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SL2(Z) -tilings of the torus, Coxeter-Conway friezes and
Farey triangulations

Sophie Morier-Genoud, Valentin Ovsienko and Serge Tabachnikov

Abstract. The notion of SL2 -tiling is a generalization of that of classical Coxeter-Conway

frieze pattern. We classify doubly antiperiodic SL2 -tilings that contain a rectangular domain

of positive integers. Every such SL2-tiling corresponds to a pair of frieze patterns and

a unimodular 2 x 2-matrix with positive integer coefficients. We relate this notion to

triangulated n-gons in the Farey graph.

Mathematics Subject Classification (2010). Primary 5A15; Secondary: IIB57, 13F60.

Keywords. Frieze pattern, SF2-tiling, Farey graph, Modular group.

1. Introduction

Frieze patterns were introduced and studied by Coxeter and Conway, [Co, CC],
in the 70's. A frieze pattern is an infinite array of numbers, bounded by two
diagonals of l's, such that every four adjacent numbers a, b, c, d forming a "small"

square satisfy the relation ad—be 1 called the unimodular rule; for an example
see Figure 1. The width of the frieze is the number of diagonals between the

bounding diagonals of l's.
The fundamental Conway-Coxeter theorem [CC] offers the following classification:

frieze patterns with positive integer entries of width n—3, are in one-to-one

correspondence with triangulations of a convex n -gon\ for a simple proof see

[Hen]. More precisely, given a triangulated n-gon in the oriented plane, one
constructs a frieze of width n — 3 as follows. The diagonal next to the diagonal of 1 's

is formed by the numbers of triangles incident at each vertex (taken cyclically).
This, in particular, implies that every diagonal in a frieze of width n — 3 is

n -periodic. Throughout this paper, we will be considering frieze patterns with
positive integer entries.

The following terminology is due to Conway and Coxeter [CC]. A sequence
of n positive integers q ,qn-1) is called a quiddity of order n, if there
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1

1 1

2 3 1

4 2

Figure 1

A 7-periodic frieze pattern and the corresponding triangulated heptagon

exists a triangulated n -gon such that every qt is equal to the number of incident

triangles at i -th vertex. For instance, the example in Figure 1 corresponds to the

following quiddities of order 7: (1, 3,2,2,1,4,2), (3,2,2,1,4,2,1),... (cyclic
permutation).

Every quiddity of order n determines a unique positive integer frieze pattern.
Two quiddities correspond to the same positive integer frieze pattern if and only
if they differ by a cyclic permutation. According to the Conway-Coxeter theorem,

positive integer frieze patterns can be enumerated by the Catalan numbers.

Example 1.0.1. For each case n 3,4 and 5, there is a unique (up to cyclic
permutation) quiddity: (1,1,1), (1,2,1,2) and (1, 3,1,2,2), respectively.

For n 6, there are four different quiddities:

(1,3,1,3,1,3), (1,4,1,2,2,2), (1,2,3,1,2,3), (1,3,2,1,3,2)

12 3 111
2 1 2 3 1

1 1 3 5 2 1

1 4 7 3 2 1

1 2 1 1 1 1

1 1 2 3 4 1

1 3 5 7 2

1 2 3 1

1 2 1

and their cyclic permutations.
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We can also consider the "degenerate" case n 2, where the corresponding
"degenerate" quiddity is (0,0).

Examples of frieze patterns can be constructed using the computer
program [Scha].

Among many beautiful properties of Coxeter-Conway friezes, the property of
periodicity and so-called Laurent phenomenon are particularly important. They
relate frieze patterns to the theory of cluster algebras developed by Fomin and

Zelevinsky, [FZ1, FZ2].
Various generalizations of Coxeter-Conway friezes have recently been

introduced and studied, see [CaCh, Pro, BM, ARS, MOT]. One of the generalizations,
called SL2-tiling, was first considered by Assem, Reutenauer and Smith [ARS],
and further developed by Bergeron and Reutenauer [BR]. An SL2-tiling is an

infinite array of numbers satisfying the above unimodular rule, without the
condition of bounding diagonals of l's. Unlike the frieze patterns, SL2-tilings are

not necessarily periodic. Nevertheless, correspondences between SL2-tilings and

triangulations can be established, [HJ, BHJ].
The case of (n, m) -antiperiodic, or "toric" SL2-tilings was suggested in [BR].

In this paper, we study such tilings.

