of commutative graded algebras,
and let

(23) der(AAT) = @Deti (AA™)

i€Z
be the graded vector bundle over M whose sections are the graded derivations
of I'(AA™). Its fiber der(AA*),, at m € M is the space of graded derivations
Dy : T(AA*) — AAj, of the graded I'(AA*)-module AA, . Since AA* is graded
commutative, the bundle der(AA*) is a graded AA*-module.

Proposition 3. There is a short exact sequence of graded NA*-modules
(24) 0> AA"® A — der(AAY) > AA* Q@ TM — 0.

Here the second factor in ANA* ® A has degree —1, while the second factor in
ANA* @ TM has degree 0.

Proof. Any derivation D,, € 0e¢t(AA*), is determined by its restriction to
the degree O and degree 1 components of I'(AA*). There is a bundle map
0et(AA*) @ T*M — AA*, taking Dy, @ (df)m to Dy (f) for f e C®(M).
This is well-defined, since D,,(f) vanishes if f is constant, by the derivation
property. We may also regard this as a map

(25) et(AAY) > AAT Q@ TM.

By construction, the kernel of (25) at m € M is the subspace of derivations D,,
such that D,,(f) = 0 for all f € C®(M) = I'(A°A*). But this subspace is
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exactly AAY, @ Ay = det(AA)) € der(AA™)m, where the factor A4, corresponds
to ‘contractions’. This defines an injective bundle morphism AA*® A — der(AA*)
whose image is the kernel of (25). For surjectivity of the AA*-module morphism
(25), it is enough to show surjectivity of the map det®(AA*) — TM . But any
choice of a vector bundle connection on A defines a splitting of this map. [

Remark 4. We see in particular that der’(AA*) vanishes for i < —1, and for
i = —1 coincides with A, acting by contractions. In degree i = 0 we obtain the
Atiyah algebroid aut(A) of infinitesimal vector bundle automorphisms of A (or
equivalently of A*), and the sequence (24) becomes the usual exact sequence
0> A"® A — aut(A) - TM — 0 for the Atiyah algebroid.

Thinking of det(AA*) as a generalization of the tangent bundle (to which
it reduces if rank(A4) = 0), the corresponding ‘cotangent bundle’ is the graded
AA* -module

(26) Q4+ = Hompg» (0et(AA*), AA¥)

of Kdhler differentials. Dual to (24), we obtain an exact sequence of graded
AA* -modules

0= AA*Q@T*M — Q) 4« — AA*®@ A* — 0.

Here the second factor in AA* ® T*M has degree 0 while the second factor in
AA* ® A* has degree 1. More generally, we define a module of Kdhler g-forms
Q‘f\ 4+ to be the g-th exterior power (taken over AA*). That is, SZ‘/I\ 4+ Consists
of graded bundle maps

(27) Der(AA™) X --- x Der(AAT) — AAT

(with ¢ factors) that are AA*-linear in each entry and skew-symmetric in the
graded sense. For ¢ = 0 we put QY ,, = AA*. Each Q7 ,, is a graded AA*-
module, with summands

WPa(4) = (1 ,,)?

the ¢g-linear maps (27) raising the total degree by p. The ‘wedge product’
AL eQ1 . — Q(/’\ZZ is compatible with these gradings, thus W(A4) = Qa4+
is a bundle of bigraded algebras. We will denote by

W**(4) ;== T(W**(4))

the bigraded algebra of sections. From its interpretation as ‘differential forms’, it
is clear that this algebra has an exterior differential:
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Proposition 4. The algebra W**(A) has a unique derivation dx of bidegree (0, 1)
such that dgodg = 0 and such that for all ¢ € T'(AA*) and all D € T'(der(AAY)),

(dx®)(D) = D(9).

Definition 2. The bigraded algebra W(A) with the differential dxg will be called
the Koszul algebra of the vector bundle A — M .

We list some properties and special cases of this construction.

a) Suppose M = pt, so that A = V is a vector space. Then der(AV*) =
AV* ® V, where elements of V = der ™ !(AV*) acts as contractions.
Dualizing, Q4,. = V* ® AV* where the elements of the first factor V*
have bidegree (1,1), and more generally Q7. = S9V* @ AV* where the
elements of S?V* have bidegree (g,q). It follows that

WrPA(V) = SIV* @ APTIVE,
The differential dg takes generators of A'V* to the corresponding generators

of S'V*: it hence coincides with the standard Koszul differential.

b) At the other extreme, if A = M x {0} is the zero vector bundle over M,
then dev(AA*) = TM is the tangent bundle, and SZ‘/I\A* = AN1T*M . Hence
WP4(A) is zero for p > 0, while W%4(A4) = AIT*M .

¢) For a direct product of vector bundles A; — M; and A, — M,, one has
W(A1 x A2) = W(A1) K W(A2)

(exterior tensor product of graded algebra bundles) with the sum of the
differentials on the two factors. As a special case, if A = M xV is a trivial
vector bundle, then

WPAM xV) =@ ANT*M @ ST7V* @ APy,
i

For a general vector bundle A4, since W(A)|y = W(A|y) for open subsets
U C M, this gives a description of W(A) in terms of local trivializations.

d) For any vector bundle A — M, one has WP0(4) = APA* while
WO4(A) = ANIT*M . The space WP4(A) = I'(WP4(A)) is spanned by
elements of the form

(28) Yo dxyi---dg iy

with sections y; € I'(APi A*) satisfying po + ...+ pg = p. (This follows,
e.g., by considering local trivializations as above.)
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e) Any morphism A’ — A of vector bundles over M induces a morphism
of bigraded algebra bundles W(A) — W(A’) compatible with the AT*M
module structure. The map on sections W(A4) — W(A’) is a cochain maps
with respect to dg.

g) Let f: N - M be a smooth map. For any vector bundle A — M, the
algebra bundles W(f*A) and f*W(A) are related by ‘change of coefficients’:

Thus, on the level of sections we have an inclusion Q(N) @qar) W(A) —
W(f*A) with dense image. More generally, for any morphism of vector
bundles A; — A, with underlying map f: M; — M, we obtain a morphism
f*:W(Az) — W(A4y).

The morphisms

(29) i: QM) —> W(A), m:W(A) — QUM),

induced by the projection A — M and the inclusion M — A, respectively, may be
regarded as the inclusion and projection onto the subcomplex W%*(A) = A*T*M .

Proposition 5. The inclusion and projection (29) are homotopy inverses with
respect to dg. In particular, the cohomology of (Tot® W(A),dg) is canonically
isomorphic to the de Rham cohomology of M .

