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On Karamata's proof of
the Landau-Ingham Tauberian theorem

Michael Müger

Abstract. This is a self-contained exposition of (a generalization of) Karamata's little known

elementary proof of the Landau-Ingham Tauberian theorem, a result in real analysis from

which the Prime Number Theorem follows in a few lines.

Mathematics Subject Classification (2010). Primary: 11N05; Secondary: 40E05.

Keywords. Prime number theorem, elementary proof, Tauberian theorem.

The aim of this paper is to give a self-contained, accessible and 'elementary'
proof of of the following theorem, which we call the Landau-Ingham Tauberian
theorem:

Theorem 1.1. Let f : [l,oo) -> M be non-negative and non-decreasing and

assume that

Then f{x) Ax + o(x), equivalently f{x) ~ Ax.

The interest of this theorem derives from the fact that, while ostensibly it is a

result firmly located in classical real analysis, the prime number theorem (PNT)
7r(x) — can be deduced from it by a few lines of Chebychev-style reasoning
(cf. the Appendix).

Versions of Theorem 1.1 were proven by Landau [Lan, §160] as early as

1909, Ingham [Ing, Theorem 1], Gordon [Gor] and Ellison [Ell, Theorem 3.1],

but none of these proofs was from scratch. Landau used as input the identity

1. Introduction

(1.1)

n<x

satisfies
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J2n ß^0gn —1 But the latter easily implies M(x) J2n<x °(x) which

(as also shown by Landau) is equivalent to the PNT Actually, J2n ß^ogn — 1

is 'stronger' than the PNT m the sense that it cannot be deduced from the latter

(other than by elementarily reproving the PNT with a sufficiently strong remainder

estimate) In this sense, Gordon's version of Theorem 11 is an improvement, m
that he uses as input exactly the PNT (in the form \/s(x) ~ x) and thereby
shows that Theorem 11 is not 'stronger' than the PNT Ellison's version assumes

M(x) o(x) (and an 0{x&) remainder with ß < 1 m (11)) It is thus clear that

none of these approaches provides a proof of the PNT Ingham's proof, on the

other hand, starts from the information that £(1 + it) ^ 0 (which can be deduced

from the PNT, but also be proven ab initio) Thus his proof is not 'elementary',
but arguably it is one of the nicer and more conceptual deductions of the PNT
from £(1 + it) ^ 0 - though certainly not the simplest (which is [Zag]) given
that the proof requires Wiener's Z^-Tauberian theorem

Our proof of Theorem 11 will essentially follow the elementary Selberg-style

proof given by Karamata 1 [Karl] under the assumption that / is the summatory
function of an arithmetic function, i e constant between successive integers We

will remove this assumption For the proof of the PNT, this generality is not
needed, but from an analysis perspective it seems desirable, and it brings us fairly
close to Ingham's version of the theorem, which differed only m having o(x)
instead of + o(j^) m the hypothesis

Unfortunately, Karamata's paper [Karl] seems to be essentially forgotten There

are so few references to it that we can discuss them all It is mentioned m [EI]
by Erdos and Ingham and m the book [Ell] of Ellison and Mendes-France

(Considering that the latter authors know Karamata's work, one may find it
surprising that for their elementary proof of the PNT they chose the somewhat

roundabout route of giving a Selberg-style proof of M(x) o(x), using this to

prove a weak version of Theorem 11, from which then \j/(x) ~ x is deduced Even

the two books [BGT, Kor] on Taubenan theory only briefly mention Karamata's

[Karl] (or just the survey paper [Kar2]) but then discuss m detail only Ingham's
proof Finally, [Karl, Kar2] are cited m the recent historical article [Nik], but
its emphasis is on other matters We close by noting that Karamata is not even

mentioned m the only other paper pursuing an elementary proof of a Landau-

Ingham theorem, namely Balog's [Ba], where a version of Theorem 11 with a

(fairly weak) error term m the conclusion is proven
Our reason for advertising Karamata's approach is that, m our view, it is the

conceptually cleanest and simplest of the Selberg-Erdos style proofs of the PNT,

*Note des editeurs Jovan Karamata ne pres de Belgrade en 1902 et mort a Geneve en 1967 fut
professeur a Geneve des 1951 et directeur de L Enseignement Mathematique de 1954 a 1967 Voir M
Tomic Jovan Karamata (1902 1967) Enseignement Math (2) 15 1-20 (1969)
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cf. [Sei, Erdl] and followers, e.g. [PR, Nev, Kal, Lev, Sch, Pol]. For f \jr

and /(x) M(x) + Theorem 1.1 readily implies ty{x) x + o(x) and

M(x) o(x), respectively. Making these substitutions in advance, the proof
simplifies only marginally, but it becomes less transparent (in particular for

/ \fr) due to an abundance of non-linear expressions. By contrast, Theorem 1.1

is linear w.r.t. / and F. To be sure, also the proof given below has a non-linear

core, cf. (3.2) and Proposition 3.14, but by putting the latter into evidence, the

logic of the proof becomes clearer. One is actually led to believe that the
nonlinear component of the proof is inevitable, as is also suggested by Theorem 2

in Erdos' [Erd2], to wit

N N

cifo > 0 Wk > 1 A ^ ^ kcifo + ^ ^ + 0(1) =r> ^ ^ cifo N 0(1),
k=l k+l<N k=1

from which the PNT can be deduced with little effort. (Cf. [HT] for more in this

direction.)
Another respect in which [Karl] is superior to most of the later papers,

including V. Nevanlinna's [Nev] (whose approach is adopted by several books

[Sch, Pol]), concerns the Tauberian deduction of the final result from a Selberg-

style integral inequality. In [Karl], this is achieved by a theorem (Theorem 2.4

below, attributed to Erdos) with clearly identified, obviously minimal hypotheses
and an elegant proof. This advantage over other approaches like [Nev], which
tend to use further information about the discontinuities of the function under

consideration, is essential for our generalization to arbitrary non-decreasing
functions. However, we will have to adapt the proof (not least in order to work
around an obscure issue).

