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Schauder estimate for solutions of Poisson's equation
with Neumann boundary condition

Giacomo Nardi*

Abstract. We consider here the Neumann problem for the Laplace operator and prove

an existence result m the Holder spaces and obtain Schauder estimates According to our

knowledge this result is not explicitly proved m the several works devoted to Schauder theory,

where similar theorems are proved for the Dirichlet and oblique derivative problems Our

contribution is to make explicit the existence and the estimate for the Neumann problem

Mathematics Subject Classification (2010). Primary 35J25, 35J05

Keywords. Schauder estimate, Poisson's equation, Neumann boundary condition

1. Introduction

Let ^ be a C2,0i -domain of M^(we refer to Section 2 for notation and

definitions). We consider the following problem:

A u f in Q

3M
— g on d£2
on

with / e C0,OC(Q) and g e C1,a(Q). The aim of this paper is to prove an

existence result in C2,0i(O>) for this problem and an estimate of the form

llM lie2 of 5 C{\\f\\co* + ||g|lclo0-

In the 1930s, this kind of estimate was used by Schauder [Sch] and Caccioppoli
[Ca] to prove an existence result in C2,0C(Q) for the Dirichlet problem for an

elliptic equation ([GT, Theorem 6.8, p. 100]; [LU, Theorem 1.3, p. 107]). Using
the same technique, in the 1950s, Fiorenza [Fi] proved a similar estimate and an

existence result in C2,0i(O>) for the oblique derivative problem

* We thank A Adimurthi, N Fusco, R Gianni, L Orsina, and N Trudinger, for their advice We
thank B Dacorogna who supervised the researches on this subject



422 G. Nardi

du
l(x)u + m(x)— g on 32 (Im > 0 on 3£2)

on

for elliptic equations ([GT, Theorem 6.31, p. 128]; [LU, Theorem 3.1, p. 126]).

Unfortunately the hypothesis I ^ 0 may not be removed in the proof of the

existence result and the Schauder estimate for the oblique derivative problem
([GT, Theorem 6.31, p. 128]). Moreover, reading this proof, we can verify that it
is not even possible to get the result for the Neumann problem taking the limit
I -+0.

So, the case of the Neumann problem needs to be considered independently
and, according to our knowledge, it is not explicitly present in the classical

literature on the subject (see for instance [GT], [LU]) where the Dirichlet and

oblique derivative problems are studied in detail.

The main goal of this work is to formalize the existence result and a Schauder

estimate for the Neumann problem for Poisson's equation.
Our main contribution is the following result (Theorems 3.1 and 4.1):

Theorem. Let a e (0,1) and let Q be a C2*01 -domain. Let f e C°'a(£2) and

g e C1,a(Q) be such that

/ f f 8'
JQ JdQ

Then there exists a solution u e C2,a(Q) (unique up to an additive constant) to

the problem
Au f in Q

du
;lo— g on 3S2

on

Moreover; every solution to this problem verifies the estimate

3 L
with C C(£2, N,a).

u — —— / u
1^1 Jq ^ Cfli/lico« + kllci

c2 a

The starting point of the proof is the alternative theorem for the oblique derivative

problem for an uniformly elliptic operator L with coefficients in C°'a(£2)
and c < 0 (Theorem 5.1). This allows us to prove an existence result (uniqueness
is given up to a constant) for the Neumann problem for elliptic operators with
c < 0 (Theorem 5.2). Afterwards, using Theorem 5.2 and the Fredholm
alternative, we can prove the existence and uniqueness of the solution to our initial
problem in the class of functions belonging to C2,a(^) and having null average

(Theorem 3.1).
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Concerning the estimate we are led to estimate the quantity u — ^ / u instead

of u, because the solution to the Neumann problem, if it exists, is unique up to

a constant. We give three proofs of this result (Theorem 4.1).

We finally obtain, for the Neumann problem, results similar to those for the

Dirichlet and oblique derivative boundary conditions.
As already mentioned, the theorem is well known to all specialists in elliptic

partial differential equations. However, after discussion with several of them, we

were not able to find a precise reference for such a result, specially the one

concerning the estimate.

