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Schauder estimate for solutions of Poisson’s equation
with Neumann boundary condition

Giacomo NARDI*

Abstract. We consider here the Neumann problem for the Laplace operator and prove
an existence result in the Holder spaces and obtain Schauder estimates. According to our
knowledge this result is not explicitly proved in the several works devoted to Schauder theory,
where similar theorems are proved for the Dirichlet and oblique derivative problems. Our
contribution is to make explicit the existence and the estimate for the Neumann problem.

Mathematics Subject Classification (2010). Primary 35J25, 35J05
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1. Introduction

Let Q be a C?%-domain of RY (we refer to Section 2 for notation and
definitions). We consider the following problem:

Au=f in Q,
ou

— = 082,
on on

with f e C%¥(Q) and g € CY¥(Q). The aim of this paper is to prove an
existence result in C2%(Q) for this problem and an estimate of the form

lullc2e = CUfllcoe + lglicte)-

In the 1930s, this kind of estimate was used by Schauder [Sch] and Caccioppoli
[Ca] to prove an existence result in C2%(Q) for the Dirichlet problem for an
elliptic equation ([GT, Theorem 6.8, p. 100]; [LU, Theorem 1.3, p. 107]). Using
the same technique, in the 1950s, Fiorenza [Fi] proved a similar estimate and an
existence result in C2>%(Q) for the oblique derivative problem

* We thank A. Adimurthi, N. Fusco, R. Gianni, L. Orsina, and N. Trudinger, for their advice. We
thank B. Dacorogna who supervised the researches on this subject.
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[(x)u +m(x)g—: =g on 0Q (Im > 0 on 0L2)

for elliptic equations ([GT, Theorem 6.31, p. 128]; [LU, Theorem 3.1, p. 126]).

Unfortunately the hypothesis [ # 0 may not be removed in the proof of the
existence result and the Schauder estimate for the oblique derivative problem
([GT, Theorem 6.31, p. 128]). Moreover, reading this proof, we can verify that it
is not even possible to get the result for the Neumann problem taking the limit
[ —0.

So, the case of the Neumann problem needs to be considered independently
and, according to our knowledge, it is not explicitly present in the classical
literature on the subject (see for instance [GT], [LU]) where the Dirichlet and
oblique derivative problems are studied in detail.

The main goal of this work is to formalize the existence result and a Schauder
estimate for the Neumann problem for Poisson’s equation.

Our main contribution is the following result (Theorems 3.1 and 4.1):

Theorem. Let o € (0,1) and let Q be a C*%-domain. Let f € C®*(Q) and

g € CY*(Q) be such that
/ f= / g-
Q 1)

Then there exists a solution u € C*>*(Q) (unique up to an additive constant) to
the problem

Au=f in Q,
0
—u:g on 092.
on

Moreover, every solution to this problem verifies the estimate

<C(Ifllcoe + lglcre),
C2.«o

1
Hu__ u
12| Jo
with C = C(2, N,).

The starting point of the proof is the alternative theorem for the oblique deriv-
ative problem for an uniformly elliptic operator L with coefficients in C%%(Q)
and ¢ <0 (Theorem 5.1). This allows us to prove an existence result (uniqueness
is given up to a constant) for the Neumann problem for elliptic operators with
¢ < 0 (Theorem 5.2). Afterwards, using Theorem 5.2 and the Fredholm alter-
native, we can prove the existence and uniqueness of the solution to our initial
problem in the class of functions belonging to C%%(2) and having null average
(Theorem 3.1).
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Concerning the estimate we are led to estimate the quantity u — ﬁ [ u instead
of u, because the solution to the Neumann problem, if it exists, is unique up to
a constant. We give three proofs of this result (Theorem 4.1).

We finally obtain, for the Neumann problem, results similar to those for the
Dirichlet and oblique derivative boundary conditions.

As already mentioned, the theorem is well known to all specialists in elliptic
partial differential equations. However, after discussion with several of them, we
were not able to find a precise reference for such a result, specially the one
concerning the estimate.