In our exposition we make a point of avoiding the explicit summations over

(pairs of) primes littering many elementary proofs, almost obtaining a proof of the

PNT free of primes! This is achieved by defining the Möbius and von Mangoldt
functions /x and A in terms of the functional identities they satisfy and using
their explicit computation only to show that they are bounded and non-negative,
respectively. Some of the proofs are formulated in terms of parametric Stieltjes

integrals, typically of the form / /(.x/t)dg(t) and integration by parts. We also do

this in situations where / and g may both be discontinuous. Since our functions

will always have bounded variation, thus at most countably many discontinuities,
this can be justified by observing that the resulting identities hold for all x outside

a countable set. Alternatively, we can replace /(x) at every point of discontinuity
by (/(x + 0) + /(x —0))/2 without changing the asymptotics. For such functions,

integration by parts always holds in the theory of Lebesgue-Stieltjes integration,
cf. [Hew, HS].
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The author hopes that the proof of Theorem 1.1 given below will help

dispelling the prejudice that the elementary proofs of the PNT are (conceptionally
and/or technically) difficult. Indeed he thinks that this is the most satisfactory
of the elementary (and in fact of all) proofs of the PNT in that, besides not

invoking complex analysis or Riemann's £-function, it minimizes number theoretic

reasoning to a very well circumscribed minimum. One may certainly dispute that
this is desirable, but we will argue elsewhere that it is.

The author is of course aware of the fact that the more direct elementary
proofs of the PNT give better control of the remainder term. (Cf. the review

[Dia] and the very recent paper [Kou], which provides a "a new and largely
elementary proof of the best result known on the counting function of primes in
arithmetic progressions".) It is not clear whether this is necessarily so.

Acknowledgments. The author would like to thank the referees for constructive

comments that led to several improvements, in particular a better proof of Corollary
4.3.

2. First steps and strategy

Proposition 2.1. Let f : [l,oo) -> M be non-negative and non-decreasing and

assume that F(x) J2n<x f(x/n) satisfies F(x) Ax log x + Bx + o(x). Then

(i) fix) O(x).
(x df(t)

(ii) / -XXL Alogx + 0(l).

(iii) om.

Proof, (i) Following Ingham [Ing], we define / to be 0 on [0,1) and compute

/«-/(§) + /(§)-.= FW-2,(f)
Ax logx + Bx — 2 ^A^ log ^ + B^j + o(x)

Ax log 2 + o(x).

With positivity and monotonicity of /, this gives f(x) — f(x/2) < Kx for some

K > 0. Adding these inequalities for x, j,..we find f(x) < 2Kx. Together
with / > 0, this gives (i).

(ii) We compute

n<x 1 w
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=M7)n-£^/(7)

=({x\f(i)-f(x))- r td/ß)+ r (t-\_t\)df(j)
J1-0 v r 7 Jl-0 v17

=o(x) + f -rf/(M) + r (t~ \t\)df (y).
J1-0 ^ J1-0 W/

In view of 0 < t — [t\ <1 and the weak monotonicity of /, the last integral
is bounded by \f*df(x/t)\ /(x) — /(l), which is O(x) by (i). Using the

hypothesis about F, we have

/** d/YU
Ax logx + Bx + 6>(x) O(x) + x / b O(x),

Jl-0 *

and division by x proves the claim.

(iii) Integrating by parts, we have

fx m^dt -LA + r dM--\x±dt
J1 t2 X J1—0 t Ji t

0(1) + 04 logx + 0(1)) - A logx 0(1),

where we used (i) and (ii).

Remark 2.2. 1. The proposition can be proven under the weaker assumption

F{x) Ax logx + 0(x), but we don't bother since later we will need the

stronger hypothesis anyway.

2. Theorem 1.1, which we ultimately want to prove, implies a strong form of
(iii): f^t2Ät dt B — yA, cf. [Ing]. Conversely, existence of the improper
integral already implies f(x) ~ Ax, cf. [Zag].

3. Putting / \j/ and using (A.l), the above proofs of (i) and (ii) reduce to
those of Chebychev and Mertens, respectively.

The following two theorems will be proven in Sections 3 and 4, respectively:

Theorem 2.3. Let fiF be as in Theorem 1.1. Then g(x) /(x) — Ax satisfies

iswi. 1 r is(oi
(2.1) < / —-— at + o(l) as x -> 00.

x logx Ji t2

Theorem 2.4. For g : [1, 00) M, assume that there are M, M' > 0 such that

(2.2) x i-> g(x) + Mx is non-decreasing,
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< M' Vx > 1.(2.3) |^X dt
t2

Then

(2.4) S := lim sup < oo,

and when S > 0 we have

1 fx \z(t)\
(2.5) lim sup / l-^-dt < S.

x^oo log X Ji t2

Remark 2.5. 1. Note that (2.2) implies that g is Riemann integrable over finite
intervals.

