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On Karamata’s proof of
the Landau-Ingham Tauberian theorem

Michael MUGER

Abstract. This is a self-contained exposition of (a generalization of) Karamata’s little known
elementary proof of the Landau—Ingham Tauberian theorem, a result in real analysis from
which the Prime Number Theorem follows in a few lines.

Mathematics Subject Classification (2010). Primary: 11INOS5; Secondary: 40E0S.

Keywords. Prime number theorem, elementary proof, Tauberian theorem.

1. Introduction

The aim of this paper is to give a self-contained, accessible and ‘elementary’
proof of of the following theorem, which we call the Landau-Ingham Tauberian
theorem:

Theorem 1.1. Let [ : [1,00) — R be non-negative and non-decreasing and
assume that

(1.1)

F(x):= Z f (f) satisfies F(x) = Axlogx + Bx + C i +o0 T ).
— " \n log x log x

Then f(x) = Ax + o(x), equivalently f(x) ~ Ax.

The interest of this theorem derives from the fact that, while ostensibly it is a
result firmly located in classical real analysis, the prime number theorem (PNT)
(x) ~ @ can be deduced from it by a few lines of Chebychev-style reasoning
(cf. the Appendix).

Versions of Theorem 1.1 were proven by Landau [Lan, §160] as early as
1909, Ingham [Ing, Theorem 1], Gordon [Gor] and Ellison [Ell, Theorem 3.1],

but none of these proofs was from scratch. Landau used as input the identity
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>, @ = —1. But the latter easily implies M(x) = Y, _, u(n) = o(x) which
(as also shown by Landau) is equivalent to the PNT. Actually, >, % = —1
is ‘stronger’ than the PNT in the sense that it cannot be deduced from the latter
(other than by elementarily reproving the PNT with a sufficiently strong remainder
estimate). In this sense, Gordon’s version of Theorem 1.1 is an improvement, in
that he uses as input exactly the PNT (in the form v (x) ~ x) and thereby
shows that Theorem 1.1 is not ‘stronger’ than the PNT. Ellison’s version assumes
M(x) = o(x) (and an O(x#) remainder with g < 1 in (L1)). It is thus clear that
none of these approaches provides a proof of the PNT. Ingham’s proof, on the
other hand, starts from the information that {(1+it) # 0 (which can be deduced
from the PNT, but also be proven ab initio). Thus his proof is not ‘elementary’,
but arguably it is one of the nicer and more conceptual deductions of the PNT
from ¢(1 4+ it) # 0 — though certainly not the simplest (which is [Zag]) given
that the proof requires Wiener’s L!-Tauberian theorem.

Our proof of Theorem 1.1 will essentially follow the elementary Selberg-style
proof given by Karamata ! [Karl] under the assumption that f is the summatory
function of an arithmetic function, i.e. constant between successive integers. We
will remove this assumption. For the proof of the PNT, this generality is not
needed, but from an analysis perspective it seems desirable, and it brings us fairly
close to Ingham’s version of the theorem, which differed only in having o(x)
instead of C @ + o( 10’gc ~) in the hypothesis.

Unfortunately, Karamata’s paper [Karl] seems to be essentially forgotten: There
are so few references to it that we can discuss them all. It is mentioned in [EI]
by Erdds and Ingham and in the book [EIll] of Ellison and Mendes-France.
(Considering that the latter authors know Karamata’s work, one may find it
surprising that for their elementary proof of the PNT they chose the somewhat
roundabout route of giving a Selberg-style proof of M(x) = o(x), using this to
prove a weak version of Theorem 1.1, from which then ¥ (x) ~ x is deduced.) Even
the two books [BGT, Kor] on Tauberian theory only briefly mention Karamata’s
[Karl] (or just the survey paper [Kar2]) but then discuss in detail only Ingham’s
proof. Finally, [Karl, Kar2] are cited in the recent historical article [Nik], but
its emphasis is on other matters. We close by noting that Karamata is not even
mentioned in the only other paper pursuing an elementary proof of a Landau-
Ingham theorem, namely Balog’s [Ba], where a version of Theorem 1.1 with a
(fairly weak) error term in the conclusion is proven.

Our reason for advertising Karamata’s approach is that, in our view, it is the
conceptually cleanest and simplest of the Selberg—Erd&s style proofs of the PNT,

INote des éditeurs: Jovan Karamata, né prés de Belgrade en 1902 et mort a Geneve en 1967, fut
professeur a Geneve des 1951 et directeur de L'Enseignement Mathématique de 1954 a 1967. Voir M.
Tomié, Jovan Karamata (1902-1967), Enseignement Math. (2) 15, 1-20 (1969).
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cf. [Sel, Erdl] and followers, e.g. [PR, Nev, Kal, Lev, Sch, Pol]. For f = ¢
and f(x) = M(x) + |x], Theorem 1.1 readily implies ¥ (x) = x + o(x) and
M(x) = o(x), respectively. Making these substitutions in advance, the proof
simplifies only marginally, but it becomes less transparent (in particular for
f = 1) due to an abundance of non-linear expressions. By contrast, Theorem 1.1
is linear w.r.t. f and F. To be sure, also the proof given below has a non-linear
core, cf. (3.2) and Proposition 3.14, but by putting the latter into evidence, the
logic of the proof becomes clearer. One is actually led to believe that the non-
linear component of the proof is inevitable, as is also suggested by Theorem 2
in Erdds’ [Erd2], to wit

N N
ar =0 Yk =1 A Y kag+ Y agap=N>+0(1) = ) ap =N + O(1),
k=1 k+I<N k=1

from which the PNT can be deduced with little effort. (Cf. [HT] for more in this
direction.)

