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The virtual fibering theorem for 3-manifolds

Stefan Friedl and Takahiro Kitayama*

Abstract. In 2007 Agol showed that if N is an aspherical compact 3-manifold with empty

or toroidal boundary such that it\ (N) is virtually RFRS, then N is virtually fibered.

We give a largely self-contained proof of Agol's theorem using complexities of sutured

manifolds.

Mathematics Subject Classification (2010). 57M05, 57M10.
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1. Introduction

In 1982 Thurston [Th82], Question 18, asked whether every hyperbolic 3-manifold
is virtually fibered, i.e. whether every hyperbolic 3-manifold admits a finite cover
which fibers over S1.

Evidence towards an affirmative answer was given by many authors, including
Agol, Boyer, and Zhang [ABZ08], Aitchison and Rubinstein [AR99], Button
[Bu05], DeBlois [DeBlO], Gabai [Ga86], Guo and Zhang [GZ09], Leininger
[Lei02], Reid [Re95], and Walsh [Wa05].

The first general virtual fibering theorem was proved by Agol in 2007. In
order to state the theorem we need two more definitions.

(1) A group it is residually finite rationally solvable or RFRS if it admits a
filtration

It TtQ D 7t\ Z) 1t2 • • •

such that the following hold:

(a) C\knk {1};

(b) for any k the group it& is a normal, finite index subgroup of it ;

*This work was supported by Grant-in-Aid for JSPS Fellows.
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(c) for any k the map
ftJc * ÏÏJc/ftk+l

factors through
Ttfc —> Hi (jTfc ; Z)/torsion.

(2) Given a 3-manifold N, we say

4> S H1(N: Q)

is fibered if there exists an n e N and a locally trivial fiber bundle

p: N —> S1 such that

<p - • p*: 7ti(N) —> Q.
n

We can now state Agol's theorem; see [Ag08], Theorem 5.1.

Theorem 1.1 (Agol [Ag08]). Let N be an irreducible 3 -manifold with empty
or toroidal boundary such that 7t\ (N) is virtually RFRS. Let (p e H1(N;Q) be

non-trivial. Then there exists a finite cover

q: N —> N

such that q*(p is the limit of a sequence of fibered classes in H1 (N; Q).

The key idea in the proof of the theorem is that the RFRS condition ensures
that given a Thurston norm minimizing surface one can find 'enough' surfaces
in finite covers to 'reduce the complexity of the guts' by perturbing the initial
surface appropriately. Agol uses the theory of 'least-weight taut normal surfaces'
introduced and developed by Oertel [Oe86] and Tollefson and Wang [TW96] to

carry through this program.
In the introduction to [Ag08] Agol writes that 'the natural setting [...] lies in

sutured manifold hierarchies'. We pick up this suggestion and provide a proof of
Theorem 1.1 using sutured manifolds and their hierarchies. In our proof we only
use standard results about the Thurston norm and sutured manifold decompositions
(see [Th86] and [Ga83]) and a complexity for sutured manifolds defined by Gabai

[Ga83]. At the core our argument also follows the above 'key idea', but for the

most part the treatment of the argument is somewhat different from Agol's original
proof.

In a stunning tum of events it has been shown over the last few years that

most 3-manifold groups are in fact virtually RFRS. More precisely, the following
theorem was proved by Agol [Agl3] and Wise [Wil2] in the hyperbolic case and

by Przytycki and Wise [PW12] in the case of a 3-manifold with a non-trivial
JSJ decomposition.
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Theorem 1.2 (Agol [Agl3], Przytycki and Wise [PW12], Wise [Wil2]). If N is

an irreducible 3 -manifold with empty or toroidal boundary which is not a graph
manifold, then is virtually RFRS.

Furthermore it follows from work of Liu [Li 11] and Przytycki and Wise [PW11]
that the fundamental group of a graph manifold with boundary is also virtually
RFRS. Finally Liu [Lill] showed that the fundamental group of a closed aspher-
ical graph manifold is virtually RFRS if and only if N is non-positively curved,
i.e. if it admits a Riemannian metric of non-positive curvature. Combining these

results with Theorem 1.1 we thus obtain the following result.

Theorem 1.3. Let N be an irreducible 3—manifold with empty or toroidal
boundary and let (p G H1(N;Q) be non-trivial. Suppose one of the following
two conditions hold:

(1) N is not a closed graph manifold, or
(2) N is a closed graph manifold which is non-positively curved,

then there exists a finite cover q: N —> N such that q*(p is the limit of a

sequence of fibered classes in

Remark. (1) If tvi(N) is infinite and virtually RFRS, then there exists a finite
cover with positive first Betti number. It therefore follows from Theorem 1.3 that

if N is an irreducible 3-manifold with empty or toroidal boundary which is not
a graph manifold, then N is virtually fibered. In particular Theorem 1.3 gives
an affirmative answer to Thurston's question.

(2) The work of Agol [Agi3], Przytycki and Wise [PW12], and Wise [Wil2]
resolves not only Thurston's Virtual Fibering Conjecture but also has a long list of
other consequences. We refer to the survey paper [AFW12] for a comprehensive
discussion.

(3) Let N be an aspherical 3-manifold. If N is not a closed graph manifold,
then it follows from work of Leeb [Leb95] (see also [Br99] and [BrOl]) that
N is non-positively curved. Combining this with the above results we see that

an aspherical 3-manifold N is non-positively curved if and only if tti(N) is

virtually RFRS.

(4) There are graph manifolds which are virtually fibered but whose
fundamental groups are not virtually RFRS. One class of such graph manifolds is given
by Sol-manifolds (see e.g. [Agl3] and [AFW12]).

(5) It follows from classical arguments that the conclusion of Theorem 1.3 in
fact holds for any virtually fibered graph manifold.

(6) The conclusion that any cohomology class can be approximated by fibered
classes in a suitable finite cover has been cmcial in the applications to twisted
Alexander polynomials and to the study of surfaces of minimal complexity in
4-manifolds with a free S ^action (see [FV12] and [FV14]).
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For completeness' sake we also mention Agol's result on finite covers of
taut sutured manifolds, even though it plays no role in the later part of the

paper. Using the argument in the proof of Theorem 1.1 and using a 'doubling'
argument Agol proves that given any taut sutured manifold with virtually RFRS
fundamental group there exists a finite cover which admits a depth one taut
oriented foliation. (We will not define these notions and we refer instead to
[Ga83], [Ag08], and [CC03] for background information and precise definitions.)
More precisely, Agol [Ag08], Theorem 6.1, proved the following result.

