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SL,(Z) -tilings of the torus, Coxeter—Conway friezes and
Farey triangulations

Sophie Morier-GENoOuD, Valentin Ovsienko and Serge TABACHNIKOV

Abstract. The notion of SL;-tiling is a generalization of that of classical Coxeter—Conway
frieze pattern. We classify doubly antiperiodic SL; -tilings that contain a rectangular domain
of positive integers. Every such SL»-tiling corresponds to a pair of frieze patterns and
a unimodular 2 x 2-matrix with positive integer coefficients. We relate this notion to
triangulated n-gons in the Farey graph.

Mathematics Subject Classification (2010). Primary 5Al15; Secondary: 11B57, 13F60.

Keywords. Frieze pattern, Sl -tiling, Farey graph, Modular group.

1. Introduction

Frieze patterns were introduced and studied by Coxeter and Conway, [Co, CC],
in the 70’s. A frieze pattern is an infinite array of numbers, bounded by two
diagonals of I’s, such that every four adjacent numbers a, b, ¢, d forming a “small”
square satisfy the relation ad —bc = 1 called the unimodular rule; for an example
see Figure 1. The width of the frieze is the number of diagonals between the
bounding diagonals of 1°’s.

The fundamental Conway—Coxeter theorem [CC] offers the following classifi-
cation: frieze patterns with positive integer entries of width n—3, are in one-to-one
correspondence with triangulations of a convex n-gon; for a simple proof see
[Hen]. More precisely, given a triangulated n-gon in the oriented plane, one con-
structs a frieze of width n—3 as follows. The diagonal next to the diagonal of 1°s
is formed by the numbers of triangles incident at each vertex (taken cyclically).
This, in particular, implies that every diagonal in a frieze of width n — 3 is
n-periodic. Throughout this paper, we will be considering frieze patterns with
positive integer entries.

The following terminology is due to Conway and Coxeter [CC]. A sequence
of n positive integers ¢ = (qo,-..,qn—1) is called a quiddity of order n, if there
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Ficure 1
A 7-periodic frieze pattern and the corresponding triangulated heptagon

exists a triangulated n-gon such that every ¢g; is equal to the number of incident
triangles at i-th vertex. For instance, the example in Figure 1 corresponds to the
following quiddities of order 7: (1,3,2,2,1,4,2),(3,2,2,1,4,2,1),... (cyclic
permutation).

Every quiddity of order n determines a unique positive integer frieze pattern.
Two quiddities correspond to the same positive integer frieze pattern if and only
if they differ by a cyclic permutation. According to the Conway—Coxeter theorem,
positive integer frieze patterns can be enumerated by the Catalan numbers.

Example 1.0.1. For each case n = 3,4 and 5, there is a unique (up to cyclic
permutation) quiddity: (1,1,1), (1,2,1,2) and (1,3,1,2,2), respectively.
For n = 6, there are four different quiddities:

(1,3,1,3,1,3), (1,4,1,2,2,2), (1,2,3,1,2,3), (1,3,2,1,3,2)

and their cyclic permutations.
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We can also consider the “degenerate” case n = 2, where the corresponding
“degenerate” quiddity is (0,0).

Examples of frieze patterns can be constructed using the computer pro-
gram [Schal].

Among many beautiful properties of Coxeter—Conway friezes, the property of
periodicity and so-called Laurent phenomenon are particularly important. They
relate frieze patterns to the theory of cluster algebras developed by Fomin and
Zelevinsky, [FZ1, FZ2].

Various generalizations of Coxeter—Conway friezes have recently been intro-
duced and studied, see [CaCh, Pro, BM, ARS, MOT]. One of the generalizations,
called SL,-tiling, was first considered by Assem, Reutenauer and Smith [ARS],
and further developed by Bergeron and Reutenauer [BR]. An SL,-tiling is an
infinite array of numbers satisfying the above unimodular rule, without the con-
dition of bounding diagonals of 1’s. Unlike the frieze patterns, SL,-tilings are
not necessarily periodic. Nevertheless, correspondences between SL.,-tilings and
triangulations can be established, [HJ, BHJ].

The case of (n, m)-antiperiodic, or “toric” SL,-tilings was suggested in [BR].
In this paper, we study such tilings.

The main results of the paper are the following.

We classify doubly antiperiodic SL,-tilings that contain a rectangular fun-
damental domain of positive integers. We show that every such SL,-tiling is
generated by a pair of quiddities and a unimodular 2 x 2-matrix with positive

2

7 18 29 40 11 -7 —-18 =29 —-40 -11
5 13 21 29 § -5 —-13 21 -29 -8
3

2
-7 —-18 =29 —-40 -11 7 18 29 40 11
-5 —-13 -21 -29 -8 5 13 21 29 8
3

FiGURE 2
A (4, 5)-antiperiodic SL; -tiling with positive rectangular domain
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integer coefficients. Although there are infinitely many such SL;-tilings, their
description is very explicit.