Another respect in which [Karl] is superior to most of the later papers,
including V. Nevanlinna’s [Nev] (whose approach is adopted by several books
[Sch, Pol]), concerns the Tauberian deduction of the final result from a Selberg-
style integral inequality. In [Karl], this is achieved by a theorem (Theorem 2.4
below, attributed to Erdds) with clearly identified, obviously minimal hypotheses
and an elegant proof. This advantage over other approaches like [Nev], which
tend to use further information about the discontinuities of the function under
consideration, is essential for our generalization to arbitrary non-decreasing
functions. However, we will have to adapt the proof (not least in order to work
around an obscure issue).

In our exposition we make a point of avoiding the explicit summations over
(pairs of) primes littering many elementary proofs, almost obtaining a proof of the
PNT free of primes! This is achieved by defining the Mobius and von Mangoldt
functions p© and A in terms of the functional identities they satisfy and using
their explicit computation only to show that they are bounded and non-negative,
respectively. Some of the proofs are formulated in terms of parametric Stieltjes
integrals, typically of the form [ f(x/t)dg(¢) and integration by parts. We also do
this in situations where f and g may both be discontinuous. Since our functions
will always have bounded variation, thus at most countably many discontinuities,
this can be justified by observing that the resulting identities hold for all x outside
a countable set. Alternatively, we can replace f(x) at every point of discontinuity
by (f(x+4+0)+ f(x—0))/2 without changing the asymptotics. For such functions,
integration by parts always holds in the theory of Lebesgue-Stieltjes integration,
cf. [Hew, HS].
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The author hopes that the proof of Theorem 1.1 given below will help
dispelling the prejudice that the elementary proofs of the PNT are (conceptionally
and/or technically) difficult. Indeed he thinks that this is the most satisfactory
of the elementary (and in fact of all) proofs of the PNT in that, besides not
invoking complex analysis or Riemann’s ¢-function, it minimizes number theoretic
reasoning to a very well circumscribed minimum. One may certainly dispute that
this is desirable, but we will argue elsewhere that it is.

The author is of course aware of the fact that the more direct elementary
proofs of the PNT give better control of the remainder term. (Cf. the review
[Dia] and the very recent paper [Kou], which provides a “a new and largely
elementary proof of the best result known on the counting function of primes in
arithmetic progressions”.) It is not clear whether this is necessarily so.

Acknowledgments. The author would like to thank the referees for constructive
comments that led to several improvements, in particular a better proof of Corollary
4.3.

2. First steps and strategy
Proposition 2.1. Let f : [1,00) — R be non-negative and non-decreasing and
assume that F(x) =) f(x/n) satisfies F(x) = Axlogx + Bx + o(x). Then
() f(x) = 0(x).

(ii) ’ w = Alogx + O(1).
1-0 !

(iii) /lx f(t)t—z_Atdz = 0(1).

Proof. (i) Following Ingham [Ing], we define f to be 0 on [0,1) and compute

n<x .

X

=1 5) 1 (§) - Fi-2 ()

= Axlogx 4+ Bx —2(A§10g% + Bg) + o(x)

= Axlog2 + o(x).

With positivity and monotonicity of f, this gives f(x)— f(x/2) < Kx for some
K > 0. Adding these inequalities for x,%,%,..., we find f(x) <2Kx. Together

with f > 0, this gives (i). o
(ii)) We compute
X X X
Fo = (5)= [ r(3)au

n<x
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(1 (- [ e ()

= @trm—ren— [ rar (B)+ [ - upar (3)

1-0 1-0

—ow+ [ Zarw+ [ a-1nar (3.

-0

In view of 0 <t — |f] < 1 and the weak monotonicity of f, the last integral
is bounded by |f1x df(x/t)| = f(x) — f(1), which is O(x) by (i). Using the
hypothesis about F, we have

Axlogx + Bx + o(x) = O(x) + x /x 40 + O(x),

1—0 !
and division by x proves the claim.
(iii) Integrating by parts, we have

A Al P A9 S DA Y !
/1 o dt = . +./1_0 ; /1tdt
= O0(1)+ (Alogx + O(1)) — Alogx = O(1),

where we used (i) and (ii). L]

Remark 2.2. 1. The proposition can be proven under the weaker assumption
F(x) = Axlogx + O(x), but we don’t bother since later we will need the
stronger hypothesis anyway.

2. Theorem 1.1, which we ultimately want to prove, implies a strong form of
(iii): [, 1°° %d t = B—yA, cf. [Ing]. Conversely, existence of the improper
integral already implies f(x) ~ Ax, cf. [Zag].

3. Putting f = v and using (A.1), the above proofs of (i) and (ii) reduce to
those of Chebychev and Mertens, respectively. d

The following two theorems will be proven in Sections 3 and 4, respectively:

Theorem 2.3. Let f, F be as in Theorem 1.1. Then g(x) = f(x) — Ax satisfies
X

g _ 1 / g
1

x ~ logx {2

(2.1) dt +o(l) as x — oo.

