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Hilbert’s 5th Problem

Lou van den Dries and Isaac GOLDBRING

Abstract. Assuming a modest amount of background we give full proofs of the results by
Gleason, Montgomery—Zippin, and Yamabe that characterize Lie groups and generalized
Lie groups among topological groups. Our treatment involves nonstandard reasoning, and
we expose this method in an appendix.

Mathematics Subject Classification (2010). Primary: 22D05; Secondary: 03HOS.
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1. Introduction

A Lie group is a topological group G for which inversion x — x~!: G — G and
multiplication (x,y) — xy: G xG — G are analytic maps with respect to some
compatible real analytic manifold structure on its underlying topological space.
It is a remarkable fact that then there is only one such real analytic manifold
structure. This uniqueness falls under the slogan

Algebra x Topology = Analysis.

Important Lie groups are the vector groups R”, their compact quotients R”/Z",
the general linear groups GL,(R), and the orthogonal groups O,(R). For each of
these the group structure and the real analytic manifold structure is the obvious
one; for example, GL,(R) is open as a subset of IR{”z, and thus an open
submanifold of the analytic manifold R"* . Here and throughout this paper we let
m and n range over N ={0,1,2,...}.

Hilbert’s 5th problem asks for a characterization of Lie groups that is free of
smoothness or analyticity requirements. A topological group is said to be locally
euclidean if some neighborhood of its identity is homeomorphic to some R”.
A Lie group is obviously locally euclidean, and the most common version of
Hilbert’s 5th problem (H5) can be stated as follows:
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Is every locally euclidean topological group a Lie group?

A positive solution to this problem was achieved in the early fifties by the combined
efforts of Gleason [3] and Montgomery & Zippin [15]. Yamabe improved their
results in [21] and [22]. Montgomery & Zippin exposed all of this and more in
their book [16] on topological transformation groups. Kaplansky has also a nice
treatment in Chapter 2 of [13]. Of course, the affirmative solution of HS5 gives
further substance to our crude slogan.

We are oversimplifying the story: Hilbert’s original formulation [8] is in terms
of a (local) group of homeomorphisms on a topological manifold. This suggests
a problem that is still open: if a locally compact group G acts continuously and
faithfully on a topological manifold, is G necessarily a Lie group? See Serre [19]
and Palais [18] for brief accounts that discuss this more general form of HS. Serre
considers the state of HS just before the decisive papers [3] and [15], and Palais
focuses on Gleason’s contribution.

Locally euclidean topological groups are certainly locally compact. (We
include being hausdorff as part of compactness and of local compactness.) Local
compactness yields a powerful analytic tool, namely Haar measure, and we shall
need it. From now on G denotes a locally compact (topological) group, with
identity 1, or 1g if we want to indicate G .

A notion that has turned out to be central in the story is that of having no
small subgroups: G is said to have no small subgroups (briefly: G has NSS)
if there is a neighborhood U of 1 in G that contains no subgroup of G other
than {1}. It is also useful to introduce a weaker variant of this property: G is
said to have no small connected subgroups (briefly: G has NSCS) if there is a
neighborhood U of 1 in G that contains no connected subgroup of G other than
{1}. Dimension theory also plays a modest role: call a topological space bounded
in dimension if for some n no subspace is homeomorphic to the unit cube [0, 1]”.
Recalling that throughout G is locally compact, we can now formulate the main
result as characterizing Lie groups among locally compact topological groups:

Main Theorem. Given G, the following are equivalent:
(1) G is a Lie group;

(2) G has NSS;

(3) G is locally euclidean;

(4) G is locally connected and has NSCS;

(5) G is locally connected and bounded in dimension.

In (1) and thoughout this paper we take the definition of “Lie group” from the
beginning of this Introduction: it only requires existence (not uniqueness) of a
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compatible real analytic manifold structure. While the identity in a Lie group has
a countable neighborhood base, such countability issues play no explicit role in
our treatment.

We say that G can be approximated by Lie groups if every neighborhood of
its identity contains a compact normal subgroup N of G such that G/N (with
its quotient topology) is a Lie group. The following result, due to Yamabe, is
closely related to the Main Theorem, and is important in the structure theory of
locally compact groups.

Theorem. Every locally compact group has an open subgroup that can be
approximated by Lie groups.

Hirschfeld [9] used nonstandard methods to simplify some tricky parts of the
work by Gleason and Montgomery. The present paper is meant to give an account
of [9] with further simplifications, and some minor corrections. We also include a
proof of Yamabe’s Theorem, and an appendix on nonstandard methods for readers
not familiar with them. In the rest of this introduction we give more history and
sketch the solution to (global) HS.

Further relevant history. The clearcut formulation of H5 above became only
possible after basic topological notions had crystallized sufficiently in the 1920’s to
permit the definition of “topological group” by Schreier. The fundamental tool of
Haar measure, on any locally compact group, became available soon afterwards.
Von Neumann used it to extend the Peter-Weyl theorem for compact Lie groups
to all compact groups, and this led to the solution of HS for compact groups. (In
our treatment of HS5 we use a weak form of this extended Peter-Weyl theorem.)
Another important partial solution of HS is for the case of commutative G, due
to Pontrjagin, and we shall need this as well. Finally, we are going to use a result
of Kuranishi [14]:

if G has a commutative closed normal subgroup N such that N and
G/N are Lie groups, then G is a Lie group.

Gleason [4] and Iwasawa [11] establish this without assuming commutativity of
N, but we don’t need this stronger version and instead obtain it as a consequence
of the Main Theorem; see Section 2.

Goldbring [5] elaborated Hirschfeld’s approach to solve affirmatively the local
form of HS5. (A solution to local H5 was claimed already in [12], but about
20 years ago it was found that this paper was seriously wrong; see [17].)

Gromov [6] made a remarkable use of the results from the 1950’s around H5
in his proof that a finitely generated group has polynomial growth if and only if
the group has a nilpotent subgroup of finite index; see also [2].
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Recently, Hrushovski [10] and Breuillard-Green-Tao [1] used the solution of
HS5 (even the local form) and Yamabe’s theorem to elucidate the structure of finite

approximate groups. In this connection, and for another full account of HS, see
also Tao [20].

One-parameter subgroups. Lie theory provides a precious guide towards solving
HS. It tells us that the tangent vectors at the identity of a Lie group are in a
natural bijective correspondence with the 1-parameter subgroups of the Lie group.
While tangent vectors require a manifold to live on, the notion of 1-parameter
subgroup makes sense in any topological group.

A 1-parameter subgroup (or 1-ps) of G is a continuous group morphism R — G.
The trivial 1-parameter subgroup o of G is defined by o(t) =1 € G for all
t € R. We set

L£(G) ={:R—> G| &is a 1-ps of G}.

For r ¢ R and & € £(G) we define r§ € £(G) by (ré)(¢t) := &(rt), and we
also denote (—1)¢ by —&. Note that then 0§ = o, 1& = £, —§ = &1, and
r(s§) = (rs)é for r,s €e R and & € £(G). The operation

(& —>réE: RxL(G)— £(G)
will be referred to as scalar multiplication.

The case of Lie groups. Suppose G is a Lie group. Then each & € £(G)
is analytic as a function from R to G, and thus determines a velocity vector
£'(0) € T1(G) at the point 1 € G. This gives the bijection

£ £(0): LG)—Ti(G)

mentioned above. It respects scalar multiplication: (r&)'(0) = r&’(0). The addition
operation on £(G) that makes this bijection an isomorphism of vector spaces
over R is as follows: for £, € £(G) and s ranging over R”?,

&+ n)0) = lim (£1/s)n(1/9))"".

We make £(G) a real analytic manifold such that the R-linear isomorphisms
£(G) = R", with n := dimG = dimgr £(G), are analytic isomorphisms. Then
the so-called exponential map

E>E(1) @ LG)—>G

yields an analytic isomorphism from an open neighborhood of ¢ in £(G) onto
an open neighborhood of 1 in G.
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Sketch why NSS implies Lie. These facts about Lie groups suggest that we
should try to establish £(G) as a substitute tangent space at 1, towards finding a
compatible manifold structure on G . Note in this connection that the exponential
map & +— £(1) : £(G) — G is defined for any G. This is our clue to proving the
key implication NSS = Lie in the Main Theorem.

Indeed, we shall take the following steps towards proving this implication.
Suppose G has NSS.

(1) Show that for any &,n € £(G) there is an & + n € £(G) given by
E+n() = Slingo (E(l/s)n(l/s))[St], (s ranging over R™?)

and that this addition operation and the scalar multiplication make £(G) a
vector space over R.

(2) Equip £(G) with its compact-open topology (defined below) and show that
this makes £(G) a ropological vector space.

(3) Show that the exponential map & — £&(1) : £(G) — G maps some
neighborhood of o in £(G) homeomorphically onto a neighborhood of
1 in G. Then local compactness of G yields local compactness of £(G)
and hence the finite-dimensionality of £(G) as a vector space over R. It
follows that G is locally euclidean.

(4) Replacing G by the connected component of 1, we can assume that G
is connected. Then the adjoint representation (defined below) of G on the
finite-dimensional vector space £(G) has as its kernel a commutative closed
normal subgroup N of G, and yields an injective continuous group morphism
G/N — GL,(R). Since N has NSS, it is locally euclidean by (3). But N is
also commutative, and hence a Lie group (Pontrjagin). The injective continous
group morphism G/N — GL,(R) makes G/N a Lie group (E. Cartan, von
Neumann). Apply the Kuranishi theorem to conclude that G is a Lie group.

Step (1) is tricky, and requires ingenious constructions due to Gleason and Yamabe.
Step (2) is easy, and step (3) is of intermediate difficulty. Step (4) is a reduction
of the problem to a situation that that was well-understood before 1950. New
in our treatment is that we carry out steps (1) and (2) without requiring NSS:
local compactness of G is enough. Some of (3) and (4) can also be done in this
generality, and this is the first thing we shall take care of in the next section.

Sketch why every locally euclidean G has NSS. This is the other key
implication in the Main Theorem, and it passes through the other equivalent
conditions (4) and (5) in the Main Theorem. This goes roughly as follows. When
we have done step (1) above for all G, without assuming NSS, we can use this
to prove the following implications:
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e if G is locally connected and has NSCS, then G has NSS;

e if G does not have NSCS, then G contains a homeomorphic copy of [0, 1]*
for all n.

It only remains to observe that if G is locally euclidean, then G is locally
connected (trivially), and bounded in dimension (by Brouwer).

Acknowledgement. We thank Emmanuel Breuillard for suggesting that our
original seminar notes from 2007 might be worth publishing, and the referee
for many comments that were helpful in improving the exposition.