2. In our application, (2.4) already follows from Proposition 2.1 so that we do

not need the corresponding part of the proof of Theorem 2.4. It will be

proven nevertheless in order to give Theorem 2.4 an independent existence.

Proof of Theorem 1.1 assuming Theorems 2.3 and 2.4. Since / is nondecreasing,

it is clear that g(x) f(x) — Ax satisfies (2.2) with M A, and (2.3) is implied
by Proposition 2.1(iii). Now S lim sup \g(x)\/x is finite, by either Proposition
2.1(i) or the first conclusion of Theorem 2.4. Furthermore, S > 0 would imply
(2.5). But combining this with the result (2.1) of Theorem 2.3, we would have

the absurdity

S llmsup!sM!<limsuP;-!_ flfjuS.
x—^oo X x—^oo log X Ji t

Thus S 0 holds, which is equivalent to T^~Ax o, as was to be

proven.

The next two sections are dedicated to the proofs of Theorems 2.3 and 2.4. The

statements of both results are free of number theory, and this is also the case

for the proof of the second. The proof of Theorem 2.3, however, uses a very
modest amount of number theory, but nothing beyond Möbius inversion and the

divisibility theory of N up to the fundamental theorem of arithmetic.

3. Proof of Theorem 2.3

3.1. Arithmetic. The aim of this subsection is to collect the basic arithmetic
results that will be needed. We note that this is very little.
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We begin by noting that (N,-, 1) is an abelian monoid. Given n,m e N, we
call m a divisor of n if there is an r e N such that mr n, in which case we
write m\n. In view of the additive structure of the semiring N, it is clear that
the monoid N has cancellation (ab ac =>- b c), so the quotient r above is

unique, and that the set of divisors of any n is finite.

Calling a function / : N -> M an arithmetic function, the facts just stated

allow us to define:

Definition 3.1. If f g : N -> M are arithmetic functions, their Dirichlet
convolution f * g denotes the function

(/ * g)(n) y] fO)g (f) X! f(a)s(b).
d\n a b

ab=n

It is easy to see that Dirichlet convolution is commutative and associative. It
has a unit given by the function 8 defined by 5(1) 1 and 8(n) 0 if n ^ 1.

By 1 we denote the constant function 1 (n) 1. Clearly, (/ *1)(n)

Zd\«m-
Lemma 3.2. There is a unique arithmetic function \i, called the Möbius function,
such that /x * 1 8.

Proof /x must satisfy J2d\n 8(n). Taking n 1 we see that /x( 1) 1.

For n > 1 we have J2d\n ß(d) 0, which is equivalent to

d\n
d<n

Ibis uniquely determines /x(n) e Z inductively in terms of /x(m) with m < n.

Proposition 3.3. (i) /x is multiplicative, i.e. \i(nm) /x(n)/x(m) whenever

(n, m) 1.

(ii) If p is a prime then p(p) —1, and p(pk) 0 if k >2.
(iii) p(n) 0(1), i.e. /x is bounded.

Proof, (i) Since /x(l) 1, p(nm) /x(n)/x(m) clearly holds if n 1 or m 1.

Assume, by way of induction, that p(uv) p(u)ii(v) holds whenever (u,v) 1

and uv < nm, and let /i / 1 / m be relatively prime. Since every divisor of
nm is of the form st with s\n,t\m, we have

0 Z V-O) ß(nm) + y] fi(st) ß(nm) + ^ ß(s)ß(t)
d\nm s\n t\m s\n t\m

st<nm st<nm

p(nm) + J2p(s) ^^(0 — /x(n)/x(m) p(nm) — /x(n)/x(m),
s\n t\m
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which is the inductive step, (ii) For k > 1, we have n(pk) -Xf=o MO7')'
inductively implying /x(/?) —1 and fi(pk) 0 if k > 2. Thus fi(pk) e {0, —1},

which together with multiplicativity (i) gives /x(n) e {—1,0,1} for all n, thus

(iii).

Proposition 3.4. (i) The arithmetic function A := log*/x is the unique solution

of A * 1 log.

(ii) A(n) nß(d)\ogd. In particular; A(l) 0.

(iii) A(n) log p if n pk where p is prime and k > 1, and A(n) 0

otherwise.

(iv) A(n) > 0.

Proof (i) Existence: log*/x * 1 log= log. Uniqueness: If Ai * 1 log
A 2 * 1 then A i A i $ A i 1 /x A 2 * 1 * /x A 2 * $ A2.

(ii) A(«) Erf|«MX>(log« -l0g<i) log« -
J2d\n P<(d)logd. Now use J2d\n /x(<^) 5(«). A(l) 0 is obvious.

(iii) Using (ii), we have A(pk) — Y$=o /x(/?/)^ l°g Z7» which together with
Proposition 3.3(ii) implies A(pk) logp Vk > 1. If n,m > 1 and (n,m) 1

then by the multiplicativity of /x,

A(nm) — EE /i(si) logCsf) -EE /i(s)/i(i)(logs + log*)
s\n t\m s\n t\m

E^ log5 E^ ^log 1T2^ °-
s\n t\m t\m s\n

(iv) Obvious consequence of (iii).