Proof. View AxR as the direct product of A with the zero vector bundle R x{0}
over R; thus W(A xR) = W(A) X AT*R. The space W(4 x R) = I'(W(A4 x R))
may be regarded as differential forms on R with values in W(A). For all s e R
we have morphisms of bigraded algebras evy: W(A x R) — W(A) induced by the
bundle map A - A xR, v (v,s). Integration over the unit interval [0,1] C R
defines a map

J: W (4 xR) - W**~1(4)

with the homotopy property (Stokes’ theorem)
Jodg +dgoJ =evy—evy.

The bundle map A xR — A, (v,f) — tv defines a morphism of bigraded
algebras F: W(A) — W(4 x R), with

evy ol :idW(A), CVOOF =iom.

Since F and the maps evy commute with the differential dg, it follows that the
composition J o F: W**(4) — W**"1(4) is a homotopy operator between these
two maps:

JoFodg +dgoJoF =idwy—iom.

(For a more detailed discussion, see e.g., [Mei, Section 6.3].) ]
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4.2. Derivations of W(A). In addition to the °‘exterior differential’ dg, the
algebra W(A) has ‘Lie derivatives’ [(D) and ‘contractions’ j(D) defined by
derivations D € T'(der’(AA*)). Here j(D) is the derivation of bidegree (i,—1)
given on ¢ € Q! .. (cf. (26)) by j(D)¢ = ¢(D), while [(D) is the derivation
of bidegree (i,0), extending D on I'(A®*A*) = W*%(A4) and commuting with dg
in the graded sense. We have the Cartan commutation relations

[[(D1),[(D2)] = [([D1, D2)),

[[(D1), j(D2)] = j([D1, D2)),
[j(D1), j(D2)] =0,

[[(D),dg] =0,
[j(D).dk] = I(D),
[dk,dk] = 0,

for D, Dy, Dy € I'(0er®*(AAY)). The constructions are natural with respect to
morphisms A; — A, of vector bundles: If the map f*: ['(AA4}) — I'(AAY)
satisfies f* o D, = Dj o f*, then the map f*: W(A;) — W(A;) satisfies
f*oj(D2) = j(Dy)o f* and f*ol(Dz) =I(D1)o f*.

In particular, the derivations 1(X) € I'(der ~!1(AA*)) given by contraction with
X e I'(A) give rise to derivations

15(X) == j (X)), 1x(X) :=1(1(X))

of W(A4), of bidegrees (—1,—1) and (—1,0) respectively. In the special case
A=V, so that W(V) = SV*® AV* is the standard Koszul algebra, 1x(X) is
the contraction operator acting on the second factor while 15(X) is the contraction
operator on the first factor. We have [15(X),dx] = 1x(X) and [1ix(X),dg] = 0.
Note also that for f € C*®(M), 15(fX) = f15(X) but

(30) 1k (fX) = fig(X) —df o15(X)

where df € QY1(M) = W»1(A4) acts by multiplication.

Remark 5. There is an alternative geometric model for the Koszul algebra of a
vector bundle 4 — M, as follows. For p > 0 let A®) = A xp---xy A be
the p-fold fiber product over M, with the convention A® = M . Thinking of
A as a groupoid and of A®) as B,A, we have a cup product on C®(A®).
We let Cs",f(A(°)) C C®(A™) denote the subspace of skew-symmetric functions,
endowed with the multiplication given by the skew-symmetrization of the cup
product. There is an injective morphism of graded algebras

T(A®A*) — C(AY),
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taking a section of the exterior power A? A* to the corresponding multi-linear,
skew-symmetric function on A®),

In a similar fashion, let 2, (A®) C Q°(4®) denote the subspace of forms
which are skew-symmetric (for the action of the symmetric group &), endowed
with the skew-symmetrized cup product. There is an injective morphism of
bigraded algebras

W (4) — Q2 (A®),

taking a section of W?4(A) to a q-form on A®) that is multi-linear (i.e., linear
in each factor). This morphism intertwines the Koszul differential dg with the
de Rham differential. In particular, W!9(A4) is realized as the space of linear
q-forms on A. This space plays a role in the work of Bursztyn-Cabrera-Ortiz
[BC, BCO] on multiplicative 2-forms.

4.3. The Weil algebroid of a Lie algebroid. Suppose now that A — M is a Lie
algebroid. The Chevalley-Eilenberg differential dcg on sections of AA* lifts to
a differential /(dcg) on sections of W(A). Like all operators of the form [(D),
it commutes with dg in the graded sense. To simplify notation, we will write
I(dcg) = dcE -

Definition 3. The bidifferential algebra (W(A),dg,dcg) is called the Weil algebra
of the Lie algebroid A. The total differential dy = dg + dcg is called the Weil
differential.

For any Lie algebroid morphism A; — A,, the resulting map f*: ['(AAY) —
['(AAY) intertwines the derivations dcg., hence f*: W(42) — W(4p) is a
morphism of bidifferential algebras.

Let A — M be a Lie algebroid, with Weil algebra W(A). For a section
X € I'(A), we obtain a degree zero derivation £(X) = [1(X),dcg] of ['(AA¥);
its extension to W(A) will again be denoted by L£(X). We obtain yet another
contraction operator 1cg(X) := j(£(X)), of bidegree (0,—1). From the Cartan
commutation relations, we see that

1k (X).dce] = L(X) = [ice(X).dk].  [tce(X1), 1k (X2)] = 15 ([X1. X2]).
4.4. Examples.

Example 2. Consider first the case that M = pt, so that A = g is a Lie algebra.
Choose dual bases ¢; € g and e’ € g*, and let Czkj = (ek, [ei, e;]) be the structure

constants. The Chevalley-Eilenberg differential on Ag* is given by the formula
dce = =3 ik c{‘j e'e/1(ex), with 1(ex) the contraction operator on Ag*. As we
had seen, WP4(g) = S9g* ® AP72g*, with dg the standard Koszul differential.
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Letting @ € S'g* denote the degree (1,1) generators corresponding to the basis
elements, we have dg = ) ; e'1(e;). The operator j(dcgz) on the Weil algebra
becomes .
j(ce) = =3 ) e e'elis(er),
ijk
hence the differential dcg := [(dcg) = [j(dcEg),dg] on W(g) is

1 o N
_ k i ] ki
dcr = 5 ‘Ek ci; e'eliler) + Ek ci; e'elis(eg).
ij tj

One recognizes (W(g),dg,dcg) as the standard Weil algebra. Here 1x(er) = t(ex)
is the usual contraction on the /.\9* factor, 15(ex) is the usual contraction on the
Sg* factor, and 1cg(ex) = Y ¢/ e'1s(e;)).