Following the original idea of Coxeter [Co], we also interpret the entries of
a doubly periodic SL,-tiling that contain a rectangular fundamental domain of
positive integers in terms of the Farey graph of rational numbers. Every such
SL, -tiling corresponds to a triple: an n-gon, an m-gon in the Farey graph, and
a totally positive matrix from SL,(Z) relating them. We also obtain an explicit
formula for the entries of the tiling.

2. Farey graph and the Conway-Coxeter theorem

In this section, we give an explanation of the relation between the Coxeter
frieze patterns and triangulated n-gons.

It was already noticed by Coxeter [Co] that a Farey series (of arbitrary order
N) defines a frieze pattern. Moreover, every frieze pattern corresponds to an
n-gon (i.e., an n-cycle) in the Farey graph. A Farey n-gon always carries a
triangulation; we will prove that this triangulation is precisely that of Conway—
Coxeter theorem. This statement seems to be new and to extend the observation
illustrated in [Scha].

2.1. Farey graph, Farey series and Farey n-gons. For two rational numbers,
v1,V2 € Q, written as irreducible fractions v, = % and vy, = Z_;’ the Farey
“distance” is defined by

d(vi,v2) = |a1hy —asby].

Note that the above “distance” does not satisfy the triangle inequality. Recall the
definition of the Farey graph.

(1) The set of vertices of the Farey graph is Q U {oo}, with oo represented by
1

5"
(2) Two vertices, vi,v, are joined by a (non-oriented) edge (vi,v2) whenever
d(vl, Uz) =1.

The Farey graph is often embedded into the hyperbolic half-plane, the edges being
realized as geodesics joining rational points on the ideal boundary.

The following classical properties of the Farey graph can be found in [HW]
(the proof is elementary).

Proposition 2.1.1. (i) Every 3-cycle of the Farey graph is of the form

a) di + a» az}

2.1 @ G Faz a2
o {b1 b+ 52 ba
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(ii) Every edge of the Farey graph belongs to a 3-cycle.

(iii) Edges in the Farey graph do not cross, i.e., for a quadruple vy > vy > v3 > V4
it is not possible to have edges (vi,v3) and (v, vy4).

Definition 2.1.2. The Farey series (also called Farey sequence) of order N is
the sequence of irreducible fractions in [0, 1] whose denominators do not exceed

N.

We will write the sequences in decreasing order; see Figure 3.
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I
w|
Blw
W
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W
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| =
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[

FiGure 3
The Farey series of order 5 embedded in the Farey graph

The following fundamental property of Farey series is also proved in [HW].
It shows that every Farey series is a cycle in the Farey graph.

Proposition 2.1.3. Every two consecutive numbers in a Farey series are joined
by an edge in the Farey graph.

This is less elementary than Proposition 2.1.1, so we propose here a short
proof. Our proof is different from the well-known one, it is based on the classical
Pick formula.

Proof. Consider two consecutive numbers 7 > 7, in a Farey series of some order

N . Suppose that ad — bhc > 2. The quantity 4 = %(ad — bc) is the area of the
Euclidean triangle spanned by the vertices (0,0), (a,b), (¢,d). Pick’s formula
states:

B
A=1+=—1,
3
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(a,b)

(cd)
0,0

FiGure 4
The case of interior point

where [ is the number of integer points in the interior of the triangle, and B
the number of integer points on the border. By assumption, A > 1, and therefore
I+ g > 2. It follows that there exists a point (x,y), which is either inside the

triangle, or on the segment between (a,b) and (c,d) (since the fractions 7 and

% are irreducible). One then has:

y <max(h,d) <N and ﬁ>£>ﬁ_
b y d

This contradicts the assumption that 7 and 7 are consecutive numbers in the

Farey series.
[

Proposition 2.1.3 is used three times to prove the following.

Corollary 2.1.4. Every Farey series forms a triangulated polygon in the Farey
graph.

Proof. We prove this statement by induction on N (the order of Farey series).
Assume that the series of order N — 1 is triangulated. The series of order N is

obtained from that of order N — 1 by adding points of the form %

First, we observe that two points, % and %2 cannot be consecutive. Indeed,
d k—‘, ky 1: that would contradict Proposition 2.1.3; therefore, every new point
N°'N P y p

% appears between two “old” points:

k ,
nok_p
g1 N g

(2.2)

Second, by Proposition 2.1.3, % is joined by edges with % and f]’—i. Third, f;—ll
and % are joined by an edge, according to Proposition 2.1.3 applied to the series
of order N — 1. We conclude that (2.2) is a triangle. ]
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We will be interested in n-cycles (or “n-gons”) in the Farey graph that are
more general than Farey series.