2. Preliminaries

Throughout this paper G and H are locally compact groups. A set U C G
is said to be symmetric if U~! = U. Given a closed normal subgroup N of G
we give G/N its quotient topology; it makes G/N a locally compact group. We
also give R its usual topology, and each R” the corresponding product topology.
Any n-dimensional vector space over R is given the topology that makes the
R -linear isomorphisms with R” into homeomorphisms.

In this section we state some basic facts on £(G) and its compact-open
topology. We also list some some elementary facts about locally compact groups
having NSS, and introduce the nonstandard setting that will enable an efficient
account of the solution of HS.

Generalities on one-parameter groups.

Lemma 2.1. Suppose & € £(G) and & # o. Then either ker& = {0} or ker§ = Zr
with r € R>C. In the first case § maps each bounded interval (—a,a) (a € R>?)
homeomorphically onto its image in G. In the second case & maps the interval
(5, 5) homeomorphically onto its image in G.

Proof. This follows from two well-known facts: a closed subgroup of the additive
group of R different from {0} and R is of the form Zr with r € R>?, and
any continuous bijection from a compact space onto a hausdorff space is a
homeomorphism. ]

For &, n e £(G) we say that & + n exists if limg_, o (E(l/s)n(l/.s'))[”] exists in
G for all t € R, with s ranging over R>?. In that case the map

> lim €/ R> 6

is a 1-ps of G, and we define & + n to be this 1-ps.
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Lemma 2.2. Let §,n € £(G) and p,q € R.
(1) & + o exists and equals &;

(2) p& + q& exists and equals (p + q)&;
(3) if €+ n exists, then n+ & exists and equals & + n;
4) if €+ n exists, then p& + pn exists and equals p(§E + n).

Proof. We leave (1) and (2) to the reader. Note that (2) yields that & + (—§)
exists and equals o. For (3), use that for s € R™? and a = £(1/s), b = n(1/s)
we have ba = b(ab)b™!, so (ba)* = b(ab)"b~'. Item (4) is easy when p > 0.
To reduce the case p < 0 to this case one first shows that if & + n exists, then
(—§) + (—n) exists, and equals —(¢ + 7). [

We define the adjoint action of G on £(G) to be the left action
(a,§) —aka™': G x £(G) — £(G), (aka™YH)(t) == ak(t)a™ !,
of G on the set £(G). Then each ¢ € G gives a bijection
Ad(a) : £(G) — £(G), Ad(a)(§) = ata™!,

and for r € R and & € £(G) we have Ad(a)(r§) = r Ad(a)(§). If &, n € £(G)
and & + n exists, then Ad(a)(§) + Ad(a)(n) exists and equals Ad(a)(§ + n).

Corollary 2.3. Suppose that & + n exists for all &, n € £(G), and that the binary
operation + on £(G) is associative. Then £(G) with + as its addition and the
usual scalar multiplication is a vector space over R with o as zero element, and
we have a group morphism a — Ad(a) : G — Aut (S(G)) of G into the group
of automorphisms of the vector space £(G).

In the situation of this corollary the map a > Ad(a) : G — Aut (£(G)) is called
the adjoint representation of G.

Next, consider a continuous group morphism ¢ : G — H. Then we have a
map

LUp) + LG6) = £(H),  LUP)E) =¢of,

and £(¢)(r€) =rL(¢)(§) for all r e R and & € £(G). Also, if £, n € £(G) and
€ + n exists, so does £(¢)(€) + £(¢)(n) and

LPE + 1) = L(@)(E) + LP) ().

If ¢ is injective, so is £(¢). In particular, if G is a subgroup of H with the
subspace topology and ¢ is the inclusion map, then we identify £(G) with a
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subset of £(H) via £(¢). With N = ker(¢) (a closed subgroup of G) and ogy
the trivial 1-ps of H we have

£(¢)" (om) = £(N).

Note that assigning to each G the set £(G) and to each ¢ as above the map £(¢)
yields a functor £ from the category of locally compact groups and continuous
group morphisms into the category of sets.

Generalities on NSS. By “NSS-group” we mean a locally compact group that
has NSS. Here are some examples of NSS-groups, and some basic facts about
them that we shall use freely:

(1) if G is discrete, then G has NSS;

(2) the additive group of R has NSS;

(3) GL,(R) has NSS;

4) it Gq,...,G, are NSS-groups, so is Gy X --- x Gy;

(5)if ¢ : G — H 1is a continuous group morphism, ¢ is injective on a
neighborhood of 1 in G, and H has NSS, then G has NSS.

(6) if N is a closed normal subgroup of G such that N and G/N have NSS,
then G has NSS.

Only the proof of (3) might not be obvious. Hint: Suppose 4 € GL,(R) is close
to the identity I of GL,(R), but A4 #1. Then 4 =1+ E where E € M,(R) is
close to but different from the zero matrix. Now use that

m

A" =1+ mE + (2

) E24...+ E™
is close to I+ mE (for suitable m). Note also that the Main Theorem and (6)
yield the Gleason—Iwasawa result mentioned in the Introduction.

The nonstandard setting. A careful reading of the appendix should give enough
background to work in this setting. Here we just fix notations and terminology.
To each relevant “basic” set S corresponds a set S* O S, the star extension
of S. Among these basic sets are R, G, their power sets P(R), P(G), and even
power sets P(R x G) of certain cartesian products, as needed. We make the usual
Mostowski identification of the star extension P(R)* with a subset of P(R*),
and likewise with other powersets. Thus each X C R extends to X*, an internal
subset of R*. Also, any (relevant) relation R and function F on these basic sets
extends to a relation R* and function F* on the corresponding star extensions
of these basic sets. For example, the linear ordering < on R extends to a linear
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ordering <* on R*, and the group operation p: G xG — G of G extends to a
group operation p* : G* x G* — G*. For the sake of readability we often drop
the star when indicating the star extension of a relation or function between these
basic sets. As an example, for x,y € R* we use x +y and x < y to abbreviate
the cumbersome expressions x +* y and x <* y; likewise, the star extension
E*:R* - G* of a 1-ps £:R — G is usually indicated just by &.

As usual in nonstandard reasoning, we leave it mainly to the context as to
what are the basic sets and basic relations among them: just take what is needed
by the arguments. As to the degree of saturation of the nonstandard extension, it is
enough to assume T -saturation where « is any infinite cardinal such that « > #S
for each basic set S. Actually, we use « -richness rather than « T -saturation, since
in the setting of the appendix «k-richness is easier to define but equivalent to
«t -saturation.

Given an ambient hausdorff space S and s € S, the monad of s, notation:
j(s), is by definition the intersection of all U* C §* with U a neighborhood
of s in §; think of the elements of w(s) as the points of S* that are infinitely
close to s. The points of S* that are infinitely close to some s € S are called
nearstandard, and Sy is the set of nearstandard points of S*:

Shs 1= U n(s).
seS
In particular, S C Sps. Since S is hausdorff, u(s) N u(s’) = @ for distinct
s,s’ € S. Thus we can define the standard part st(x) of x € Sys to be the unique
s € § such that x € u(s). We also introduce the equivalence relation ~ on Spyg
whose equivalence classes are the monads:

X~y &= st(x) =st(y) (“x and y are infinitely close”).

Notation: for U € S we let cl(U) and int(U) be the closure of U and the
interior of U in the space S. We prove here two well-known basic facts.

Lemma 2.4. Suppose U C S has compact closure cl(U). Then U* C S, and
st(U*) = cl(U).

Proof. Let x € U*, and suppose x ¢ Spys. Then each a € cl(U) has a
neighborhood U, in S such that x ¢ U;. Take a;,...,a, € cl(U) such that
cl(U) €Uz U---UUg,,. Then U C U, U---UU,,,s0 x e U* C U;l U---UU;n,
a contradiction. This argument gives U* C S,,. Let again x € U*. Then for each
neighborhood V of st(x) in S we have x € V*, so V*NU* # &, and thus
VNU # @. Thus st(x) € cl(U). Conversely, let a € cl(U). Then VNU # @ for
every neighborhood V of a in S, so V*NU* # @ for such V. By richness
this gives u(a) NU* # @, so a € st(U*). O
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Lemma 2.5. Suppose S is a regular hausdorff space and X is an internal subset
of S* such that X C Sys. Then st(X) C S is compact.

Proof. Let for each point p € st(X) an open neighborhood U, € S of p
be given. It suffices to show that then finitely many of the U, cover st(X).
By regularity we can pick for each p € st(X) an open neighborhood V, € S
of p such that cl(V,) € U, (and thus st(V)) € Up). From X C Sy we

obtain X C (J,eqx) Y, » Which by richness yields X € V; U-.-U V> with
P1s---» Pn €st(X). Then st(X) C Uy, U---UU,,. O

Note that G,y = UgeG u(g) is a subgroup of G*, and that the standard part
map st : Gpg — G is a group morphism that is the identity on G. We let
i = (1) = ker(st) denote the normal subgroup of infinitesimals of G,s. The
equivalence relation ~ on Gyg is given by:

a~b < ab lepn, (a,beGy).

Recall from the introduction that m,n range over N. In addition we let i, j
range over N*, v over N*\ N, and k over Z*. Also, o will always denote
a positive infinite element of R*. We adopt Landau’s “big O” and “little 0”
notation in the following way: for x,y € R* with y > 0, x = o(y) means that
|x| < y/mn for all n > 1, and x = O(y) means that |x| < ny for some n > 1.
We also adapt it to G as follows:

Olo] = Oglo] := {a € p| a' € p for all i = 0(0)},
olo] = oglo] := {a € u| @' € p for all i = O(0)}
= laep|a ep foralli <o)}

So o[o] € O[o] € . C Gus, and ofo] and O[o] are closed under a + at, for
each ¢ € Z; in particular, these sets are symmetric. By Theorem 5.8 below, o[o]
and Ofo] are normal subgroups of Gpg. At this point it is clear that if a € Gy
and b € O[o], ¢ € o[o], then aba™! € O[o] and aca™! € o[o].

Lemma 2.6. If a € O[o], then a' € Gos for all i = O(o).

Proof. Let a € Ofo], and take a compact symmetric neighborhood U of 1 in
G.1If ¢ € U* for all i = O(0), then a' € Gy for all i = O(0), as desired.
Suppose a’/ ¢ U* for some j = O(o), and take j minimal with this property.
Then a' € Gy with st(a’) € U for i =0,...,j. We cannot have j = o(0),
so 0 = O(j). Therefore, if i = O(o), then i = nj + i’ with i’ < j, and thus
al = (a))"al" € Gpg. ]
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The next lemma indicates why O[o] is of interest: its elements generate the
one-parameter subgroups of G in a very intuitive way.

Lemma 2.7. Let a € O[o]. Then the map £, : R — G defined by &,(t) := st(al®?))
is a 1-ps of G. Moreover:

(1) &, =&, forall L €Z;
2) ben = Epap—1 =bas
3) &, =0 < ac€oo];
4) £(G) = {&| b € Olo];.