The main results of the paper are the following.
We classify doubly antiperiodic SL2-tilings that contain a rectangular

fundamental domain of positive integers. We show that every such SL2-tiling is

generated by a pair of quiddities and a unimodular 2 x 2-matrix with positive

••• 2 5 8 11 3 -2 -5 -8 -11 -3
7 18 29 40 11 -7 -18 -29 -40 -11

5 13 21 29 8 -5 -13 -21 -29 -8
3 8 13 18 5 -3 -8 -13 -18 -5

-2 -5 -8 -11 -3 2 5 8 11 3

-7 -18 -29 -40 -11 7 18 29 40 11

-5 -13 -21 -29 -8 5 13 21 29 8

-3 -8 -13 -18 -5 3 8 13 18 5

Figure 2

A (4, 5)-antiperiodic SL2-tiling with positive rectangular domain
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integer coefficients. Although there are infinitely many such SL2-tilings, their

description is very explicit.
Following the original idea of Coxeter [Co], we also interpret the entries of

a doubly periodic SL2-tiling that contain a rectangular fundamental domain of
positive integers in terms of the Farey graph of rational numbers. Every such

SL2 -tiling corresponds to a triple: an n -gon, an m -gon in the Farey graph, and

a totally positive matrix from SL2(Z) relating them. We also obtain an explicit
formula for the entries of the tiling.

2. Farey graph and the Conway-Coxeter theorem

In this section, we give an explanation of the relation between the Coxeter

frieze patterns and triangulated n-gons.
It was already noticed by Coxeter [Co] that a Farey series (of arbitrary order

N) defines a frieze pattern. Moreover, every frieze pattern corresponds to an

n-gon (i.e., an n -cycle) in the Farey graph. A Farey n-gon always carries a

triangulation; we will prove that this triangulation is precisely that of Conway-
Coxeter theorem. This statement seems to be new and to extend the observation

illustrated in [Scha].

2.1. Farey graph, Farey series and Farey a-gons. For two rational numbers,

si and »2 gt>i, v>2 e Q, written as irreducible fractions v\ V- and v2 f2-, the Farey
"distance" is defined by

d(vi,v2) := \aib2 - a2bx\.

Note that the above "distance" does not satisfy the triangle inequality. Recall the

definition of the Farey graph.

(1) The set of vertices of the Farey graph is Q U {oo}, with oo represented by
I
o *

(2) Two vertices, vx,v2 are joined by a (non-oriented) edge (vi,v2) whenever

d(v i,v2) 1.

The Farey graph is often embedded into the hyperbolic half-plane, the edges being
realized as geodesies joining rational points on the ideal boundary.

The following classical properties of the Farey graph can be found in [HW]
(the proof is elementary).

Proposition 2.1.1. (i) Every 3 -cycle of the Farey graph is of the form

\ax ai + a2 a2
(2'!) It >7 .7 'Ivb i b i + b2 b2
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(ii) Every edge of the Farey graph belongs to a 3 -cycle.

(iii) Edges in the Farey graph do not cross, i.e., for a quadruple v\ > V2 > v$ > V4

it is not possible to have edges (^1,^3) and (^2,^4).

Definition 2.1.2. The Farey series (also called Farey sequence) of order N is

the sequence of irreducible fractions in [0,1] whose denominators do not exceed

N.

We will write the sequences in decreasing order; see Figure 3.

Figure 3

The Farey series of order 5 embedded in the Farey graph

The following fundamental property of Farey series is also proved in [HW].
It shows that every Farey series is a cycle in the Farey graph.

Proposition 2.1.3. Every two consecutive numbers in a Farey series are joined
by an edge in the Farey graph.

This is less elementary than Proposition 2.1.1, so we propose here a short

proof. Our proof is different from the well-known one, it is based on the classical

Pick formula.

Proof. Consider two consecutive numbers | > ^, in a Farey series of some order

N. Suppose that ad — be > 2. The quantity A ^(,ad — be) is the area of the

Euclidean triangle spanned by the vertices (0,0), (a,b), (c,d). Pick's formula
states:

B
A I + 1,

2
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Figure 4

The case of interior point

where I is the number of integer points in the interior of the triangle, and B
the number of integer points on the border. By assumption, A > 1, and therefore
1 + J > 2. It follows that there exists a point (x,y), which is either inside the

triangle, or on the segment between (a,b) and (c,d) (since the fractions | and

2 are irreducible). One then has:

y < max(b, d) < N and y > — > C~.

b y d

This contradicts the assumption that | and y are consecutive numbers in the

Farey series.

Proposition 2.1.3 is used three times to prove the following.

Corollary 2.1.4. Every Farey series forms a triangulated polygon in the Farey
graph.

Proof We prove this statement by induction on N (the order of Farey series).