Definition 2.1.5. (1) An n-gon in the Farey graph, or a Farey n-gon is a
decreasing sequence of rationals (vo,...,vs—1):

00> Vg > V1 >...> Uy >0,

such that every pair of consecutive numbers v;,v;i4+1, as well as v,_1, v,
are joined by an edge.

(2) The n-gon is called normalized if vy = oo and v,—; = 0.

Since every n-gon can be embedded in a Farey series, Corollary 2.1.4 implies
the following.

Corollary 2.1.6. Every Farey n-gon is triangulated.

We thus can speak of the quiddity of a Farey n-gon.

Proof. A Farey n-gon is obtained from a Farey series which is a triangulated
polygon, by cutting along diagonals of the triangulation. L]

We define the notion of cyclic equivalence of Farey n-gons. Given an n-gon
(vo,...,vn—1), consider the n-cycle (vi,...,v,—1,00), and renormalize it using
the SL,(Z)-action so that vy = oo and vo = 0. The obtained n-gon is called
cyclically equivalent to the given one. For an example, see Figure 5.

1 2
1

(SN
— =
W =
|
—
o

W |t
W
=

SEES
S =
SNES

FiGure 5
Two cyclically equivalent normalized heptagons in the
Farey graph corresponding to the frieze of Figure 1
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2.2. Farey n-gons and Coxeter—Conway friezes. Proposition 2.1.3 leads to the
following observation due to Coxeter [Col: every Farey series gives rise to a
Coxeter—Conway frieze pattern of positive integers. Along the same lines, we
have the following strengthened statement.

Proposition 2.2.1. The Coxeter—Conway frieze patterns of positive integers of
width n—3 are in one-to-one correspondence with the normalized Farey n-gons,
up to cyclic equivalence.

Proof. The correspondence is given by considering the ratios of two consecutive
rows of the frieze patterns. The sequence

1 ay _a 1 0

vo:6, UIZT, el vi—bi, oy Un—zzb ) Un—lzf

corresponds to the frieze determined by the rows

1 ay dp -+ dp—3 1 0
0 1 b S

and vice versa. ]

The Conway—Coxeter theorem mentioned in the introduction provides a
relation between frieze patterns and triangulations. The following result somewhat
“demystifies” this relation and provides an alternative proof of the Conway—Coxeter
theorem.

Theorem 1. The quiddity of a Farey n-gon coincides with the quiddity of the
corresponding Coxeter—Conway frieze pattern.

Proof. Consider a frieze pattern, and denote by c¢; ; its entries:

0 1 ¢10 c12 -+ cip—3 1 0

0 1 C2.2 e C2n—2 1

where
{ cij=1, i—j=1lor3—n,

Ci,j =0, l'—j =2o0r2—n.
The quiddity of the frieze pattern reads in the n-periodic line (c;;).

Clearly, two consecutive rows determine the rest of the frieze; the following
formula was proved in [Co], formula (5.6):
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Ci,j = C1,j—2C2,j —C1,jC2i—2.
In particular, we have:
(2.3) Ciji = C1,i—2C2,i —C1,iC2,i—2.

The corresponding Farey n-gon has the following vertices

1 1,1 C1,i 1 0

Vo = — UV, = — V] = — Up—2 = Up—1 = —.

0’ 1’ 2, Con—2 1
Therefore, the expression (2.3) reads: ¢;; = d(vi—z,v;). It remains to calculate

the Farey distance between pairs of vertices v,_», and v; in a Farey n-gon.

Lemma 2.2.2. Given a (triangulated) Farey n-gon
aj 1 0

1 al
- s Upn—1 = 7,
1

Vg = — V] = V; = Vp—2 =
0’ 1’ £ bi? ?

the Farey distance d(vi—1,viy1) coincides with the number of triangles incident

bn—2

at v;.

Proof. Among all the vertices of the n-gon (v;), let us select those connected to
v; by edges of the Farey graph. Denote by {vi,,..., i}, 1€SP. {Vip - s Vigiy)
the vertices at the left, resp. right, of v;, so that

Vip = ... > Vi >vi>v,~k+1 >"'>Uik—9—é’

(note that v;, = v;—1 and v;_, = v;4+1). The number of triangles incident at v;
is then equal to kK + ¢ — 1.