Example 3. (Lie algebroid structures on trivial vector bundles) Let A — M
be a Lie algebroid, with a trivialization 4 = M x V' as a vector bundle. Thus
W(A) = QM) Q@ SV* ® AV*. Choose dual bases ¢; € V and ¢’ € V*. Viewing
the e; as constant sections of A, put clkj = (e¥,[e;,ej]) € C®(M). By a
calculation similar to that of example 2, we obtain the following formula for the

Chevalley—Eilenberg differential on W(A),

deg =) ¢ EM(a(ei))—Zle(a(ei))—% > ek dleli(en)+) ek elelis(er).

ijk ijk

Here 1p7(a(e;)) and Lys(a(e;)) are contraction and Lie derivative with respect
to the vector field a(e;), acting on the Q(M) factor, 1(ex) is a contraction on
the AV* factor, 1g(ex) is contraction on the SV* factor, and the ¢!, e’ are the
generators of AV* and SV*, acting by multiplication.

The special case that the C,kj are constant corresponds to an action Lie
algebroid for an action of the Lie algebra V =g on M. Here (C(A),dcg) is the
Chevalley-Eilenberg complex of g with coefficients in C*°(M), and (W(A4),dw)
is isomorphic to W(g) ® Q(M) with differential dw, ® 1 + 1 ® dps, using the
isomorphism given by a Kalkman twist by the operator exp(D _; et ®@1p(e;)). See

Guillemin-Sternberg [GS] and Abad-Crainic [AC].

Example 4. (Tangent bundle) If 4 = TM, the Chevalley-Eilenberg complex
I'(AA*) = Q(M) is the usual de Rham complex. Thus, W?4(TM) comes with
two kinds of de Rham differentials, d = dcg and d” = dg . As a bigraded algebra,
the Weil algebra W(TM) is generated by functions f € C*(M), (1,0)-forms
df, (0,1)-forms d” f, and (1,1)-forms d'd” f. The bidifferential algebra

31) Qpa (M) := W(TM)
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with differentials d’,d” was introduced by Kochan-Severa [Koc] under the name
of differential gorms; it was subsequently studied by Vinogradov—Vitagliano [VV]
under the name of iterated differential forms. (Obviously, there are generalizations
to n-differential algebras p,)(M).) Many of the standard constructions for
differential forms generalize with minor changes. In particular, iterated differential
forms can be pulled back under smooth maps, and given a smooth homotopy
F:[0,1] x M — N, (t,x) — F;(x) one obtains two homotopy operators
h, B Qp(N) — Qpp(M), of bidegrees (—1,0) and (0,—1), such that [d', /'] =
[d”,h"] = F}' — Fy while [d',h"] = [d",h'] = 0. The homotopy operators are
obtained as pullbacks under the map F, followed by integration over [0, 1] with
respect to d’r, respectively d’z.

Example S. (Foliations) Suppose F is a foliation of M, defining a Lie algebroid
A =TzM . The inclusion TrM — TM defines a surjective map from (31) onto
the Weil algebra W(T=M ). One can think of elements of W(7=M) as differential
gorms in the direction of the foliation and differential forms in the transverse
direction.

Similar to the well-known result for the Weil algebra W(g), we have:

Proposition 6. For any Lie algebroid A — M, there is a canonical homotopy
equivalence between (Tot® W(A),dw) and the de Rham algebra (Q*(M),dp).

Proof. The proof is a generalization of the ‘Kalkman trick’. The derivation
u = j(dcg) has bidegree (1,—1), and satisfies

[u,dg] = dce, [u,dce] =0.

Since u has total degree 0 and is nilpotent, its exponential U = u is a well-defined
algebra automorphism of W(A), preserving the total degree, and with

UOdKOU_IZdK—I—dCEZdw.

By Proposition 5, the inclusion Q°(M) < Tot®* W(A) is a homotopy equivalence
with respect to dg; hence its composition with U is a homotopy equivalence
with respect to dy . ]

S. The Van Est map Q(BG) - W(A)

We will now continue the discussion from Section 3 to define a Van Est map
for the Weil algebras.
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5.1. The Van Est triple complex. The simplicial Lie algebroid TrE.G — E.G
gives rise to a tridifferential algebra W(7xEG), with summands W-?9(TrEG) =
WP 4(TrE.G), and with commuting differentials

§, d = (—1)dcg, d"=(—1)dg

of tridegrees (1,0,0), (0,1,0), and (0,0,1). The product is a cup product, as
before:
aUa = (=1)" P+ pr* o (pr')*a’

for « € W4(TrE,G) and o’ e,WI’/’q’(T;E,/G), where the right hand side uses
the multiplication in W**(TrE,4+,,G). We have a diagram, for all r,

W**(T£E,G) ~—— Q*(B,G) .

sk
T[rT

W.’.(Ar)

Both «; and =) are morphisms of tridifferential algebras, where Q°(B.G) is
regarded as a triple complex concentrated in tridegrees (e,0,e). We also have
the maps

L WO(TFE,G) — W>*(4,)

induced by the inclusion ¢,: A, — TzE,G. Then (} is a left inverse to n}
intertwining the simplicial differential § as well as the Koszul differential d”,
but usually not the differential d’.

5.2. The Van Est map for the Bott—Shulman—Stasheff complex. Since the
maps h,;: E,G — E,1 G lift to vector bundle morphisms T-E,G — TrE;+,1G,
we have a well-defined homotopy operator & = Y, (—1) T (h,—_1;)*: W(A,) —
W(A,—1) with respect to the simplicial differential §. On the dense subspace

QUE,G) Qqm) W(A) S W(TFE:G),

it is the natural extension of the homotopy operator on Q(E.G). (This is
well-defined, since the latter is a (M)-module morphism, cf. Part (2) of
Proposition 1.) Note that 2z commutes with d”, but usually not with d’'. Let
Tot], W(TxEG) be the bidifferential algebra with summands Tot}y W(TEG) =
D, 1 p=n W (TFE,G), and with the differentials § +d’ and d”. We denote by
Tot* W(TxEG) the total complex obtained by summing over all three gradings.