Theorem 2.4. For g :[1,00) — R, assume that there are M, M' > 0 such that

(2.2) X+ g(x)+ Mx is non-decreasing,
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* g(t
(2.3) / %dt‘ <M Vx=>1.
1
Then
(2.4) S :=lim sup g ()l < 00,
X—>00 X
and when S > 0 we have
. 1 *1g(0)]
2.5 1 - dt < S.
2:3) Tiiip logxfl t2 =

Remark 2.5. 1. Note that (2.2) implies that g is Riemann integrable over finite
intervals.

2. In our application, (2.4) already follows from Proposition 2.1 so that we do
not need the corresponding part of the proof of Theorem 2.4. It will be
proven nevertheless in order to give Theorem 2.4 an independent existence.

O

Proof of Theorem 1.1 assuming Theorems 2.3 and 2.4. Since f is nondecreasing,
it is clear that g(x) = f(x)— Ax satisfies (2.2) with M = A, and (2.3) is implied
by Proposition 2.1(iii). Now S = limsup |g(x)|/x is finite, by either Proposition
2.1(i) or the first conclusion of Theorem 2.4. Furthermore, S > 0 would imply
(2.5). But combining this with the result (2.1) of Theorem 2.3, we would have
the absurdity

5 1 * lo(t
S = limsup 80| < lim sup / |‘g()|dt<S.
1

X—>00 X—>00 10g X t?

Thus S = 0 holds, which is equivalent to £ ;x) = 1 (x)x_Ax — 0, as was to be
proven. [

The next two sections are dedicated to the proofs of Theorems 2.3 and 2.4. The
statements of both results are free of number theory, and this is also the case
for the proof of the second. The proof of Theorem 2.3, however, uses a very
modest amount of number theory, but nothing beyond Mobius inversion and the
divisibility theory of N up to the fundamental theorem of arithmetic.

3. Proof of Theorem 2.3

3.1. Arithmetic. The aim of this subsection is to collect the basic arithmetic
results that will be needed. We note that this is very little.
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We begin by noting that (N, -, 1) is an abelian monoid. Given n,m € N, we
call m a divisor of n if there is an r € N such that mr = n, in which case we
write m|n. In view of the additive structure of the semiring N, it is clear that
the monoid N has cancellation (ab = ac = b = c¢), so the quotient r above is
unique, and that the set of divisors of any n is finite.

Calling a function f : N — R an arithmetic function, the facts just stated
allow us to define:

Definition 3.1. If f,g¢ : N — R are arithmetic functions, their Dirichlet
convolution f x g denotes the function

(f *9)m) = Y fdig (5) = Y Flarg).
din

a.b
ab=n

It is easy to see that Dirichlet convolution is commutative and associative. It
has a unit given by the function § defined by 6(1) =1 and d(n) =0 if n # 1.

By 1 we denote the constant function 1(n) = 1. Clearly, (f * 1)(n) =
>apn ().

Lemma 3.2. There is a unique arithmetic function i, called the Mobius function,
such that ux1=26.

Proof. p must satisfy de u(d) = §(n). Taking n =1 we see that u(1) =1.
For n > 1 we have }_;, u(d) = 0, which is equivalent to

pin) == ) p(d).

dln
d<n

This uniquely determines p(n) € Z inductively in terms of u(m) with m <n. O

Proposition 3.3. (i) p is multiplicative, i.e. p(nm) = p(n)u(m) whenever
(n,m) = 1.

(i) If p is a prime then pu(p) = —1, and p(p*) =0 if k > 2.

(iii) pu(n) = 0Q), i.e. u is bounded.

Proof. (i) Since p(1) =1, u(nm) = p(n)u(m) clearly holds if n =1 or m = 1.
Assume, by way of induction, that p(uv) = p(u)u(v) holds whenever (u,v) = 1
and uv < nm, and let n # 1 # m be relatively prime. Since every divisor of
nm is of the form st with s|n,¢|m, we have

0= > pd)=pmm)+ »  psn)=pmm) + Y )

dinm sln.tim sln.tlm
st<nm st<nm

= p(nm) + Y pu(s) Y pu(t) — pmp(m) = p(nm) — p(mpm),

s|n tim
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which is the inductive step. (ii) For k > 1, we have u(pk) = —Zf-:é w(ph),

inductively implying (p) = —1 and u(p*) = 0 if k > 2. Thus u(p¥) € {0, -1},
which together with multiplicativity (i) gives u(n) € {—1,0,1} for all n, thus
(iii). [

Proposition 3.4. (i) The arithmetic function A := logxu is the unique solution
of A x1=log.

(i) A(n) = =3 4, #(d)logd. In particular, A(1) = 0.

(ii) A(n) = logp if n = pX where p is prime and k > 1, and A(n) = 0
otherwise.

(iv) A(n) > 0.

Proof. (i) Existence: logxu x1 = log+x§ = log. Uniqueness: If Ay x1 = log =
Ay x1 then A=A *x§=A1*x1xpu=Ar x1xpu=A x5 =A;.

(i) A(n) =3 4, m(d)1og g = 4, m(d)(logn —logd) =logn ), p(d) —
> dpn (d)logd. Now use ;. u(d) =38(n). A(l) =0 is obvious.

(iii) Using (ii), we have A(p*) = —Z;‘ZO w(phHllog p, which together with
Proposition 3.3(ii) implies A(p¥) =logp Yk = 1. If n,m > 1 and (n,m) = 1
then by the multiplicativity of wu,

Anm) ==Y " u(st)log(st) = —> > " u()u()(logs + log1)

sln t|m sln t|m
=D m)logs Y u(t) + Y u()logr Y | pu(s) =0.
sln tlm tim s|n
(iv) Obvious consequence of (iii). L]

Remark 3.5. The only properties of  and A that will be used in the proof of
Theorem 1.1 are the defining ones (ux1 =48, Ax1 = log), the trivial consequence
(ii) in the above proposition, and the boundedness of p and the non-negativity
of A.