Theorem 1.4 (Agol [Ag08]). Let (N, y) be a taut sutured manifold such that

tz\(N) is virtually RFRS. Then there exists a finite covering p:(N,y) —> (N,y)
such that (N, y) admits a depth one taut oriented foliation.

In the above discussion we already saw that the fundamental group of any
irreducible 3-manifold with non-trivial toroidal boundary is virtually RFRS. A
straightforward doubling argument (see e.g. [AFW12], Section 5.3) shows that
in fact the fundamental group of any irreducible 3-manifold with non-empty
incompressible boundary is virtually RFRS. Combining this observation with
Theorem 1.4 we obtain the following theorem.

Theorem 1.5. Let (N, y) be a taut-sutured manifold. Then there exists a finite
covering p:(N,y) —> (N, y) such that (N, y) admits a depth one taut-oriented

foliation.

The paper is organized as follows. In Sections 2 and 3 we recall some standard
facts about the Thurston norm and sutured manifolds. Along the way we will
also make some preparations for the proof of Proposition 4.1. This proposition
allows us to carefully arrange surfaces to 'cut the guts' of a given surface. This
result is the technical heart of the paper and we give a very detailed proof of it.
In Proposition 4.2 we then summarize the effect of 'cutting by a surface' on the

complexities of the guts of a given surface. Finally in the last section we present
our proof of Theorem 1.1.

Convention. All manifolds are assumed to be compact and oriented. We do not
assume that spaces are connected, nonetheless, if we talk about the fundamental

group of a space without specifying a base point, then we implicitly assume that
the space is connected. All surfaces in a 3-manifold are assumed to be properly
embedded, unless we say explicitly otherwise. If A is a 3-manifold and R C N
a properly embedded surface and a > 0, then we denote by R x [—a, a] a

neighborhood of R such that (R x [—a, a]) fl dN dR x [—a, a]. Finally, given a
submanifold S C M we denote by vS an open tubular neighborhood around S.
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2. The Thurston norm

2.1. The Thurston norm and fibered classes. Let S be a surface with connected

components S\ U U Sk • We then refer to

k

X-(S) := ^max{-/(Si),0}
1=1

as the complexity of S. Now let A be a 3-manifold and let (p H1(N',Z).
It is well-known that any class in H1(N;Z) is dual to a properly embedded
surface. The Thurston norm of <p is defined as

xn(<P) min{/-(£) \ S C N properly embedded and dual to 0}.

We will drop the subscript 'N\ when the manifold N is understood.
Thurston |Th86] showed that x is a seminorm on H1(N;Z), which implies

that x can be extended to a seminorm on H1(N;Q). We denote the seminorm

on H1(N;Q) also by x. Throughout the paper we will freely go back and

forth between H1(N;Q) and H2(N,dN;Q). In particular we will consider the

Thurston norm also for classes in H2(N, dN; Q).
Thurston furthermore proved that the Thurston norm ball

B(N) := # Ê H1(N:Q)\x(4>) < 1}

is a (possibly non-compact) finite convex polytope. A Thurston cone of N is
defined to be either an open cone {rf \ r > 0, / G F} on a face F of B(N)
or a maximal connected subset of H1(N;Q) \ {0} on which x vanishes. The
Thurston cones have the following properties:

(1) if (p,ip lie in a Thurston cone C, then (p -\-ip e C and given any r > 0

we have r(p e C ;

(2) the Thurston cones are disjoint and their union equals H1 (N;Q)\ {0};
(3) the Thurston norm is additive precisely on the closures of Thurston cones,

i.e. given (p, ijr e H1(N;Q) we have

x((p + ip) x((p) + x(ip) there exists a Thurston cone C with (p,ip e C.

In the following we say that an integral class (p e H1 (N; Z) Hom(7Ti (N), Z)
is fibered if there exists a fibration p:N —> S1 such that

4> p* \ —> Z.
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We say <p> G H1(N;Q) is fibered if a non-trivial integral multiple of (p is fibered.
Thurston [Th86] showed that the set of fibered classes equals the union of some

top-dimensional Thurston cones. These cones are referred to as the fibered cones
of N.

2.2. Subordination. Given two non-zero cohomology classes <p, \jr G H1(N;Q)
we say <p is subordinate to iff if (p e C where C is the unique Thurston cone
which contains ^ • We collect several properties of subordination in a lemma.

Lemma 2.1. (1) Subordination is transitive, i.e. if (p is subordinate to ip and
is subordinate to <p, then (p is subordinate to (p.

(2) Given any two non-zero cohomology classes (p, iff G H1(N;Q) there exists

an m G N such that (p is subordinate to m<p + ^.
(3) If (p is subordinate to mcp + for some m, then (p is also subordinate

to k(p + for any k > m.

(4) Let p: N ^ N be a finite cover and let <p,yfi G H1(N;Q) be two
non-zero cohomology classes. Then (p is subordinate to ip if and only if p*<p is
subordinate to p*\p.

The first three statements are straightforward to verify. The last statement
is an immediate consequence of the fact that given any cover p: N —> N of
degree k and any (p G H1(N;Q) we have x(p*(p) k • x((p) (see [Ga83],
Corollary 6.13). Put differently, p*: H1(N; Q) —> H1(N; Q) is up to the scaling
factor k an isometry of vector spaces.

3. Complexities for sutured manifolds

3.1. Sutured manifolds. A sutured manifold (M, R-, R+, y) consists of a
3-manifold M together with a decomposition of its boundary

dM — R- U y U R+

into oriented submanifolds where the following conditions hold:

(1) y is a disjoint union of annuli.

(2) R_ and R+ are disjoint.

(3) If A is a component of y, then is a boundary component of A and of
R-, and similarly for JR+flA. Furthermore, [i?+HA] [i?_nA] G

where we endow R± D A with the orientation coming from the boundary
of R±.
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(Here we give 3M the orientation such that R+ are precisely those components

of 3M \ y whose normal vectors point out of M.)
We sometimes just write (M, y) instead of (M, R-, R+, y), but it is important

to remember that R- and R+ are part of the structure of a sutured manifold.
Finally a simple example of a sutured manifold is given as follows: Let R

be a surface, then

(R x [-1,1], R x —1. R x 1. dR x [-1.1])
is a sutured manifold. We refer to such a sutured manifold as a product sutured
manifold.