Remark 3.5. The only properties of /x and A that will be used in the proof of
Theorem 1.1 are the defining ones (/x* 1 <5, A*l log), the trivial consequence
(ii) in the above proposition, and the boundedness of /x and the non-negativity
of A.

In particular, the explicit computations of fi(n) and A(n) in terms of the

prime factorization of n were only needed to prove the latter two properties. (Of
course, these properties of /x and A would be obvious if one defined them by
the explicit formulae proven above, but this would be ad hoc and ugly, and one
would still need to use the fundamental theorem of arithmetic for proving that

/x * 1 8 and A * 1 log.)
Note that prime numbers will play no role whatsoever before we turn to the

actual proof of the prime number theorem in the Appendix, where the computation
of A(n) will be used again.
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3.2. The (weighted) Möbius transform.

Definition 3.6. Given a function f : [l,oo) M, its 'Möbius transform' is

defined by

w E/(f)-
n<x

Lemma 3.7. The Möbius transform f i-> F is invertible, the inverse Möbius

transform being given by

fix) E^F (f) •

n<x

Proof We compute

y2iii")F (~)= 1] /(—)= e M(«)/(—)V«/ \nm/ ^ \nm/n<x n<x m<x/n nm<x

E / (7) E E / (7) 5^r)= /(*)>
r<x ^Ir r<x

where we used the defining property ^(w) of /z.

Remark 3.8. Since the point of Theorem 1.1 is to deduce information about /
from information concerning its Möbius transform F, it is tempting to appeal to

Lemma 3.7 directly. However, in order for this to succeed, we would need control

over M(x) J2n<x A6^)* at least as g°°d as M(x) o(x). But then one is back

in Ellison's approach mentioned in the introduction. The essential idea of the

Selberg-Erdös approach to the PNT, not entirely transparent in the early papers
but clarified soon after [TI], is to consider weighted Möbius inversion formulae

as follows.

Lemma 3.9. Let f : [l,oo) -> M be arbitrary and F(x) JZn<x f(x/n)• Then

(3.1) /(x)logx + EA(«)/(^) E^log^©-
n<x n<x

Proof We compute

E^(")10g~F (~)= lo§x E^(")F if) ~ J2ixin)l°zn F (^) •

n<x n<x n<x

By Lemma 3.7, the first term equals /(x) log x, whereas for the second we have
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^2fi(n)logn F (-) ^2fi(n)logn ^ / (—) ^ /i(n)logn f (—)^ \n/ ^ ^ \nm/ ^ \nm/«<x n<x m<x/n nm<x

E(E^")lo§n) /(j) -Ea^/(J)'
s<x y n\s / s<x

the last equality being Proposition 3.4(ii). Putting everything together, we obtain

(3.1).

Remark 3.10. 1. Eq. (3.1) is known as the 'Tatuzawa-Iseki formula', cf. [TI,
(8)] (and [Karl, p. 24]).

2. Without the factor log(x/n) on the right hand side, (3.1) reduces to Möbius
inversion. Thus (3.1) is a sort of weighted Möbius inversion formula. The

presence of the sum involving f(x/n) is very much wanted, since it will
allow us to obtain the integral inequality (2.1) involving all f(t),t e [l,x].
In order to do so, we must get rid of the explicit appearance of the function
A (n), which is very irregular and about which we know little. This requires
some preparation.

Lemma 3.11. For any arithmetic function f : N -> M we have

f{n)\ogn + J2Md)f Q £>(</) log^ /(m)-
d\n d\n m\(n/d)

In particular; we have Selberg's identity:

(3.2) A(n)log« + y] A(J)A (f) y]^)log2 4
d\n d\n

Proof If / is an arithmetic function, i.e. defined only on N, we extend it to M

as being 0 on M\N. With this extension,

E/G) E/£) £'<«
m<n m\n m\n

so that (3.1) becomes the claimed identity. Taking f(n) A(n) and using

J2d\n A(d) logn, Selberg's formula follows.



On Karamata's proof of the Landau-Ingham Tauberian theorem

3.3. Preliminary estimates.

Lemma 3.12. The following elementary estimates hold as x -> oo;

(3.3)
'—' n \ x /n<x v '

logx"

55

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

^I log.l + r + 0(i),
n<x x /

(i±j^„ log» logT*
n 1

y logn x logx — x + 0(logx),
n<x

£>g- x + O(logx),
n<x

y log2 n x(log2x — 2logx + 1) + 6>(log2x),
n<x

T log2 - X + 0(log2 x).
nn<x

Here, y is Euler's constant and c > 0.

Proof (3.3): We have

N nN

V 1 fN dt
_

fN d([t\ -t)
n

~ Ji T ~ A-o F

Lfj-f %
i A f

Since 0<A — [Aj < 1, the integral on the r.h.s. converges as N -> oo to some

number y (Euler's constant) strictly between 0 and 1 J^° dt/t2. Thus

1 fN dt r£»"/. T+y~i" tfdt log N + y + O

(3.4): Similarly to the proof of (3.3), we have

N *iV i„„, fN
y> lOg»

_
fN lOgf ^ _

fN lOg t

n A t ~ A-o t
d([t\ —t)

(L? J 0 log t N fN
+l (t - L?J) logf dt.