This paper is organized as follows. In Section 2 we recall the main definitions
used in this work. In Section 3 we prove an existence theorem for the Neumann

problem for the Poisson equation (Theorem 3.1). In Section 4 we prove the estimate

(Theorem 4.1). In Section 5 we recall some useful results to prove the existence

theorem. We adopt the same notation as in [GT]. We refer to [Na] for a more
detailed analysis of the problem.

2. Definitions and notation

In the sequel we denote by Q an open bounded non-empty subset of
Rn (N > 2) and let u be a function defined on Q. For every multi-index
ß (ßi,.. ,,ßN) (ß, > 0 for i 1,..., AO of length \ß\ ß,, we set

3lßlu
D"u

dxf1... dxß/'
We recall the definition of the usual functional spaces (k > 0):

Ck(Q) {u : Q -> M| Vyß multi-index, \ß\ < k, D^u is continuous in Q},

Ck(Q) {ue Ck(Q)\Dßu, \ß\ < k, can be extended by continuity to 9 £2}.

Moreover Ck(Q) is a Banach space equipped with the norm

k

INI ck ^ sup sup \Dßu\.
t=0\ß\=i ß

We now recall the definition of Holder spaces.

Definition 2.1 (Holder-continuity). Let a e]0,1] and let £2 c RN be an open
set. We define the a -Holder coefficient of u : £2 R as

r 1 \U(X) - u(y)\
sup •

x |X y I

If No,a;fi < oo then we say that u is Holder continuous with exponent a in Q.
If there is no ambiguity about the domain Q we denote No,a;n by [u]0ja.
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We define the Holder space Ck,0l{Q) as the set of functions belonging to

Ck(Q) whose £th-order partial derivatives are Holder continuous with exponent
a in Q.

Ck,0C(Q) is a Banach space equipped with the following norm:

\\u\\Cka \\u || Ck + [U\k!0t

where

[u\k,a SUp [Dßu]0,a.
\ß\=k

We set Ck>°(Q) Ck(£2), and one can easily verify that Ck,a(£2) c Ch,a(£2)

for all integers h,k with h <k.
Moreover, for every vector-valued function u : £2 -> RN, we say that it belongs

to Ck,0i(Q) if its components belong to Ck,0i(Q).
In order to give the definition of Ck,0i -domains, we need the following notation:

B {x (xi,...,xN) gR^||jc| < 1},

B+ {x e B\xn > 0}, Bq {x e B\xn 0}.

Definition 2.2. We call domain every open, bounded, connected, and non-empty
subset £2 of RN. Moreover, £2 is said to be a Ck>a -domain (k > 1, a e [0,1])
if for every p e d£2 there exists a neighborhood Up of p in RN and a

diffeomorphism cpp : B Up such that

(i) <pp e Ck,a(B) and (p~l g Ck^(L^);
(ii) (pp(B+) Up HQ;

(hi) <pp(B0) Up HdQ.

Remark 2.3 (Holder-continuity on the boundary). Let £2 be a Ck>a -domain. We

say that u e Ck,0C(dQ) if, for every g 312, we have u ocpp e Ck,oc(Bo), where

(pp is given by the previous definition.
Of course if u g Ck,0C(Q) its restriction to belongs to Ck,0C(dQ). Moreover,

for every u e Ck,0i(dQ) there exists a function belonging to Ck,0i(Q) whose

restriction to the boundary coincides with u (see [GT]: Lemma 6.38 p. 137).

Then, in order to study the Neumann problem for Poisson's equation, we can
consider boundary values belonging to Ck,0C(Q) instead of Ck,0C(dQ).

We denote by Lp and Wm,p the usual Lebesgue and Sobolev spaces and

refer to [AF, Br] for their properties.
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3. Existence of solutions to the Neumann problem
for Poisson's equation in C2,a(&)

In this section we consider Poisson's equation with Neumann boundary
condition and prove the following result:

Theorem 3.1. Let £2 be a C2,01 -domain and let f e C0,Oi(£2),g e C1,0i(£2) be

such that

(3.1) f f f g.
JQ JdQ

Then the problem

(A
u f in £2,

du
— g on oQ

admits a unique solution in the class

We start by recalling the following estimate which is very useful in the sequel:

Theorem 3.2 ([GT, Theorem 6.30, p. 127]; [LU, Theorem 3.1, p. 126]). Let £2

be a C2,01 -domain and let u e C2,0i(£2) be a solution of (3.2). Then

(3.3) IMIc2 a 5 C(||/||C0« + llgllc1 a + IN lie0)'

with C C(£2,a, N).