3.2. Taut sutured manifolds and Thurston norm minimizing surfaces. A
sutured manifold (M, R-, R+, y) is called taut if M is irreducible and if R- and

R+ have minimal complexity among all surfaces representing [R-] [i?+] G

H2(M,y;Z).
Let R be a surface in a closed 3-manifold N. We say that R is good if

R has no spherical components and no component which bounds a solid torus.
Furthermore we say R is Thurston norm minimizing if R has minimal complexity
in its homology class [R] e H2(N,dN;Z). It is clear that any homology class

can be represented by a good Thurston norm minimizing surface.
Note that if R is a good Thurston norm minimizing surface in an irreducible

3-manifold, then a standard argument using the Loop Theorem (see [He76],
Chapter 4) shows that R is also it\ -injective.

To a surface R in a closed 3-manifold N we now associate the sutured
manifold

N(R) (N \ R x (-1, l),Rxl,Rx -1, 0).

We conclude this section with the following two observations regarding N(R).

(1) If N is irreducible and if R is a Thurston norm minimizing surface without
spherical components, then N(R) is a taut sutured manifold.

(2) The surface R is a fiber of a fibration N —> S1 if and only if N(R) is a

product sutured manifold.

3.3. Sutured manifold decompositions. We now recall the definition of a
sutured manifold decomposition which also goes back to Gabai [Ga83]. Let
(M, R-, R+,y) be a sutured manifold. We say that a properly embedded surface
S is a decomposition surface if the following condition holds: for any component
A of y every component of A fl S is either a non-separating arc in A, or it is

a closed curve which is homologous to [A fl R-] [A fl R+] e H\(A;Z).
Let 5 be a decomposition surface of (M, R~, R+, y). Gabai ([Ga83],

Definition 3.1) defines the sutured manifold decomposition

(M,R-,R+,y) & (M',R'_,R'+./)
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where

Mf M \ S x (-1,1),

/ (y n M') U v(S'+ n R-) U v(S!_ n R+),

R'+ ((R+ n MF) U S'+) \ int /
Rr_ ((R- n M') U SL) \ int /.

Here Sf+ (resp. SL) is the union of the components of (S x — 1 U S x 1) fl M'
whose normal vector points out of (resp. into) M'. Furthermore, by v(S± fl Rzp)

we mean an open tubular neighborhood of S± fl Rzp in 9M. We say that a

decomposition surface S is taut if all the components of the sutured manifold
decomposition along S are taut.

We make the following observations.

(1) If y 0, then any surface in M is a decomposition surface for (M,y).
(2) If each component of S is a tz\ -injective surface, then for any component of

M' the inclusion into M induces a monomorphism of fundamental groups.

(3) If N is a closed 3-manifold and if R C N is a closed surface, then R is

a decomposition surface for the sutured manifold (N, 0,0,0), and N(R) is

precisely the result of the decomposition along R.

(4) If (M, y) is a sutured manifold and if S C M is a decomposition surface
which is boundary parallel, then the resulting sutured manifolds (M', yr) is

a union of product sutured manifolds and a sutured manifold (M'Q, yrQ) which
is canonically diffeomorphic to (M, y).

3.4. Guts of a sutured manifold. Let (M, R-, R+,y) be a taut sutured
manifold. An admissible annulus is an annulus S in M which does not cobound

a solid cylinder in M and such that one boundary component of S lies on R-
and the other one lies on R+. Furthermore, an admissible disk is a disk S in
M such that S fl R- and S fl R+ consist of an interval each.

We have the following elementary but very useful lemma (cf. [Ga83],
Lemma 3.12).

Lemma 3.1. Let (M, jR_, jR+, y) be a taut sutured manifold. Then any admissible
annulus and any admissible disk is a taut decomposition surface.

An admissible decomposition surface for a sutured manifold (M, R_, R+, y
is a disjoint union of admissible annuli and disks in (M, R-, R+, y). Given such

an S we can perform the sutured manifold decomposition

(M, R-, R+, y) A (M'. R'_,R'+.r')-
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We refer to any component of M' which is a product sutured manifold as a
window of (M, R-, R+, y) and we refer to any component of M' which is not a

product sutured manifold as a gut of (M, R-, R+, y). Note that the definition of
window and gut depends on the choice of the admissible decomposition surface.

Nonetheless, from the context it is usually clear what admissible decomposition
surface we are working with and we will therefore leave the dependence on S
unmentioned.

Lemma 3.2. Let (M, R-, R+,y) be a sutured manifold such that M is
irreducible. We pick an admissible decomposition surface. Then the following
hold.

(1) The guts and windows are it\-injective submanifolds of M.

(2) The fundamental group of a gut is non-trivial.

(3) If (M, R-, R+, y) is taut, then the windows and guts are also taut.

The first statement follows from the observation that the components of an
admissible decomposition surface are it\ -injective if M is irreducible, the second

statement is a consequence of the irreducibility of M (or alternatively of the

Poincaré conjecture) and the third statement is a consequence of Lemma 3.1.

We conclude this section with the following proposition.

Proposition 3.3. Let (M, R-, R+, y) be a taut sutured manifold and let

p:(M,y) —^ (M, y)

be a finite cover.

(1) If (M,y) is taut, then (M,y) is also taut.

(2) If S C M is an admissible decomposition surface, then p~^(S) is an
admissible decomposition surface for M, and the windows and guts of
(M,y) are precisely the preimages of the windows and guts of (M,y).

Proof. Let (M, R-, R+, y) be a taut sutured manifold and let p: (M, y) —> (M, y)
be a finite cover.

We first suppose that (M, y) is taut. It follows from the Equivariant
Sphere Theorem, see [MSY82], p. 647, and work of Gabai (e.g. by combining
Corollaries 5.3 and 6.13 and Lemma 6.14 of [Ga83] with Corollary 2 of [Th86],
that (M,y) is also taut.

Now let 5 C M be an admissible decomposition surface. Let G

(G, S-, S+) be a gut of M and let G (G, S-, S+) be a component of
p~1(G). We have to show that G (G, S-, S+) is not a product sutured
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manifold. Since G (G, S-, S+) is not a product sutured manifold it follows
from [He76], Theorem 10.5, that precisely one of the following two cases can

occur:

(1) G is the twisted /-bundle over a Klein bottle and S- dG

or

(2) ttj(iS—) has infinite index in tz\(G).

We now consider these two cases separately.

(1) If G (G, S-, S+) is a twisted I -bundle over a Klein bottle with S~ 3G
and S+ 0, then G (G, S-, S+) is a sutured manifold with S+ 0,
i.e. G is not a product sutured manifold.