Proposition 7. The composition

o(l+doh)™': Tot}y W(TFEG) — W**(A)
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is a morphism of bidifferential spaces. In fact, it is a homotopy equivalence with
respect to § +d’, with homotopy inverse wy. It restricts to an algebra morphism
on the normalized subcomplex Tot], W(TrEG).

Proof. 'The first part is a direct consequence of the Perturbation Lemma 4, applied
to Tot}y W(TEG) for fixed g. We obtain a similar statement for the total
complex Tot®* W(T=EG) (with the differential § +d where d = d' + d”), for the
composition 5 o (1 + doh)~'. By Lemma 5 (cf. the proof of Theorem 1), the
map o (1l +doh)~! is an algebra morphism on normalized cochains. But this
map coincides with ¢} o (1 +d o k)™!, because

o
(I+doh)y'=0+doh—hod)™! :(1—|—d’oh)_1+2(—hod”)”

n=1

(using that 2 and d” commute), and o/ = 0. O

Definition 4. The composition
VE: (go(1+doh) ok™: Q°(B.G) — W™*(A).
is the Van Est map for the Bott-Shulman-Stasheft double complex.

By construction, the map VE is a morphism of bidifferential spaces, and it
restricts to an algebra morphism on the normalized cochains. It is an Q(M)-
module morphism, since each of the maps ¢§, «*, and 1 +d oh is an Q(M)-
module morphism.

For local Lie groupoids G, one similarly obtains a Van Est map on the
complex of germs,

VEu: Q%(BeG)pr — W**(A).

The latter is surjective, and as we shall see in the next section, admits a right
inverse which is a morphism of bidifferential spaces. The Van Est map for a
global Lie groupoid G factors through the localized Van Est map VE,.

6. Van Est theorems

The Van Est map can be viewed as a differentiation procedure from Lie
groupoid cochains to Lie algebroid cochains. In some situations, it is possible to
obtain an integration procedure in the opposite direction. In our approach, the
Van Est map was constructed using a homotopy operator with respect to §; to
obtain a cochain map in the other direction one wants a homotopy operator with
respect to the differential d.
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Note that the principal G -bundles «,: E,G — B,G are trivial: For any fixed
i < p, the submanifold of elements (ao,...,a,) € E,G with a; € M defines a
section. Taking i = 0, the corresponding right inverse to «, is the map

jp: BPG - EpGa (g17"-’gp) = (t(gl)’gl_l"-~’(g1 "'gp)_l)-

As before, we regard Q2°(B.G) as a bidifferential algebra concentrated in bidegrees
(e,0,9). The morphism of bigraded spaces

JE WS (TEELG) — Q°(B.G)

(given by the obvious pullback map in tridegree (e, 0, e), and equal to zero in all
other tridegrees) is a left inverse to «}. It is a cochain map with respect to d’,d”
(in particular, jS od = 0), but since j, is not a simplicial map it is neither a
cochain map with respect to §, nor an algebra morphism.

Consider the very special case that the t-fibers of G are contractible, in
the sense that there is a smooth deformation retraction A;: G — G, depending
smoothly on (¢,g) € [0,1] x G, and such that

(32) Al =idpyr, Ag =idg, Ay =tot, told; =t
for all + € [0,1], g € G. One then obtains deformation retractions A,;: E,G —
E,G with
Ap,t|BpG = idp,c., Apo = idg, 6., Ap1 = JpOkp, Kpohps = Kkp,
by the formula

Apilao,...,ap) = (/l,(ao), alaalk,(ao), ey apagl/lt(ao)).

In turn, these define homotopy operators (cf. Example 4)
k: WPU(TrE,G) - WP VY(TrE,.G)

(i.e., kd +d'k =id—«} jJF), with kd” +d"k = 0.

For a general Lie groupoid G, or even a local Lie groupoid, one can always
choose a germ of a deformation retraction A along the t-fibers. The properties (32)
are to be understood as equalities of germs along M (or along [0, 1] x M ). The
germ determines a homotopy operator k,: WP4(TrE,G)y — WP~V 9(T-E, Gy
for the complex of germs. We obtain:

Proposition 8. For any local Lie groupoid G == M the map VEu: Q9(BeG)pr —
W*4(A) is a homotopy equivalence, for all fixed q. Given a germ of a retraction
of G onto M along t-fibers, the corresponding operator k defines a homotopy
inverse:

JjEo (I +8k) onrd: W (A) — Q°(BeG)uy.
Similar assertions hold for the Van Est map VE of global Lie groupoids with
contractible t-fibers.



On the Van Est homomorphism for Lie groupoids 121

Proof. Reversing the roles of d and § in the Perturbation Lemma 4, we see that
jEo (1 +68k)t: Tot W(TFEG)m — Q*(BeG)y

is a cochain map, and is a homotopy inverse to (1 4+ k8) 1k* = «*. Here we
used that k§ vanishes on the range of «*, for degree reasons. On the other hand,
by Proposition 2, the map ¢} o (1 +do/)~! is homotopy inverse to mj . O

Remark 6. Once again, we can write this ‘reverse Van Est map’ as a zig-zag:
In bidegree (p,q), it reads as

(=17 j; 0 (8k)? o 15 - WP (A) — QIU(B, Gy

The following result is due to Weinstein—Xu [WX] in the case ¢ = 0, and to
Bursztyn—Cabrera [BC] in the general case.

Proposition 9. Let G == M be a local Lie groupoid. In bidegrees (p,q) with
p=0,1, the map VEp : Q9(B,G)py — WP9(A) restricts to an isomorphism on
d-cocycles. Similar assertions hold for global Lie groupoids with 1-connected
t-fibers.