In particular, the explicit computations of w(n) and A(n) in terms of the
prime factorization of n were only needed to prove the latter two properties. (Of
course, these properties of u and A would be obvious if one defined them by
the explicit formulae proven above, but this would be ad hoc and ugly, and one
would still need to use the fundamental theorem of arithmetic for proving that
uxl=45§ and A »1=log.)

Note that prime numbers will play no réle whatsoever before we turn to the
actual proof of the prime number theorem in the Appendix, where the computation
of A(n) will be used again. O
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3.2. The (weighted) Mobius transform.

Definition 3.6. Given a function f : [l1,00) — R, its ‘Mobius transform’ is

defined by
Fo =Y 1 (%)

n<x

Lemma 3.7. The Mobius transform f +— F is invertible, the inverse Mobius
transform being given by

f =Y wrF ().

n=<x

Proof. We compute

YonwF(S) =Y um Y f(=)= 3 wnf (=)

n<x n<x ms_x/n nm=<x
X X
=Y ()X r0 =3 r(3)ém = s,
r<x s|r r<x
where we used the defining property de u(d) =38(n) of w. Il

Remark 3.8. Since the point of Theorem 1.1 is to deduce information about f
from information concerning its Mobius transform F, it is tempting to appeal to
Lemma 3.7 directly. However, in order for this to succeed, we would need control
over M(x) =), ., i(n), at least as good as M(x) = o(x). But then one is back
in Ellison’s appr(;ach mentioned in the introduction. The essential idea of the
Selberg—Erdds approach to the PNT, not entirely transparent in the early papers
but clarified soon after [TT], is to consider weighted Md&bius inversion formulae
as follows. O

Lemma 3.9. Let f :[1,00) — R be arbitrary and F(x) =) ,_. f(x/n). Then

3.1) f@)logx + > A f (%) =" u(n) log % F (%) .

n<x

Proof. We compute
Z n(n)log %F (%) = logx Z un)F (%) — Z w(n)logn F (%) .
n<x n<x n=x

By Lemma 3.7, the first term equals f(x)logx, whereas for the second we have
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Zﬂ(n)lognF(g) = Zu(n)logn Z f (%) — Z /L(n)lognf(%)

n<x n<x m<x/n nm<x
=3[ X nmiogn | £(3) == a6 1 (3).
s<x \ nls ' S<x ’

the last equality being Proposition 3.4(ii). Putting everything together, we obtain
(3.1). O

Remark 3.10. 1. Eq. (3.1) is known as the ‘Tatuzawa-Iseki formula’, cf. [TI,
(8)] (and [Karl, p. 24]).

2. Without the factor log(x/n) on the right hand side, (3.1) reduces to Mobius
inversion. Thus (3.1) is a sort of weighted Mobius inversion formula. The
presence of the sum involving f(x/n) is very much wanted, since it will
allow us to obtain the integral inequality (2.1) involving all f(¢),t € [1, x].
In order to do so, we must get rid of the explicit appearance of the function
A(n), which is very irregular and about which we know little. This requires
some preparation. O

Lemma 3.11. For any arithmetic function f :N — R we have

flogn+ Y A (T) = nd)logZ Y fom).
din dln

ml|(n/d)

In particular, we have Selberg’s identity:

(3.2) Am)logn + Y A(d)A (%) = 3" (@) log? %.

dln dn

Proof. If f is an arithmetic function, i.e. defined only on N, we extend it to R
as being 0 on R\N. With this extension,

Fiy =Y f (=) =271 (=) =2 fom).

m=<n min m|n

so that (3.1) becomes the claimed identity. Taking f(n) = A(n) and using
> ajn A(d) = logn, Selberg’s formula follows. [
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3.3. Preliminary estimates.

Lemma 3.12. The following elementary estimates hold as x — oo

1 1
3.3 — =1 ol-).
(3.3) én ogx +y + (x)
logn  log*x 1 + logx
34 = o|————,
S nZ;c n 2 tet ( X
(3.5) Zlogn = xlogx — x + O(log x),
n<x
(3.6) Y log% — x + O(logx),
n=<x
(3.7) Z log?n = x(log® x —2logx + 1) + O(log? x),
n<x
(3.8) Z log? Yo« + O(log? x).
n
n<x

Here, y is Euler’s constant and c > 0.

Proof. (3.3): We have

Nar N ode) -1 1t =1 N — 1]
Z__/ _/ t [ t }1+/1 P

Since 0 <t — |t] < 1, the integral on the r.h.s. converges as N — oo to some
number y (Euler’s constant) strictly between 0 and 1 = floo dt/t?. Thus

N o dz Ct— |t J 1
Z =logN+y+0|—=]-
n t2 N
n=1
(3.4): Similarly to the proof of (3.3), we have
N N
| logt t
Z ogn _/ og [:f og d(lt] - 1)
n 1 t 1-0

n=1
[(LIJ —t)IOgI} / (t - LtJ)Ingd

t

The final integral converges to some ¢ > 0 as N — oc since (logr)/t? =
O(t—2%¢) . Using

/x log log? x /°° log ¢ logr f°° dt  1+1ogN
—dt = s —_—dl = — | —— + _ = —
.t 2 N 12 t n N 12 N
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we have
N 2
1 * logt ®(t—|t]) logt 1 1+1
Yo oer :/ &dtﬂ_/ %mzmﬂw(ﬂ)_
— n .t N t 2 X

(3.5): By monotonicity, we have

x x+1
/ 10gtdt§Zlogn§[ log ¢ dr.
1

1 n<x

Combining this with ;" logr dt = xlogx —x + 1, (3.5) follows.
(3.6): Using (3.5), we have

Zlog% = |x]logx — Zlogn = (x + O())logx — (xlogx —x + O(log x))

n<x n<x

= x + O(logx).