Assume that the series of order N — 1 is triangulated. The series of order N is

obtained from that of order N — 1 by adding points of the form

First, we observe that two points, and ^ cannot be consecutive. Indeed,

d(^9 jf) / 1: that would contradict Proposition 2.1.3; therefore, every new point

^ appears between two "old" points:

(2.2) £1 > A > S2..

qi N q2

Second, by Proposition 2.1.3, 4 is joined by edges with ^ and f2-. Third,
iV Q\ */2 Q1

and H are joined by an edge, according to Proposition 2.1.3 applied to the series

of order N — 1. We conclude that (2.2) is a triangle.
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We will be interested in n -cycles (or "n-gons") in the Farey graph that are

more general than Farey series.

Definition 2.1.5. (1) An n-gon in the Farey graph, or a Farey n-gon is a

decreasing sequence of rationals (no,..., vn-\):

oo > Vo > Vi > > Vn-1 > 0,

such that every pair of consecutive numbers vt,vl+\, as well as vn-i,vo,
are joined by an edge.

(2) The n-gon is called normalized if no oo and vn-\ 0.

Since every n-gon can be embedded in a Farey series, Corollary 2.1.4 implies
the following.

Corollary 2.1.6. Every Farey n-gon is triangulated.

We thus can speak of the quiddity of a Farey n -gon.

Proof A Farey n-gon is obtained from a Farey series which is a triangulated
polygon, by cutting along diagonals of the triangulation.

We define the notion of cyclic equivalence of Farey n-gons. Given an n-gon
(n0,..., vn-i), consider the n-cycle (ui,..., vn-i, n0), and renormalize it using
the SL2(Z)-action so that v\ oo and vo 0. The obtained n-gon is called

cyclically equivalent to the given one. For an example, see Figure 5.

Figure 5

Two cyclically equivalent normalized heptagons in the

Farey graph corresponding to the frieze of Figure 1
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2.2. Farey n-gons and Coxeter-Conway friezes. Proposition 2.1.3 leads to the

following observation due to Coxeter [Co]: every Farey series gives rise to a

Coxeter-Conway frieze pattern of positive integers. Along the same lines, we
have the following strengthened statement.

Proposition 2.2.1. The Coxeter-Conway frieze patterns of positive integers of
width n — 3 are in one-to-one correspondence with the normalized Farey n -gons,

up to cyclic equivalence.

Proof. The correspondence is given by considering the ratios of two consecutive

rows of the frieze patterns. The sequence

1 a\ at 10^o -, vi —, Vi =—, vn-2 - vn-1 =-0 1 bt bn-2 1

corresponds to the frieze determined by the rows

1 a\ a2 an-3 1 0

0 1 Z>2 • • • bn-2 1

and vice versa.

The Conway-Coxeter theorem mentioned in the introduction provides a

relation between frieze patterns and triangulations. The following result somewhat

"demystifies" this relation and provides an alternative proof of the Conway-Coxeter
theorem.

Theorem 1. The quiddity of a Farey n -gon coincides with the quiddity of the

corresponding Coxeter-Conway frieze pattern.

Proof. Consider a frieze pattern, and denote by chJ its entries:

0 1 Cl,l Cl,2 C\,n—3 1 0

0 1 c2,2 ' ' ' C2,n-2 1

where

IchJ
1, i — j 1 or 3 — n,

chJ =0, / — j 2 or 2 — n.

The quiddity of the frieze pattern reads in the n -periodic line (cl}l).
Clearly, two consecutive rows determine the rest of the frieze; the following

formula was proved in [Co], formula (5.6):
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In particular, we have:

(2.3) Clfl Cl,z—2^2,z ~ 2-

The corresponding Farey n-gon has the following vertices

1 ci,i c i,, 1 0
vo ~, vi —, vt vn-2 Vn-i ~.

0 1 c2,i C2,n-2 1

Therefore, the expression (2.3) reads: chl d(vt-2,vt). It remains to calculate
the Farey distance between pairs of vertices vt-2 and vt in a Farey n-gon.

Lemma 2.2.2. Given a (triangulated) Farey n-gon
1 a\ at 10vo ~, vi —, vt =—, vn—2 — ^_i -,0 1 bt bn-2 1

//ie Farey distance d(vt-1,1^+1) coincides with the number of triangles incident

at vt.

Proof Among all the vertices of the n-gon (ty), let us select those connected to

Vt by edges of the Farey graph. Denote by {vn,..., vlk}, resp. {%+1,..., vlk+i}
the vertices at the left, resp. right, of vt, so that

vtl >...>%> vt > vlk+l > > vlk+l,

(note that vlk vt-\ and vlk+1 vt+i). The number of triangles incident at vt

is then equal to k + I — 1.