Proof. 1t is clear that &, is a group morphism. To show continuity at 0 € R,
let U be a neighborhood of 1 in G. Take a neighborhood V of 1 in G such
that cl(V) € U. Since ak e u C V* for all k = o(o), we have n > 1 such
that a* € V* whenever |k| <o/n. Also a* € Gy for such k, so st(a¥) e cl(V)
whenever |k| < o/n. Hence &,(t) = st(al®’l) e U whenever t € R and |t| < 1/n.

The remaining assertions follow easily. In connection with (4) we note that for
§e€ £(G) and b :=&(1/o) we have b € O[o] and & = §&;. ]

The compact-open topology. Let P be a locally compact space, Q a hausdorff
space, and C(P, Q) the set of continuous maps P — Q. For compact K C P
and open U C Q, put

O(K.U):={f € C(P,Q)| f(K)CU}.

We equip C(P, Q) with its compact-open topology; this is the topology on
C(P, Q) that has the finite intersections of these sets O(K,U) as basic open
sets; it makes C(P, Q) into a hausdorff space, and makes the evaluation map

® : C(P,Q)xP— 0, O(f, p) == f(p),

continuous. Let A be any subset of P and F be a closed subset of Q. Then

{fecP. Q) f(H)cF}

is closed, since its complement in C(P, Q) is the union over all a € A of the
open sets

{f €C(P.Q) fla) ¢ F}.

A nonstandard view of the compact-open topology is as follows: Let f € C(P, Q)
and g € C(P, Q)*; then

gen(f) < g()en(f(p) forall pe P and p' e u(p).
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We apply this to the case where P = R is the real line and Q = G . Then £(G)
is closed in C(R, G), and below £(G) is given the topology induced on it by
the (compact-open) topology of C(R,G). Let I :=[—1,1] C R. Let £ € £(G).
Then every neighborhood U of 1 in G determines a neighborhood

Ne(U) = {17 € £(G)| n(t) € £(1)U for all t € I}
of & in £(G), and the collection
{N¢(U)| U is a neighborhood of 1 in G}

is a neighborhood base of & in £(G). (These facts are easy to verify using the
above characterization of monads in the compact-open topology.)

Lemma 2.8. The following maps are continuous:

(1) the exponential map & — £(1): £(G) — G;

(2) the scalar multiplication map (r,§) — ré : R x £(G) — £(G);

(3) the adjoint action map G x £(G) — £(G).

Proof. Ttem (1) follows from the continuity of evaluation in the compact-open
topology. To prove (2), let £ € £(G) and r € R, and let &' € £(G)* and r’ € R*

be such that & € u(§) and r’ € u(r); it suffices to show that then r'&" € u(r§).
Let ' € R* with ¢/ € u(t), t € R; then r't' € u(rt), so

(€N =§ (') € p(§(r)) = p((r§)(1)).

This argument shows that r’'§’ € u(r€), as desired. W

Lemma 2.9. Suppose U C G is a compact neighborhood of 1 in G and contains
no subgroups of G other than {1}. Then the set

K= {§ € £6)| () C U}

is a compact neighborhood of o in £(G).

Proof. Let n € K*, that is, n € £(G)* and n(I*) C U*. If ¢ € R* is
infinitesimal, then st(n(Ze)) € U is a subgroup of G, so n(e) € p. Hence
for each neighborhood V of 1 in G there is n > 0 such that n(r) € V* for all
r € R* with |r| < 1/n. Consequently, £ : R — G defined by &(z) = st(n(¢)) is
a l-ps with £&(I) CU, and n € u(§). ]
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3. Generating compact connected subgroups

Throughout this section we let a range over G*. We say that a is degenerate
if a' € p for all i. (Recall that i ranges over N*.)

Lemma 3.1. G has NSS iff G* has no degenerate elements other than 1.

Proof. We show the contrapositives. Suppose G does not have NSS. Take an
internal neighborhood U € u of 1 in G*. Then U must contain a nontrivial
internal subgroup H of G*, and so any a € H is degenerate.

Next, assume a # 1 is degenerate. Let U be any neighborhood of 1 in G.
Then «Z" C p C U*, so U* contains a nontrivial internal subgroup of G*, and
thus U contains a nontrivial subgroup of G. ]

At this stage we do not restrict attention to NSS-groups, so we do allow
degenerate elements # 1 in u. Nondegenerate elements in g give rise to
nontrivial connected subgroups of G, by the following elementary fact:

Lemma 3.2. Let aq,...,a, be an internal sequence in G* such that a; € p
and ay---a; € Gyg for all i € {1,...,v}. Then the set

S:={st(a;---a;)| 1<i<v} € G
is compact and connected (and contains 1).

Proof. The compactness of S follows from Lemma 2.5. Assume S is not
connected. Then we have disjoint open subsets U and V of G such that
S CUUV and S meets both U and V. We can assume that 1 € U, so
ay € U*. There are i < v such that st(ay---a;) € V, and ay,...,q; € V*
for such i. Take i < v minimal such that a{---a; € V*. Then i > 2 and
ay---aj—y € U*. Now a = st(ay---aj—1) = st(ay---a;) € S. If a € U, this
gives ay---a; € U*, and if a € V, it gives a;---a;—1 € V*, and we have a
contradiction in either case. ]

In the rest of this section U is a compact symmetric neighborhood of 1 € G.
If ¢N° € U* (in particular, if a is degenerate), then we set ordy (a) = oo;
if «N* ¢ U*, then we let ordy (a) be the largest j such that a' € U* for all
i <j.Thus ordy(a) =0 iff a ¢ U*, and ord; (a) > N if a € p. By convention,
k = o(o0) for every k.

Lemma 3.3. Suppose a € p and a' ¢ p for some i = o(ordU(a)). Then U
contains a nontrivial connected subgroup of G.
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Proof. By the previous lemma the set

Gy(a) == {st(ak)| k=0 (ordU(a))}

is a union of connected subsets of U, each containing 1, and is thus itself a
connected subset of U. It is also a subgroup of G. [

An element a € p is said to be U -pure if for some v we have a € O[v] and
a’t1 ¢ U*; note that then « is nondegenerate, ordy (a) # oo, and the above
holds for v = ordy (a). If U contains no nontrivial connected subgroup of G,
then by Lemma 3.3 every nondegenerate a € u is U -pure.

An element a € p is said to be pure if it is V -pure for some compact
symmetric neighborhood V of 1 in G. Thus:

Corollary 3.4. If G has NSCS, then every nondegenerate a € p is pure.

Lemma 3.5. Let a € . Then a is pure iff there is v such that a € O[v] and
a’ ¢ .

Proof. If a is U -pure, say, then for v = ordy; (a) we have a € O[v] and a* ¢ p.
Conversely, let v be such that ¢ € O[v] and a” ¢ p. If ord,(a) = O(v), then
a is U-pure. If v = O(ordy(a)), then a* € Gy, and we can take a compact
symmetric neighborhood V of 1 in G such that ¢* ¢ V*, and then a is
V -pure. []

Let Q range over internal symmetric subsets of G* such that 1 € Q C u.
We define Q' to be the internal subset of G* consisting of all a;---a; where
ai,...,a; is an internal sequence in Q. Thus

0= =0’

is the internal subgroup of G* internally generated by Q.

We say that Q is degenerate if Q° C u. If Q9 < U*, then we let
ord;; (Q) be the largest j such that 9/ C U*, and if Q% C U*, then we set
ordy (Q) :=o0o. Thus e :=ord;(Q) > N. We set

Gy (Q) := {st(a)| a € Q" for some i = o(e)} = U st(Q1).

i=o(e)

Recall that int(U) denotes the interior of U in G.

Lemma 3.6. [f ¢ # oo, then st(Q°) & int(U).
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Proof. Assume e # oo, and take b € Q¢ such that bg ¢ U* for some ¢ € Q.
One checks easily that then st(b) ¢ int(U). ]

Lemma 3.7. G;,(Q) is a compact connected subgroup of G contained in U. In
particular, if Q7 & wu for some j = o(e), then U contains a nontrivial compact
connected subgroup of G.

Proof. The set G;(Q) is the union of the increasing family of subsets st(Q7) of
G with j = o(e). We claim: there exists jo = o(e) such that st(Q/) = st(Q/0)
for all j = o(e) with j > j,. Suppose there were no such jy. Then transfinite
recursion yields a (well-ordered) set J of elements j = o(e) such that (a) for
all j € J there is a g; € st(Q7) with g; ¢ st(Q') whenever i € J,i < j, and
(b) for every i = o(e) there is a j € J with i < j. From (a) we get #J <#G,
where #S denotes the cardinality of a set S. Since for every j € J and n > 1
there is an i with i > j and i < e/n and we are in a k-rich structure with
Kk > #G, we get i > J with i = o(e), but this contradicts (b). This proves our
claim.

Let jo be as in the claim. Then G, (Q) = st(Q79), so G (Q) is compact
by Lemma 2.5. As in the proof of Lemma 3.3, G;;(Q) is a union of connected
subsets of U, each containing 1, and is thus itself a connected subset of U. It
is also a subgroup of G. L]

4. Compact groups

Theorem 4.1. Let G be compact and U an open neighborhood of 1 in G. Then
there is a continuous injective group morphism G/N — GL,(R) for some n and
some closed normal subgroup N of G contained in U .

Proof. The Peter-Weyl theorem yields for any @ # 1 in G a continuous group
morphism ¢, : G — GL,,,(R) that does not have « in its kernel N,. As a varies
over G \ U, the open sets G\ N, cover G \ U, so there are ay,...,a, € G\U
such that N := N4, N---N N, is contained in U . Then the desired result holds
for this N and n:=ng + -+ ng, . O

Corollary 4.2. Let G be compact and U a neighborhood of 1 in G. Then there
is a closed normal subgroup N of G contained in U and an open set V in G
such that N CV C U and every subgroup of G contained in V is contained
in N.

Proof. We can assume that U is open, and then we take N as in the previous
theorem, so that G/N has NSS. Take an open neighborhood W of the identity
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in G/N that contains no nontrivial subgroup of G/N. Let V := 7z '(W)NU,
where 7 : G — G/N is the natural map. Then V has the desired property. [

5. Gleason-Yamabe Lemmas and their Consequences

This is the most technical part of the story. The leading idea is to make G
act by isometries on its space of real-valued continuous functions with compact
support, and to use the Haar integral on this space.

Gleason—-Yamabe Lemmas. Throughout this subsection we fix a compact sym-
metric neighborhood U of 1 in G and a continuous function t : G — [0, 1] such
that

(1) =1, 7(x) =0 for all x € G\ U.