Proof. On Q4(ByG)y = W29 (A)y = Q4(M), the map VEy, is just the identity
map. The space ker(§) € W%4(A)y consists of (locally) G -invariant g-forms,
while ker(d’) consists of ¢g-forms that are A-invariant. But these two spaces
coincide. It follows that VEjs restricts to an isomorphism on §-cocycles in
bidegree (0,q), as well as on §-coboundaries in bidegree (1,g). Since VEyp
induces an isomorphism in cohomology for the differentials §,d’, it must then
also restrict to an isomorphism on 1-cocycles. For global Lie groupoids G = M,
consider the quotient map Q49(B,G) — Q4(B,G)p . A §-cocycle in Q9(ByG) is
a (globally) G -invariant form; if G is O-connected this is the same as a locally
G -invariant form, i.e. a cocycle in Q9(ByG)y. A §-cocycle in Q9(B;G) is a
multiplicative form on G. Such a form is uniquely determined by its restriction
to an arbitrarily small open neighborhood of M in G, i.e., by its germ. Hence
the map Q4(B1G) — Q4(B1G)y is injective on §-cocycles. If the t-fibers are
1 -connected, then any germ (along M ) of a multiplicative form extends uniquely
to a global multiplicative form. Hence the map is also surjective in that case. [

Remark 7. The prescription in [WX] is equivalent to the one given here: Any
cocycle a € C!(A) = I'(A4*) defines a closed left-invariant foliated 1-form
al e Q}(G), for the foliation given by the target map. If the t-fibers are
simply connected, one obtains a well-defined function f € C°(G), such that
f(g) is the integral of o’ from t(g) to g, along any path in the t-fiber. This

function f is multiplicative.
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For a global Lie groupoid, one has Crainic’s Van Est theorem:

Theorem 2 (Crainic [Cra]). Suppose G = M is a Lie groupoid with n-connected
t-fibers. Then the Van Est map VE: C®°(BsG) — C*(A) induces an isomorphism
in cohomology in degrees p < n. For p = n + 1 the map in cohomology is
injective, with image the classes [w] such that for all x € M, the integral of w
(regarded as a left-invariant foliated form) over any n + 1-sphere in t='(x) is
zero.

(A generalization to Q2(BG) was obtained by Abad—Crainic in [AC].) Using
the homological perturbation theory, one can construct the inverse in degrees
< n on the level of cochains, given a homotopy operator. The assumption that
the t-fibers are n-connected implies that the fibers of any principal G -bundle
are n-connected. In particular, this applies to «,: E,G — B,G. It follows that
C*(TrE.G) has vanishing d-cohomology in bidegree (r,s) for all s <n. Let

TSnC.(TJ-'E-G)

be the truncated foliated de Rham complex for G, given by C(TrE,G) in
degree s <n and by C*"(TrE,G) Nker(d") in degree n. The truncated complex
has vanishing d-cohomology in degrees (r,s) with s > 0. Hence there exists a
homotopy operator

k:t<,C*(TrE,G) = 1<,C* Y (TrE,G)
with kd 4+ dk = id—« j. By the Perturbation Lemma, the composition
j¥o(148k)™": 1<uC(TFE,G) - C™(B,G)
is a cochain map for the total differential. It gives the desired cochain map

j¥o (1 +8k) " on*: 1<,CP(A) — C™(B,G).

7. Explicit formulas for the Van Est map

Until now, we expressed the Van Est map in terms of the Van Est double
complex. We will now derive more explicit formulas, thus confirming that this
definition agrees with those of Weinstein—Xu [Weil] and Abad—Crainic [AC]. We
will directly consider Q°*(B.G); the results for C*°(B.G) will be special cases.

7.1. The Lie algebroid T-G. Let G be a Lie groupoid with Lie algebroid
A = Lie(G). Let F be the foliation of EygG = G defined by the submersion
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ko = t, and let TG be the corresponding Lie algebroid. Recall that any X € I"(A)
induces derivations

15(X), 1x(X), 1ce(X), L(X)

on W**(4). The left-invariant vector field XL € T(TrG) defines similar
derivations of W**(7T=G). The inclusion (: M — G lifts to a morphism of
vector bundles A — TG, defining a pullback map ¢*: W**(TxG) — W**(A),
with

Fodg =dgor*, Foig(XD) =15(X) 0¥, Foix(XL) =1x(X)ox

On the other hand, since A — TxG is not a Lie algebroid morphism, the map ¢*
does not intertwine dcg, L£(X), tce(X) (for X € I'(4)) with the corresponding
derivations of W(7xG), in general. Instead we have

Lemma 2. For all X € I'(A),
Fowcr(XE—XB®) =icp(X)or*, FolL(XF—XB)=L(X)or .

To explain the left hand side of these equations, note that any vector field
Y € X(G) in the normalizer of I'(T=G) (i.e., such that [Y, ] preserves I'(TG))
defines an infinitesimal automorphism of 7xG, giving rise to a derivation L£(Y')
of I'(AT£G), and hence to derivations 1cg(Y) = j(L(Y)) and L(Y) = [(L(Y))
of W**(A4). This applies to the vector fields X% as well as to the vector fields
X R hence also to the vector field ¥ = X© — X® (generating the adjoint action).
The Lemma follows since [XZ — X& .] on I'(T=G) induces [X,:] on I'(4). It
will be convenient to introduce the operator

(33) D: WS (TxG) - W*TE*(4), D =dcgot* —(* odck,

measuring the failure of (* to be a cochain map for d¢g.

Lemma 3. For all X € I'(A4),

ik(X)oD+Doig(XE) =1* o L(—XD),

34
G4 1s(X) oD —Dois(X) =* o1cp(—X5).

Proof. Using the above commutation relations we calculate
15(X)oD =15(X)o(dcg ot* —* odcg)
= (1ce(X) +dcg o15(X)) o t* —* o15(X %) 0 deg
= *o1cg(XY = XB) +deg o t* o15(X 1)
—*o1ce(XE) —* odcg o15(XF)
=*o1ce(—X®) + Do1g(Xh).
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which proves the second identity. The first follows by taking a commutator with
dg . [

On elements ¢ € Q9(G) = W**(T=G), these formulas become (for degree
reasons)
1k(X)Dp = * o L(=XB)p € QI(M),
15(X)Dp = 1* o 1(=XB)p € QI 1(M),

where 1(—X®) is the usual contraction operator on differential forms.

7.2. A formula for the Van Est map. The vector fields —X»R ¢ X(E,G)
are invariant under the principal G -action, hence they descend to vector fields
Xi# € X(B,G). The —X»R generate the G-action on E,G given by left
multiplication on the i-th factor; similarly the X’*# generate the following G -
actions on B,G,

gg1, - &) = (€1, 8im1, 818 8&i+1, Litas -+ &r)-
These define Lie derivatives and contractions on Q(B,G), with

k¥ ot(XH) = 1x (X" R) ok?,  kFo LX) = L(—X"R) ok

r

For elements o € WP9(A), X;,...,X, € I'(4A) and all n < p we put

Ot(Xl,...,Xn,Y,H_l,...,Xp)
=15(Xp) - 15 (Xpr )1k (Xp) -+ 1x (X € QIT(M).

This expression is C*°(M)-linear in X;,...,X,, but not in X,11,...,X,, due
to (30).