The final integral converges to some c > 0 as iV ^ oo since (logt)/t2
0(t~2+s). Using

/' logf-it hix.
t 2 r*fi,<=_[!!*r+r* i

JN t
_

t _N JN t

log N
N
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we have

* tog; r* \ogjit+c_ f°° « - L'J)i°gfrf, + 0 (1 + 'og'V^ it J, I Ik I2 2 \ x I
(3.5): By monotonicity, we have

fX-\~lpX pX-\-l
I logtdt<Y^gn< I logtdt.

J i J i

Combining this with f* log t dt x log x — x + 1, (3.5) follows.

(3.6): Using (3.5), we have

J", log — |xj log x — ^ logn (x + 0(1)) log x — (x log x — x + 0(log x))

X + 0(logx).

(3.7): By monotonicity,

pX pX-\-L
/ log21 dt < log2 n < / log

J i J i

JC+l
2 t dt.

Now,

nX p logX

/X
pLOgX

log21 dt J euu2du [eu(u2 — 2u + 1)]0°§X x(log2 x — 21ogx + 1) —1.

Combining these two facts, (3.7) follows.

(3.8): Using (3.5) and (3.7), we compute

x
n

log2 - ^(log.v - log n)2

n<x
2

|_xj log2 x — 21ogx(x logx — X + 0(logx))
+ x(log2 x — 2 logx + 1) + 0(log2 x)

X + 0(log2 x). I

Proposition 3.13. The following estimates involving the Möbius function hold:

(3.9) E —= "CI^ nn<x

,3.10) ^^ log i 0(1),z—' n nn<x

(3.11) ^-2 log2 — 2logx + 0(1).^ n nn<x
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Proof. (3.9): If /(x) 1 then F(x) |_*J • Möbius inversion (Lemma 3.7) gives

(3.12) 1 ^2fi(n) ^ J2ß(n) (f + O(lf) x ^ 0(1),
nn<x

where we used fi(n) 0( 1) (Proposition 3.3(iii)). In view of J2n<x £KX)>

we have ^n<xli(ri)/n 0(x)/x 0(1).
(3.10): If /(x) x then E(x) J2n<xx/n x^°gx + yx + 0(1) by (3.3).

By Möbius inversion,

x V ß(n) (- log - + y- + 0(1)) rV ^
log - + xO(l) + 0(x),z—' \n n n / z—' n nn<x n<x

where we used (3.9) and Proposition 3.3(iii). From this we easily read off (3.10).

(3.11): If /(x) xlogx then

f(x) y—log — y — (log x—log n) x log x y ——x yZ—< n n Z—/ n Z—/ j/i Z—/

logn
n n z—' n z—' n z—' n

log, (log, + + O (i))-.v c + O

l 2=-xlog x H- yx logx — cx -\- 0(1 H- logx),

by (3.3) and (3.4). Now Möbius inversion gives

E^/Xt 2 X X 1 X X X \
n(n) I — log - + y- log c- + 0(1 + log -))\2n n n n n n /n<x

_
X VXO

J
2 *

_|_ xO(\) + 0(x),
2 t—1 n n

n<x

where we used (3.9), (3.10) and (3.6), and division by x/2 gives (3.11).

Proposition 3.14 (Seiberg, Erdös-Karamata [EK]). Defining

£"(1)=0, if „>2,logn ^ \d/
a\n

we have K(n) > 0 and

(3.13) J2 (A(zi)+ *(/!)) 2x + O •

Proof The first claim is obvious in view of Proposition 3.4(iv). We estimate
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n
U(x):= EE 11(d) log2 - e M») E lo§2m

n<x d\n n<x m<x/n

!><"> (£<l0g2 ^-2'ogi + 0 + 0<log2 i))
n<x

x(21ogx + 0(1)) — 2x0(1) + xO(l) + 0(x) 2x logx + 0(x).

Here we used (3.7), (3.11), (3.10), (3.9), the fact fi(n) 0(1), and (3.8). Comparing
(3.13) and (3.2), we have

£>(») + *(»)=
n<x 2<n<x ®

"<'>
</(

log t
r dim \mr + r

J2-0 log t |_ log J
2 J2 t

2x + 0 (E-) + r JL + o(fX
Viogxy J2 logt \J2 log tJ

In view of the estimate

fx dt dt fx dt
^

*Jx x q x \
J2 logt J2 logt «A/5c logt ~ log2 log *Jx Vlogxy'

we are done.

Remark 3.15. In view of (3.2), the above estimate U(x) 2xlogx + 0(x) is

equivalent to

^2 A(n)logn + A(a)A(Z>) 2xlogx + 0(x),
n<x ab<x

which is used in most Selberg-style proofs. (It would lead to (3.20) with k 2.)

3.4. Conclusion.

Proposition 3.16. If g : [1, 00) -> M is such that

O.I4) G(,) Q Ä, + Cj0 + „

then

(3.15) g(x)logx + ^ A(n)g =o(xlogx).
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Proof In view of Lemma 3.9, all we have to do is estimate

— S\ + S2 + S3.

The three terms are

Si Bx y log — xO( 1) O(x),^ n nn<xn<x

52 — Cx Y fAA — xO( 1) O(x),
n

53 y fi(n)o © E 0 © °(x E logx>'
n<x n<x n<x

where we used (3.10), (3.9), and fi(n) 0(1), respectively.