Two consecutive selected vertices, v;; and v;;, are connected by an edge.
Indeed, this follows from the fact that every Farey polygon is triangulated.
Therefore, the vertices (vi;,vi;,,,v;) form a triangle (a 3-cycle) in the Farey
graph. Using Eq. (2.1), we obtain by induction:

ai, + (k — Da; Vint(= vi, ) = iy T ¢ —1a;
bi, + (k — Db;’ T e+ (U= Dby

vi—l(: Uik) =
We have:
d(Vi-1,Vi+1) = ai; biy,—biyaiy  +(k—1)(a; by, —biai, . )+ {U—1)(ai, bi—b; a;).

By assumption, v; is joined by edges with v; and wv;_,,, hence a;b;  , —
biaj,,, =1, and a; b; —b; a; = 1. Furthermore, (v;,,v;,v;, ) is also a triangle,
therefore a;, bi, ., — biyai, ., = 1. We have finally:

(2.4) d(i—1,vi41) =k +£—1.
Hence the lemma. []

Theorem 1 is proved. [J
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2.3. Entries of the frieze pattern. Coxeter’s formula (5.6) in [Co] for the
entries of the frieze pattern translates into our language as the following general
expression:

(2.5) ci,j = d(vi—2,vj),

where, as above, (v;) is the Farey n-gon corresponding to the frieze pattern.

3. SL,-tilings
In this section, we introduce the main notions studied in this paper.

3.1. Tame SL;-tilings. Let us first recall the notion of SL,-tiling introduced in
[BR].
(1) An SL,-tiling, is an infinite matrix A = (a; )i, j)ezxz, such that every

adjacent 2 x 2-minor equals 1:

ai,j ajj+1
ai+1,; di+1,j+1

=1,

for all (i,j)eZ x 7.
(2) The tiling is called tame if every adjacent 3 x 3-minor equals O:
ai,j i, j+1 ai,j+2
dit1,j Qit1,j+1  dit1,j+2| =0,
di+2,j di42,j+1 di42,j+2
forall (i,j) e Z xZ.

Let us stress the fact that a generic SL,-tiling is tame.

3.2. Antiperiodicity. The following condition was also suggested in [BR].
An SL,-tiling is called (n,m)-antiperiodic if every row is n-antiperiodic,
and every column is m-antiperiodic:

Ai,j+n = —dij ,
ditm,j = —dij
for all (i,j)eZxZ.
The following relation between (n,m)-antiperiodic SL,-tilings and the clas-

sical Coxeter—Conway frieze patterns shows that the antiperiodicity condition for
the SL-tilings is natural and interesting.
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3.3. Frieze patterns and (n, n)-antiperiodic SL, -tilings. As explained in [BR],
every Coxeter—Conway frieze pattern of width n — 3 can be extended to a tame
(n,n)-antiperiodic SL;-tiling, in a unique way.

The construction is as follows. One adds two diagonals of 0’s next to the
diagonals of 1’s, and then continues by antiperiodicity.

Example 3.3.1. The frieze pattern in Figure 1 corresponds to the following (7,7)-
antiperiodic tame SL,-tiling.

_— ...
(9]
_— ..
p—

Z 3 1 1 1 0 —2
0 1 2 1 2 3 1 o -1 -2 -1 =2
—1 0 1 1 3 5 2 1 0 -1 -1 =3
-2 -1 0 1 4 7 3 2 1 0o -1 —4
-1 -1 -1 0 1 2 1 1 1 1 0 -1
-2 -3 —4 -] 0 1 1 2 3 4 1 0
-3 =5 =7 =2 -1 0 1 35 7 2 1
-1 -2 -3 -1 -1 -1 0 1 2 3 1 1
o -1 -2 -1 -2 -1 -1 0 1 2 1 2

For the details of the above construction and the “antiperiodic nature” of
Conway—Coxeter’s friezes; see [BR, MOST].

3.4. Positive rectangular domain. In this paper, we are considering (n,m)-
antiperiodic SL,-tilings that contain an m x n-rectangular domain of positive
integers.

More precisely, we are interested in SL;-tilings of the following form:

(3.1)

where P is an m x n-matrix with entries in Z.o. An example of such an
SL, -tilling is presented in Figure 2.
The following property is important for us.
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Proposition 3.4.1. An (n,m)-antiperiodic SL,-tiling that contains a positive
m X n -rectangular domain is tame.

Proof. This is a consequence of the Jacobi identity or Dodgson formula for
determinants:

[ ] [ ] ®| (O o (@] [ [ ol [O o o o o ol |O [ ] [ ]
[ ] [ ] ®| (O [ ] o| = |@ [ ol [O [ ] | — |@® [ ] ol |O [ ] [ ]
[ ] [ ] @®| (O o] (@] (@] (@] (e e [ ] [ [ ] [ ] ol |O o] o

where the white dots represent deleted entries, and the black dots initial entries.
Since the values are non zero and the 2 x 2-minors all equal to 1, the above
identity implies that all the 3 x 3-minors vanish. [

4. The main theorem

In this section, we formulate our main result. The proof will be given in
Section 6.