Let QO € U be symmetric with 1 € Q and let e be a positive integer with
Q¢ C U. Define the function A = Ag.: G — [0,1] by
(i) A(l) =0;
(i) A(x)=i/(e+1) if x€Q'\ Q! 1<i<e;
(iii) A(x) =1 if x ¢ Q°.
Then for all x € G,
(iv) A(x)=1if x ¢U;
(v) |A(ax) — A(x)| < 1/e for a € Q.
Now use t to smooth 1 — A: define 6 =0p,.: G — [0,1] by

6(x) = sup (1—AM)r(y~"'x) =sup (1-AG) (%)
yea yeu

The following properties are easy consequences:
(1) @ is continuous, and 6(x) = 0 outside U?;
2) 0<t=<6=<1;

(3) |f(ax) —0(x)| <1/e for a € Q;

For continuity of 6, note that if ¢ € p and x € G, then O(xa) — O0(x) is
infinitesimal in R*. To prove (3), let ¢ € Q, and note that for all x,y € G,

(1 - A y)) — (1= AG))| < /e,

lax = (@ 'y)"!x, so

and y~

(1= A0 rran) — (1= A )e(@ ' »™)| < Ve,
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which gives (3).

Let C be the real vector space of continuous functions G — R with compact
support, with norm given by | f| = sup,cq|f(x)]. We have a left action
GxC —C of G on C given by

(a, fyraf.  (@f)(x) = fla " x).

More suggestively, (af)(ax) = f(x) for a,x € G, f € C. It is clear that for
a € G the map f +— af is an R-linear isometry of C onto itself, and thus,

labf = fll = laf = fI+1bf =SfII  (a.beG, feC).

We have the following useful equicontinuity result:

(4) for each & € R>? there is a neighborhood V, of 1 in G, independent of
(Q,e), such that ||af — 0| < e for all a € V,.

To see why, let ¢ € R™Y. Uniform continuity of t gives a neighborhood U of
1 in G such that |t(g) —t(h)| < & for all g,h € G with gh™! € U. Take a
neighborhood V; of 1 in G such that y~lay € U for all (y,a) € U x V,. Then
lt(ylax) —t(yx)| <e for x € G, y €U and a € V,. This gives (4).

A second smoothing will be done by integration. Take the unique left-invariant
Haar measure . on G such that p(4?) = 1. (Left-invariance means that
[ flax)dp(x) = [ f(x)du(x) for f €C and a € G and f € C.) Then

(5) 0= [0(x)du(x) <1, by (1) and (2).

We now introduce the function
¢ =¢oe: G—R, P(x) = / O(xu)0(u) du(u).

Thus ¢, a convolution of two functions in C, is continuous, and we have:
(6) ¢(x) =0 outside U*;

(7 ¢(1) = [t(u)* du(u) >0, by (2);

(8) |lap — ¢| < |lad — 0| for all a € G;

(9) if a € Q, then |ap —¢| < 1/e, by (3) and (8).

The significance of (7) is that the positive lower bound [ t(u)? du(u) on ¢(1)
is independent of (Q,e).

Lemma 5.1. Let ¢ € R™C. Then there is a neighborhood U = U, CU of 1 in
G, independent of (Q,e), such that for all a € Q and b € U,

b @p—9)—@p—9)] = =



20 L. van den Dries and I. GOLDBRING
Proof. Let a € O, b eU. Then, with x € G and y := b 'x,
(ap —P)(x) = [ [0(a™" xu) — 0(xu)]0(u)dp(u)
blap —¢)(x) = (a¢p — P)(y) = [ [0 yu) — 0(yw)]0(u) dp(w).

By the left-invariance of our Haar measure we can replace u by x~!yu in the
function of u integrated in the first identity, so

(a¢ — P)(x) = / [B(a™ yu) — 0w ]0(x ™ yu) dp(u).

Taking differences gives
[b- (ap — ¢) — (ap — ¢)](x) = f [(@6 =)y ][(6 -y~ x0)w)] du(w).

If the left hand side here is nonzero, then x € U* or a='x e U* or b='x e U*
or a—'h™1x e U*, and thus x € U® in all cases. Also y~lx = x~!hx, so by (4)
we can take the neighborhood U, CU of 1 in G so small that for all b € Ug
and x € U® we have y~!x e U and ||§ — y~'x0| < &/u(@?). Then U, has the
desired property. []

Lemma 5.2. With ¢ € R™°, let U = U, be as in the previous lemma and let
a€ Q and n > 1 be such that at el for i =0,...,n. Then
ne

l(@"p —¢) —nlap —¢)| < "
Proof. We have a”"¢p —¢ = Y 1—0 a'(ap — $), so
n—1

("¢ —¢) —n(ap —¢) =Y _da'(ap —¢) — (ap — ).

i=0

By the previous lemma we have for i =0,...,n —1,
. €
o @p ~$) (g~ @) < =,
which gives the desired result by summation. L]

Suppose now that Q is a symmetric internal subset of G* with 1 € Q and
QO Cn.Llet e e N* be such that e > 1 and Q¢ C U*. Then the constructions and
results above transfer automatically to the nonstandard setting and yield internally
continuous functions

0=0pe: G*—[0,1]7, $»=¢g0e: G —>R"

satisfying the internal versions of (1)-(9) and Lemmas 5.1 and 5.2. With these
assumptions we have
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Corollary 5.3. Suppose a € Q, v =0(e), and a € o[v]. Then
viag — ¢l ~ 0.
Proof. By Lemma 5.2 we have for each ¢ € R>O,

I(@"¢ — ¢) — viag — )| < f

so the lefthand side in this inequality is infinitesimal. Also, by (8) and (4) we
have |a’¢ —¢| < |[a*d — 8], so ||a’¢p — ¢| is infinitesimal. [

Consequences of the Gleason—-Yamabe Lemmas.

Lemma 5.4. Let ay,...,a, be an internal sequence in G* such that all a; € o[v].
Then ay---a, € w.

Proof. Put Q := {l,ai,...,ay,ay’,...,a;'}, and towards a contradiction, sup-
pose that Q¥ < p. Take a compact symmetric neighborhood U of 1 in G
such that Q**! & U*, so ordy(Q) < v. By decreasing v if necessary, and Q
accordingly, we arrange that ordy(Q) =v or ordy(Q) =v — 1.

Consider first the special case that Q' € pu for all i = o(v). (This occurs if G
has NSCS). Take b € Q" such that st(h) # 1, and then take a compact symmetric
neighborhood & C U of 1 in G such that st(b) ¢ U*, and put e := ord, (Q),
so v = O(e). The previous subsection yields an internally continuous function
¢ =¢o.e: G* — R* satisfying the internal versions of (6)-(9) and Lemma 5.3.
In particular, ¢(x) = 0 outside (U*)* (hence ¢(b~!) = 0), and ¢(1) is not
infinitesimal. Then |b¢ — ¢| is not infinitesimal. Take an internal sequence
bi,...,by, in Q such that b = by ---b,. Then Lemma 5.3 yields

1b¢ =l < lIbip — Bl ~ O,

i=1
and we have a contradiction.
Next, assume that Q' & p for some i = o(v). Then we set

H:=Gy(Q) = {st(b) | b e Q' for some i = o(v)},

so H is a nontrivial compact subgroup of G contained in U, by Lemma 3.7.
By Corollary 4.2 we can take a proper closed normal subgroup N of H and a
compact symmetric neighborhood vV C U of 1 in G such that N C int(}V) and
every subgroup of H contained in V' is contained in N. Put p := ordy (Q), so
N < pu <v, and we have the compact subgroup

Gy (Q) = {st(h) | b € Q" for some i = o(u)}
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of H with Gy(Q) CV,so Gy(Q) € N. By Lemma 3.6 we can take b € Q*
with st(b) ¢ int(V). Then st(h) ¢ N, so we can take a compact symmetric
neighborhood ¢/ of 1 in G such that N Cint(i{), U* C V and st(h) ¢ U*.
Put e := ordy(Q). If e = o(u), then st(Q¢) € Gy(Q) € N, contradicting
st(h) ¢ N. This shows p = O(e). The rest of the proof now proceeds as in

the special case considered earlier, with v replaced by w, and by,...,bh, by an
internal sequence b;,...,b, in Q such that b =b;---b,. O]
Corollary 5.5. Let ay,...,a, be an internal sequence in G* such that all

a; € O[v]. Then ay---a, € Gpg.

Proof. 1If ay---a, € U*, we are done. Assume otherwise. Take the least j; with
ai---aj+; ¢ U* for some i with 1 <i <i+ j <v. Then by the previous lemma
we cannot have j = o(v), and this gives n > 1 with nj <v < (n + 1)j. Hence

a1+ dy = (al...aj)(aj+1...azj)...(anj+1...av) c (Z/{*)n - Gns

Lemma 5.6. If a € O[v] and b € o[v], then (ab)' ~a' for all i <v.

Proof. Set b; := a'ba™. Then (ab)’ = by---b; -a'. Assuming a € O[v] and
b € o[v], we have b; € o[v] for i <v by Lemma 2.6 and the remark preceding
it, so by---b; e p for all i <v, by Lemma 5.4. O

Lemma 5.7. Suppose that a,b € O[v] and a' ~ b' for all i < v. Then
a=1'h € o[v].

Proof. If a € o[v], then b € o[v], so (a~'h)' ~a~" € p forall i <v, and we are
done. So we can assume that a ¢ o[v], and then, replacing v by an element of
N* of the same archimedean class, we have a” ¢ u. Let Q := {l,a,a=',b,b7!}.
Then Q! C u for all i = o(v) by Lemma 5.4, and Q¥ C G, by Corollary 5.5.
Suppose towards a contradiction that (a~'b)/ ¢ u, where j < v. Then v = O(j).
Take a compact symmetric neighborhood ¢ of 1 in G such that ¢* ¢ &/ and
(a='h)/ ¢ U*, and put e = ord,,(Q), so e and v have the same archimedean
class. As before we have the internally continuous function ¢ = ¢p . : G* — R*
satisfying the internal versions of (6)—(9) and Lemma 5.3. Then ¢((a~'b)/) =0
and e := ¢(1) > 0 is not infinitesimal, and thus

e< b0y —o| < j| b a)p - 9|
= j|lap —bo| = j|(ap —¢) — (b — )|
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where the first equality uses the first line of the proof of Lemma 5.2. The desired
contradiction will be obtained by showing that

jl@g— @) — bp— )| <e.

Let § € R™%; then Lemma 5.2 gives a compact symmetric neighborhood U C U
of 1 in G such that if k > 0 and «',b* € U* for all i <k, then

|(a*¢ — @) —k(ap — )| <kS/e, |(b*¢p —¢) —k(bp — )| < kb/e. so

Hk(aqﬁ ¢) — jlad — ¢)H</é/e Hk(bk¢ $) — j(be — ¢)H</5/e

Choose § € R™® such that j§/e < ¢/3, and put k := min(ordy (a), ordy (b)).
Then k <v and a!,b' € U* for all i <k, and therefore

|20 —9)— jap—)| < o3 [ Lt o —0)— jop—)] </

Iz

Also v = O(k), and hence j/k <n for some n. Since a* ~ b¥, this gives
|Gk e = ¢) = (/BB P =) = (/ k) ||a*¢ — b*¢ | ~ 0.
In view of the earlier inequalities, this yields
|jad —¢) = j(bp — )| <.
as promised. [
Recall that 0 € R*, 0 > R.
Theorem 5.8. The sets Olo] and o[o] have the following properties:
(1) Olo] and o[o] are normal subgroups of Gys;

(2) if a € O[o] and b € pu, then [a,b] := aba™'hb~! € o[o];

(3) O[o]/olo] is commutative, and O[c]/o[c] € center (p/ o[o]).