(2) If 7t\ (£_) has infinite index in it\ (G), then tz\ (£_) also has infinite index in

7t\ (G), which implies that (G, S-, S+) is not a product sutured manifold.

3.5. The double-curve sum of surfaces. Let N be a closed 3-manifold and

let R and F be two embedded surfaces which are in general position. Note that

by the standard 'cut and paste' technique applied to the intersection curves of
R and F we can turn the immersed surface R L) F into an embedded surface
R l±J F. The surface R l±J F is sometimes called the double-curve sum of R and

F. Note that R l±J F represents the same homology class as R U F and that
furthermore R l±J F has the same complexity as RUF.

Now let R and F be two properly embedded surfaces in N in general
position.

(1) A filling ball for (R, F) is an embedded ball B C N such that dB C RL) F
as oriented surfaces.

(2) A filling solid torus for (R,F) is an embedded solid torus X C N such

that dX C R U F as oriented surfaces.

(Here we view B and X as oriented manifolds where the orientation does

not necessarily have to agree with the orientation of N.) We then say that R
and F form a good pair if there are no filling balls and no filling solid tori for
(.R.F).

We will later on make use of the following elementary lemma.

Lemma 3.4. Let N be a closed irreducible 3 -manifold and let R and F be a
good pair of embedded surfaces in N. Then the following hold:

(1) R and F are good;

(2) R l±J F is good;

(3) F D N(R) is a decomposition surface for N(R) ;
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(4) there exist decomposition annuli C\,..., Ck which are in one-to-one corre¬
spondence with the components of R D F such that the following diagram
commutes:

RN

N(R l±J F)
CiU-UQ

mm
^FnN(R)

A schematic illustration for R l±J F and the decomposition annuli Cz is given
in Figure 1.

N(R I±j F)

annulus A

Figure 1

Schematic picture for decomposing along R and F

3.6. Complexity of sutured manifolds. Gabai [Ga83], Definition 4.11,
associates to each connected sutured manifold (M, R-, R+, y) an invariant

c(M, R-, JR+, y) G Ö which we refer to as the complexity of (M, R-, y).
Here Ö is a totally ordered set with the property that any strictly descending
chain in Ö starting at a given element is finite. We denote the minimal element
of Ö by 0. We refer to [Ga83], Definition 4.3, for details1.

Gabai [Ga83], Section 4, proved the following theorem.

Theorem 3.5. Let (M, y) be a connected sutured manifold and let

(M, y) «& (M', y')

_
^ote that our notation and name differ from [Ga83]: Gabai denotes this invariant

C(M, R-, R+, y) and calls it the 'reduced complexity'.
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be a sutured manifold decomposition along a connected decomposition surface
S. Suppose that (M,y) and (M',yr) are taut. Let (M'Q, yf) be a component of
(.M',yf). Then

c(Mq, Yq) < c(M, y).

Furthermore, if S is not boundary parallel, e.g. if [S] is non-trivial in
H2(M,dM;Z), then

e(MÔ- Ko) < c(M,y).

Remark. (1) We could use the complexity C(M, R-, R+, y) introduced by
Scharlemann [Sc89], Definition 4.12. It follows from [Sc89], Definition 4.12,
Remark 4.13(b), and Theorem 4.17, that the conclusion of Theorem 3.5 holds in
an analogous way for Scharlemann's complexity.

(2) Juhâsz [Ju06] and [Ju08] defines and studies in detail the 'sutured Floer
homology SFH(M, y) ' for 'balanced' sutured manifolds. The total rank of
SFH(M, y) is a very useful complexity for balanced sutured manifolds and it has

properties similar to Theorem 3.5. It would be interesting to give another proof
of Theorem 5.1 using SFH(M, y). This though would require some adjustments
since not all sutured manifolds which occur in our proof are balanced (e.g. if
(M, R-, R+,y) is balanced, then and R+ have no closed components).

4. Perturbations of homology classes

The key to proving the Virtual Fibering Theorem is to show that given a good
Thurston norm minimizing surface R and a homology class e H2(N', Z)
one can find a surface F such that given any gut or window X of N(R) the

intersection F fl X is a taut decomposition surface for X which represents the

same class as the restriction of \jr to H2(X,dX;Z).
We start out with the following proposition.

Proposition 4.1. Let N be a closed irreducible connected 3 -manifold and let R
be a good Thurston norm minimizing surface. Then for any choice of admissible

decomposition surface for N \ R x (—4,4) and any choice of \jr G H2(N',Z)
there exists an m Fl and a surface F with the following properties:

(Wl) [R] is subordinate to m[R\ + \jr and F represents m[R] + \jr;

(W2) F W (i? x -3UjRx3) is Thurston norm minimizing;

(W3) the intersections F fl R x [—4, —2] and F OR x [2,4] are product surfaces;

(W4) if X is a gut or a window of N\Rx(—4,4), then FC\X is a decomposition
surface;
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annuli separating guts and windows

R x -2 R x 2

Figure 2

Schematic picture for Proposition 4.1

(W5) F and R x —3 U Äx3 are a good pair.

In the proposition we implicitly identified a tubular neighborhood of R in N
with R x [—4,4]. Strictly speaking we should write R x {—3} and R x {3}, but in

our opinion F l±J (R x {—3} U R x {3}) is less readable than F l±J (R x —3 U R x 3).
This proposition is the technical heart of our proof of the Virtual Fibering

Theorem and we therefore give a detailed proof of the proposition. A very
schematic picture for Proposition 4.1 is given in Figure 2.

Proof. Let N be a closed irreducible 3-manifold and let R be a good Thurston

norm minimizing surface. We pick a tubular neighborhood R x [—5,5] for R.
We write M N \ R x (—1,1) which we view as a sutured manifold (M, y)
in the usual way.

We pick an admissible decomposition surface for M. We denote by

(Mi, Ri+, Ri-, Yi), i 1,..., r

the corresponding guts and windows of M. Finally we denote by A\,...,AS
the collection of all the components of the Note that we can and will assume
that for each Ai the intersection with R x [—5, —1] and R x [1, 5] consists of a
union of product annuli.

Before we state the first claim of the proof we need to introduce one more
definition. Let S be a surface and let c, be a component of S C\ Ai which is a
closed curve. We pick a j such that Ai is a component of yj, i.e. such that Ai
lies on dMj. Note that c is a component of 9(5 fl Mj) and it thus inherits an
orientation. We now say that c is positive if

[<•] e HiUiM
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and we say c is negative if

[c] -[Rj±nAi].
It is straightforward to see that if we chose the other for which A[ is a

component of ythen the orientation of c flips and [Rk± H Ai] —[Rj± PM/],
which implies that we would get the same sign.