Two consecutive selected vertices, vtj and vlj+l are connected by an edge.

Indeed, this follows from the fact that every Farey polygon is triangulated.
Therefore, the vertices (vtj, vlj+l, vt) form a triangle (a 3-cycle) in the Farey

graph. Using Eq. (2.1), we obtain by induction:

/ \ F if — 1
x aifc+i ~ ^)ai

»-.(=»..)=K+{k».+.<= +«-,)v
We have:

By assumption, vt is joined by edges with and vlk+t, hence alblR+l —

btalkJrl 1, and a^ —bllal 1. Furthermore, (t^, ty, vlk+i) is also a triangle,
therefore anblk+l —bnalk+l 1. We have finally:

(2.4) vt+i) k + £ — 1.

Hence the lemma.

Theorem 1 is proved.
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2.3. Entries of the frieze pattern. Coxeter's formula (5.6) in [Co] for the

entries of the frieze pattern translates into our language as the following general

expression:

(2.5) ctJ d(v,-2,Vj),

where, as above, (vt) is the Farey n-gon corresponding to the frieze pattern.

3. SL2 -tilings

In this section, we introduce the main notions studied in this paper.

3.1. Tame SL2 -tilings. Let us first recall the notion of SL2 -tiling introduced in

[BR].

(1) An SL2-tiling, is an infinite matrix A
adjacent 2 x 2-minor equals 1:

such that every

1,
&i + l,j <L + l,y + l

for all (/, j) g Z x Z.

(2) The tiling is called tame if every adjacent 3 x 3-minor equals 0:

ahj ai,j+1 ai,j+2

ai+i,j ^fi+1,7+1 al+\^J+2
ai+2,j Ui+2,y + l Ui+2,j+2

0,

for all (/, j) e Z x Z.

Let us stress the fact that a generic SL2-tiling is tame.

3.2. Antiperiodicity. The following condition was also suggested in [BR].
An SL2-tiling is called (n,m)-antiperiodic if every row is n -antiperiodic,

and every column is m -antiperiodic:

Q>i,j+n — Q>i,j ->

for all (/, j) e Z x Z.
The following relation between (n, m) -antiperiodic SL2-tilings and the classical

Coxeter-Conway frieze patterns shows that the antiperiodicity condition for
the SL2-tilings is natural and interesting.
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3.3. Frieze patterns and (w, n) -antiperiodic SL2 -tilings. As explained in [BR],

every Coxeter-Conway frieze pattern of width n — 3 can be extended to a tame

(n,n)-antiperiodic SL2-tiling, in a unique way.
The construction is as follows. One adds two diagonals of O's next to the

diagonals of 1 's, and then continues by antiperiodicity.

Example 3.3.1. The frieze pattern in Figure 1 corresponds to the following (7,7) -

antiperiodic tame SL2-tiling.

1 2 3 1 1 1 0 -1 -2 -3 -1 -1
0 1 2 1 2 3 1 0 -1 -2 -1 -2

-1 0 1 1 3 5 2 1 0 -1 -1 -3
-2 -1 0 1 4 7 3 2 1 0 -1 -4
-1 -1 -1 0 1 2 1 1 1 1 0 -1
-2 -3 -4 -1 0 1 1 2 3 4 1 0

-3 -5 -7 -2 -1 0 1 3 5 7 2 1

-1 -2 -3 -1 -1 -1 0 1 2 3 1 1

0 -1 -2 -1 -2 -1 -1 0 1 2 1 2

For the details of the above construction and the "antiperiodic nature" of
Conway-Coxeter's friezes; see [BR, MOST].

3.4. Positive rectangular domain. In this paper, we are considering (n,m)-
antiperiodic SL2 -tilings that contain an m x n -rectangular domain of positive
integers.

More precisely, we are interested in SL2-tilings of the following form:

(3.1)

-P

-P

-P

where P is an m xn -matrix with entries in Z>0. An example of such an

SL2-tilling is presented in Figure 2.

The following property is important for us.
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Proposition 3.4.1. An (n, m) -antiperiodic Sh2-tiling that contains a positive
m x n -rectangular domain is tame.

Proof. This is a consequence of the Jacobi identity or Dodgson formula for
determinants:

• • •
• • •
• • •

o o o

o • o

o o o

• • o

• • o

o o o

o o o

o • •
o • •

o o o

• • o

• • o

o • •
o • •
o o o

where the white dots represent deleted entries, and the black dots initial entries.