Proof of Theorem 2.3. In view of g(x) f(x) — Ax and Proposition 2.1 (i), (ii),
we immediately have

Furthermore, since / satisfies (1.1), and (3.3) gives J2n<x Ax/n ^xlogx +
Ayx A- 0(1), the Möbius transform G of g(x) f(x) — Ax satisfies (3.14) (with
a different B), so that Proposition 3.16 applies and (3.15) holds.

Writing N(x) J2n<x + K(n), by Proposition 3.14 we have N(x)
2x + co(x) with co(x) o(x). Now,

(3.16)

(3.17) 0(x) + 0(x) + o(x) 0(x),

where we used (3.16). On the other hand,
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/x\ rg w /
V« / J1-0

dN{t)

2/ \s(j)\ d<+ U'Ol^
=2xl 1 k(?)l

Mr)-+
r>x+0

2x£mJt + £
+ g(l)ft>(x) - g(x + 0)a>(l - 0).(3.18)

In view of g(x) O(x) and co(x) o(x), the sum of the last two terms is

O(x). Furthermore,

>*+° — < ^+o \d\g(t)\\\1 < o
/X\ / C*

- ixlx+01^(01 \

< o
[x+°df + Adt\

1I X J
I OyX log X),

where we used g(x) /(x)-Ax and df \df\ (since / is non-decreasing)
to obtain \dg\ |df — Adt| < |J/| + df + and Proposition 2.1(ii).

Introducing this into (3.18), we have

r* ls(0l
(3.19) ^](A(n) + K(n)) g (-)| =2x f

m <Tr ^ 7 1

+ 6>(x logx).

After these preparations, we can conclude quickly: Subtracting (3.17) from (3.15)

we obtain

g(x)logx Y K(")g + °(x logx).
n<x

Taking absolute values of this and of (3.15) while observing that A and K are

non-negative, we have the inequalities

|g(x)|logx<^A(n) g (^)| +o(xlogx),
n<x

|g(x)|logx < y]x(«) g(^)|+o(xlogx).

Adding these inequalities and comparing with (3.19) we have

2|g(*)|log* ^ ^(A(w) + Kin)) e + (Ax log.r)

=2xj-<m dt + o(x logx),
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so that (2.1), and with it Theorem 2.3, is obtained on dividing by 2xlogx.

Remark 3.17. 1. We did not use the full strength of Proposition 3.14, but only
an o(x) remainder.

2. Inequality (2.1) is the special case k 1 of the more general integral
inequality

k v ^, r iscoi log*-11 ..k_c(3.20) log x < k ^ -dt + 0(logk~c x) Wk e N

proven in [Ba], assuming a O (lo*2x) in (1-1) instead of + <> (k^) •

4. Proof of Theorem 2.4

The proof will be based on the following proposition, to be proven later:

Proposition 4.1. If s : [0, oo) -> M satisfies

(4.1) e1's(t') — els(t) > —M(ef/ — ef) Vtf > t > 0,

(4.2) f s(t)dt
\JQ

< M' Vx > 0,

and S limsup|s(x)| > 0 then there exist numbers 0 < S\ < S and e,h > 0

such that

(4.3) ß(ExASl) >e Vx > 0, where ExXSl {t e[x,x + h\ | |s(0| < Si},

and /x denotes the Lebesgue measure.

Proof of Theorem 2.4 assuming Proposition 4.1. It is convenient to replace

g : [1, oo) -> M by s : [0, oo) -> M, s(t) e~{g(e{). Now s is locally integrable,
and the assumptions (2.2) and (2.3) become (4.1) and (4.2), respectively, whereas

the conclusions (2.4) and (2.5) assume the form

(4.4) S lim sup \s(t)\ < oo,
t^oo

(4.5)
1 fxS> 0 =>- limsup— / \s{t)\dt < S.

X—>OQ V J0
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The proof of (4.4) is easy: Dividing (4.1) by e*' and integrating over tf e [t,t + h],
where h > 0, one obtains

/
t -\-h

s(t')dt' - - e~h) > —Mh + M( 1 - e~h),

and using \f^ s(t)dt\ < \ s(t)dt\ + \ s(t)dt\ < 2M' by (4.2), we have the

upper bound
2M' + M(e~h - 1 +h)

S(t) <
1 — e n

Similarly, dividing (4.1) by e* and integrating over t e [tr — one obtains the

lower bound
2M' + M(eh - 1 -h)

en — 1

thus (4.4) holds.

Assuming S > 0, let Si,ft,e be as required by Proposition 4.1. For each

S > S there is x0 such that x > x0 =>- \s(x)\ < S Given x > x0 and putting
N L^J, we have

xo N pxo+nh
s(t)\dt

xo+Nh

px pxq pXQ-\-nn p
/ \S(t)\dt / m\dt + / m\dt + /

JO Jo
n \ JXQ + {n—l)h Jxi

< 2M' + N[S(h -e) + Sre] + 2M'

(^ + O0)M(.-i)S + J*] + «'
=x[(l~ds + lSi] + 0(l)-

Thus
1 fx / e\ ^ e

limsup — / \s(t)\dt < (1 — - S + -Si.
x—^oo X Jo V ft/ ft

Since S\ < S and since S > S can be chosen arbitrarily close to S, (4.5) holds
and thus Theorem 2.4.