We can now formulate our first claim.

Claim. Let i/f G H2(N','Z). There exists an l G N and a surface D with the

following properties:

(Dl) [R] is subordinate to /[jR] + i(r and D represents /[i?] + ijr ;

(D2) for any set of real numbers — 5 < x\ < x^ < ••• < xt <5 the surface
D l±J [J2- R x X[ is Thurston norm minimizing;

(D3) the intersection D D Rx [—4,4] is a product surface;

(D4) given any i G {1,... ,s} the surface D intersects Ai transversely and any
component of D fl Ai is either an arc or it is a closed curve which is

positive;

(D5) D is a good surface.

We first note that by Lemma 2.1 there exists a k G N such that [R] is
subordinate to l[R\ + \(f for any / >k. By a general position argument we can
find a Thurston norm minimizing surface C in N which represents k[R] +
which intersects all the annuli Ai transversely and such that C fl R x [—5, 5] is

a product surface.
Since [R] is subordinate to [C] it follows that [R] and [C] lie on the closure of

a Thurston cone, which in turn implies that for any —5 < x\ < X2 <••• < xt <5
we have

t

«tpi + [C]) «fîJJi + -ï([C]) tx-(R) + /-(C) /-(c ö y R X xi
1 1

This shows that C l±J (J; R x is Thurston norm minimizing. In particular C
satisfies (D1)-(D3).

We now let

d := maximal number of negative components of any C C\ Ai

and we consider
d

D C W. U«x (4+-).
1=1
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It follows easily from Ri+ (R x 1) D Mi, i 1,,r that for any A[ there

are now at least as many positive components of D fl A[ as there are negative

components. Using the standard 'cut and paste' method we can arrange that given

any Ai the intersection D fl At contains no null-homologous closed loops and

no anti-parallel closed loops. Note that if we remove a pair of anti-parallel closed

loops then we lower the number of positive and negative components each by
one. It now follows that any component of D fl Ai is either an arc, or it is a
closed curve which is positive. We thus arranged that D satisfies (D4). Since all
of the above operations can be performed outside of R x [—4,4] it is clear that
D also has properties (D1)-(D3).

We finally turn D into a good surface by removing all components of D
which are spheres or which bound an compressible torus. This concludes the

proof of the claim.

For each Ai we now perform successively two isotopies of D in a small

neighborhood of Ai, i.e. in a neighborhood which does not intersect any of the

other Aj.
(1) We first apply an isotopy outside of R x [—4,4] which pulls the separating

arcs of D fl Ai either into Ai fl (R x (-5,-1]) or into Ai fl (i? x [1, 5))
and which leaves all the other intersections of D with Ai untouched.

(2) We then apply an isotopy in R x [-5,-1] U R x [1,5] which pulls the

separating arcs into At fl (R x (—2, —1]) or into Ai fl (R x [1,2)) and which
again leaves all the other intersections of D with Ai untouched.

Note that such isotopies exist since D fl Ai contains no null-homologous closed

loops. Also note that we can perform the isotopies in such a way that the
intersection of the resulting surface E with R x [-4,-2] U R x [2,4] is still a

product surface. We illustrate the two isotopies in Figure 3.

D n At E n At

Ai Ai

Figure 3

Modification of D in a neighborhood of Ai

It is now time to pause for a minute and see what we have achieved so far.
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Claim. The surface E has properties (W1)-(W4).

We consider the sutured manifold

M := N \ R x (—4,4).

Note that the guts and the windows of M are precisely the intersection of the

guts and the windows of M N \ R x (— 1,1) with M. In the following we
write

Mi M n Ml,

Yi m n Yi,

and

Äi M n Ai

for all i.
We first point out that properties (W1)-(W2) are preserved under isotopy,

so they are clearly satisfied by E. As we discussed above, the surface E has

property (W3).
Finally let A( be any of the annuli. It follows from (D4) and the type of

isotopy we applied that any component of EC\Ai (EC\Ai)r\(N\Rx(—4,4)) is
either a non-separating arc or a closed curve which is positive. This is equivalent
to saying that E satisfies (W4). This concludes the proof of the claim.

So it now remains to modify2 E to arrange (W5). We will do so over the

next two claims.

Claim. There exists a good surface E which has properties (W1)-(W4) and
which satisfies

(W5r) There exists no filling ball and no filling solid tori for (E, Rx —3 U i? x 3)
which lies in N \ R x (—3,3).

We will prove the claim using the complexity èo(£n(iîx-3UÂx3)). It
suffices to show that if E is a good surface with properties (W 1)-(W4) which does

not satisfy (W5'), then there exists a good surface with properties (W1)-(W4)
with lower complexity.

So let E be a good surface with properties (W1)-(W4) which admits a filling
solid torus X for (E, R x —3 U R x 3) which lies in N \ Rx (—3, 3). Since
E and R are good it follows that X touches E and i?x-3Ui?x3. (It is in

2Note that we could of course have picked C initially such that C and Rx —3 U i? x 3 are
a good pair, but this property can get lost in the step from the surface D to the surface E.
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fact straightforward to see that dX C\ (Rx — 3 U i? x 3) lies either completely in
R x — 3 or in Rx 3.) We now replace E by

(E \ (X fi E)) U (X fi (R x -3 U R x 3))

and push the components of X D (R x — 3 U R x 3) into R x (—2,2). These two
steps are illustrated in Figure 4.

fc
j ±::

Figure 4

Replacing Ifl£ by IflÄx-3 and pushing into R x [—2,2]

Finally we delete all components of the new surface which are spheres or
which bound solid tori.

Note that the fact that X is a filling solid torus implies that the resulting surface
is homologous to E and in particular oriented. Also note that any component of
the intersection of the new surface with any of the Aj is a component of the

intersection of E with Aj. It is now straightforward to see that the resulting
surface is a good surface that still has properties (W1)-(W4). Furthermore it is
clear that the number of components of the intersection with R x —3 U R x 3

went down. We thus lowered the complexity.
We now suppose that (E, R x —3 U R x 3) admits a filling ball B which lies

in N \ Rx{—3, 3). Then exactly the same argument as above, with X replaced
by B, shows that we can find a new surface of lower complexity. This concludes
the proof of the claim.

We now turn to the last claim of the proof of the proposition.