4.1. Classification. It turns out that every SL,-tiling corresponds to a pair of
frieze patterns and a positive integer 2 x 2-matrix M satisfying some conditions.

Theorem 2. The set of (n, m)-antiperiodic SL,-tilings containing a fundamental
rectangular domain of positive integers is in a one-to-one correspondence with
the set of triples (q,q', M), where

q = (QO, .. -aqi’l—l)a ql = (q6’ ’q;/n—l)

s : a b\ .
are quiddities of order n and m, respectively, and where M = i is a
c
unimodular 2x2-matrix with positive integer coefficients, such that the inequalities
b c
(4.1) o <—,  gy<-—
a a

are satisfied.

Remark 4.1.1. It is important to notice that inequalities (4.1) also imply

d d

Indeed, the unimodular condition ad —bc = 1 and the assumption that «,b,c,d

are positive integers imply that f—l < % and - < %.
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Corollary 4.1.2. For every pair of quiddities q,q', there exist infinitely many
(n, m)-antiperiodic SL,-tilings containing a fundamental rectangular domain of
positive integers.

Proof. Given arbitrary pair of quiddities ¢ and ¢’, the matrices:

1 b
¢ be+1

satisfy (4.1) for sufficiently large b,c. O

4.2. The semigroup S. Consider the set of 2 x2-matrices with positive integral
entries satisfying the following conditions of positivity:

4.3) S= {(Z‘ 2) € SLy(Z)

Note that the inequalities » < d and ¢ < d are included for the sake of
completeness. These inequalities actually follow from a < b, a < ¢ together with
ad —bc =1 and the assumption that a,b,c,d are positive.

O<a<c<d.

O<a<b<d,}

We have the following property.

Proposition 4.2.1. The set S C SLy(Z) is a semigroup, i.e., it is stable by
multiplication.

Proof. Straightforward. [

The semigroup S naturally appears in our context. Indeed, if n,m > 3, then
the inequalities (4.1) imply M € S. Moreover every quiddity g contains a unit
entry, so that after a cyclic permutation of any quiddity one can obtain gg = 1.
The inequalities (4.1) then coincide with the conditions (4.3).

4.3. Examples. Let us give two simple examples of SL, -tilings.

Example 4.3.1. There is a one-to-one correspondence between (3, 3)-antiperiodic
SL, -tilings containing a fundamental domain of positive integers and elements
of the semigroup S. Indeed, the only quiddity of order 3 is ¢ = (1,1,1). To
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every matrix (4.3) there corresponds the following SL, -tiling:

a b b—a
c d d—c
c—a d—-—b d—b—c+a

It is a good exercise to check that the positivity condition d —b —c +a > 0
follows from (4.3) together with ad —bhc = 1.

Example 4.3.2. In the case n =2 or m = 2, the conditions (4.1) become trivial.

Consider also the simplest (degenerate) case of (2, 2)-antiperiodic SL, -tilings.
A (2,2)-antiperiodic SL;-tiling containing a fundamental domain of positive
integers is of the form:

a b\ . . . o e .
where g ] isan arbitrary unimodular matrix with positive integer coefficients.
c

Note that this case corresponds to the “degenerate quiddity” of order 2, namely
q = (0,0).

5. Frieze patterns and linear recurrence equations
We will recall here a remarkable and well-known property of Coxeter—Conway
frieze patterns. It concerns a relation of frieze patterns and linear recurrence

equations. The statement presented in this subsection was implicitly obtained
in [CC]; for details see [MOST]. We recall this statement without proof.

5.1. Discrete non-oscillating Hill equations.

Definition 5.1.1. Let (c;);ez be an arbitrary n-periodic sequence of numbers.
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(a) A linear difference equation
(5.1 Vie1 = ¢iVi = Vi,

where the sequence (c;) is given (the coefficients) and where (V;) is unknown
(the solution), is called a discrete Hill, or Sturm-Liouville, or one-dimensional
Schrodinger equation.
(b) The equation (5.1) is called non-oscillating if every solution (V;) is antiperi-
odic:
Vi+n = _Vi,

for all i, and has exactly one sign change in any sequence (V;, Vit1,...Vitn).

In other words, every solution of a non-oscillating equation must have non-
negative intervals of length n, that is, n consecutive non-negative values:
Vs oo os Vietn—1)-

Moreover, for a generic solution of (5.1), all the elements V; of a non-negative
interval are strictly positive. Zero values can only occur at the endpoints: Vy =0,
or Vign—1 =0.

Note also that the coeflicients in a non-oscillating equation are necessarily
positive.