Proof. Asto (1), let a,b € O[c]. Then (ab)’ € p for all i = o(¢) by Lemma 5.4,

so ab € Ofo]. Thus Ofo] is a normal subgroup of Gps. For i = O(o) this
argument shows that o[o] is a normal subgroup of G,s. Item (2) follows from
the previous lemma. Item (3) is immediate from (2). L]

£(G) as a topological vector space. It follows from Lemma 5.6 that for
a € O[o] and b € o[c] we have &, = &,,, so we have a surjective map

aolo] — &, : Olo]/o[o] = £(G).
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By Lemma 5.7 we also have for a,b € O[o] that if & = &, then a~'b € o[o],
so the above map is a bijection. We make £(G) into an abelian group with group
operation +, so that this bijection is a group isomorphism Ol[co]/o[o] — £(G),
in other words, &, +, & = &4 for a,b € O[o]. Note that &, +, &, = 2§, for
a € Ofo]. To show that this operation +, is independent of o, we need the next
lemma. In its proof we use that for g,# € G and [g,h] := ghg™'h™' we have

gh =g, hlhg.

Lemma 5.9. Let a,b € o[v] and a’ € O[o]. Then (ab)’ = ca’b” with c € olo].
Likewise, (ba)’ = bYa’d with d € o|o].

Proof. We define ¢; := [~ L, [P, a]][P' " ,alepn for i =1,...,v,50 ¢c; = 1.
We claim that then (ab)’ = cy---cja’h’. This is clear for i = 1. Assume the
claim holds for a certain i < v. Then

(ab)iJrl =cy---c;d'blab = ¢y ---ciai[b",a]ab“rl

=C1--C [ai, [bi,a]] [l)i,cz]cz""'lbi'"1 =0 ---ci+1ai+1bi+1.

This proves our claim. Now a” € O[o] gives a € O[vo], so [b',a] € o[vo]
for 0 <i < v, hence ¢; € o[va] for 1 <i <v. Put ¢ :=cy---c,. Then for
1 <j <o, the element ¢/ = (¢;---¢,)’ is a product of jv <vo elements, each
in o[vo], so ¢/ € u by Lemma 5.4, and thus ¢ € o[o], as desired.

With a~!,h7! in place of a,b, this yields the second part. O

Lemma 5.10. Let &, n e £(G). Then & + n exists and equals & +4 1.

Proof. Tt suffices to show that & +, n = & 4+, n for all positive infinite t € R*.
Consider first the case t = vo (with v € N*, v > N by convention), and set

a:=§1/1), b:=n/1), as:=§(1/0), by:=n(l/0),

SO dy = a’, by = b¥. We have a,b € o[v], so a’h’ = c(ab)’ with ¢ € o[o]
by Lemma 5.9. Setting d := (ab)” we have d = ¢ lash,, and in view of
do,bs € Olo] and Theorem 5.8 this gives d € O[o]. Hence

E+on= Sa(,b(, =&cd = &4,
and thus for all r € R,
(& +o M) = st(d") = st ((@h)") = (& +. n)(©).

Next we consider the case T = (1+¢)o with infinitesimal & € R*. With a, b, ay, by
defined as before, we have a,b,as,b, € Olo] = O[] and
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ag =a-§(/t),  bo =b-ne/t),  &(e/1).n(e/7) € o[o] = 0[],

so asby = abc with ¢ € o[o] by Theorem 5.8. For t € R>® we have
[0t] = [tt]+k with k = o(0), so by the definition of O[c] and using Lemma 5.6,

(@ohs) M ~ (a5he)* = (abe) ~ (ab)l,

and thus & 4+, n = & +, n. For arbitrary positive infinite v € R* we reduce to
the previous two cases by taking v,v’ € N*\ N such that v't = (1 + ¢)vo with
infinitesimal & € R*. O

By Lemma 5.10 we now have the real vector space £(G) as indicated in
Lemma 2.3. In Section 2 we gave it the topology induced by the compact-
open topology of C(R, G). Note also that for &,n € £(G) and r € R we have

€+ n)(r) = (rE + rn)(1), that is,
[rs] [s]
€+ = Jim (5n() " = tim ()

S §—>00 S N

Corollary S5.11. £(G) is a topological vector space over R.

Proof. Lemma 2.8 gives the continuity of scalar multiplication, so it remains to
establish the continuity of +. Let &, 7 € £(G), and let W be a neighborhood
of £ +n in £(G). It suffices to obtain neighborhoods P and Q of & and 7
in £(G) such that for all & € P and ' € QO we have & +1n' € W. To get
such P, Q, take a compact neighborhood U of 1 in G so small that for all
e &G),if ¢ty e E+n)@)U for all t € I :=[—1,1], then ¢ € W. Next, let
&.n e &(G) and £ ~ & and n~ . Fix some v > N, and put

a:=E(1/v), a =&0/v), b:=n(/v), b :=n(1/v),

so a,a’,b,b’ € O[v] and a' ~a" and b* ~b" for all i <v, so ao[v] =a’o[V]
and bo[v] = b’ o[v] by Lemma 5.7. Hence (ab)* ~ (a’b')* whenever |k| < v, so

() e () o wheneer <.

By overspill (see the subsection on topological spaces and continuity in the
appendix) this gives neighborhoods P and Q of & and n in £(G) such that for
all & € P and ' € Q we have

1 1.\k 1 1.\k
(FC) ((s(;m;)) )U* whenever k| < v.
It follows that for all £ € P and n' € Q we have
E+n))eE+n@)-U for all t € 1.
This gives & +n' € W for all ¢ € P and ' € Q. O
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Corollary 5.12. Suppose the exponential map of G maps some neighborhood of
o in £(G) homeomorphically onto a neighborhood of 1 in G. Then G is locally
euclidean and has NSS.

Proof. Since G is locally compact, so is £(G). It follows that £(G) has finite
dimension as vector space over R, and so we can put a norm on £(G). With
respect to this norm we take an open ball B centered at o that is homeomorphic
to a neighborhood U of 1 in G via the exponential map of G. Take n > 1 such
that V = {£(1)| & € %B} satisfies V2 C U. We claim that then V contains no
subgroup of G other than {1}. To see why, let a € V, a # 1. Take £ € %B with
a =&(1), and take m > 1 such that m§ € B\%B. Then (mé)(1) =a™ €U\ V,
so a2 ¢ V. O

6. Consequences of NSS

In this section we assume that our locally compact group G has NSS. We
shall now carry out step (3) from the sketch in the Introduction.

Lemma 6.1. There is a neighborhood U of 1 such that for all x,y € U,
2=y = x=y.

Proof. Towards a contradiction, let x,y € u, x # y and x? = y2. Then

1 1

y ey Hy =y e = (y™H7

so with a = xy™' we get y~lay = a~!'. Then y~'a¥y = a=* for all k.

Take a compact symmetric neighborhood U of 1 in G that contains no non-
trivial subgroup of G. Take positive k such that a’ € U* for 0 <i < k and
aktl ¢ U*. Set b :=st(aX), so b #1, be U, and b = b™!, so {1,b} is a
non-trivial subgroup of G contained in U, a contradiction. []

By a special neighborhood of G we mean a compact symmetric neighborhood
U of 1 in G such that U contains no non-trivial subgroup of G and for all
x,yeU,if x> =y?, then x = y.

In the rest of this section we fix a special neighborhood ¢/ of G (which exists
by the lemma above), and we set ord(a) := ord, (a).

Corollary 6.2. Suppose G is not discrete. Then £(G) # {o}.

Proof. Take a € p with a # 1, and set o := ord(a). Then a € O[o] and
a ¢ olo], so & € £(G), & # o where &, is defined as in Lemma 2.6. ]
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Set £ = {§ € £(G)|] &) € U}, with I = [-1,1], so K is a compact
neighborhood of o in £(G), by Lemma 2.9. Note that for any ¢ € £(G) there
is A € R™% such that 1§ € K. Put K := {£(1)| £ € K}, so K is compact by
Lemma 2.8. Note also that K = Ugezc £(1), so K is pathconnected.

Corollary 6.3. The vector space £(G) has finite dimension. The exponential map
E—=>&(1) : £(G) > G maps K homeomorphically onto K.

Proof. The first assertion follows from Riesz’s theorem that a locally compact
topological vector space over R has finite dimension. For the second assertion
it suffices that the exponential map is injective on K. Let &1 € K and
£(1) = n(1). Then (£(1/2))? = (n(1/2))?, so £(1/2) = n(1/2) , and by induction,
£(1/2") = n(1/2") for all n, and thus &(i/2") = n(i/2") for all i € Z and n.
By density this gives § = 7. [

Lemma 6.4. Let a € G*. Then orda is infinite iff a € .

Proof. Suppose orda is infinite. Then ¢ € U* and a? C U*, so (sta)? C U,
and thus sta = 1. [

For any symmetric P C G with 1 € P we let ord(P) be the largest n such that
P C U if there is such an n, and set ord P := oc if P" C U for all n.
We set U, :={x € G| ordx >n} for n > 1, so U, D Uy+1.

Lemma 6.5. The sets U, have the following properties:
(1) each Uy, is a compact symmetric neighborhood of 1 in G;
(2) {Uy| n > 1} is a (countable) neighborhood base of 1 in G;

(3) ordU,, > cn for all n > 1 and some c > 0 independent of n.

Proof. Given n > 1, it is clear that U, C U, that the complement of U, in G
is open, and that U, is a neighborhood of 1 in G. This gives (1). For each v
we consider the internal set

Uy, :={g €G*| ordg > v}.

Since v > N by convention, we have U, C p by Lemma 6.4. It follows that for
any neighborhood U of 1 in G we have U, € U for all sufficiently large n;
this gives (2). From U, € p we also obtain U, € O[v], hence (U,)" € p for
all i = o(v) by Lemma 5.4, so ordi4, > cv for some ¢ € R”?. This gives (3):
nonexistence of ¢ as in (3) gives v with ord4, < cv for all ¢ € R>?, ]
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Because 1 has a countable neighborhood base in G, the topology of G is induced
by some metric on G . Given such a metric d on G we obtain also a metric d on
£(G) by d(&.n) := maxj; <1 d(£(¢), n(r)), and one verifies easily that this metric
induces the same topology on £(G) as the compact-open topology of C(R, G).
We do not need this metric, but it may help in visualizing some arguments.