Claim. There exists a good surface F which has properties (W1)-(W5).

Let E be a good surface which has properties (W1)-(W4) and (W5'). We
denote by C_, C+ C R the collection of curves such that EC\Rx±2 C±x±2.
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We can and will assume that C_ and C+ are in general position. We also write
c c_ u C+.

We denote by c the number of components of R\C. Note that the closures
of the components of R\C (equipped with the orientation coming from R)
give naturally rise to a basis for H2(R,C;Z). We denote the corresponding
isomorphism H2(R,C',Ij) —> If by <3> and we denote by p'.Rx [—2,2] —> R
the canonical projection map.

If 5 C R x [—2,2] is a surface with 35 C C_ x —2 U C+ x 2, then we refer
to <3>(/?*([5, 35])) G as the coordinates of S.

If 5 C -R x [—2,2] is a surface with 35 C C_ x —2 U C+ x 2, then we
say that 5 is negative if <3>(/7*([5,35])) has non-positive coordinates and at
least one coordinate is negative. Similarly we define what it means for 5 to be

positive. Note that if 5 C R x [—2,2] is a surface with 35 C C_ x —2, then

5 is isotopic rel boundary to a surface in R x —2, it follows that 5 is either

negative or positive. The same conclusion holds for surfaces 5 C R x [—2,2]
with 35 C C+ x 2.

Finally, given a surface E C N with £ fl (R x —2 U R x 2) C_ x —2 U C+ x 2

we consider the complexity

— sum of the negative coordinates of &(p* ([5, 35])).
S component

of EDRx[-2,2]

In order to prove the claim it suffices to show that if E is a good surface with
properties (W1)-(W4) and (W5') which does not satisfy (W5), then there exists

a good surface with properties (W1)-(W4) and (W5 ') with lower complexity.
So let J? be a good surface with properties (W1)-(W4) and (W5') with

E fl (R x -2 U R x 2) C_ x -2 U C+ x 2

which admits a filling solid torus X for (E, R x — 3 U R x 3). Note that the

intersection of X with N \ R x (—3,3) is either empty, or a filling ball or a

filling solid torus. By (W5') the last two cases can not occur, we thus conclude
that the filling solid torus X has to lie in R x [—3, 3].

Note that the oriented surface Xfl(Rx—3URx3) has non-negative coordinates
and at least one coordinate is positive. Since X C\(Rx—3 U R x 3) is homologous
to —X fl E it follows that the surface X fl E has non-positive coordinates and

at least one component of X fl E has a negative coordinate. Finally note that X
intersects either Rx—3 or Rx 3, without loss of generality we can assume that
the former is the case. By the above this implies that X fl E contains a negative
component.

We pick an x G (—2,2) such that dX HRxx is isotopic in X to dX C\Rx—2.
We now consider the surface E l±J (R x x). Note that the coordinates of R x x
are Since Rxx intersects a negative component of E it is now
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straightforward to verify (see e.g. Figure 5 for an illustration) that the surface
E l±l (jR x x) has lower complexity than E.

-> ZJ

P
P

Rxx with x (—2,2)

innermost filling solid torus for (E, R x —3) solid torus

negative component of E fl R x [—2,2]

Figure 5

Replacing E by E l±J (R x x) and deleting any components bounding balls and solid tori

We now delete all components of £"I±J(jRxx) which bound balls or solid tori. It
is easy to see, using (D2), that the resulting surface still has properties (W1)-(W4)
and by the above it has lower complexity than E.

Finally, if (E, R x —3 U R x 3) admits a filling ball B, then exactly the same

argument as above shows that we can again find a surface which satisfies (Wl)—
(W4) and (W5') and which has lower complexity.

This concludes the proof of the claim.

We will now study how the guts are affected by decomposing along the

surface which is given to us by Proposition 4.1. Before we state the next result
we introduce one more definition. Let N be a closed irreducible 3 -manifold. We

say that a subset G C N is homologically visible in N if the map

Hi(G; H\(N',7j)/torsion

is non-trivial. Otherwise we say that G is invisible.
We can now formulate the following proposition.

Proposition 4.2. Let N be a closed irreducible connected 3 -manifold and let
R (Z N be a good Thurston norm minimizing surface. We pick an admissible

decomposition surface for N \R x (—4,4). Suppose that m G N and F C N
have properties (W1)-(W5). We put

S (R x -3 U R x 3) l±J F.
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Then there exists an admissible decomposition surface for N(S) such that to
each gut G of N \ R x (—4,4) we can associate a collection <3>(G) of guts of
N(S) with the following properties.

(1) The guts of N(S) are the disjoint union of all the 0(G).

(2) Any gut in O(G) is a subset of G.

(3) If G is invisible, then any gut in O(G) is also invisible.

(4) If G is a gut of N(R), then one of the following two statement holds:

(a) either any element in O(G) has lower complexity than G,

(b) O(G) consists of one element G' and there exists an isotopy of N
which restricts to a diffeomorphism G —> G' as sutured manifolds.

(5) If G is a gut such that [F fl G] ^ 0 e H2(G, dG;Z), then any element in
O(G) has lower complexity than G.

Proof. We consider the sutured manifold M N \ R x (—4,4). We pick an
admissible decomposition surface A for M. Recall that we assumed that N is

closed, which implies that the sutured manifold M has no sutures, which in turn
implies that A consists only of admissible annuli. We denote by Gi,..., G* the

corresponding guts and by P\,..., Pi the corresponding windows of M. By
(W4) we can decompose G\,..., Gk and P\,..., Pi along F and we obtain
new sutured manifolds Gf,..., G^ and Pf,, Pf

We also consider the product sutured manifold

or

Q :=Rx 1-2,2].

We can decompose Q along F fl Q and we obtain a sutured manifold QF.
Note that we can and will identify N(R x — 3 U R x 3) with Q U M.

Finally we put
S (R x -3 U R x 3) l±J F

and we consider the following diagram

N Rx-3URx3 QU M e uijg, u(ja

We now make several explanations and observations.
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(1) The decompositions along F are understood to be along the intersection of
F with the given submanifold of N.

(2) It follows from (W2) and (W5) and from Lemma 3.4 that N(S) is taut.

(3) By C we denote the union of the decomposition annuli from Lemma 3.4
which correspond to the components of F C\(Rx — 3 U i? x 3).

(4) It follows from Lemma 3.4 that the first square of the diagram is commutative.

It is straightforward to verify that the second square is also commutative.

(5) It follows from (W4) that the components of C and A D X are admissible
annuli and admissible disks.