We prove two preliminary lemmas.

Lemma 3.3. Let £2 c RN be a C2 -domain and let u e C2(£2). We suppose that
there exists p e d£2 such that:

u{p) max u (min^) and Du(p) 0.
Q £2

Then Au(p) < 0 (> 0).

Proof Up to a translation, we may assume that p is the origin of RN. Moreover,
as Q e C2, up to a rotation, we may also assume that, for some R, we have

—ret e £2 for every r e [0, R] and i 1,..., N where (e\,..., en) is an

orthonormal basis of RN. Then, partial derivatives verify

Dlu{p + het) — Dlu{p) Dlu{p + het)
Dnu(p) Inn Inn < 0,

h^o~ h h^o~ h

because Du(p) 0 and, for h < 0 small enough we have Dtu(p + het) > 0.

If p is a minimum point the proof is similar.
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Lemma 3.4. Let £2 c RN be a C2 -domain and f e C°'a(£2). Let u e C2'a(£2)
be a solution to the problem

A u — u f in Q

^=0 «»3S2;
on

then

IMIco < ll/llco-

Proof Let p be such that \u(p)\ max^-|u|. We consider separately the

following cases: p eQ and p e dQ.

p e £2. Let p be a maximum point for u then u(p) > 0 and Au(p) <0. As
Au — u f we get f(p) Au(p) — u(p) < Au(p) < 0. Thus

||w||co u(p) Au(p) - f(p) < -f(p) < ||/||co.

If p is a minimum point for u (u(p) < 0) the proof is similar.

p g 9£2. If p is a maximum point for u then p is a maximum point for u\^q.
So, for every vector r tangent to 9£2 at p we have:

du /
Vt(P) 0

and, using the hypothesis
du
ö-QO o,
on

we get Du(p) 0. Thanks to the previous lemma we have Au(p) < 0 and, as

Au —u f on 9^, the lemma ensues. We can use the same arguments if p is

a minimum point for u.

Now, we can prove the existence theorem for the Neumann problem for the

Laplace operator:

Proof of Theorem 3.1. By Theorem 5.2 there exists a unique solution in C2,0i(Q),
denoted by $[/,#], to the problem:

A u — u f in Q

3M
— g on 3^2
an

for all fg verifying the compatibility condition (3.1). Moreover

(3.4) f u f Au — f f f g 0,
JQ Jq Jq JdQ ön JdQ

so $[/> g] e ^ • Defining
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A l(f9g)eC0a(Q)xCla(Q) [f=[ g)
{ JQ JdQ

we have that $ A -> U is a well defined bijective operator
Now, we consider the following equation

(3 5) u-Z[-u90] Z[f,g]

Then u e U is a solution to the problem (3 2) if and only if it is a solution

of (3 5), because

(f,g) %~l(u — %[—u, 0]) %~lu + (u,0) (a^,
V 3«/

Then, we need to show that for every (/, g) e A there exists a unique solution

u e U of (3 5) As % is bijective, we are led to prove that, for every v e U, the

equation

(3 6) u — %[—u9 0] v

admits a unique solution on U For this we use the Fredholm alternative theorem

We consider the space

wiL f=°}'
equipped with the norm of C0a(£2) Let T be the operator

T F -> F,
Tf %[-m

Using the properties of £, we get

(3 7) T(F) C U

We first show that T is a compact operator Let {/^} c f then, because of
Theorem 5 2 and (3 4), there exists {u^} c U such that Tfa Uk and, because

of (3 3), we have

llwfcllc2« — U(^, ot, TV)(||H^o « + IN&IIco)

So, using the previous lemma, we get

\\uk\\C2a <2C(Q9a9N)\\fk\\coa

If {fk} is a bounded sequence of 3? then {u^ is bounded m C2oi{0) and m
W2oo(Q) Thus there exists a subsequence {ukh} and a function u e W2oo{0)
such that
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ukh - « in W2>°°

so, for every p > 1

ukh ^ m in w2'p

N
Now, choosing < p < N, by the Rellich-Kondrachov theorem, we obtain

2 —a

Ukh u in C°'a(£2),

which proves that T is compact.
Now, equation (3.6) can be rewritten as

(3.8) u — Tu v.