Since the values are non zero and the 2 x 2-minors all equal to 1, the above

identity implies that all the 3x3 -minors vanish.

4. The main theorem

In this section, we formulate our main result. The proof will be given in
Section 6.

4.1. Classification. It turns out that every SL2-tiling corresponds to a pair of
frieze patterns and a positive integer 2x2-matrix M satisfying some conditions.

Theorem 2. The set of (n, m) -antiperiodic SL2-tilings containing a fundamental
rectangular domain of positive integers is in a one-to-one correspondence with
the set of triples (q,q',M), where

q (q0, qn-1), q' (q'0,

are quiddities of order n and m, respectively, and where M — ^ ^ is a

unimodular 2x2 -matrix with positive integer coefficients, such that the inequalities

b c
(4.1) qo < ' q'o< ~

a a

are satisfied.

Remark 4.1.1. It is important to notice that inequalities (4.1) also imply

/x d d
(4.2) qo<~, %<T-c b

Indeed, the unimodular condition ad — be 1 and the assumption that a,b,c,d
are positive integers imply that | < f and f < f •
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Corollary 4.1.2. For every pair of quiddities q,qr, there exist infinitely many
(n, m) -antiperiodic SL2-tilings containing a fundamental rectangular domain of
positive integers.

Proof Given arbitrary pair of quiddities q and qf the matrices:

4.2. The semigroup S. Consider the set of 2x2-matrices with positive integral
entries satisfying the following conditions of positivity:

Note that the inequalities b < d and c < d are included for the sake of
completeness. These inequalities actually follow from a < b, a < c together with
ad — be 1 and the assumption that a,b,c,d are positive.

We have the following property.

Proposition 4.2.1. The set S c SL2(Z) is a semigroup, i.e., it is stable by

multiplication.

Proof. Straightforward.

The semigroup S naturally appears in our context. Indeed, if n, m > 3, then

the inequalities (4.1) imply M e S. Moreover every quiddity q contains a unit

entry, so that after a cyclic permutation of any quiddity one can obtain q0 1.

The inequalities (4.1) then coincide with the conditions (4.3).

4.3. Examples. Let us give two simple examples of SL2-tilings.

satisfy (4.1) for sufficiently large b,c.

(4.3)

Example 4.3.1. There is a one-to-one correspondence between (3, 3)-antiperiodic
SL2-tilings containing a fundamental domain of positive integers and elements

of the semigroup S. Indeed, the only quiddity of order 3 is q (1,1,1). To
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every matrix (4.3) there corresponds the following SL2-tiling:

a b b — a

c d d — c

11 d-b — c -f a

It is a good exercise to check that the positivity condition d—b — c + a>0
follows from (4.3) together with ad — be 1.

Example 4.3.2. In the case n 2 or m 2, the conditions (4.1) become trivial.
Consider also the simplest (degenerate) case of (2,2)-antiperiodic SL2-tilings.

A (2,2)-antiperiodic SL2-tiling containing a fundamental domain of positive
integers is of the form:

• • • a b —a —b

c d —c —d - - -

where ^ ^ is an arbitrary unimodular matrix with positive integer coefficients.

Note that this case corresponds to the "degenerate quiddity" of order 2, namely

q (0,0).

5. Frieze patterns and linear recurrence equations

We will recall here a remarkable and well-known property of Coxeter-Conway
frieze patterns. It concerns a relation of frieze patterns and linear recurrence

equations. The statement presented in this subsection was implicitly obtained

in [CC]; for details see [MOST]. We recall this statement without proof.

5.1. Discrete non-oscillating Hill equations.

Definition 5.1.1. Let (ct)iez be an arbitrary n-periodic sequence of numbers.
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(a) A linear difference equation

(5.1) Vl+1=clVl-Vl-l9
where the sequence (ct) is given (the coefficients) and where (Vt) is unknown

(the solution), is called a discrete Hill, or Sturm-Liouville, or one-dimensional

Schrödinger equation.

(b) The equation (5.1) is called non-oscillating if every solution (Vt) is antiperi-
odic:

for all i, and has exactly one sign change in any sequence (Vt, Vt+\,... Vl+n).

In other words, every solution of a non-oscillating equation must have non-

negative intervals of length n, that is, n consecutive non-negative values:

Moreover, for a generic solution of (5.1), all the elements Vj of a non-negative
interval are strictly positive. Zero values can only occur at the endpoints: Vk 0,

or Vk+n_x 0.
Note also that the coefficients in a non-oscillating equation are necessarily

positive.