This paper is organized as follows. In Section 2 we recall the main definitions
used in this work. In Section 3 we prove an existence theorem for the Neumann
problem for the Poisson equation (Theorem 3.1). In Section 4 we prove the estimate
(Theorem 4.1). In Section 5 we recall some useful results to prove the existence
theorem. We adopt the same notation as in [GT]. We refer to [Na] for a more
detailed analysis of the problem.

2. Definitions and notation

In the sequel we denote by 2 an open bounded non-empty subset of
RY (N > 2) and let u be a function defined on . For every multi-index

B=(B1.....8N5) (Bi=0fori=1,...,N)of length |8| =N, B, we set
9181y,
Bx’f' ...axﬁ,""
We recall the definition of the usual functional spaces (k > 0):
CH(Q) = {u: Q@ —» R| VB multi-index, |B| <k, DPu is continuous in Q},
C*(Q) = {u € C*(Q)|DPu, |B| <k, can be extended by continuity to 92}

DBy =

Moreover C¥(Q) is a Banach space equipped with the norm
k

lullex = Y sup sup [Du].
i=0 1Bl=i Q@

We now recall the definition of Holder spaces.

Definition 2.1 (Holder-continuity). Let « €]0,1] and let @ c RY be an open
set. We define the «-Holder coefficient of v : Q2 — R as
u(x) —u
Wloan = sup X U]

X, yEQ |)C - y|0£
X#£y

If [u]o,a:@ < oo then we say that u is Holder continuous with exponent « in 2.
If there is no ambiguity about the domain 2 we denote [u]o 4.0 by [4]o.-
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We define the Holder space C**(Q) as the set of functions belonging to
Ck(Q) whose kth-order partial derivatives are Holder continuous with exponent
a in Q.

Ck(Q) is a Banach space equipped with the following norm:

lullcre = lullce + []ke

where
[u]k,a = Sup [Dﬂu]o,a-
|Bl=k

We set CK9(Q) = C*(Q), and one can easily verify that C**(Q) c C**(Q)
for all integers &,k with h < k.

Moreover, for every vector-valued function u : @ — R, we say that it belongs
to C**(Q) if its components belong to C**(Q).

In order to give the definition of C¥%-domains, we need the following notation:

B={x=(x1.....xy) e RV||x| < 1},

By ={x e Blxy >0}, Byg={x¢€ Blxy =0}.

Definition 2.2. We call domain every open, bounded, connected, and non-empty
subset  of RY. Moreover, Q is said to be a C*®-domain (k>1, a€l0,1])
if for every p € 0Q2 there exists a neighborhood U, of p in RY and a
diffeomorphism ¢, : B — U, such that

(i) ¢p € C**(B) and <pp_1 € Ck’“(U_p);
(i) ¢p(B4) =Up N Qs
(iii) @,(Bo) = U, N IS

Remark 2.3 (Holder-continuity on the boundary). Let Q be a C**-domain. We
say that u € Ck*(9Q) if, for every p € dQ, we have u o, € C**(By), where
¢p is given by the previous definition.

Of course if u € C*%(Q) its restriction to dQ belongs to C**(3$2). Moreover,
for every u € C*%(9Q2) there exists a function belonging to C*%(Q) whose
restriction to the boundary coincides with u (see [GT]: Lemma 6.38 p. 137).

Then, in order to study the Neumann problem for Poisson’s equation, we can
consider boundary values belonging to C*%(Q) instead of C**(3Q).

We denote by L? and W™? the usual Lebesgue and Sobolev spaces and
refer to [AF, Br] for their properties.
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3. Existence of solutions to the Neumann problem
for Poisson’s equation in C2:%(R)

In this section we consider Poisson’s equation with Neumann boundary
condition and prove the following result:

Theorem 3.1. Let Q be a C*%-domain and let f € CO%(Q),g € CL*(Q) be
such that

(3.1) [szfmg.

Then the problem
Au=f in Q,
(3.2) S
o
admits a unique solution in the class

%O - 1 —
‘€:{ueC2’ (Q).@/QM—O}.