The equation

is equivalent to the problem

u — Tu 0

Au 0 in £2

du
— 0 on 9^
on

which, in )£, admits only the trivial solution u 0.

Then, as T is compact, applying the Fredholm alternative to (3.8) we have

that for every v e £? there exists a unique solution u e * of (3.8) and the

theorem ensues.

Remark 3.5. If u e £? is a solution to the problem (3.2) then, for every k e M,
the function u + k is also a solution to (3.2) in C2,0l{Q) (but not in yC).

On the other hand, if u is a solution to (3.2) in C2,0C(Q), we can obtain a

solution in £? setting
1 fv u — —— / u.

1^1 Jq

Then, using Theorem 3.1 we have an existence and uniqueness (up to an additive

constant) result for the problem (3.2) in C2,a(Q).

4. Schauder estimate

We prove an estimate of ||u||C2 a in terms of ||/||co llgllc1 a f°r anY solution

to problem (3.2). In particular, as the uniqueness of the solution is proved up to

an additive constant, we prove the estimate for a solution with null average.
We state the following theorem and give three proofs:
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Theorem 4.1. Let Q be a C1,oc -domain and f e C0,OC(Q), g e C1,0C(Q) be such

that

/ / /Jq Jd

Let u e C2,0i(O>) be a solution to (3.2). Then

g-
dQ

"--hi"l«l

with C C(Q,a, N).

— CQfWcO a + k||C! a),
c2 a

The first proof of Theorem 4.1 was suggested to us by A. Adimurthy who
attributed it to Jacques-Louis Lions. However we did not find any reference for
such a proof, which is detailed in the sequel.

First proof of Theorem 4.1. Let u e C2,a(Q) be a solution to (3.2) such that

]h\ In u ® (3-3), we have the following estimate for u:

(4.1) llM lie2 of < Ci(fi,a,tf)(Mco + WfWcoa + Ugllc1«)»

and we wish to prove that

(4.2) M|C2. < C2(ß,a,iV)(||/||co« + \\g\\c^)-

Let us suppose that (4.2) is false. Then for every k e N there exist

{uk} e C2'a(ß) and {fk} e C°>a(Q),{gk} e Cl>a(ä) such that

(A
uk fk in S2

9m*
— gk on

(44) w\Lut=0-
(4.5) ||w*|lc2« l>

(4.6) \\tik \\c2 a > ^(11 fk lie0 01 + IIäIIc1 a) •

Thus, we have fk-> 0 in C0,a(£2) and gk -> 0 in C1,a(Q).
Using (4.5) we have, that for every multi-index ß, \ß\ 0,1,2, {Dßuk} is

uniformly bounded in C°(Q) and equicontinuous because

|Dßuk(x) - Dßuk(y)\ <\x-y\" Wx9yeQ9W\ß| 2,

which implies that

|Dßuk(x) - Dßuk(y)| < C(ß)|* - j|a Vije Q, W\ß\ 0,1.
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(4.7)

Iterating the Ascoli-Arzela theorem we get a subsequence } such that

Ukh -* U0 in C°(£2),

D^Ukb^Uß in C°(ä) Wß,\ß\ l,2,

which implies that

Ukh -* Mo in C2(^).

Then

Am0 lim Aukh lim fk 0,
h h

3m0 dukh
lim —^L lim gkh — 0,

dn

and

h dn

Auo =0 in Q

9"0 A ao—— =0 on 3^,
on

]h\ fnu° 0'

which implies that uQ 0. Comparing with (4.1), we get a contradiction because

i llw*:/Jc2a - Ci(n,a,^)(||ii^||c° + || fkh lie0 a + ||gA:Ä lie1 «) 0.