Theorem 3. The Van Est map VE: Q*(B.G) — W**(A) is given by the following
formula, for ¢ € Q4(B,G) and Xi,...,X, € I'(A),

VE@) (X1, .., Xn, Xnt1s--s Xp)
=" Y e@OLX ) LOE NI uX g,

SEGI)
Here 1: M — B,G is the inclusion as constant p-arrows, and €(s) is equal to
+1 if the number of pairs (i,j) with 1 <i < j <n but s(i) > s(j) is even,
and equal to —1 if that number is odd.

Observe that the formula does not involve the generating vector fields for the
i =0 action.
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Remarks 2. (1) This formula is similar to the expression obtained in Abad—
Crainic [AC, Proposition 4.1]. However, in contrast to the result in [AC], no
recursion procedure is needed.

(2) The same formula holds true for local Lie groupoids, using the complex
Q*(B.G)y of germs.

(3) Restricting, we obtain the following formula for the Van Est map C*°(B.G) —
C*(A):

VE()(X1,..., X,) = Y sign() LX) - LOCE) f N
sES,
This is the formula given by Weinstein and Xu [Weil].

(4) Mehta points out in [Meh, Section 6] that the formula in Theorem 3 can be
obtained from that of Weinstein and Xu [Weil] (c.f. [Meh, Definition 6.2.1]),
via an appropriate modification to the signs due to the Koszul sign rule.

The proof will require some preparation. To simplify notation, denote by
® = Qq(um) the (algebraic) tensor product of modules over commutative graded
algebra Q(M). We will use the pullback s* to regard Q2(G) as an Q2(M)-module;
there is a natural multiplication map (not to be confused with cup product)

Q4o (G)(E_i) . ®Qch (G) - QQo+...+qr (E,«G),
Po® -+ ®¢, > Iy o -+ Pry Py

The Weil algebra W**(A) is also a module over 2(M); the pullback = defines
an embedding as a subspace of W**(TrE,G). We obtain an injective map, with
dense image

(35a)

(35b) QQO(G)® QNI (G)Q_Z)Wp’q(A) - WI?,610+...+Q;~+6I(T]:ErG)

For ¢; € Q(G) and o € W(A), we will identify ¢y® ---R¢,®a with its image
under this map. On the image of this map, the homotopy operator #, the differential
d = (-1)"d¢cg, and the homomorphism R, = 7} o} read as

r—1
h(go® -+ ®pr®a) =D (1)o@ @i @18+ B & (hiy1 - pr)er

i=0 r—i—1
d(go® -+ @, @) =(=D™ T ) D ho®- - BLX, )P @ R B«
j=0 v
+ (=)0t F Ut g0 & .. R, @dcEa

R($o® - @, Q) :(&;@)@)L*(% )
r+1
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Here the second formula is to be understood locally, in terms of a local frame
X1...., Xy of sections of A, with dual sections B!, ...,ﬁk of A*. The last two
formulas imply that

(36) [, R]($o® - ®¢r®ar) = (=1)"(1® - ®D&D(¢o - 1 )x
r+1
The following formula involves the restriction D: Q4(G) — W4(A) of the map

(33).

Proposition 10. We have the following formula, for ¢; € Q4 (G) and o € WP-4(A)

r—1

B7) [ H]($o®- - @ Bar) = (—1) I (~1)i H0+-F4i gy ..
1=0

RPN R Q(D(Pig1 - Pr) ).
N

r—i—1

Proof. Using that & is an R-derivation, one obtains the following property of
[d’, 7] under cup product:

(38) [d.h](x Uy) =[d, hlx URy +x U[d, hly — (=D hx U[d’, R]y.

for x,y € W**(TrE.G). Here |x| denotes the total degree of x. In particular,
take x = ¢o®1, as in (35a), with ¢y € Q9(G). We have |x| = go + 1, hx =
—¢o, [d',h]x =0, and

xUy = (=D""¢®y

for y e W»*(TxE,;,G). Hence the formula (38) gives
[, h)(go®y) = (=1)%¢po®[d', h]y — (=1 D U [d, R]y.
If y=¢1®---®¢,Qx € W(TrE,_1G), then we obtain, using (36),

[d. Rly =(-1)""1® - Q®1 &D(¢1 -~ py)cr.

r

Hence we find

[d, 2] (po®y) = (—1)PPpoR[d’, h]y + (—1)" (=1)°PpoR1Q - -- ®1QD(¢p1 - - - P, ),
which proves the Proposition. O
Proposition 11. For ¢g,...,¢, € Q(G) and a € WP4(A), we have

5o (14 [d A Hpo® - & Rar)

39
( ) _ (_l)rqo—i-(r—l)(h +.+gr—1 (t§¢o)(17¢1) .. (D¢r) a € Wp,q—i—qo—i—...-i-qr (A)
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Proof. Using induction on r, we use Proposition 10 to prove
(40)
[ 2] ($o® -+ ®¢pr @ar) = (=) AHCTDNHAO=1 4, & (D) - (Depr) ).

For r =1 this is just a special case of Proposition 10. For r > 1, we apply the
induction hypothesis for r’ =r —1 to the formula for [d’, h](¢o® - -- ®¢,Ra), as
given in Proposition 10. Only the term with i = r—1 gives a nonzero contribution,
and yields (40). L]

Remark 8. The result (39) may also be written
((o®D®---@D®id) (¢ ® - ® ¢ ® @),

followed by the multiplication map W(A4) ® --- ® W(A) — W(A). The signs
appear naturally here, according to the super-sign rule: The first D moves
past ¢o, the second D moves past ¢o,¢;, and so on. Hence we obtain

go+ (o +q1)+...+(qo+ ... +¢qr—1) =rgo+ (@ —1Dgy + ...+ ¢gr—1 sign
changes.

of Theorem 3. Given Xi,...,X, € I'(A) and any n < r we obtain, for all
do,...,0r € QG),

(o (1+[d,h) (@@ @) (X1s- -, Xy X1 s Xr)
= (= 1)rOTF 11 (X,) 15 (Xt D1k (Xn) -+~ 15 (X1) (o Dby - - Dy )
= ((ﬁ(—X Y L= X=X (=X PR+

ot s.p.)(¢o®~--®¢,.)).

here the lower dots signify a signed permutation of the X;’s. Consequently, for
¢ € Q(B,G) this gives

(L?; o (1 + [d/,h])_l OK;,k(gb))(Xl, .. ’Xn,yn—i—la ... ,Y,«)

=07 D LX) LEX =X - (=X )k ¢

SES,
Here the sign €(s) is the sign of the permutation putting s(1),...,s(n) C {1,...,r}
in order; in other words, it is 1 if the number of pairs 1 <i < j < n with
s(i) > s(j) is even, and is —1 if that number is odd. This implies the formula
given in Theorem 3, because —X"R is k,-related to X'#. O

Example 6. Let us examine these calculations for the case of a pair groupoid
G =Pair(M) =M x M. Here Lie(G) =TM, and for X e '(TM) = X(M) we
have

Xt =0,x), xXR=(-x,0).
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The map D: C®(M x M) — CH{(TM) = Q' (M) is given by
Du®u)=—vu'du, u,u’ € C®(M).