5.2. Frieze patterns and difference equations. The relation between the equations

(5.1) and Coxeter-Conway frieze patterns is as follows.

Proposition 5.2.1. Given an equation (5.1) with integer coefficients, it is a non-

oscillating equation ifand only if the coefficients (co, C\, cn-\) form a quiddity.

Proof This is an immediate consequence of properties established by Coxeter

and Conway. Indeed, it was proved in [Co] (see also [CC] property (17)) that the

entries in any row of the pattern (extended by antiperiodicity) form a solution of
an equation (5.1), where the coefficients ct are given by the sequence on the first
non-trivial diagonal. Thus, from an non-oscillating equation one can write down

a frieze, and vice versa.

Vl+n=-Vl9

(yk9...9vk+n-{).

1 Co 1 0 -1

1 c i 1 0 -1
1 c2 i o -i

Finally, the integer condition establishes the correspondence with quiddities.
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Of course, for an arbitrary non-oscillating equation (5.1), the corresponding
frieze pattern does not necessarily have integer entries. In [MOST], the space of
frieze patterns and the space of non-oscillating equation (5.1) are identified in a

more general setting.

Example 5.2.2. (a) The simplest quiddity q (1,1,1) corresponds to the non-

oscillating equation with all ct 1. Every solution of this equation is 3-

antiperiodic and can be obtained as a linear combination of the following two
solutions:

(V^n) (...,0,1,1,0,-1,-1,...), (vt{2)) (...,1,1,0,-1,-1,0...).

This corresponds to a degenerate frieze of Coxeter-Conway of width 0.

(b) The frieze from Figure 1 corresponds to the non-oscillating equation with
7-antiperiodic solutions that are linear combinations of the following two:

(Vta)) (...,1,2,3,1,1,1,0,...), (f/2)) (...,0,1,2,1,2,3,1,...).

The above two solutions are exactly the first two rows of the frieze in Figure 1.

One can of course choose different rows for a basis.

Note that, in the both cases, the basis solutions (f/1^), (V'^) are not generic
since they contain zeros.

6.1. The construction. Given a triple (q,q',M) as in Theorem 2, we will
construct an SF2-tiling satisfying the above conditions. Define T (ahJ) using
the following recurrence relations:

for all z, j e Z, where the quiddities are periodically extended, i.e qt ql+n,q[
and taking the initial conditions

It is very easy to check that the tiling T is well-defined, i.e., the two recurrences
commute and the calculations along the rows and columns give the same result.

We show that the defined tiling T contains a fundamental rectangular domain of
positive integers.

6. Proof of Theorem 2

(6.1)
&i,j-i-i •— ^I,J—i'

di + \,j •= ~ —1,7'

(6.2)



87

antiperiodic. Consider the

1

-1

\am—1,0 0m—1,1 ''' Um—l,n—l/

The main step of the proof of Theorem 2 is the following lemma.

Lemma 6.1.1. The entries of P are positive integers.

Proof It turns out that thanks to Proposition 5.2.1 we will only need to perform
"local" calculation of the elements neighboring to the initial ones:

0-1,-1 a1 0 1

00,-1 a b

01,-1 c d

The conditions (4.1) imply: <20,-i < 0 and a-1?0 < 0. Indeed, from (6.1) and (6.2),
one has

ao-i q$a — b, 0-i,o q'oa ~ c-

Since the rows and the columns of P are solutions of non-oscillating equations,
and a is positive, this implies that all the values of the first row and the first
column of P are positive.

Furthermore, again from the recurrence (6.1), one has

<2-1-1 qoqod ~ qoc - qr0b + d.

The condition (4.1) then implies <2_i?_i > 0. Indeed, one establishes

()<<7o= aqo(d — q'0b) — bqo(c — q'0a) < b(d — q'0b) — bqo(c — q'0a)

b(q0q'0a - q0c - q'0b + d).

Proposition 5.2.1 then guarantees that

<2o,—i <0, am—\ —\ < 0,

<2_i?0 <0, <2_i^_i < 0,

and applying again Proposition 5.2.1, we deduce that all the entries in P are

positive.

SL2(Z)-tilings of the torus

By Proposition 5.2.1, the defined tiling T is (n,m)~
following m x n -subarray of T

a0,0 ^0,1 ••• ^0,n-

p _ al,0 al,l al,n-
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6.2. From tilings to triples. Conversely, consider an (n, m) -periodic SL2 -tiling
T (ahJ)(hJ)ezxz such that the m xn-subarray P given by (6.3) consists of
positive integers. We claim that T can be obtained by the above construction.