Proof that G is locally euclidean.. Let § € £(G)*. We say that £ is infinitesimal
if £ € (o), the monad of o in £(G)*. Therefore,

€ is infinitesimal <= §(I™) C u,
by the definitions and Corollary 6.3.
Lemma 6.6. Let &, n € £(G)* be infinitesimal, with n(1) € Olo]. Then
§Mn1) = E+ () -z with z € ofo].
Proof. Put a :=&(1), b :=n(l), ¢ :=(£+n)(1). Take an open neighborhood U
of 1 in G with U C U and take v with 0 = o(v) and put
Wi={weG*|w eU* fori=1,...,v}.

Then W is internally open in G* and 1 € W C O[v] C o[o]. By the definition
of ¢ and using transfer we have (E(%)n(é))e € cW for all sufficiently large
e € N*\ N, so

() =ewe  we e ool

e’ e
for all sufficiently large ¢ € N* \ N. But also, by Lemma 5.9,
(5CG)(2) = abde.  de < olo)
e’ e
for all e € N*\ N. Hence ab = c(wd™!) with w,d € o[o]. O

Lemma 6.7. K is a neighborhood of 1 in G.

Proof. It is enough to show that w € K*. Let a € p and suppose towards a
contradiction that ¢ ¢ K*. Since K is compact we have K = (1), KUy, and
so K* =), K*U, by transfer. Take v maximal with a € K*U,. Then a = bc
with b € K* and c e U, C u, and ordc = v. With & := &, € £(G) defined by
£(t) = st(c!*l) we have £ € K, and thus for d := £(1/v) € K* we have ¢! ~ d!
for all i <v, and thus ¢ = du with u € o[v] by Lemma 5.7. Hence a = bdu.
By Lemma 6.6 we have bd = gh with g € K* and h € o[v]. Hence a = g(hu)
with v = o(ord(hu)), contradicting the maximality of v. [

From Lemma 6.7 and Corollaries 5.12 and 6.3 we obtain:

Corollary 6.8. G is locally euclidean of dimension dimg £(G).
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The adjoint representation. Take an R-linear isomorphism £(G) =~ R” of
vector spaces. It induces a group isomorphism

Aut (£(G)) = GL,(R) € R™,

and we give the set Aut (S(G)) the topology that makes this bijection into a
homeomorphism, and thus into an isomorphism of topological groups. It is clear
that this topology on Aut (£(G)) does not depend on the initial choice of R -linear
isomorphism £(G) =~ R”".

Let G, be the connected component of 1 in G. It is the subgroup of G
generated by the elements &(r) with £ € £(G) and fr € R. It is open in G.

Lemma 6.9. The group morphism Ad : G — Aut (S(G)) is continuous, and
ker(Ad) = {a € G : a commutes with all elements of G,}. In particular, if G is
connected, then ker(Ad) = center(G).

Proof. One checks easily that if a € p and & € £(G), then afa™! € p(§) in
£(G)*. Applying this to the & from a basis of the vector space £(G), we see
that Ad is continuous at 1. Since Ad is a group morphism, it follows that Ad
is continuous. Clearly, ker(Ad) consists of those a € G that commute with all
elements of the form £(r) with § € £(G) and ¢ € R. [

As indicated in the Introduction, step (4) of “Sketch why NSS implies Lie”, we
may now conclude:

Corollary 6.10. G is a Lie group.

7. Locally Euclidean implies NSS

In these last two sections we revert to the assumption that G is just a locally
compact group, not necessarily locally euclidean or having NSS.

Lemma 7.1. Let U be a neighborhood of 1 in G. Then U contains a compact
subgroup H of G and a neighborhood V of 1 in G such that H contains
every subgroup of G contained in V.

Proof. Shrinking U we arrange that cl(U) is compact. Take an internal neigh-
borhood V' of 1 in G* such that V C u. Let S be the internal subgroup of G*
that is internally generated by the union of the internal subgroups of G* that are
contained in V. Then S € p by Lemma 5.4, and so the internal closure H of
S in G* is an internal subgroup of G* contained in U*. By transfer, there is a
neighborhood V of 1 in G and a closed subgroup H of G such that H C U
and H contains every subgroup of G contained in V. [
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Corollary 7.2. If £(G) = {0}, then there is a neighborhood base of 1 in G
consisting of compact open subgroups of G.

Proof. Let U be a neighborhood of 1 in G, and take H and V as in the previous
lemma. If £(G) = {0}, then every a € p is degenerate, hence %" C H* for
each a € u, so H is open. L]

Corollary 7.3. If G is connected and G # {1}, then £(G) # {o}.

We define a topological space to be ftotally disconnected if its connected
components are all singletons.

Lemma 7.4. Let N be a totally disconnected closed normal subgroup of
G and let wm : G — G/N be the canonical map. Then the induced map
L) : £(G) — £(G/N) is surjective.

Proof. Let H := G/N, and n € £(H) with n(l) # lg. Fix v and put
h := n(l/v) € u(lg). Take a compact symmetric neighborhood V of 1gx in
H such that n(1) ¢ V. Take a compact symmetric neighborhood U of 1 in
G such that 7(U) € V. Since 7 is an open map we have w#(p) 2 pu(lgy).
Take a € p with n(a) = h. Then =(a”) = h¥ = n(l), so a’ ¢ U, so
o = ordy(a) < v. We have n(st(a¥)) = st(h*) = 1x for all k = o(o), so
the connected subgroup Gy (a) = {st(a¥)| k = o(0)} of G is contained in N.
But N is totally disconnected, so Gy (a) = {1}, that is, a € O[o]. Also a ¢ o[o],
so £ # 0 where £ = £, € £(G) is defined by £(t) = st(alo)y. If ¢ = o(v),
then 7 (£(t)) = st(hl°’l) =1 for all ¢, so £ € £(N) € £(G), that is £ = 0, a
contradiction. Thus o = (r 4+ €)v with » € R™% and infinitesimal ¢ € R*. Hence
n(E(t)) = st(h"y = (rp)(r) for all t+ € R, that is, £(x)(€) = rn, and thus
£(m)(6) = n. 0

Recall: a topological space is locally connected iff every neighborhood of any
point in it contains a connected neighborhood of that point.

Lemma 7.5. If G is locally connected and has NSCS, then G has NSS.

Proof. Suppose G is locally connected and has NSCS. Take a compact symmetric
neighborhood U of 1 in G that contains no connected subgroup of G other
than {1}. By Lemma 7.1 we can take an open neighborhood V C U of 1 in G
and a compact subgroup N; of G such that Ny € U and all subgroups of G
contained in V' are contained in N;. Since Ny C U we have £(N;) = {0}, so
N is totally disconnected by Corollary 7.2, and we have a compact subgroup N
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of Ny such that N is open in N; and N C V. Take an open subset W of V
such that N = N; N W . Note that the set

aeW| aNa ' Ccw
{

is open. But if @ € W and aNa™! € W, then aNa™! € Ni, so aNa ' C N.
Thus the normalizer G; of N in G is open in G. Let H := G{/N, and let
7 . Gy — H be the canonical map. Next we show that H has NSS.

Let a € pNGT. If a is degenerate, then a € N, s0 a € N* and n(a) = 1g.
Suppose « is pure, and put v := ordy(a). Then a'*! ¢ U*. Take an open
neighborhood V’ of 1 in G such that V'N € V C U, so n(a)*™! ¢ n(V’),
while w(a)’ € p(1g) for all i = o(v). Thus m(a) is pure in H. Thus all
infinitesimals of H other than 1gz are pure, that is, H has NSS. Thus £(H) is
finite-dimensional, and by Lemma 7.4 the R-linear map

&(n) 1 £&(Gy) = £&(G) — £(H)

is continuous and surjective with kernel £(N) = {0}, and thus a homeomorphism.
(So far we have not used that G is locally connected.)

Take a special neighborhood V of H, as defined in Section 6. As G is
locally connected, we can take a connected neighborhood ¢/ of 1 in G; such
that

wU) S {n(1) | n € L(H), n(I) SV}, I:=[-1,1].

Let x eU. Then n(x) = n(l) for a unique n € L(H) with n(I) €V, and there
is a unique & € £(G1) such that 7 0§ =1, so x = &(1)x(N) with x(N) € N.
The map that assigns to each x € U the above n € £(H) is continuous, by
Corollary 6.3. Since £(m) : £(G1) — £(H) is a homeomorphism, it follows that
the map x +— x(N) : U4 — N is continuous. But N is totally disconnected and
I(N)=1,s0 x(N)=1 for all x € /. We now use this to derive U N N = {1}.
Let x e NN, so n(x) = 1. Then n := oy satisfies w(x) = n(l), n(I) €V,
and as woog =og we get x =o0g(l) =1. From U N N = {1} we obtain that
7 is injective on some neighborhood of 1 in G, so G; has NSS, and thus G
has NSS. []

Recall that a topological space is bounded in dimension if for some n it does
not contain a homeomorphic copy of [0, 1]".

Lemma 7.6. If G is bounded in dimension, then G has NSCS.

Proof. Suppose G does not have NSCS. Let U, V range over compact symmetric
neighborhoods of 1 in G. We claim that for every n and U, some compact
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subgroup of G contained in U contains a homeomorphic copy of the n-cube
[0,1]". Assume this holds for a certain n and let U be given. By Lemma 7.1
we can take V' C U and a compact subgroup H C U of G that contains every
subgroup of G contained in V. Since V' contains a nontrivial connected compact
subgroup of G, Corollary 7.3 yields a nontrivial § € £(H). By decreasing V if
necessary we can assume that £§(R) & V. Take a compact subgroup G(V) C V
of G with a homeomorphism

n:[0,11" — n([0,1]") € G(V).

Then £(R) € G(V), so {t e R| &(t) € G(V)} is a proper closed subgroup of the
additive group of R, hence equals Zr for some real r > 0. Replacing £ by s&
for a some real s > 0 we arrange that for [ :=[—1,1]: &£&(/) C V', & is injective
on / and £§(/)NG(V)={1}. Since G(V) € H we can define

E [0, 1% [0,1]" — H,  ¢(s.t) := E(s)n(t) for s € [0,1],¢ € [0, 1]".

It is easy to check that then ¢ : [0, 1]*T! — £([0, 1]"*1) is injective and continuous,
and thus a homeomorphism. ]

Corollary 7.7. If G is bounded in dimension and locally connected, then G has
NSS. In particular, if G is locally euclidean, then G has NSS.

Proof. Use Lemmas 7.6 and 7.5. O

This concludes the proof of the Main Theorem.

8. Yamabe’s Theorem

We keep the convention that G is a locally compact group, and use the results
above to derive Yamabe’s Theorem on approximating some open subgroup of G
by Lie groups. This doesn’t involve any nonstandard methods.