5.2. Frieze patterns and difference equations. The relation between the equa-
tions (5.1) and Coxeter—Conway frieze patterns is as follows.

Proposition 5.2.1. Given an equation (5.1) with integer coefficients, it is a non-
oscillating equation if and only if the coefficients (cg, 1, ..., Cn—1) form a quiddity.

Proof. This is an immediate consequence of properties established by Coxeter
and Conway. Indeed, it was proved in [Co] (see also [CC] property (17)) that the
entries in any row of the pattern (extended by antiperiodicity) form a solution of
an equation (5.1), where the coefficients ¢; are given by the sequence on the first
non-trivial diagonal. Thus, from an non-oscillating equation one can write down
a frieze, and vice versa.

Finally, the integer condition establishes the correspondence with quiddities. [J
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Of course, for an arbitrary non-oscillating equation (5.1), the corresponding
frieze pattern does not necessarily have integer entries. In [MOST], the space of
frieze patterns and the space of non-oscillating equation (5.1) are identified in a
more general setting.

Example 5.2.2. (a) The simplest quiddity ¢ = (1,1, 1) corresponds to the non-
oscillating equation with all ¢; = 1. Every solution of this equation is 3-
antiperiodic and can be obtained as a linear combination of the following two
solutions:

V) =(...,0,1,1,0,—1,—1,...), V) =(...,1,1,0,-1,-1,0...).

This corresponds to a degenerate frieze of Coxeter—Conway of width 0.
(b) The frieze from Figure 1 corresponds to the non-oscillating equation with
7-antiperiodic solutions that are linear combinations of the following two:

vy =(..,1,2,3,1,1,1,0,...), V) =(..,0,1,2,1,2,3,1,...).

The above two solutions are exactly the first two rows of the frieze in Figure 1.
One can of course choose different rows for a basis.

Note that, in the both cases, the basis solutions (Vi(l)), (Vi(z)) are not generic
since they contain zeros.

6. Proof of Theorem 2

6.1. The construction. Given a triple (¢,q’, M) as in Theorem 2, we will
construct an SL,-tiling satisfying the above conditions. Define T = (a; ;) using
the following recurrence relations:

di,j+1 = 4;dij —dij—-1,
(6.1) }
for all i, j € Z, where the quiddities are periodically extended, i.e ¢; = qi4n.q; =

q; .., and taking the initial conditions

62) do,0 do,1 o a b .
aio dia c d

It is very easy to check that the tiling 7 is well-defined, i.e., the two recurrences
commute and the calculations along the rows and columns give the same result.
We show that the defined tiling 7' contains a fundamental rectangular domain of
positive integers.
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By Proposition 5.2.1, the defined tiling 7 is (n,m)-antiperiodic. Consider the
following m x n-subarray of T

a0,0 ao,1 < ao,n—1
ai,0 ai, dlin—1
(6.3) P = ¢
Aqm-1,0 4dm-1,1 *°° Am—1,n-1

The main step of the proof of Theorem 2 is the following lemma.
Lemma 6.1.1. The entries of P are positive integers.

Proof. It turns out that thanks to Proposition 5.2.1 we will only need to perform
“local” calculation of the elements neighboring to the initial ones:

a—1,-1 |6l—1,0 a—1,1

agp,—1 a b

ar,—1 C d

The conditions (4.1) imply: a9,—1 <0 and a_;,0 < 0. Indeed, from (6.1) and (6.2),
one has

/
do,—1 = qoa — b, a—1,0 = qoad —C.

Since the rows and the columns of P are solutions of non-oscillating equations,
and a is positive, this implies that all the values of the first row and the first
column of P are positive.

Furthermore, again from the recurrence (6.1), one has

a_1,—1 = qoqoa — qo¢ —qob + d.
The condition (4.1) then implies a—;—; > 0. Indeed, one establishes

0 < qo = aqo(d — qob) — bgo(c — gga) < b(d — qob) — bgo(c — gga)
= b(qoqpa — qoc — qob + d).

Proposition 5.2.1 then guarantees that

dog,—1 < 0, .. -y Opm—1,—1 < O,

d—_1,0 < O, ceey 4 p—1 < O,

and applying again Proposition 5.2.1, we deduce that all the entries in P are
positive. ]



88 S. MorIER-GENoOUD, V. Ovsienko and S. TABACHNIKOV

6.2. From tilings to triples. Conversely, consider an (n,m)-periodic SL, -tiling
T = (ai,j)i,j)ezxz such that the m x n-subarray P given by (6.3) consists of
positive integers. We claim that 7' can be obtained by the above construction.