Lemma 6.2.1. The ratios of the first two rows of P form a decreasing sequence:

^0,0 <20,1 ClQ,n-l
—— > —— > > —-
^1,0 <2l,l ai,n-l

and similarly for the ratios of the first two columns of P:
ao,i #1,1 Mm-1,1
—— > —— > > —.
a0,0 al,0 am-1,0

Proof This follows from the unimodular conditions <20,7*21,7+1 —<20,7+1^1,7 1

and the assumption that all the entries of P are positive.

Lemma 6.2.2. The entries of T satisfy the recurrence relations (6.1) where

q (qj) and qf (q[) are n-periodic and m-periodic sequences of positive
integers, respectively.

Proof Given (z\y), there is a linear relation

ai,j + l \ _ 3
/ Cli,j \ ahJ~l \

«1 + 1,7 + 1/
hJ

\fli + l,7/
hJ

\ai +1,7 — 1 /
Using the SL2 conditions one immediately obtains the values

^h,7 —lffi + 1,7 + 1 — ^1,7 + 1^1 + 1,7 — 1 > ßi,j h

From Lemma 6.2.1, one has XhJ > 0. Furthermore, it readily follows from the

tameness property (see Proposition 3.4.1) that XhJ actually does not depend on

i, so we use the notation qj := XhJ

The arguments for the rows are similar.

Lemma 6.2.3. The above sequences (qo,... ,qm-i) and (qf0,...,qn-1) are

quiddities.

Proof. The rows, resp. columns, of T are antiperiodic solutions of an equation
(5.1) with ct cl+n qt, resp. ct cl+m q[. It follows from Proposition 5.2.1

that the coefficients are quiddities.

Lemma 6.2.4. The 2x2 left upper block of P, satisfies

#0^0,0 < ao,i,

qbao,o < a 1,0.
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Proof. By antiperiodicity, ao,-i < 0. One has from (6.1): a0,i ^o^o,o — #o5-i>
and similarly for qf0. Hence the result.

In other words, the elements of the matrix

(^o,o
&o,i \

&1,0 al,l J

satisfy (4.1).

Theorem 2 is proved.

7. SL2 -tilings and the Farey graph

In this section, we give an interpretation of the entries ahJ of a doubly
periodic SL2 -tiling. We follow the idea of Coxeter [Co] and consider n-gons in
the classical Farey graph.

7.1. The distance between two n-gons. Consider a doubly periodic SL2-tiling
T (ahJ) and the corresponding triple (q,qf,M) (see Theorem 2). Our next

goal is to give an explicit expression for the numbers ahJ similar to (2.5).
From the triple (q,qf,M) we construct the unique n-gon (u0, v\,..., vn-\)

and the unique m-gon (v'0, v[,..., vfm_f) with the "initial" conditions:

(Vo, Vi) := (f, f) (v'0, v'm_x) - (I, f),
and with the quiddities (.qo,..., qn-1) and (q[,..., q'm), respectively. Notice that
the quiddity q' is shifted cyclically.

Theorem 3. The entries of the SL2-tiling T (ahJ) are given hy

atJ d(y[_vvj),

for all 0 < i < m — 1, 0 < j < n — 1.

Proof The main idea of the proof is to include the n-gon v and the m-gon vr

into a bigger Af-gon in a Farey graph, and then apply Eq. (2.5). In other words,

we will include the fundamental domain P into a (bigger) frieze pattern.
First, let us show that

v'm-2 > Vq> V!> ...> Vn—\ > v'm_x.

Indeed, the vertices vfm_2,vfm-are consecutive vertices of the m-gon v'. By
assumption, v'm_x y, so that the condition
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^iVm—2' ^m—l) ^

implies v'm_2 \ for some I. By Lemma 2.2.2, the distance d(vQ,vfm_2)
coincides with the number of triangles at the vertex v'm_x which is, by
construction, equal to qf0. We finally have:

so that v'm_2 Y' inequality v'm_x > n0 then follows from the second

inequality (4.1).

It is well-known that the Farey graph is connected; see [HW]. Therefore, two

disjoint polygons, v and v\ belong to some Af-gon that contains the n-gon v

and the m-gon v'.
Theorem 3 then follows from formula (2.5).