We now let B C U (A fl X). It follows from the above that B is an admissible

decomposition surface for N(S). It is well-known that if we decompose a product
sutured manifold along a taut decomposition surface, then the result is also a

product sutured manifold. (This can be seen for example by the classification
of Thurston norm minimizing surfaces in S1 x £.) We thus see that the guts
of N(S) with respect to B are precisely the disjoint union of the non-product
components of the Gf

To each gut Gz of N(R) we now associate

0(GZ) := non-product components of Gf.

By the above the guts of N(S) are the disjoint union of {0(Gi)}i=i k-
By construction any J G 0(G/) is a subset of Gz. In particular the map

—» H\(N','Zj) factors through JHi(Gi',Z) —» H\(N','Z). It follows that

if Gi is invisible, then any component of Gf is invisible as well. It furthermore
follows immediately from Theorem 3.5, applied iteratively to the components of
F fl Gi, that the fourth and the fifth statement also hold.

5. The proof of the Virtual Fibering Theorem

For the reader's convenience we recall Agol's theorem.

Theorem 5.1 (Agol). Let N be an irreducible connected 3 -manifold with empty
or toroidal boundary such that tz\ (N) is virtually RFRS. Let (p G H1(N', Q)
be non-trivial. Then there exists a finite cover q: N —> N such that q*(p is
subordinate to a fibered class.

In Section 5.1 we will provide the proof of Theorem 5.1 in the case of closed
3-manifolds. In Section 5.2 we will then deduce the case of non-trivial boundary
from the closed case by a 'doubling' argument.
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5.1. The Virtual Fibering Theorem for closed 3-manifolds. In this section

we will give a proof of Theorem 5.1 in the case that N is a closed irreducible
connected 3-manifold with virtually RFRS fundamental group. Let <p e H1(N; Q)
be non-trivial. In light of Lemma 2.1 (4) we can without loss of generality
assume that tt tti(N) is already RFRS. We can therefore find a filtration
7t 7tQ d 7t\ D 7t2 such that the following hold:

(1) fit *k {l};
(2) for any k the group is a normal, finite index subgroup of it ;

(3) for any k the map Ttk —> factors through ttk —> H\ (itk ; Z) /torsion.

Given a non-trivial subgroup F C ^ we define its invisibility i(T C tt^) as

follows:

i(T C Ttfc) := min{/ G N |T C ftk+l an^

H\(T;Z) —> Hityk+i; Z)/torsion is non-trivial}.

It follows from properties (1) and (3) of a RFRS group that the invisibility of
any non-trivial subgroup is defined.

In the following, given k G N, we denote by Nk the cover of N corresponding
to 7tk and for j > k we denote the covers Nj —> Nk by q. Now let R C Nk be

a good Thurston norm minimizing surface. We pick an admissible decomposition
surface for Nk(R) We say that two guts G and G' of Nk(R) are equivalent if
there exists a deck transformation <E> of the covering Nk —> N and an isotopy

of Nk such that o <3> restricts to a diffeomorphism G —> G' of sutured

manifolds. Note that equivalent guts have in particular the same complexity.
We can now introduce the following invariants:

tnc(Nk, R) := maximal complexity of a gut of Nk(R),

nc(Nk,R) '= number of equivalence classes of guts of Nk(R)
with maximal complexity,

i(Nk, R) '= maximal invisibility among all guts of Nk(R)
with maximal complexity,

mv(Nk, R) := maximal complexity of a visible gut of Nk(R),

nv(Nk,R) '= number of equivalence classes of visible guts of Nk(R)
with maximal complexity.

If Nk(R) has no guts, then all these invariants are understood to be 0.
We now consider the lexico-graphically ordered quintuple

Cmc(Nk, R), nc(Nk, R), i (Nk, R), mv(Nk, R), nv(Nk, R)),
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and we define f(Nk,R) to be the minimum of all these quintuples, where we
take the minimum over all admissible decomposition surfaces for Nk(R)- Note
that f(Nk,R) is the zero vector if and only if Nk(R) is a product, i.e. if R is

a fiber of a fibration.
We now want to prove the following lemma, which by the above implies the

theorem.

Lemma 5.2. Let R be a good Thurston norm minimizing surface in N. Then
there exists a j and a good Thurston norm minimizing surface Rj in Nj such
that the following two conditions hold:

(1) #*([$]) G H2(Nj; Z) is subordinate to [12/],

and

(2) f(Nj,Rj) is the zero vector.

This lemma in turn follows from the following lemma.

Lemma 5.3. Let Rk be a good Thurston norm minimizing
that f(Nk, Rk) Is not the zero vector. Then there exists a
Thurston norm minimizing surface Rj in Nj such that

(1) #*([-Kä:]) e H2{Nj',lj) is subordinate to [12/],

and

(2) f(N,,Rj)<f(Nk,Rt).

Pick an admissible decomposition surface for Nk(Rk) which realizes

f(Nk, Rk) • In our proof of Lemma 5.3 we first suppose that every gut of
Nk(Rk) is invisible. We then consider the covering q: Nk+i —> Nk and we write
jRfc+1 q~1(Rk). It follows from Proposition 3.3 that the guts of A^+i(^fc+i)
are precisely the preimages under q of the guts of Nk(Rk) - Now note that if
G is a gut of Nk(Rk)> then the assumption that G is invisible implies that the

map
tti(G) —^ Tti(Nk) —> Hi (Nk; ^)/torsion —> itki^M

is trivial. This implies that the components of q~x (G) are all diffeomorphic to G.
It follows that mc(Nk+i,Rk+i) mc(Nk,Rk)-

Note that all the components of q~l(G) are furthermore equivalent. Since
the map Nk+i ^ N is a regular cover it now follows easily that two guts
of Nk+i(Rk+i) are equivalent if and only if their projections to Nk(Rk)
are equivalent. We thus see that nc(Nk+i, Rk+i) nc(Nk,Rk)- On the

other hand we have i(Nk+i, Rk+i) i(Nk,Rk) — 1- We thus showed that

f(Nk+i,Rk+i)<f(Nk,Rk).
We now turn to the case that there exists a gut of Nk(Rk) which is visible.