Lemma 8.1. Let U be a neighborhood of 1 in G. Then there is an open subgroup
G’ of G and a compact normal subgroup N’ of G’ such that N’ C U and
G'/N’ has NSS.

/N
N/

N/
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Proof. By Lemma 7.1 we can take a compact subgroup H C U of G and an
open neighborhood W C U of 1 in G such that every subgroup of G contained
in W is a subgroup of H. Since H is compact, Theorem 4.1 yields a compact
normal subgroup N’ C W of H and a continuous injective group morphism
H/N’" — GL,(R). Since GL,(R) has NSS, it follows that H/N’ has NSS. The
latter gives an open W’ C W such that N’ € W’ and every subgroup of G
contained in W’ is a subgroup of N’. Set

G’ := the normalizer of N' in G = {g € G | gN'g™t = N’},

so G’ is a subgroup of G and N’ is a normal subgroup of G’. We claim that
G’ and N’ have the desired properties.

Since N’ is compact and W’ is open, we have a symmetric neighborhood V
of 1 in G such that VN’V C W’. Then for all g € V, the subgroup gN'g™!
of G is contained in W', so gN’g™! € N’, which by symmetry of V gives
gN’g™! = N’. Consequently, V C G’ and thus G’ is open. It remains to show
that G’/N’ has NSS. This holds because VN’ C W’ is a neighborhood of N’
in G’, so every subgroup of G’ contained in VN’ is contained in W’ and thus
in N'. [

Let G, be the connected component of 1 in G. (This was defined earlier in
Section 6, but there we assumed G to have NSS.) It is clear that G, is a closed
normal subgroup of G and is contained in every open subgroup of G. It is also
easy to verify that G/G, is totally disconnected.

Recall from the Introduction that “G can be approximated by Lie groups”
means that every neighborhood of 1 in G contains a compact normal subgroup
N of G such that G/N is a Lie group.

Theorem 8.2. Suppose G/G, is compact. Then G can be approximated by Lie
groups.

Proof. Let U be a neighborhood of 1 in G. By Lemma 8.1 and its proof we obtain
G’ and N’ as in that lemma and an open neighborhood W’ of N’ such that any
subgroup of G contained in W' is a subgroup of N’. Note that G, C G’ since
G’ is clopen in G. Consequently, G'/G, is an open subgroup of the compact
group G/G,, and thus of finite index in G/G,. Hence G’ has finite index in G,
so G =g1G'U---Ug,G’" where g1,...,g, € G. Given g € G we have g = gia
with 1 <i <n and a € G', s0 gN'g™! = gi(aN'a 1) g;' = giN'g;!, since N’
is normal in G’. Thus

n
N:=[)aNg" ' =()eNg"
i=1 geG
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is a compact normal subgroup of G and N C N’ C U. It remains to show that
G/N has NSS. Let
n
W= ()W,
i=1
an open subset of G containing N . If H C W is any subgroup of G, then for
each i we have g;'Hg; C W', so g7'Hg; C N’, and thus H C N. O

Corollary 8.3. If G is connected, then G can be approximated by Lie groups.

Lemma 8.4. Let X be a compact space and x € X. Then the connected
component of x in X is the intersection of all compact open subsets of X that
contain x.

Proof. Let {C,| A € A} be the collection of all compact open subsets of X that
contain x and put C :=(), C, . Consider a decomposition

C =AUB, A,B closed in X, ANB =0.

Since X is normal we can take disjoint open U,V C X with ACU and BC V.
Then C and X \ (U U V) are disjoint, which gives a finite subset Ay of A
such that D := ﬂAeAO C;, and X \ (U U V) are disjoint. Then D is compact
and open, and x € D. We have D = (UN D)U (VN D), and only one of the
compact open sets U N D,V N D contains x, say UND. Then UND = C, for
a certain A € A, and then BN C), = &, so B = @. This argument shows that
C is connected. It follows that C is the connected component of x in X. [J

Corollary 8.5. Let X be a compact space, C a connected component of X,
and F a closed subset of X such that C N F = &. Then there is a compact
open subset D of X such that C € D and DNF = @.

Lemma 8.6. Every compact open neighborhood of 1 in G contains a compact
open subgroup of G.

Proof. Let U be a compact open neighborhood of 1 in G. Set F = U?\ U, so
F is closed. Now U is compact, G \ F is open, and U € G \ F, so we have an
open symmetric neighborhood V of 1 in G with V C U and UV C G\ F. Then
Uv Cc U? gives UV C U. Hence V" CUV”" C U for all n. Thus H :=J, V"
is an open subgroup of G contained in U. But open subgroups are also closed,
and U is compact, so H is compact. L]

Lemma 8.7. Suppose G is totally disconnected. Then every compact neighborhood
of 1 contains a compact open subgroup of G.
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Proof. Let U be a compact neighborhood of 1. Take an open neighborhood
VCU of 1 in G, and set F = U \ V. As {1} is a connected component
of U, Corollary 8.5 yields compact D C U, open in U, such that 1 € D and
DNF=g.Then D CV,so D isopenin G. Apply Lemma 86 to D. [

Corollary 8.8. G has an open subgroup G’ such that G'/G, is compact.

Proof. Apply Lemma 8.7 to G/G, in the role of G. O

Combining Theorem 8.2 and Lemma 8.8, we obtain Yamabe’s Theorem as stated
in the Introduction.

9. Appendix on nonstandard methods

This appendix is for readers not familiar with nonstandard methods. For another
exposition, see [2]; for a detailed treatment, see [7].

The basic set-up. Suppose a mathematical structure is given by certain ambient
sets, together with certain relations between them. (This covers almost anything.
For example, a group is a set with a ternary relation on it, namely the graph
of its group operation; a topological space is given by two sets, the set of
points of the space, and the set of open subsets of the space, together with the
membership relation between points and open sets.) More precisely, let Sy,...,S,
(p € NZ!) be the ambient sets, assumed to be nonempty and called basic sets,
and let Rq,...,R; (¢ € N) be the relations between Si,...,S, describing
our mathematical structure: for each index j € {1,...,q} we are given indices
i(l),...,i(n) € {1,..., p} such that

R]‘ - Si(l) XX Sl(n)

These relations R; are referred to as the basic relations or as the primitives of
the structure. Often these primitives are (graphs of) functions

S Siqy X X Sity = Sint1)-

Using nonstandard analysis to study this structure includes three things:
(NAI) Each basic set S; is extended to a set S 2 S;, and to each basic
relation R; as displayed above is associated a corresponding relation

RY C Sjpy % -+ % S

1

whose intersection with S;(y X -+ x S;(,) is the original relation R;. Thus our
original structure S = (Sl,...,Sp;Rl,...,Rq)) gets extended to a structure
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S* = (Sf, e S;; RY,.... R;‘). This nonstandard extension S* of S might contain
useful “ideal" elements that are missing in S.

(NA2) Any elementary statement about the original structure S is true in S
if and only if it is true in S*: the transfer principle. After the example below
we explain in a separate subsection what elementary statements are.

(NA3) The structure S* enjoys a certain logical compactness property—it is
k-rich, x being an infinite cardinal— that S typically does not.

We define “k-rich” below. For many nonstandard arguments, it is enough to
have (NA3) for k = Ry. For our purpose it is enough to have x > #S; for
i =1,...,p. A key fact is that for any S and any infinite cardinal «, there is
always an extension S* such that (NAI), (NA2), and (NA3) hold. At the end of
this appendix we indicate one way—not the most constructive one, but easy to
describe—to obtain such extensions S*, namely ultrapowers.

Example. In applications, one of the basic sets will often be R, with its usual
ordering and (the graphs of) addition and multiplication among the primitives.
We can express by an elementary statement that R with these primitives is an
ordered field. Then by transfer, R* with the corresponding starred primitives will
be an ordered field extension of R.

Often we also have the subset Z of R as a primitive, and then we can
express by an elementary statement the fact that Z is (the underlying subset of)
a subring of the field R and that for every r € R there exists a unique k € Z
with k¥ <r < k + 1. Then by transfer the set Z* is a subring of the field R*
and there is for each r € R* a unique k € Z* with k <r < k + 1; the latter
expression abbreviates k <* r <* k +* 1: we omit stars when the context invites
the reader to insert them mentally.

One manifestation of (NA3) here is that there are x € R* such that x > n
for every n. This is because for any ny,...,n,, € N there is an x € R* (even an
x € R) with x >nq,...,x > n,. Such an element x > R is said to be positive
infinite, and its reciprocal is then a positive infinitesimal: 0 < 1/x < 1/n for all
n>1.

Elementary statements. Let a structure S = ((S;):(R;)) as above be given.
For each basic set S; we take variables that we consider as ranging over S;;
these are just the symbols v, v}, v2,.... We also fix for each element a € S; a
name (a,i) for a in its role as element of S;. This allows us to form so-called
atomic S-formulas: these are expressions of the form v/ = v, or of the form

vi" = ¢ where ¢ is the name of an element of S;, or of the form R;(fy,....t,)

where R; C S;q) X -++ X Sj(,) is a primitive, and #; is for k = 1,...,n either
a variable ranging over S;y), or the name of a particular element of S;).
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Arbitrary S-formulas are constructed, starting with atomic S-formulas, using the
logical symbols for negation, disjunction, conjunction, existential quantification,
and universal quantification: in other words, if ¢,y are S-formulas and v is a
variable, then

—¢, (Vv ¥), (P AY), v, Yvg

are also S-formulas; in the latter two, the occurrences of v are said to be bound
by the quantifier Jv, respectively, Yv. An S-sentence (or elementary statement
about S) is an S-formula in which all occurrences of variables are bound by
quantifiers. We have a recursive definition of what it means for such a sentence
to be true in S. This recursion just reflects the usual meaning of the logical
symbols: for example, an S-sentence Jv¢, with v = v, is true in S iff for
some a € S; the shorter S-sentence obtained by replacing the free (=non-bound)
occurrences of v in ¢ by the name of a is true in S.

Let in addition an extension S* of S as in (NAIl) be given. Then we have
S*-formulas and S*-sentences, using the names we gave to elements a € S; as
well as names for new elements in S\ S;. Every S-formula is considered as an
S*-formula by reading each R; in the atomic subformulas as standing for RY.
In particular, every S-sentence is also an S*-sentence, but in an S*-sentence
each variable v ranges of course over S. In this way we make sense of the
requirement (NA2).

Definable sets. Let S be as before. Let ¢(v(1),...,v(n)) be an S-formula, that
is, an S-formula ¢ together with distinct variables v(1),...,v(n) that include all
variables occurring free in ¢. Let v(k) range over S;x) for k =1,...,n. Then
we say that ¢(v(1),...,v(n)) defines the subset of S;(1) X -+ x Sj(,) consisting
of those (ay,...,an) € Si(1) X+ x S;) for which the S-sentence obtained from
¢ by replacing the free occurrences of v(k) by the name of ap € S;x) for
k=1,...,n is true in S.