We start by recalling the following estimate which is very useful in the sequel:

g on 02,

Theorem 3.2 ([GT, Theorem 6.30, p. 127]; [LU, Theorem 3.1, p. 126]). Let 2
be a C?*%-domain and let u € C*>*(Q) be a solution of (3.2). Then

(3.3) lullc2e < C(IIf lcoe + lIgllcre + lulco),
with C = C(2,a, N).

We prove two preliminary lemmas.

Lemma 3.3. Let Q C RY be a C?-domain and let u € C*(2). We suppose that
there exists p € 02 such that:

u(p) = maxu (minu) and Du(p) = 0.
Q Q
Then Au(p) <0 (> 0).

Proof. Up to a translation, we may assume that p is the origin of RY . Moreover,
as Q € C?, up to a rotation, we may also assume that, for some R, we have
—re; € Q for every r € [0,R] and i = 1,...,N where (eq,...,exn) is an
orthonormal basis of RY . Then, partial derivatives verify

D; he;) — D; D he:
Djju(p) = lim iu(p + hei) () _ lim iu(p + hei) <0,
h—0— h ho0— A
because Du(p) =0 and, for 7 < 0 small enough we have D;u(p + he;) > 0.

If p is a minimum point the proof is similar. [
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Lemma 3.4. Let Q@ C RN be a C?-domain and f € C¥*(Q). Let u € C>*(Q)
be a solution to the problem

Au—u=f inQ,
0
—u=0 on 082 ;
on

then
lullco < [/ llco-

Proof. Let p be such that |u(p)|] = maxg|u|. We consider separately the
following cases: p € Q and p € 92Q2.

p € Q. Let p be a maximum point for u then u(p) > 0 and Au(p) <0. As
Au—u = f we get f(p)= Au(p)—u(p) < Au(p) <0. Thus

lullco = u(p) = Au(p) — f(p) = —f(p) = | flco.

If p is a minimum point for u (u(p) < 0) the proof is similar.
p € 0. If p is a maximum point for u then p is a maximum point for upq.
So, for every vector t tangent to 02 at p we have:

and, using the hypothesis

we get Du(p) = 0. Thanks to the previous lemma we have Au(p) <0 and, as
Au—u = f on 02, the lemma ensues. We can use the same arguments if p is
a minimum point for u. [

Now, we can prove the existence theorem for the Neumann problem for the
Laplace operator:

Proof of Theorem 3.1. By Theorem 5.2 there exists a unique solution in C%%(Q),
denoted by 2[f, g], to the problem:
Au—u=f in Q,
u
on

for all f, g verifying the compatibility condition (3.1). Moreover

G-4) /Q”=/QAM—/QJ"=/BQS—Z—fmg=O,

so Z[f, g] € €. Defining

g on 082,
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a={rmecte@xcre@: [ 5= [
Q IQ
we have that £ : A — € is a well defined bijective operator.
Now, we consider the following equation:

3.5) u—2[—u,0] = 2. gl
Then u € € is a solution to the problem (3.2) if and only if it is a solution

of (3.5), because

(fg) =3 u—3[—u,0]) = S u + (u,0) = (Au, a—”)
on

Then, we need to show that for every (f, g) € A there exists a unique solution
u € € of (3.5). As ¥ is bijective, we are led to prove that, for every v € €, the
equation

(3.6) u—3—u,0l=v

admits a unique solution on €. For this we use the Fredholm alternative theorem.
We consider the space

F={rec@: |;2—|/Qf — o},

equipped with the norm of C%*(Q). Let T be the operator:
T:5 -7,
Tf =23[-1.0].
Using the properties of T, we get:
(3.7) T(¥)cCet.

We first show that 7 is a compact operator. Let {fx} C ¥ then, because of
Theorem 5.2 and (3.4), there exists {ur} C € such that Tf; = ux and, because
of (3.3), we have

[urllcze < C(Q2,a, N)(| fellcoe + llukllco).
So, using the previous lemma, we get:
[urllcze <2C(2,a, N)| frllco.e-

If {f¢} is a bounded sequence of F then {u;} is bounded in C2%(Q) and in
W2(2). Thus there exists a subsequence {ug,} and a function u € W2>°(Q)
such that
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E3
Uk, —u in W»>,
so, for every p > 1