Among all visible guts of Nk(Rk) we take a gut G of maximal complexity. We

surface in Nk such

j > k and a good
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denote by G\ G, G2, • • •, Gi the guts which are equivalent to G. Note that all
these guts are also visible. There exists therefore ahomomorphism H\(N;Z) —> Z
which is non-trivial when restricted to each Gj. Put differently, there exists a

iff e H-2(Nk; Z) H1 (Nk; Z) such that the restriction to each Gj is non-zero.
By Proposition 4.1 there exists an m e N such that [jR&] is subordinate to

m[Rk] + ^ and a surface F in Nk which represents tn[Rk\ + ^ and which has

properties (W2)-(W5). We set S (R x — 3 U R x 3) t±J F. It now suffices to
show the following claim.

Claim. f(Nk.S)< f{Nk.Rk).

complexity ofguts
>

complexity ofguts
>

invisible guts
' •

•

invisible guts
decomposition

along F
>

•

visible guts •
:•

visible guts • "o

H
Figure 6

Schematic picture of the decomposition of guts along F : guts get cut
into pieces of smaller complexity and invisible guts stay invisible.

The colors indicate equivalence classes of guts.

We equip Nk(S) with the admissible decomposition surface coming from
Proposition 4.2. We then note that it follows immediately from Proposition 4.2
(1) and (4) that (up to isotopy)

{guts of Nk(S) of complexity mc(Nk,Rk)}
C {guts of Nk(Rk) of complexity mc(Nk,Rk)},

and that furthermore no gut of Nk(S) has complexity larger than mc(Nk, Rk) •

It follows that

(1) (mc(Nk, S), nc(Nk, S), i(Nk, S)) < (mc(Nk, Rk), nc(Nk, Rk), i(Nk, **))•
Furthermore it follows from Proposition 4.2 (1), (3) and (4) that Nk(S) contains

no visible gut of complexity larger than mv(Nk, Rk) and that

{visible guts of Nk(S) of complexity mv(Nk, Rk)}
C {visible guts of Nk(Rk) of complexity mv(Nk, Rk)}-

Now note that for any Gj we have

lS]\Gj =(m[Rk] + f)\Gj =f\Gj ^0 eH2(Gj,dGj;Z).
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It therefore follows from Proposition 4.2 (4) and (5) that

#{equivalence classes of visible guts of Nk(S) of complexity mv(Nk, Rk)}
< #{equivalence classes of visible guts of Nk(Rk)

of complexity mv(Nk,Rk)}~ 1-

Putting these observations together we see that

(2) ('/',( VA. S //, <.VA. S < (///,( VA. gg I. nv(Nk, Rk)).

Combining the inequalities (1) and (2) we see that f(Nk,S) < f(Nk,Rk)- This
concludes the proof of the claim and thus of Theorem 5.1.

For the purpose of the next section we also state the following lemma which
we implicitly proved in the above:

Lemma 5.4. Let N be a closed irreducible 3 -manifold and let R C N be a
good Thurston norm minimizing surface. We pick an admissible decomposition
surface for N(R). Suppose there exists a filtration tz tzq D tz\ D • • • such
that the following hold:

(1) for any gut G of N(R) we have flfc(7ri(G) D TZk) {1};

(2) for any k the group itfc is a normal, finite index subgroup of n ;

(3) for any k the map tzk —> TZk/TZk+i factors through TZk —> H\(rzk', Z)/torsion.

Then there exists a finite cover q: N ^ N such that g*([R]) is subordinate to
a fibered class.

5.2. The Virtual Fibering Theorem for 3 -manifolds with non-trivial boundary.
We will now give a proof of Theorem 5.1 in the case that N has non-trivial
toroidal boundary. One approach would be to adapt the proof of the previous
section. In fact quickly browsing through the proof shows that the only aspect
which needs to be modified is the statement and the proof of Proposition 4.1.
This can be done, but the proof of Proposition 4.1 becomes even less readable.

We therefore employ a slightly roundabout way which is inspired by the proof
of [Ag08], Theorem 6.1. In the following let N be an irreducible connected 3-
manifold with non-trivial toroidal boundary such that tz\ (N) is virtually RFRS.
The theorem trivially holds for N S1 xD2, we therefore henceforth assume
that N ^ S1 x D2. Let <p e H1(N;Q) be non-trivial. In light of Lemma 2.1

(4) we can again assume that tz tz\(N) is already RFRS. We pick a RFRS
filtration {jTfcJfceN e N for tz
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We denote by W the double of N along its boundary, i.e. W NU^=^/Nr
where N' is a copy of N. We consider the inclusion map i: N —> W and

the retraction r:W —> N. We also consider R := dN dNf C W and
d> := r*(p e Hl(W;%) H2(W;Z). Note that R is a good surface since N is
irreducible and N ^ S1 x D2. It follows from Proposition 4.1 and the proof of
Proposition 4.2 that there exists a surface S of the form S F\+)(Rx — lU Rx 1)
such that [S] £[/?] + d> for some k e N and such that, for a suitable choice of
admissible decomposition surface, the guts of S are contained in W\Rx(— 1,1).

Note that the Thurston norm of [R] is zero, it follows that and [S] lie in
the same Thurston cone, in particular <E> is subordinate to [S]. We now apply
Lemma 5.4 to the filtration given by Ker(7Ti(IT) —> it\(N) —> it/it&), k e N
and the surface S. Since each gut of S is contained in one of the two copies of
N, and since {7rfc}fceN e N is a RFRS filtration it follows that the conditions of
Lemma 5.4 are satisfied. There exists therefore a finite cover q: W —> W such

that <9'*([<S']) is subordinate to a fibered class T. It follows from Lemma 2.1 that
<£> := g*cf) is also subordinate to the fibered class ,P.

We now denote by N C W a connected component of q-1(N). We recycle
the above notation by denoting the covering map N —> N by q and the

inclusion map N —> W by i. Since N ^ S1 x D2 we can view N as a
uiiion of JSJ components of W. It follows from [EN85], Theorem 4.2, that

:= G H1(N;Q) is also fibered.

It remains to show that <p := q*(p is subordinate to ^. We first note that the

fact that Ö := q*<& is subordinate to T implies that

(3) x^(5) + + $).

We denote by M the closure of W\N. Note that N and M are a union of JSJ

components of W. It now follows immediately from [EN85], Proposition 3.5,
that for any class © G /^(TV^Q) we have

lif)-

Since is a seminorm it follows immediately from (3) that

+ xivW xN($ + $)•

This shows that <p and \ji lie on the closure of a Thurston cone. We now recall
that the fact that ^ is fibered implies that \}i lies in a top dimensional Thurston
cone. Combining these two statements implies that (p is in fact subordinate to
the fibered class

This concludes the proof of Theorem 5.1 in the case that N has non-trivial
boundary.
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