In order to make plain how the assumptions (4.1) and (4.2) are used to prove
Proposition 4.1, we prove two intermediate results that each use only one of
the assumptions. For the first we need a "geometrically obvious" lemma of
isoperimetric character:

Lemma 4.2. Let t\ < t2, C\ > C2 > 0 and k : [t\,t2] -> M be non-decreasing
with k(t\) > Cie*1 and ft(^) < C2et2. Then

n({t e [ti,t2] I c2e' < k(t) < Cie'}) > log-/.
<-2
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Proof. As a non-decreasing function, k has left and right limits k(t ± 0)

everywhere and k(t — 0) < k(t) < k(t +0). The assumptions imply t\ e A := {t e

[tiJil I k(t) > Cxet}, thus we can define Tx sup(A). Quite obviously we have

t > T\ =>- k(t) < C\ef, which together with the non-decreasing property of k and

the continuity of the exponential function implies k(Tx + 0) < CxeTl (provided
T\ < t2). We have T\ e A if and only if k(T\) > CxeTl. If T\ $ A then T\ > t\,
and every interval (Tx — s, T\) (with 0 < £ < Ti —1\) contains points t such that

k(t) > Cie{. This implies k(T\ — 0) > CxeTl. Now assume T\ t2. If T\ e A

then C\eTl < k(Tx) < C2eTl .If A then CxeT1 < k{Tx-0) < fc(7i) < C2e'2.

In both cases we arrive at a contradiction since C2 < C\. Thus Tx <t2. If Tx e A

(in particular if Tx h) then CxeTl < k(Tx) < k(Tx + 0) < CxeTl. Thus k is

continuous from the right at Tx and k(T\) CxeTl. If Tx A then Tx > t\
and CxeTl < k(Tx — 0) < k(Tx + 0) < CxeTl. This implies k(Tx) CxeTl, thus

the contradiction T\ e A. Thus we always have T\ e A, thus k{T\) CxeTl.

Now let B {t g [Ti,t2\ I k(t) < C2e1}. We have t2 e B, thus T2 inf(2?) is

defined and T2>TX. Arguing similarly as before we have t < T2 =>- k(t) > C2ef,

implying k(T2— 0) > C2eT2. And if T2 < t2 and T2 (f B then £(r2 + 0) < C2eTl.

If T2 e B (in particular if T2 t2) then C2eTl < £(T2 — 0) < k(T2) < C2eTl,

implying k(T2— 0) £(T2) C2er2 so that k is continuous from the left at T2.

If T2 $ B then T2 < t2 and C2eTl < £(r2 — 0) < k(T2 + 0) < C2eTl, implying
£(T2) C2cr2 and thus a contradiction. Thus we always have T2 e B, thus

k(T2) C2eT2.

By the above results, we have C2e' < fc(Q < Ci^ W g [Ti, T2] and thus

(4.6) /x ({* G [tut2] | C2c' < A:(0 < Cte'}) >T2-TX.

Using once more that k is non-decreasing, we have

CxeTl =k{Tl)<k{T2) C2eT2,

implying T2 — T\ > log ^4, and combining this with (4.6) proves the claim.

Corollary 4.3. Assume that s : [0, oo) M satisfies (4.1) and s(tx) > Sx > S2 >
s(t2)f where S2 + M > 0. Then

n({t e [ti,t2] I v(f) e [S2,5i]}) > log ^ ^ ^
Proof. We note that (4.1) is equivalent to the statement that the function
k : t i-^ et(s(t) + M) is non-decreasing. The assumption s(^i) > > .S2 > s(t2)

implies k(t\) > (5i + M)c?1 and k(t2) < (52 + M)et2. Now the claim follows

directly by an application of the preceding lemma.
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Lemma 4.4. Let s : [0, oo) -> M be integrable over bounded intervals, satisfying
(4.2). Let e > 0 and 0 < $2 < S\ be arbitrary, and assume

i M' M'\<4-7) +

Then every interval [x,x + h\ satisfies at least one of the following conditions:

(i) ii(EXihiSl) > e, where EXihiSl is as in (4.3),

(ii) there exist 1\,t2 such that x < t\ < t2 < x + h and s(^i) > Si and

s(t2) < S2.

Proof It is enough to show that falsity of (i) implies (ii). Define

T sup{£ G [x,x + h\ I s(t) < S2},

with the understanding that T x if s(t) > S2 for all t e [x,x + h\. Then

s(t) > S2 W G (T,x + h], which implies

nx-\-h

(x + h- T)S2 < J s(t)dt < 2M'

and therefore

(4.8) x + h-T < If-.
S2

We observe that (4.8) with T x would contradict (4.7). Thus x < T < x + ft,
so we can indeed find a t2 g [x,x + ft] with s(t2) < S2. Since we do not assume

continuity of s, we cannot claim that we may take t2 T, but by definition a

t2 can be found in (T — e, T] for every e > 0.
Now we claim that there is a point t\ e [x, t2] such that s(£i) > Si. Otherwise,

we would have s(t) < S1 for all t g [x,t2\- By definition, \s(t)\ < S1 for
t g EXfh,Si^ thus \s\ > Si on the complement of Ex^,Si- Combined with
s(t) < S1 for t g [x,f2], this means s(t) < —Si whenever t g [x, t2]\EXfh,Si •