(3.7): By monotonicity,

X x+1
/ log?t dt < Zlogzn = f log? ¢ dt.
1

1 n<x

Now,
X log x L

/ log?tdt = / e"u?du = [e"(u* —2u+1)]y %" = x(log? x —2logx + 1) —1.
1 0

Combining these two facts, (3.7) follows.
(3.8): Using (3.5) and (3.7), we compute

2% _ _ 2
Zlog o= Z(logx logn)
n<x n<x
= |x]log® x — 2log x(x logx —x + O(log x))
+ x(log® x —2log x + 1) + O(log? x)

= x 4+ O(log* x) . n

Proposition 3.13. The following estimates involving the Moébius function hold:

pn)
3.9) HESX = o(1),
pn) x
(3.10) ,;Sx " log; = 0(1),
pm) —,x
(3.11) E . log o= 2logx + O(1).

n<x
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Proof. (3.9): If f(x) =1 then F(x) = |x]|. Mdobius inversion (Lemma 3.7) gives

3.12) 1=3 pm) m = 3" pim) (% + 0(1)) —xy @ +3 o,

n<x n<x

where we used p(n) = O(1) (Proposition 3.3(iii)). In view of >
we have Y _ pu(n)/n = 0(x)/x = O(1).

(3.10): If f(x) =x then F(x) =) ,_.x/n =xlogx + yx + O(1) by (3.3).
By Mobius inversion, -

o(l) = 0(x),

n<x

x:Zu(n)(%log%—i-V%—!—O(l)) Z“() —+x0(1)+0(x),

n<x n<x

where we used (3.9) and Proposition 3.3(iii). From this we easily read off (3.10).
(3.11): If f(x) = xlogx then

Y oo ¥ * 1 logn
F(X):Z;lOg;:Z;(IOgX—IOgn):xlong;_xZ p

n<x n<x n<x n<x

1 log® 1+1
:xlogx(logx—l—y—i—O(—))—x(ngx+c+0(ﬂ))
X X

1
= Exlogzx + yxlogx —cx + O(1 + log x),

by (3.3) and (3.4). Now Mobius inversion gives

_ X 002X L ee X o E X
xlogx = 3 u(n) (2’1 log” = + = log = — = + O(1 + log n))

n<x
Z “(”) + x0(1) + x0(1) + 0(x),
n<x
where we used (3.9), (3.10) and (3.6), and division by x/2 gives (3.11). ]

Proposition 3.14 (Selberg, Erd6s—Karamata [EK]). Defining
1 n .
K =0, K=o dzm:A(d)A (3) if n>2,

we have K(n) >0 and

(3.13) > (A(m)+ K(n)) =2x+ 0 ( al ) .

e log x

Proof. The first claim is obvious in view of Proposition 3.4(iv). We estimate
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U) =3 Y nd)log’ = =Y u(m) Y log’m

n=x din n=x m=<x/n
= Zu(n)( (log? ——210g + 1) + O(log? —))
n<x

= x(2 log x + 0(1)) —2x0(1) + x0(1) + O(x) = 2x logx + O(x).

Here we used (3.7), (3.11), (3.10), (3.9), the fact u(n) = O(1), and (3.8). Comparing
(3.13) and (3.2), we have

D AM+Km =) 1g12u< )log* =

n<x 2<n<x
_[* AU U@ X U(r)
_/2—0 logr [10gt]2+/2 tlogztdt

X *odt X odt
=2x+ O + — 4+ 0 |-
log x » logt 2 log”t
In view of the estimate

x Jx x
dt :/ dt +f dt - Jx X _of2 ’
, logt , logt sz logt ~ log2 = log/x log x

we are done. |

Remark 3.15. In view of (3.2), the above estimate U(x) = 2xlogx + O(x) is
equivalent to

> A(m)logn + Y A(a)A(b) = 2xlogx + O(x),

n<x ab<x

which is used in most Selberg-style proofs. (It would lead to (3.20) with k =2.)
]

3.4. Conclusion.

Proposition 3.16. If g : [1,00) — R is such that

X X X
(3.14) G(x) :’;g(;) = Bx—!—Clng +0(10gx)
then
X
(3.15) g(0)logx + > A(n) g (;) — o(x log x).

n<x
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Proof. In view of Lemma 3.9, all we have to do is estimate

X
logX (B + ¢ S, + S5 + 5.
D m)log — ( t 1ogg+0(nlog§)) LS

n=<x

The three terms are

Sl = Bx Z Mlgn) lOg% = XO(I) = O(X),

s, =cxy B ““(”) x0(1) = 0(x),

n<x
S3 = Z u(n)o (%) = Zo (%) = o(x Z %) = o(x logx),
n<x n<x n<x
where we used (3.10), (3.9), and u(n) = O(1), respectively. [

Proof of Theorem 2.3. In view of g(x) = f(x) — Ax and Proposition 2.1 (i), (ii),
we immediately have

Tdg(w) _ o).