For the second proof of Theorem 4.1 we need two more lemmas. The first one
states an estimate in L2(Q) for u — ^ fQ u:

Lemma 4.2. Let £2 be a C2,0i -domain and let f e C0,Oi(Q>), g e Cl,0i(Q>) be

such that

/f f 8•
JQ JdQ

Let u e C2,0C(Q) be a solution to (3.2). Then

kLU
|£2| L2

— C(ll/lle° a + Uglle1<*)>

with C C(Q,N).

Proof We may assume that fQ u 0. Integrating by parts we have

f \Duf
JQ

/ ug- uf
JdQ JQ

and using Young's inequality with e > 0 we get
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f \Du\2 < f \ug\+ f \uf\<ef \u\2 + ff \g\2 + s f M2 + 7~f l/l2-
JQ JdQ JQ JdQ 48 JdQ JQ 48 JQ

Now, we have

L \u\2 < Ci^IImII^! 2 Vw e Wl>2(ti) n C(£2);

so

f \Du\1 < sC2(Q)\\u\\^v1 2 + Ci(£l, e)\_\\g\\^vi 2 + 11/11^2]
JQ

and, as u e*, using the Poincare inequality, we get

/, |Z)M|2 < eC4(ß, A0||Z>w||i2 + C5(ß,e) [ll^ll^ „ + ll/llco«] •

ft

Choosing £ < 1/C4(ß, AO and using the Poincare inequality we have

INIl2 < c6(n,^)||Dii||L2 < c(||g||ci« + ll/llco«),

with C C(fi, N).

The second lemma proves a local estimate for a solution of Poisson's equation:

Lemma 4.3 ([Se, Theorem 1, p. 255, and Theorem 2, p. 259]). Let Q be a

domain of RN. Let f e Lp(fl) with p > N/2 and u e C2(fl) be a solution of
Au f in Q. Then, for every ball B(y,2R) c Q, we have

sup \u\ <C(R 2 \\u 11/2(5(3,,2R)) + R2 p ll/llL^(ft)),
B(y,R)

with C C(Af, /?)•

Following an idea of N. Fusco, we can now give the second proof of
Theorem 4.1.

Second proof of Theorem 4.1. We may assume that f^u 0. We give an

estimate for supa^ M- As Q is a C2,a -domain, for every small enough e we
have

(x — en(x)) e £2 Vx e d£2

where n(x) denotes the unit outer-pointing normal to 3^ at x. Then, by the

Lagrange theorem, for every xe32 there exists r t(x,e) e (0,1) such that

u(x — en{x)) u{x) + (^Du{x — ten(x)),—en(x)^.

Defining {x g 2| dist(x, 3ß) > £} and taking the supremum for xg32 in
the previous relationship we get:



432 G. Nardi

(4.8) sup \u\ < sup \u\ + £ sup \ Du\.
9£2 £2e £2

Let R < s/2. We consider a finite cover of Qe, denoted by {B(yt, R)}fLx with
M M(s,Q) (B(ytJR) denotes an open ball of radius R centered at yt). As

/ g C°(£2) then / g L^+1(^) and, by Lemma 4.3, we have

M

sup \u\ < ^ sup \u\ < MC\(N)[R 2 |NlL2(£0,2i?)) + R2 ^+ 1 II f II+ 1 (£2))
Qe l 1 B(ylfR)

which implies that

(4.9) sup\u\ < C2(e,n,N)(\\u\\L2 + H/Hl^+O-

By Theorem 3.7 in [GT, p. 36] and (4.8), we have

sup \u\ < sup \u\ + s sup \Du\ + C3(£2) sup |/|
£2 £2e £2 £2

and, by (4.9), we get

sup|w| < C2(£,ß,iV)(||M||i2 + II/IIljv+i) + s sup | Dm | + C3(ß) sup\f\.
£2 £2 £2

Using Lemma 4.2, we get

sup |u| < C4(s,£2, N)(\\f\\COa + II g lie1 a) + eIN lie2 a

and, by (3.3), we have

IMIc2« 5 C5(ß,a,./V,s)(||/||coa + kllci«) +£C6(ß,a,^V)||M||C2a.

Choosing s < l/C6(N,Q,a) the theorem ensues.

We now give the third proof of Theorem 4.1. We thank R. Gianni who gave

us some ideas for this proof.