We identify B,G = MP*!, where the p + 1-tuple (mo,...,mp) corresponds
to (g1,...,8p) Wwith g = (m;—1,m;). Similarly, E,G = M?*! x M, where
(my, ..., mp, m) corresponds to (ag,...,ap) with a; = (m;,m). Given up®---®
u, € C®(M?*1) with u; € C*®°(M), the pullback to E,G is fo®---® f, with
fi =u; ® 1, with D(f;) = —du;. Thus

o (L+[d A fo® - ®fp) = (=1)Puodu; -~ du,.

Hence the Van Est map becomes (up to a sign) the standard map from the
Alexander-Spanier complex to the de Rham complex:

VE: C®(MPTY) » QP(M), up® - ®up > (—1)Puoduy ---duy,

A. Simplicial manifolds

In this section we give a quick review of simplicial techniques used in this
paper. Standard references include Bott-Mostow-Perchik [MP], Goerss-Jardine
[GJ].

A.l. Basic definitions. Let Ord denote the category of ordered sets. The objects
in Ord are [0],[1],]2],..., where [n] = {0,...,n}, and the morphisms in Ord are
the maps f: [m] — [n] such that i < j = f(i) < f(j). Any such morphism
may be written as a composition of face maps 0/ degeneracy maps €’ ,

¥ nl—->n+1, j=0,....n+1, €:n+1]—[n], j=0,....n

given by

¥ () = {i <T g = {i i<
i+1 i>j i—1 i>].
A simplicial manifold is a contravariant functor from the category Ord to the
category of manifolds. We denote by X, the image of [n] = {0,...,n}, and
by X(f): X» — X; the map corresponding to a morphism f: [m] — [n]. We
will write 9; := X(9'), and ¢ := X(¢'). Associated to any topological category
C is a simplicial space Bo.C, called its simplicial classifying space (or nerve)
[Seg]. Here B,C is the set of objects of the category, B;C the set of arrows
(morphisms in C), B,C the set of commutative triangles, and so on.
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Example 7. If G = M is a Lie groupoid (regarded as a category), the space
B,G is the manifold of p-arrows, as in Section 2.2.

Example 8. For any fixed p, the set [p] = {0,..., p} may be regarded as the
objects of a category, with a unique arrow iy «— iy for any 0 < iy <i; < p.
The corresponding space B,[p] is the set of n-arrows of this type,

i i in
where 0 < iy <--- < i, < p. Equivalently, B,[p] is the set of nondecreasing
maps [n] — [p]. Any morphism [m] — [n] in the category Ord determines a
simplicial map Bj,[p] — Bm[p] for the category [p], by composition. We will
denote this (discrete) simplicial manifold by A.[p] := Be[p], since its geometric
realization is the standard p-simplex. Any nondecreasing map [p] — [p’] defines
a morphism of simplicial manifolds A.[p] — A«[p’], with geometric realization
the corresponding map of standard simplices.

A.2. Simplicial homotopies. The two morphisms 9%, 9!: [0] — [1] give rise to
simplicial maps
3%, 9l: AL0] = A[1],

corresponding to the inclusions of the end points. A simplicial homotopy between
two morphisms of simplicial manifolds f°, £,!: X. — Y. is a morphism

Hq: Ag[l] X Xo¢ — Y,

such that
Heo (99 xidy,) = fL,  Heo (0, xidx,) = f.\.

Homotopy is an equivalence relation provided X, satisfies the Kan condition
[GJ]; in particular this is the case for the simplicial classifying space of
a groupoid. To spell out the homotopy condition in more detail, note that
Ap[l] ={a—1,a0,...,ap} with

oy [p) — [, oej(n:{? =

i >
hence H, is determined by the maps Hp ; = H,(¢j,-) for —1 < j < p. The

condition that H, be a simplicial map becomes

Hp_1j-100; i=] Hypiijy106 =]

_.’ ElOHps]:{ 2

di o Hp j = ‘ : .
Hprjodi 0> Hpirjoei 0>

and the boundary conditions are
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Hp 1= fo, Hpp = fpl'
The map (3°), takes the unique element of A,[0] to a_;, while (3!), takes it
o op.
Associated to any simplicial space X is its Moore complex (7. X.,8), where
7 X, are Z-linear combinations of elements in X,, and
P
Sp=> (=1)/08;: ZX, > ZXp 1.
j=0
Any simplicial homotopy gives rise to a homotopy operator for the Moore
complexes, by the formula

P
(41) hp: ZXp — LYpi1, hp =Y (=1)/*'h,;

j=0
with 1, j(x) = Hp+1,;(€j(x)). That is, he satisfies hp—10p + dp+1hp = f, — [, -
See Goerss-Jardine [GJ, Lemma 2.15].

For the following result, recall that for any foliation F of a manifold M,
the groupoid Pairr(M) = M consists of pairs (mg,m1) of elements in the
same leaf, and B, Pairr(M) consists of p + 1-tuples (my,...,m,) of elements
m; € M, all in the same leaf. Any smooth map f: M — M preserving leaves
extends to a simplicial map

42) fo: BePairz(M) — Be Pairz(M)

where f,(mo,...,mg) = (f(mo),..., f(mp)). The following result may be
regarded as a special case of [Seg, Proposition 2.1]. The proof is a straightforward
verification.