(3.16) g = 0(x). /1

Furthermore, since f satisfies (1.1), and (3.3) gives ) , .. Ax/n = Axlogx +
Ayx + O(1), the Mobius transform G of g(x) = f(x) — Ax satisfies (3.14) (with
a different B), so that Proposition 3.16 applies and (3.15) holds.

Writing N(x) = >, ., A(n) + K(n), by Proposition 3.14 we have N(x) =
2x + w(x) with w(x) = ?)(x). Now,

T ke ()= [ e (f) aN ()

= [N (%) / N(t)dg (%)
= (N(x)g(1) - N(l)g(x)) + /1 W (2) dg(u)

= 0(x) + /;x (2% + o0 (27)6)) dg(u)
:O(x)—l—Zx/x@—i—o(x‘/x dg;u))
1 1

(3.17) = 0(x) + O(x) + o(x) = O(x),

where we used (3.16). On the other hand,
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G-,
zzflx g(?)‘ dt+/:0 g(?)‘ do(t)
= 2x/1x |gt(2t)|dt —/:Ow(t)d g (%)‘
+e(F)ao]

X | x+0
_ 2x/1 "’g)'dz +/1 ® (;) d|g(t)]
(3.18) + g(How(x) —gx + O)w(l —0).

In view of g(x) = O(x) and w(x) = o(x), the sum of the last two terms is
O(x). Furthermore,

[y o[ E) <o [ 0

x+0
<0 (x/ M) = o(x log x),
1

t

Z (A(n) + K(n))

()] v

where we used g(x) = f(x) — Ax and df = |df| (since f is non-decreasing)
to obtain |dg| = |df — Adt| < |df| + Adt = df + Adt and Proposition 2.1(ii).
Introducing this into (3.18), we have

(3.19) S hm + Ko [ (5)] = 25 [ Ear + oxtog0.

n<x

After these preparations, we can conclude quickly: Subtracting (3.17) from (3.15)

we obtain
X

g(x)logx = Z Kn)g (—) + o(x log x).

n
n<x

Taking absolute values of this and of (3.15) while observing that A and K are

non-negative, we have the inequalities

() logx = Y7 A |g ()| + ol logx).

lg(x)|logx < ZK(n) ‘g (%)‘ + o(x log x).

Adding these inequalities and comparing with (3.19) we have

2|g(x)|logx < Z(A(n) + K(n)) ‘g (%)‘ + o(x log x)

X

t

= Zx/ |gt(2)|dt + o(x log x),
1
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so that (2.1), and with it Theorem 2.3, is obtained on dividing by 2xlogx. U

Remark 3.17. 1. We did not use the full strength of Proposition 3.14, but only
an o(x) remainder.

2. Inequality (2.1) is the special case k = 1 of the more general integral
inequality

X 0Ol k_lt
(3.20) Egﬂbﬁxfk/lﬂjgi—ﬂh+0®§%x)VkeN
X 1

proven in [Ba], assuming a O ( — ) in (L1) instead of C =2 + 0( - )

log? x log x log x

O

4. Proof of Theorem 2.4
The proof will be based on the following proposition, to be proven later:

Proposition 4.1. If s : [0,00) — R satisfies

4.1) el s(t") —e's(t) > —M(e" —e') Vi >t >0,

[Ox s(t)dt

and S = limsup |s(x)| > O then there exist numbers 0 < S1 < S and e,h > 0
such that

4.2) <M’ Vx>0,

(43) w(Exps,)=e Vx>0, where Eypg ={tecx,x+h]]||s)] =< S},

and | denotes the Lebesgue measure.

Proof of Theorem 2.4 assuming Proposition 4.1. It is convenient to replace
g:[1,00) >R by s:[0,00) > R, s(t) =e"g(e"). Now s is locally integrable,
and the assumptions (2.2) and (2.3) become (4.1) and (4.2), respectively, whereas
the conclusions (2.4) and (2.5) assume the form

4.4) S = limsup |s(t)| < o0,

t—>00

1 P
4.5) S>>0 = limsup—/ |s(¢)|dt < S.
0

X—>00
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The proof of (4.4) is easy: Dividing (4.1) by e’ and integrating over ¢’ € [t,t+h],
where /1 > 0, one obtains

t+h
/ ’ s@dt' —s@)(1 —e ™)y > —Mh+ M1 — ™),

and using | [7s(0)dt| < | [&s()dt| + | [2 s(t)dt| < 2M’ by (4.2), we have the
upper bound

OM' + M(e™" — 1+ h)

1 —eh '
Similarly, dividing (4.1) by ¢’ and integrating over ¢ € [t —h,t], one obtains the
lower bound

s(t) <

2M’ + M(e" — 1 —h)
eh — 1

<s(t),

thus (4.4) holds.

Assuming S > 0, let Sy,h,e be as required by Proposition 4.1. For each
S > S there is Xxo such that x > xo = |s(x)| < S . Given x > xo and putting
N = |[%* ], we have

X X0 N xo+nh X
f Is(1)|dt =f s@)ldt + Y |s(t)|dt+/ Is(1)|dt
0 0

=1 Jxo+(m—1)h Xo+Nh
<2M' + N[S(h—e) + Sie] + 2M’

= (° _hx" +om)r[(1- %) S+ %Sl] +AM

—x [(1 — %)§+ %Sl] + o).