Example 7.1.1. Consider the tiling given in Figure 2. It corresponds to the

following data:

d(vo,v'm_2) — t — q'0,

The associated 5-gon and 4-gon in the Farey graph are as follows:

and

respectively. They can be included in an 11 -gon; see Figure 6.

o 2

2

7 18

_8 Ü .1 I 0

29 40 11 4 1

Figure 6

The subgraph associated with the tiling in Figure 2



SL2(Z)-tilings of the torus 91

Acknowledgments. We are grateful to Pierre de la Harpe for helpful comments.
S. M-G. and V. O. were partially supported by the PICS05974 "PENTAFRIZ"
of CNRS; S.T. was partially supported by the NSF grant DMS-1105442.

References

[ARS] I. Assem, C. Reutenauer and D. Smith, Friezes, Adv. Math. 225 (2010),
3134-3165. Zbl 1275.13017 MR 2729004

[BM] K. Baur and R.J. Marsh, Frieze patterns for punctured discs, J. Algebraic
Combin. 30 (2009), 349-379. Zbl 1201.05103 MR 2545501

[BR] F. Bergeron and C. Reutenauer, SL^ -Tiling of the Plane, Illinois J. Math.
54 (2010), 263-300. Zbl 1236.13018 MR 2776996

[BHJ] C. Bessenrodt, T. Holm and P. Jorgensen, All SL2 -tilings come from
triangulations, research report MFO.

[CaCh] P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver
representations, Comment. Math. Helv. 81 (2006), 595-616. Zbl 1119.16013

MR 2250855

[CC] J. H. Conway and H. S. M. Coxeter, Triangulated polygons and frieze patterns,
Math. Gaz. 57 (1973), 87-94 and 175-183. Zbl 0285.05028 (87-94), Zbl
0288.05021 (175-183) MR 0461269 (87-94), MR 0461270 (175-183)

[Co] H. S. M. Coxeter, Frieze patterns, Acta Arith. 18 (1971), 297-310. Zbl 0217.18101

MR 0286771

[FZ1] S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations. J. Amer. Math.
Soc. 15 (2002), 497-529. Zbl 1021.16017 MR 1887642

[FZ2] S. Fomin and A. Zelevinsky, The Laurent phenomenon. Adv. in Appl. Math.

28 (2002), 119-144. Zbl 1012.05012 MR 1888840

[HW] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers.

Sixth edition. Revised by D. R. Heath-Brown and J. H. Silverman. With
a foreword by Andrew Wiles. Oxford University Press, Oxford, 2008,
621 pp. Zbl 1159.11001 MR 2445243

[Hen] C.-S. Henry, Coxeter friezes and triangulations of polygons, Amer. Math.

Monthly 120 (2013), 553-558. Zbl 1279.11015 MR 3063120

[HJ] T. Holm and P Jorgensen, SL2-tilings and triangulations of the strip. J. Comb.

Theory, Ser. A 120 (2013), 1817-1834. Zbl 1317.05186 MR 3092700

[MOT] S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and

the cluster structure of the space of polygons, Ann. Inst. Fourier 62 (2012),
937-987. Zbl 1290.13014 MR 3013813

[MOST] S. Morier-Genoud, V. Ovsienko, R. Schwartz and S. Tabachnikov, Linear
difference equations, frieze patterns and combinatorial Gale transform,
Forum Math. Sigma 2 (2014), e22. Zbl 1297.39004 MR 3264259



92 S. Morier-Genoud, V. Ovsienko and S. Tabachnikov

[OT] V. Ovsienko and S. Tabachnikov, Coxeter's frieze patterns and discretization
of the Virasoro orbit, J. Geom. Phys. 87 (2015), 373-381. Zbl 06376735

MR 3282380

[Pro] J. Propp, The combinatorics of frieze patterns and Markoff numbers,
arXiv:math/0511633.

[Scha] R. Schwartz, The computer program "Frieze!", http://www.math.brown.
edu/~res/J ava/Frieze/Main.html.

(Regit le 23 fevrier 2014)

Sophie Morier-Genoud, Sorbonne Universites, UPMC Univ Paris 06, UMR 7586,

Institut de Mathematiques de Jussieu- Paris Rive Gauche, Case 247, 4 place Jussieu,

75005, Paris, France

e-ma il: sophie.morier-genoud@ imj -prg. fr

Valentin Ovsienko, CNRS, Laboratoire de Mathematiques U.F.R. Sciences Exactes et

Naturelles Moulin de la Housse - BP 1039 51687 Reims cedex 2, France

e-mail: valentin.ovsienko@univ-reims.fr

Serge Tabachnikov, Pennsylvania State University, Department of Mathematics,

University Park, PA 16802, USA

e-mail: tabachni@math.psu.edu

© Fondation L'Enseignement Mathematique


	SL2(Z)-tillings of the torus, Coxeter-Conway friezes and Farey triangulations