Lemma 6.2.1. The ratios of the first two rows of P form a decreasing sequence:
do,0 _ do,1 ao,n—1
— > > >
dio di, d1,n—1

and similarly for the ratios of the first two columns of P :

ap,1 ain adm—1,1
— > —— > ... >

ap,o aio Am—1,0

Proof. This follows from the unimodular conditions ag jai,;+1 —ao,j+141,; =1
and the assumption that all the entries of P are positive. l

Lemma 6.2.2. The entries of T satisfy the recurrence relations (6.1) where
q = (q;) and q' = (q;) are n-periodic and m-periodic sequences of positive
integers, respectively.

Proof. Given (i, j), there is a linear relation

ai,j+1 ai,j 4, j—1
BORY R VA D R P
di+1,j+1 dj+1,j ai+1,j-1

Using the SL, conditions one immediately obtains the values

Aij = dij-1Gi41,j+1 — i j+1dit1,j—1, pi,j = —L

From Lemma 6.2.1, one has A;; > 0. Furthermore, it readily follows from the
tameness property (see Proposition 3.4.1) that A; ; actually does not depend on
i, so we use the notation g, 1= A; ;.

The arguments for the rows are similar. [
Lemma 6.2.3. The above sequences (qo....,qm—1) and (qy,...,qn—1) are
quiddities.

Proof. The rows, resp. columns, of 7 are antiperiodic solutions of an equation
(5.1) with ¢; = ¢j4n = qi, r€Sp. ¢; = Ciym = q; . It follows from Proposition 5.2.1
that the coeflicients are quiddities. [

Lemma 6.2.4. The 2 x 2 left upper block of P, satisfies

dodo,o < do,1,

/
qp 40,0 < d1,0-
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Proof. By antiperiodicity, ag,—; < 0. One has from (6.1): ao,1 = qo @00 —do,~1.,
and similarly for g;. Hence the result. ]

In other words, the elements of the matrix

do,0 doa\  fa b
di,o di,1 \c d
satisfy (4.1).
Theorem 2 is proved.

7. SL;-tilings and the Farey graph

In this section, we give an interpretation of the entries g;; of a doubly
periodic SL,-tiling. We follow the idea of Coxeter [Co] and consider n-gons in
the classical Farey graph.

7.1. The distance between two n-gons. Consider a doubly periodic SL;-tiling
T = (a;,;) and the corresponding triple (q.q’. M) (see Theorem 2). Our next
goal is to give an explicit expression for the numbers a; ; similar to (2.5).

From the triple (g,q’, M) we construct the unique n-gon (vg,v1,...,Vn—1)
and the unique m-gon (vy,vy,...,v,,_,) with the “initial” conditions:

o) = (2 5).  (hvp-t) =9

and with the quiddities (qo,....qs—1) and (q}.....q,,). respectively. Notice that
the quiddity ¢’ is shifted cyclically.

[ (=)

Theorem 3. The entries of the SL,-tiling T = (a;,j) are given by
ai,j = d(vi_,.vj),

forall 0<i<m-1,0<j<n-—1.

Proof. The main idea of the proof is to include the n-gon v and the m-gon v’
into a bigger N-gon in a Farey graph, and then apply Eq. (2.5). In other words,
we will include the fundamental domain P into a (bigger) frieze pattern.

First, let us show that

Vo > Vg > U1 > ... > Uy > U .

! / / ~ : : !
12> Um_1,> Uy are consecutive vertices of the m-gon v'. By

r 0 o
m—1 = 1, S0 that the condition

Indeed, the vertices v
assumption, v
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AUy Vppq) = 1

implies v),_, = 7 for some (. By Lemma 2.2.2, the distance d(v(,v},_,)

m—2
coincides with the number of triangles at the vertex v,,_, which is, by

construction, equal to g;. We finally have:

d(vy, vi,_p) =€ = qy,

4

so that v’ —

. 'The inequality v,,_, > vo then follows from the second
inequality (4.1).

It is well-known that the Farey graph is connected; see [HW]. Therefore, two
disjoint polygons, v and v’, belong to some N -gon that contains the n-gon v
and the m-gon v’.

Theorem 3 then follows from formula (2.5). ]

Example 7.1.1. Consider the tiling given in Figure 2. It corresponds to the
following data:

2 5
qg=1(1,2,2,1,3), q =2,1,2,1), M = .
7 18

The associated 5-gon and 4-gon in the Farey graph are as follows:

2 5 8 11 3 , I 110
V= — —y ——y —, — 'y aIld v = s T S T
7 18 29 40 11 01 21

respectively. They can be included in an 11-gon; see Figure 6.

FiGure 6

The subgraph associated with the tiling in Figure 2



SL(Z)-tilings of the torus 91

Acknowledgments. We are grateful to Pierre de la Harpe for helpful comments.
S. M-G. and V. O. were partially supported by the PICS05974 “PENTAFRIZ”
of CNRS; S.T. was partially supported by the NSF grant DMS-1105442.