1 [* e\ ~ e

lim su —/ s@)ldt <({1—-=) S + =5;.
msup - | 1s() (1-7) 8 + 55
Since S; < S and since S > S can be chosen arbitrarily close to S, (4.5) holds
and thus Theorem 2.4. O

In order to make plain how the assumptions (4.1) and (4.2) are used to prove
Proposition 4.1, we prove two intermediate results that each use only one of
the assumptions. For the first we need a ‘“geometrically obvious” lemma of
isoperimetric character:

Lemma 4.2. Let t1 <tp, C; > Cy, >0 and k : [t1,t2] — R be non-decreasing
with k(t1) > Cire’' and k(ty) < Ce™. Then

C
w({t €[t 1] | Cae’ < k(t) < Cre'}) > log C—l
2
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Proof. As a non-decreasing function, k has left and right limits k(r £ 0)
everywhere and k(r —0) < k() < k(¢ +0). The assumptions imply ¢, € A :={t €
[t1,22] | k(t) = Cye’}, thus we can define 77 = sup(A). Quite obviously we have
t > Ty = k(t) < Cy1e', which together with the non-decreasing property of k and
the continuity of the exponential function implies k(7; + 0) < Cielt (provided
Ty <ty). We have T} € A if and only if k(Ty) > CreTt. If Ty, & A then T} > 11,
and every interval (77 —e, T1) (with 0 < & < T7 —t;) contains points ¢ such that
k(t) > Cie'. This implies k(71 —0) > Cie’t. Now assume 7) =1,. If T; € A
then CieTt < k(Ty) < CreTV . If T; ¢ A then Ciel' < k(T —0) < k(Ty) < Cpe™2.
In both cases we arrive at a contradiction since C, < Cy. Thus Ty <1, . If Ty € A
(in particular if 77 = #;) then Ciel' < k(Ty) < k(T +0) < Cie'. Thus k is
continuous from the right at 77 and k(7T;) = Cie™t. If T} ¢ A then T) > 1,
and Cie’' < k(T) —0) < k(Ty +0) < Cielt. This implies k(T;) = Cie!, thus
the contradiction 77 € A. Thus we always have T; € A, thus k(71) = Crelt,

Now let B = {t € [T},t2] | k(t) < Cae'}. We have t, € B, thus T, = inf(B) is
defined and T, > T;. Arguing similarly as before we have t < T, = k(t) > Cye’,
implying k(T,—0) > Coe™. And if T, < t, and T» ¢ B then k(T,+0) < Cre’2.
If 7> € B (in particular if 75 = t5) then Che’2 < k(Ty —0) < k(T3) < Cae’2,
implying k(7> —0) = k(T») = Coe™2 o that k is continuous from the left at 75 .
If T, ¢ B then T, <t and Coe’2 < k(T —0) < k(T + 0) < Ce2, implying
k(T,) = Cye’> and thus a contradiction. Thus we always have 7, € B, thus
k(Tz) = C2€T2 .

By the above results, we have Cre! < k(t) < Cie' Vt € [Ty, T»] and thus

(4.6) p({t €l ta] | Cae' <k(r) < Cre'}) =T, —Th.
Using once more that k is non-decreasing, we have
Cie™t = k(T1) < k(T») = Cre™2,

implying 7, — 771 > log % and combining this with (4.6) proves the claim. [
Corollary 4.3. Assume that s : [0,00) — R satisfies (4.1) and s(t;) > S; > S, >
s(t2), where Sy + M > 0. Then

S1+M
S2—|—M.

p(t € [t1,12] | s(2) € [S2, S1]}) > log

Proof. We note that (4.1) is equivalent to the statement that the function
k:t— e'(s(t) + M) is non-decreasing. The assumption s(z1) > S7 > Sy > s(f2)
implies k(t1) > (S1 + M)e'' and k(tp) < (S, + M)e™. Now the claim follows
directly by an application of the preceding lemma. [
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Lemma 4.4. Let s : [0,00) — R be integrable over bounded intervals, satisfying
(4.2). Let e >0 and 0 < S, < Sy be arbitrary, and assume

M M
4.7 h>2 R
4.7) = <e+Sl+Sz)

Then every interval [x,x + h| satisfies at least one of the following conditions:
(i) u(Exns,) > e, where Eyy 5, is as in (4.3),

(ii) there exist ti,t, such that x <ty <t < x+ h and s(t;) > S1 and
s(tz) < S3.

Proof. Tt is enough to show that falsity of (i) implies (ii). Define
T =sup{t € [x,x + h] | s(t) <S>},

with the understanding that 7 = x if s(t) > S, for all ¢t € [x,x + &]. Then
s(t) > S, Vt € (T, x + h], which implies

x+h
x+h—-T7)S, 5/ s(t)dr <2M’
T

and therefore
2M’
2

We observe that (4.8) with 7" = x would contradict (4.7). Thus x < T <x + h,
so we can indeed find a #, € [x, x + h] with s(t;) < §,. Since we do not assume
continuity of s, we cannot claim that we may take f, = T, but by definition a
t; can be found in (7 — &, T] for every & > 0.