Third proof of Theorem 4.1. We assume that fQ u 0 and, because of (3.3), we

just need to prove an estimate for |Nlle° in terms of ||/||e°a and INIIe1«-
Let M max|^| and p e £2 be such that \u(p)\ M. Moreover, we suppose

£2

M > (ll/llco* + INIIe1 °0> otherwise there is nothing to prove. By (3.3), we have

(4.10) || Dm || C0 < C\(ff\\C0 a + II g He1 a + IN lie0) K

with C\ Ci(Q,a, N). We distinguish two cases: p g Q and p e dQ.
We suppose that p e Q and we denote by B(p,r) the open ball of radius

r centered at p. We consider in particular r < r0 dist(/?,3£2) so that such a

ball is contained in Q.
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Now, we can prove that for every r < r0, we have

\u\>M — rK, in B(p,r).

In fact, for every x e B(p,r) we have

u(x)—u(p) f -ru{p + t(x — p)) dt f (Du(p + t(x — /?)), x — p) dt
Jo dt Jo

so

NO)I > \u{p)\-Kr M-Kr.
Choosing r < min{l/4Ci,r0}, for every x e B(p,r), we have:

\u{x)| > M — rK (1 - rC\)M - rCx(\\f\\co « + INIIc1 «)

> 4^ ~~ r^i(ll/llc°« + INIIc1 «)•

Then, as M > (||/||c°a + INIIc1«) and r < l/4Ci, we get

3 M
\u(x)| > -M — CirM > — Vx e B(p, r)

and, denoting by ru/v the measure of the unit ball of RN, we get

-
Then, by Lemma 4.2, we can state that

2 N22 r 2
IN lie0 — j72—A0(ll/llco « + INIIclo0>

coN

which implies that

IN He2« 5 C(ll/llc° « + IN lie1 «)>

with C C(£2,a,N).
We suppose now that p e dQ. As £2 is a C2 -domain, it satisfies the interior

sphere condition (see [GT, p. 33]). Then, there exists r0 > 0 such that the open
ball B(p — rn(p),r) with r < r0 is contained in Q (n(p) denotes the unit

outer-pointing normal to the boundary at p).
Thus, as p is not the center of the ball, similarly to the previous case we

obtain

\u\>M—2rK in B(p — rn(p),r) r < r0

Then, by choosing r < min{l/8Ci,r0}, we get the result by the same argument
used above applied to the ball B(p — rn(p),r).
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5. Appendix: A preliminary result

In this section we recall some results used in Section 3. We consider a

C1,oc -domain Q and the operator

where alJfblfc e C0,OC(Q) for every i,j 1,...,N and c(x) < 0 for every
X G £2

We say that L is elliptic if the matrix A(x) [ahJ(x)] is positive definite
for every x e Q. Moreover, denoting by A(x) the smallest eigenvalue of A(x),
we say that L is uniformly elliptic if there exists A0 > 0 such that A(x) > A0

for every x e Q.
We refer to [GT, p. 130] for the following alternative result for the oblique

derivative problem:

Theorem 5.1. Let £2 be a C2,0i -domain. Let L be an elliptic operator; which
is uniformly elliptic in £2 and with C0,Oi(Q) -coefficients. Let l,m e C1,a(Q) be

such that wi/0 for every x e d£2. Then exactly one of the following holds:

(1) The homogeneous problem

admits nontrivial solutions;

(2) the homogeneous problem has only the trivial solution, in which case for
every f e C0,Oi(Q),g e C1,ot(Q) there exists a solution u e C2,0i(Q) to the

inhomogeneous problem

We can now prove the following theorem:

Theorem 5.2. Let £2 be C2,0i -domain. Then for every f e C°'a(£2) and

g e Cl,0i(£2) there exists a unique solution u e C2,0i(£2) to the problem

A u — u f in £2,

L : C2^(Q) -+M,

Lu 0 in Q

du
l{x)u + m{x)-— 0 on dQ

dn

Lu f in £2,

du
l{x)u + m(x)— g on dQ

dn

— g on dQ
dn



Schauder estimate for solutions of Poisson's equation 435

Proof. The problem
Au — u= 0 in £2

^ 0 on dQ
on

admits only the trivial solution. Using Point 2 of Theorem 5.1 the result ensues.
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