[ARS]

[BM]

[BR]

[BHJ]

[CaCh]

[CC]

[Co]

[FZ1]

[FZ2]

[HW]

[Hen]

[HI]

[MOT]

[MOST]

References

I. Assem, C. ReEuTENAUER and D. SmitH, Friezes, Adv. Math. 225 (2010),
3134-3165. Zbl 1275.13017 MR 2729004

K. Baur and R.J. Marsh, Frieze patterns for punctured discs, J. Algebraic
Combin. 30 (2009), 349-379. Zbl 1201.05103 MR 2545501

F. Bergeron and C. REUTENAUER, SLjg -Tiling of the Plane, Illinois J. Math.
54 (2010), 263-300. Zbl 1236.13018 MR 2776996

C. BessenropT, T. HoLm and P. Jorcensen, All SL;-tilings come from
triangulations, research report MFO.

P. CaLpero and F. Cuapoton, Cluster algebras as Hall algebras of quiver
representations, Comment. Math. Helv. 81 (2006), 595-616. Zbl 1119.16013
MR 2250855

J.H. Conway and H. S. M. CoxgTeRr, Triangulated polygons and frieze patterns,
Math. Gaz. 57 (1973), 87-94 and 175-183. Zbl 0285.05028 (87-94), Zbl
0288.05021 (175-183) MR 0461269 (87-94), MR 0461270 (175-183)

H. S. M. CoxETERr, Frieze patterns, Acta Arith. 18 (1971), 297-310. Zbl 0217.18101
MR 0286771

S. Fomin and A. ZeLevinsky, Cluster algebras. 1. Foundations. J. Amer. Math.
Soc. 15 (2002), 497-529. Zbl 1021.16017 MR 1887642

S. Fomin and A. ZeLevinsky, The Laurent phenomenon. Adv. in Appl. Math.
28 (2002), 119-144. Zbl 1012.05012 MR 1888840

G.H. Harpy and E.M. WriGHT, An introduction to the theory of numbers.
Sixth edition. Revised by D.R. HEaTH-BrowN and J. H. SiLvErmMaN. With
a foreword by Andrew WiLes. Oxford University Press, Oxford, 2008,
621 pp. Zbl 1159.11001 MR 2445243

C.-S. Henry, Coxeter friezes and triangulations of polygons, Amer. Math.
Monthly 120 (2013), 553-558. Zbl 1279.11015 MR 3063120

T. HoLm and P. JorGENSEN, SL-tilings and triangulations of the strip. J. Comb.
Theory, Ser. A 120 (2013), 1817-1834. Zbl 1317.05186 MR 3092700

S. Morier-GeNouD, V. Ovsienko and S. TaBAcHNIKOv, 2-frieze patterns and
the cluster structure of the space of polygons, Ann. Inst. Fourier 62 (2012),
937-987. Zbl 1290.13014 MR 3013813

S. Morier-GeNouD, V. Ovsienko, R. ScawarTtz and S. TaBacHNikov, Linear
difference equations, frieze patterns and combinatorial Gale transform,
Forum Math. Sigma 2 (2014), e22. 7Zbl 1297.39004 MR 3264259



92 S. MorIER-GENoOUD, V. Ovsienko and S. TABACHNIKOV

[OT] V. Ovsienko and S. TaBacHnikov, Coxeter’s frieze patterns and discretization
of the Virasoro orbit, J. Geom. Phys. 87 (2015), 373-381. Zbl 06376735
MR 3282380

[Pro] J. Propp, The combinatorics of frieze patterns and Markoff numbers,
arXiv:math/0511633.

[Scha] R. Scuwartz, The computer program ‘“Frieze!”, http://www.math.brown.

edu/~res/Java/Frieze/Main.html.
(Regu le 23 février 2014)

Sophie Morier-GenouD, Sorbonne Universités, UPMC Univ Paris 06, UMR 7586,
Institut de Mathématiques de Jussieu- Paris Rive Gauche, Case 247, 4 place Jussieu,
75005, Paris, France

e-mail: sophie.morier-genoud @imj-prg.fr

Valentin Ovsienko, CNRS, Laboratoire de Mathématiques U.F.R. Sciences Exactes et
Naturelles Moulin de la Housse — BP 1039 51687 Reims cedex 2, France

e-mail: valentin.ovsienko @univ-reims.fr

Serge TaBacHNIkov, Pennsylvania State University, Department of Mathematics,
University Park, PA 16802, USA

e-mail: tabachni @math.psu.edu

© Fondation IENSEIGNEMENT MATHEMATIQUE



	SL2(Z)-tillings of the torus, Coxeter-Conway friezes and Farey triangulations