A set X C Sijq) X -+ x Sy is said to be S-definable if it is defined
in this way by some S-formula ¢(v(1)....,v(n)) as above. Every primitive
Ri € Siq) X --+ X Sjn) is S-definable, and so is every finite subset of
Si(l) X X Si(n) .

If X,Y C S;q)Xx---XSjp are S-definable, then so are XUY, X NY, X \Y.
An S-definable map is a map f : X — Y where X C ;) x -+ x Sjin) and
Y C Simt1) X -+ X Siontn) are S-definable and the graph of f is S-definable
as a subset of S;(1)y X -+ X Sigm) X Sigm41) X - X Sigmgny. If f:1 X =Y is S-
definable and X’ C X is S-definable, then the image f(X’) CY is S-definable
set. Likewise with inverse images.
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Let S* be an extension of S satisfying (NAl) and (NA2). Let an S-
definable set X C S;() x -+ x Sj(,) be given. Then we have an S*-definable
set X* C Sl.*(l) X +ee X Sl.*(n) with X = X* N (S;q) x---x Si)): an S-formula that
defines X will define, in its role of S*-formula, the set X *. (This is independent
of the choice of S-formula defining X .) Note that if X is finite, then X* = X .
The transfer principle (NA2) extends to elementary statements about S that use
the S-definable sets X as primitives, with X to be read as X* in construing
the statement to be about S*.

The sets X* above are in general not the only S*-definable sets. For example,
any a € S7\ S; yields an S*-definable set {a} C S that is not of the form X*

for any S-definable X C S;.

Richness. Let now « be an infinite cardinal. Our structure S is said to be « -rich
if for all i(1),...,i(n) € {1,..., p} and every family (X;)yeca of S-definable
subsets of S;(1) X --- x S;(») with the finite intersection property and #A < «
we have (), X, # @. (It is enough to require this for n = 1.) Here the “finite
intersection property” means that X, N---N X, # @ for all A1,..., A, € A.
We often apply richness in its dual form as a covering property: if S is «-rich
and an S-definable set X C S;q) X --- x S;,) is covered by S-definable sets
X) € Siqy X+ X Siny with A € A and #A <k, then X is already covered by
finitely many of these X .

Note that, as an ordered set, R is not Rq-rich, since (1), (n,+o00) = @. Thus

our initial structure S will usually not be rich in any way. Suppose S* is an
extension of S such that (NAl), (NA2), and (NA3) hold, so S* is «-rich. Thus
if X C Si*(l) X o0 X Sl.*(n) is S*-definable and infinite, then #X > «.
Power sets and internal sets. We now come to a point that is very characteristic
of the nonstandard setting: for certain basic sets S of our structure S we often
include also its power set P(S) as a basic set, and the membership relation
€s:={(x,Y) € S xP(S)| x € Y} as a primitive. Then we can quantify over
elements of P(S), which gives enormous expressive power. For example, with
R and P(R) as basic sets, together with the membership relation between them
and the ordering on R as primitives, we can express by an elementary statement
the fact that every nonempty subset of R with an upperbound in R has a least
upperbound in R.

Let S and P(S) be among the basic sets of our structure S, with €g among
the primitives. Given Y € P(S), the formula v €g cy, with v a variable ranging
over S and cy the name of Y as element of P(S), defines the subset Y of §,
so Y is not only an element in our structure S, but also an S-definable subset
of S. In particular, every subset of S is now S-definable!
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Next, let an extension S* of S be given that satisfies (NAl) and (NA2).
Then §* and P(S)* are basic sets of S*, and the star extension € of €g is
among the primitives. We arrange that the elements of P(S)* are subsets of S*
and €% is the appropriate membership relation by replacing each P € P(S)*
with {a € S*| a €5 P} (“Mostowski collapse”). This identifies P(S)* with a
subset of P(S*). A set X C S* such that X € P(S)* via this identification is
traditionally called an internal subset of S*. We leave it to the reader to check
that this is equivalent to being an S*-definable subset of S*. A drawback of
this identification is that it destroys the set inclusion P(S) C P(S)*: with the
above identification a set Y € P(S) turns into Y* C S*, as is easily verified,
and usually ¥ # Y*.

To illustrate the above for § = R with its ordering among the primitives:
the least upperbound property of R now yields by transfer the fact that every
nonempty internal subset of R* with an upperbound in the ordered set R* has
a least upperbound in R*. (Also, every nonempty internal subset of R* that is
contained in N* has a least element, and, if it has an upperbound in R*, a largest
element.) If our nonstandard extension S* is Rq-rich, it follows for example that
the subset R of R* is not internal, since it has an upperbound in R* but not a
least one.

Internal sequences. These powerset conventions on a basic set S apply also to
any finite cartesian product of basic sets. For example, a sequence ay,...,d, in
S* with v € N*, is formally the set of pairs

{i,a;) |i eN*, 1<i<v} CR*xS*

To refer to this sequence as being internal will have an obvious meaning if we
have, say, R, S,P(R),P(R x §) among the basic sets, and the ordering on R
and the various membership relations as primitives. It is best left to the reader
in such cases to decide what to take as basic sets and primitives in order for the
use of terms like “internal” to make sense.

Products of internal sequences in groups. Let now a group G be part of our
structure S: its underlying set is one of the basic sets, and its product operation
is a primitive. For any n and any sequence ai,...,a, in G there is a unique
sequence bg,...,b, in G such that by = 1g and b;;; = bja;j+, for all i e N
with 0 <i < n. By transfer this yields for an appropriate nonstandard extension
G*: for any v € N* and any internal sequence ai,...,a, in G* there is a
unique internal sequence by, ...,b, in G* such that by = 1g and b; 1 = bja;+1
for all i € N* with 0 < i < v; in this case we use of course a;---a, as a
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suggestive notation for b, ; if all q; are equal to a fixed a € G, then we write
this “product” as a".

Given any symmetric X C G, the smallest subgroup of G that contains X
(usually called the subgroup of G generated by X) is

{ai---an | ai.....a, is a sequence in X}.

By transfer, this yields: given any internal symmetric X C G*, the smallest
internal subgroup of G* that contains X (which deserves to be called the
internal subgroup internally generated by X)) is

{a1 ---ay | v €N¥*, ay,...,a, is an internal sequence in X}.

Topological spaces and continuity. To include a (nonempty) topological space
(S,7) in S, where t is the set of open sets of the space, we take S and P(S) as
basic sets, together with the membership relation €sC S x P(S) and t C P(S)
as primitives. (Of course there may be further primitives involving S.) Let S*
be an extension of S satisfying (NAl) and (NA2). Then we have (S*,t*) as
part of S*, with * C P(S*) after Mostowski collapse. However, t* is not in
general the set of open sets for a topology on the set S*. The sets in t* are by
definition the internally open subsets of S*; their complements in S* are the
internally closed subsets of S*. By transfer, there is for each internal subset X
of §* a smallest internally closed subset of S* containing X, and we call this
the internal closure of X in S*. An internal neighborhood of a point x € §* is
by definition an internal set U C S* that contains some internally open V C S*
with x e V.

Let a point x € S be given. The monad p(x) of x is by definition the
intersection of all sets U* with U a neighborhood of x in S. These sets U*
are among the internal neighborhoods of x. Now assume that our extension
S* is k-rich with ¥ > P(S). Then there are internal neighborhoods of x that
are contained in every such U™, that is, there are internal neighborhoods of
x contained in g (x). Another useful consequence (“overspill”): if X C S* is
internal and p(x) € X, then U* C X for some neighborhood U of x in S.

Let the topological space (S’,t’) also be part of our structure S as explained
above; of course we allow (S,7) = (8’,7'). To deal with the set C(S,S’)
of continuous functions f : S — S’ we include P(S x S’) and €55/ as
part of S. Then C(S,S’) is an S-definable subset of P(S x S’), where a
function is identified with its graph. After Mostowski collapse, the S*-definable
set C(S,S")* C P(S* x §™) consists of the (graphs of) functions g : $* — S§’*
with the property that g~!(U) € t* for all U € t/*. It is these functions g that
are called internally continuous.
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Ultrapowers. Fix an infinite index set A (often A = N). An ultrafilter on A
is by definition a collection u of subsets of A such that for all A, B C A:

(1) o¢u, Acu,

2) A, Bcu — ANBEe€u,
(3) Acu, ACB — Becu,
4) Aecuor A\Aecu.

An ultrafilter u on A defines a finitely additive measure u : P(A) — R on the
boolean algebra P(A) of all subsets of A, by setting pu(4) =0 if A ¢ u and
u(A) =1 if A €eu. So u(A) =1, and this measure only takes the values 0 and
1. Any finitely additive measure p : P(A) — R taking its values in {0, 1} with
w(A) =1 arises from a unique ultrafilter u on A in this way. The conditions
(1), (2), (3) above define the notion of a proper filter on A . It is routine to check
that ultrafilters on A are exactly the proper filters on A that are maximal with
respect to inclusion. Thus by Zorn, every proper filter on A is contained in an
ultrafilter on A.

Given A € A, we have the ultrafilter u(d) := {4 € A| A € A}, and ultrafilters
of this form are called principal. If an ultrafilter u on A is not principal, it has
no finite subset of A as an element, and thus

cofinite(A) := {4 C A | A\ 4 is finite} C u.

Since cofinite(A) is a proper filter on A, there do exist ultrafilters u on A with
cofinite(A) C u, and these are called nonprincipal.

Let u be an ultrafilter on A. This allows us to extend functorially each set
S to a set S* as follows. Elements (x;) and (y;) of the set SA are said to
be u-equivalent if {A € A| x; = y,} € u, that is, x, = y, for almost all A in
the sense of the measure associated to u. This defines an equivalence relation on
SA, and we define S* to be the set of equivalence classes (x;)/u. We identify
S with a subset of $* via the diagonal embedding S — S$*, which sends x € S
to the equivalence class (x;)/u with x, = x for all A.

Given sets Si,...,S, and a relation R C Sy x---x §,, we have a relation
R* C S} x---x S such that for all (x;3) € S&, ..., (xu1) € SA,

((x1)/u,..., (xz2)/u) € R* < (x12,....Xz2) € R for u-almost all A.

Then R*N(S1x---xS,) = R, and so (NAI) holds with this definition of starring
sets and relations among them. Also (NA2) holds by a well-known theorem of
Los; its proof is easy and can be found in most basic texts on model theory.
If u is principal, then $* = § for all S, and we get nothing new. But if u
is nonprincipal and A is countable, then (NA3) holds in the sense that S* is
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Yo -rich. This is adequate for many applications. For any infinite cardinal « and
any set A with #A > k there exist ultrafilters u on A such that for any initial
structure S the extension S* resulting from u as above is « -rich.
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