Proposition 12. Let F be a foliation of a manifold M, and f: M — M a
smooth map preserving leaves. Then

43) Hp j(mo,....mp) = (mo,....mj;, f(mjg1),..., f(mp)),

defines a a simplicial homotopy He between (42) and the identity map. The
corresponding homotopy operator is given by

p
hp = > (=1)/T'hp;: ZB, Pairy(M) — Z By Pairr(M)
j=0
where (cf. (41))
hp,j (mO’ s ’mp) = (mo, <. my, f(m])s f(mj—i-l)’ R f(mp))

Thus, hp—100, +0p410h, =id—f,. If [ is a retraction (i.e., fo f = f), then
the homotopy operator has the additional property hpiioh, =0.
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We will use the following special case: Suppose 7n: Q — M is a surjective
submersion admitting a section (: M — Q. The submersion defines a foliation of
Q, where B, Pairr Q is the p + 1-fold fiber product QP+D = Q xpr---xp Q.
Take f =tom: Q — Q. The proposition shows that the two maps

Te: OCTY 5 M, 1o: M — QCFD

are simplicial homotopy inverses, with an explicit homotopy operator

14
hp(qu---’qp) - Z(_I)Z(QO,---aQi,m,---,m)
=0

where m = n(qo) = ... = n(qp).

B. Homological perturbation theory

In this paper we used the following two results, Lemmas 4 and 5, which are
special cases of results from homological perturbation theory.

Let (C**,d,5) be a double complex, with differentials 6 of bidegree (0, 1)
and d of bidegree (1,0) so that [d,§] = d§ + §d = 0. We assume that C”™* is
non-zero only in degrees r,s > 0. The corresponding total complex is given by
Tot* C = @, ,_, C™* with the total differential d 4+ §. Suppose that

i: D% < C**

is a subcomplex for both differentials d and §, and that there exists an operator
h of bidegree (—1,0) such that?

[h,8] = h§ +8h =1—io p,

with p: C*®* — D** aleft inverse to i . This equation shows that i is a homotopy
equivalence with respect to §, with homotopy inverse p. Indeed, poi = id, while
the projection operatorI1 = i o p is §-homotopic to the identity. Note however
that p need not intertwine the differential d.

By the following result, one can modify p and i to obtain a homotopy
equivalence for the total differential d+§. It is a version of the Basic Perturbation
Lemma [BRO, Gug, GLa, GLS, HK]. See Crainic [Cra] and Johnson-Freyd [Joh]
for some recent applications.

Lemma 4 (Brown [BRO], Gugenheim [Gug]). Put p' = p(1 +dh)™!, i’ =
(1 +hd)~Y, B =hQ +dh)~ L. Then:

2In what follows, the brackets [-,:] indicate graded commutators for the total degree.
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(1) The map TI' = i’'p’ is a cochain map relative to the total differential d +§.
In fact, it is homotopic to the identity with the homotopy operator h':

A, d+8=1-i"p.

(2) If h preserves the subcomplex D, and commutes with d on D, then T1' is
again a projection onto D. Furthermore, in this case p' is a cochain map
with respect to the total differential, and is a homotopy equivalence, with
homotopy inverse i’.

Proof. (1) We have (1 + hd)h' =h =l (1 + dh), hence
(1 +hd)[A',d +8](1 + dh) = h(d + 8)(1 + dh) + (1 + hd)(d + 8)h = [h,d + §].
where we used dé 4+ 6d = 0. On the other hand, [i,8] = 1—ip implies
(1 4+ hd)(1 —i'pH(A + dh) = [h,d + §].

Comparing the two formulas, we see [h/,d+ 8] =1—i"p’.
(2) We have

pli’ = p(1 +hd)™ (1 + dh)~Yi = p(1 + [d, k).

Hence, if [d,s] vanishes on D, then p’i’ = pi = 1 so that IT" = i’p’
is again a projection. If & preserves D, so that (1 + hd) restricts to an
invertible transformation of D, we see that I’ has the same range as II.
Since IT’ is a cochain map with respect to d + §, the same is true of p’.

O

Remark 9. The second part of this Lemma applies in particular if %~ vanishes
on D. Note also that if h? = 0, then D is preserved by £, since [k, 1] =
[h,1—[h,68]] =0.

Let us now make the additional assumption that the bidifferential space C**
has a compatible algebra structure ¢ ® ¥ — ¢ U ¥, with D**® a subalgebra.
Thus, in particular d and § are derivations of this algebra structures. We also
assume that the projection p is an algebra morphism and that (Cg,,d + §) is a
differential algebra.

Lemma S (Gugenheim—Lambe—Stasheft [GLS]). Suppose the homotopy operator
h is a Tl-derivation, that is,

h(p Uy) = he UTTy + (—=D)1?lp U hy.
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Assume furthermore that h satisfies the ‘side conditions’
hoh=0, poh=0

Then the map TI' = I(1+dh)~!: C, — D, C Cg, is a morphism of differential
algebras.

Proof. Observe that hh = 0 implies that # commutes with IT = 1—[/, §]. Hence,
ph=0= I1lh=0= hIl =0 = hi = 0. That is, & vanishes on D. It follows
that i’ =i, hence ' = II(1 +dh)~! = NI(1 + [d,A])~!. With H = [d, )], we
obtain

o0

M =T(1+H) "' =) (-)*nH*.

k=0

The IT-derivation property of s implies the following property of H:

H@pUy)=HpUTIY + ¢ U Hy + (—DIH1he U d, TT]y.

Iteration of this formula, using HI1 =0 and [H,h] =0, gives

k

HY@uUy) =Y HTpun* T HIy + 3 heP Uy

Jj=0

with certain elements ql)sk), Sk). Now apply the projection I1. Since IT is an

algebra morphism, and 12 =0 and HII = 0, we obtain

k
NHY@Uy) => TH /¢ UTIH/y,
j=0
which gives TT'(¢p U ) = IT'¢p U I’y as desired. |

Remark 10. The same proof also gives the following more general statement,
applicable to bilinear maps of bidifferential spaces. We will again write this
bilinear map as a ‘cup’ product, although it might be for example a module
action, a Lie bracket, etc. Thus suppose

UIC1®C2—>C3

is a morphism of bidifferential spaces. Suppose that U restricts to a bilinear map
on subcomplexes i,: D, — C,, that p,: D, — C,, are compatible with U in
the sense that p3(¢ U ¢¥) = pi(¢) U p2(¢¥), and that we are given homotopy
operators h, for the §-differentials, i.e.,

[1y,0] =1 —i,py.
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If h, have the ‘derivation property’

h3(@UY) = hip Uy + (=1)?lgp Uhyy

for ¢ € C;, ¥ € C,, and if the side conditions h,% =0 and p,h, = 0 are
satisfied, then [T, = I1,(1 + dhy)~! are cochain maps for the total differentials,

with

[Aba]

[AC]

[BSS]

[BRO]

[BC]

[BCO]

[BCWZ]

[CM]

[Cra]

[CF1]

[CF2]

[CF3]

M3(p Uy) = I (¢) UL ().
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