Now we claim that there is a point ¢; € [x, f2] such that s(z1) > ;. Otherwise,
we would have s(t) < Sy for all ¢+ € [x,f;]. By definition, |s(t)] < S; for
t € Exps,, thus |s| > S§; on the complement of E,; s, . Combined with
s(t) < 8y for t € [x,1p], this means s(f) < —S; whenever t € [x,6]\Ex s, -
Thus

(4.8) x+h—T <

%]
/ s)dt < Syp([x,t2] N Exp,s,) — Sip([x, 2]\ Ex p,s,)
X

= —S1(t2 —x) + 251u([x, 2] N Ex p,5,)
= S1(x —t2 +2u([x, 2] N Ex p,s,)) -

In view of (4.8) and f, > T — ¢ (with ¢ > 0O arbitrary), we have x —f, <
x—T+¢e<2M'/S, —h + ¢, thus we continue the preceding inequality as

2M’
< S ( S —h+e+2u(x, 2] N Ex,h,Sl)) .
2
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By our assumption that (i) is false, we have u([x,t%]NExps,) < w(Exns,) <e.
Thus choosing & such that 0 <& < 2(e — u([x, ] N Ex,s,)), we have

2M'
..<sl( —h—|—2e).
AY)

Combining this with (4.7), we finally obtain | ;2 s(t)dt < —2M', which contradicts
the assumption (4.2). Thus there is a point #; € [x,#;] such that s(t;) > S;. In
view of S(Il) >51 >85> S(lz), we have t; # t,, thus t; <t5. O

Proof of Proposition 4.1. Assuming that S = limsup |s(x)| > 0, choose Si,S>
such that 0 < S, < §1 < S. Then e := log g;i% > 0. Let h satisfy (4.7). Assume
that there is an x > 0 such that pu(Ex,s,) < e. Then Lemma 4.4 implies the
existence of #;,f, such that x <t < f, < x+ h and s(t;) > S1, s(hr) <

S,. But then Corollary 4.3 gives wu([t1,t2] N s71([S2, S1]) > log g;% Since
[t1, 2] N s™([S2, S1]) C Exps,» we have w(Eyp.s,) > log g;g — e, which is

a contradiction. O

Remark 4.5. The author did not succeed in making full sense of the proof in
[Karl] corresponding to that of Corollary 4.3. It seems that there is a logical
mistake in the reasoning, which is why we resorted to the above more topological
approach. O

A. The Prime Number Theorem

Proposition A.l. Defining y(x) := >, .. A(n), we have ¥ (x) ~ x.

n<x

Proof. Since A(x) > 0, we have that ¢ is non-negative and non-decreasing.
Furthermore,

D)= X Am =33 A0

n<x n<Xm<x/n r=x slr
(A.1) :ZIOgrleogx—x—l—O(logx)
r<x

by Proposition 3.4(i) and (3.5). Now Theorem 1.1 implies ¥ (x) = x + o(x), or
Y(x) ~ x. [
Note that we still used only (i) of Proposition 3.4, but we will need now (iii):
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Theorem A.2. Let n(x) be the number of primes < x and p, the n-th prime.
Then

X

() ~ logx’

pn ~ nlogn.

Proof. Using Proposition 3.4(iii), we compute

1
Y(x) = ZA(n) = Z logp = Zlogp {%J < m(x)logx.

n<x pk<x pP=x

If 1 <y <x then

r)—a()= Y 1< Y logp _y(x)

Y<p=x Y<p=x logy = logy

Thus 7(x) <y + ¥ (x)/logy. Taking y = x/log?x this gives

Y(x) - w(x)logx - Y(x) log x 1
x x ~ x log(x/log’x) logx’

thus ¥ (x) ~ 7 (x) log x . Together with Proposition A.1, this gives 7(x) ~ x/log x.

Taking logarithms of 7 (x) ~ x/logx, we have logz(x) ~ logx —loglogx ~
logx and thus n(x)logm(x) ~ x. Taking x = p, and using =(p,) = n gives
nlogn ~ py. [

Remark A.3. Karamata’s proof of the Landau-Ingham theorem is obviously
modeled on Selberg’s original elementary proof [Sel] of the prime number
theorem. However, Selberg worked with f = ¢ from the beginning. Most later
proofs follow Selberg’s approach, but there are some that work with M instead
of . Cf. the papers [PR, Kal] and the textbooks [GL, Ell]. As mentioned in the
introduction, the result for M also follows easily from Theorem 1.1: O

Proposition A.4. Defining M(x) =} _,_, u(n), we have M(x) = o(x).

Proof. We define f(x) = M(x)+ |x|, which is non-negative and non-decreasing.
Now

F(x)zZM(%)—!— {%J = Z Z (u(m) + 1)

n<x n<xm<x/n

- Zue o]0 213

m=<x
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where the last identity is just the first in (3.12). The remaining sum is known
from Dirichlet’s divisor problem and can be computed in elementary fashion,

(A2) 3 L%J — xlogx + 2y — 1)x + O(Vx),

m=<x

cf. e.g. [TEM]. Thus F(x) = xlogx + 2y — 1)x + O({/x), and Theorem 1.1
implies f(x) = x 4+ o(x), thus M(x) = o(x). [

Remark A.5. Note that we had to define f(x) = M(x)+ |x]| and use (A.2) since
f(x) = M(x) + x is non-negative, but not non-decreasing. One can generalize
Theorem 1.1 somewhat so that it applies to functions like f(x) = M(x) + x
weakly violating monotonicity. But the additional effort would exceed that for the
easy proof of (A.2). O
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