Thus

/ s(t)dt < Sin([x,t2\ n - 5i/r([x,r2]\£'x,/!,51)
JX

— -Si(t2 -x) + 2Siß([x, t2] n Ex>h,Si)

— Si(x -t2 + 2n([x,t2\ n Ex>h,Si))

In view of (4.8) and t2 > T — e (with e > 0 arbitrary), we have x — t2 <
x — T + s < 2M'/S2 — h + e, thus we continue the preceding inequality as

(2Mf \" < S\ — h + s + 2/z([x, t2\ H J •
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By our assumption that (i) is false, we have /x([x, t2\ n EXih,Si) < ß(EXfh,Si) < e-

Thus choosing s such that 0 < s < 2{e — p([x,t2] n EXih,Si))> we have

(2M' \" 1 \~sT~ V'
Combining this with (4.7), we finally obtain Jt2 s(t)dt < —2M\ which contradicts
the assumption (4.2). Thus there is a point t\ e [x,t2] such that s(^i) > S\. In
view of s(^i) > S\ > S2 > s(t2), we have t\ ^ t2, thus t\ <t2.

Proof of Proposition 4.1. Assuming that S limsup|s(x)| > 0, choose Si,S2
such that 0 < S2 < S\ < S. Iben e := log fyipjf > 0. Let h satisfy (4.7). Assume

that there is an x > 0 such that p,(EXih,Si) < e• Then Lemma 4.4 implies the

existence of t\,t2 such that x < t\ < t2 < x + h and x(^i) > Si, s{t2) <
S2. But then Corollary 4.3 gives ß([t\,t2\ nr1^,^]) > log ^I+m Since

[h,t2\ n5_1([S2,Si]) C ExXSl, we have fi(Ex>h>Sl) > log e, which is

a contradiction.

Remark 4.5. The author did not succeed in making full sense of the proof in

[Karl] corresponding to that of Corollary 4.3. It seems that there is a logical
mistake in the reasoning, which is why we resorted to the above more topological
approach.

A. The Prime Number Theorem

Proposition A.l. Defining f(x) := Jfn<x Mri), we have f(x) ~ x.

Proof Since A(x) > 0, we have that xj/ is non-negative and non-decreasing.
Furthermore,

E^© E E aw EEaW
n<x n<xm<x/n r<x s\r

(A.l) ^logr xlogx — x + C(logx)
r<x

by Proposition 3.4(i) and (3.5). Now Theorem 1.1 implies f(x) x + o(x), or

f(x) ~ x.
Note that we still used only (i) of Proposition 3.4, but we will need now (iii):
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Theorem A.2. Let 7t(x) be the number of primes < x and pn the n-th prime.
Then

V
7t(x)

log*'
p„ ~ n log n.

Proof. Using Proposition 3.4(iii), we compute

f(x) J2Ain) E lo§^ Elo§^
n<x

If 1 < y < x then

pK<x p<x

log*
Jog P.

< 77*(*) lOg*.

71 s ^ ^ 1 ^ v" logp „ VJ-J
(*)-7r(y)= > 1< > <-^ ^ logy log yy<p<x y<p<x

Thus 7t(x) < y + ^W/log Taking y x/log2x this gives

f(x) 7r(x)logx f(x) logx
+

1

X log (x/log2 x) logx'

thus f(x) ~ 7r(x) log x. Together with Proposition A.l, this gives jr(x) — x/ log x.
Taking logarithms of ir(x) — x/logx, we have log7r(x) — logx —log logx ~

logx and thus 7r(x)log7r(x) — x. Taking x pn and using ir{pn) n gives
n log n ~ pn

Remark A.3. Karamata's proof of the Landau-Ingham theorem is obviously
modeled on Selberg's original elementary proof [Sei] of the prime number
theorem. However, Selberg worked with f f from the beginning. Most later

proofs follow Selberg's approach, but there are some that work with M instead

of f. Cf. the papers [PR, Kal] and the textbooks [GL, Ell]. As mentioned in the

introduction, the result for M also follows easily from Theorem 1.1:

Proposition A.4. Defining M(x) we have M(x) o(x).

Proof We define /(x) M(x) + [xj, which is non-negative and non-decreasing.
Now

fm £M© +

T^i^i) + ^ x
Lm J

E E i^im) + ^
n<x m<x/n

I X
i + E|-' Lrn-



On Karamata's proof of the Landau-Ingham Tauberian theorem 67

where the last identity is just the first in (3.12). The remaining sum is known
from Dirichlet's divisor problem and can be computed in elementary fashion,

(A.2) Y I

— xlogx + (2y — l)x + 0(*/x),^ LmJ
m<x

cf. e.g. [TFM]. Thus F(x) xlogx + (2y — l)x + O(^fx), and Theorem 1.1

implies /(x) x + o(x), thus M(x) o(x).

Remark A.5. Note that we had to define /(x) M(x) + |_xj and use (A.2) since

/(x) M(x) + x is non-negative, but not non-decreasing. One can generalize
Theorem 1.1 somewhat so that it applies to functions like /(x) M(x) + x
weakly violating monotonicity. But the additional effort would exceed that for the

easy proof of (A.2).
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