Uk, Sy in WP,
. N . .
Now, choosing o < p < N, by the Rellich—Kondrachov theorem, we obtain

ug, > u in C*(Q),

which proves that 7 is compact.
Now, equation (3.6) can be rewritten as

(3.8) u—Tu =v.
The equation
u—Tu=20
is equivalent to the problem
Au=0 1in ,
o =0 on d22,

on
which, in €, admits only the trivial solution u = 0.
Then, as T is compact, applying the Fredholm alternative to (3.8) we have

that for every v € € there exists a unique solution u € € of (3.8) and the
theorem ensues. L]

Remark 3.5. If u € € is a solution to the problem (3.2) then, for every k € R,
the function u + k is also a solution to (3.2) in C>%*(2) (but not in €).
On the other hand, if u is a solution to (3.2) in C%%(Q), we can obtain a

solution in € setting
1
v=u——| u
€2 Ja
Then, using Theorem 3.1 we have an existence and uniqueness (up to an additive

constant) result for the problem (3.2) in C>%*(Q).

4. Schauder estimate

We prove an estimate of ||u| 2.« interms of || f|co.e, ||€]c1.e for any solution
to problem (3.2). In particular, as the uniqueness of the solution is proved up to
an additive constant, we prove the estimate for a solution with null average.

We state the following theorem and give three proofs:
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Theorem 4.1. Let Q be a C*%-domain and f € C%*(Q), g € C¥*(Q) be such

that
Jor = s

Let u € C*>*(Q) be a solution to (3.2). Then

1
H” = u|  =CUflcoa +lglcre).
12| Ja

C2.u

with C = C(R2,a,N).

The first proof of Theorem 4.1 was suggested to us by A. Adimurthy who
attributed it to Jacques-Louis Lions. However we did not find any reference for
such a proof, which is detailed in the sequel.

First proof of Theorem 4.1. Let u € C%>%(Q) be a solution to (3.2) such that
|—g12| Jqu =0 . By (3.3), we have the following estimate for u:

4.1) lullc2.a = Cr(2,a, N)(llullco + [ flcow + lIglcra).
and we wish to prove that
(4.2) lullc2.e < Co(2, 0, N)([fllcow + [ gllcra)-

Let us suppose that (4.2) is false. Then for every k € N there exist
{u) € C**(Q) and {fi} € CO¥(Q),{gr} € CH¥(Q) such that

Auk:fk in Q,

4.3) 9
Dk _ gr on 0%,
on
1
4.4) —/ u =0,
2 Jo
(4.5) lullcze = 1.
(4.6) lurllcze > k(|| filco.w + llgkllcre) -

Thus, we have fx — 0 in C%*(Q) and gx — 0 in CL¥(Q).
Using (4.5) we have, that for every multi-index B, || =0,1,2, {DBuy} is
uniformly bounded in C°(Q2) and equicontinuous because

|DPug(x) — DPur(y)| < |x —y|*  Vx,y e, V|8 =2,
which implies that

IDPug(x) — DPur(»)| < C(Q)|x —y|*  Vx,yeQ, V|f] =0,1.
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Iterating the Ascoli-Arzela theorem we get a subsequence {ug,} such that

ug, — uo in C%(Q),

4.7) _
DPuy, — ug in CO(Q) VB, 8] = 1,2,

which implies that
Uk, — o in C*(Q).

Then
Aug = liil;n Aukh = lizn fk;, =0,
auo auk
on 1}1;11 on 1}rlngkh
and
Aug =0 in €,
0
To - _ 0 on 0€2,
on
1
@ fQ U = Oa

which implies that uy = 0. Comparing with (4.1), we get a contradiction because

= Jug, lleze < C1(Q,0, N)(llug, lco + Il fr llcow + g, lcra) = 0.

For the second proof of Theorem 4.1 we need two more lemmas. The first one

. . 1 .
states an estimate in L?(2) for u — ] fQ u:

Lemma 4.2. Let Q be a C*%-domain and let f € C%*(Q), g € CH¥(Q) be

such that

Jo! = L

Let u € C*%(Q) be a solution to (3.2). Then

ul| = C(lflcoe + lglcre),

e
12| Ja
with C = C(Q. N).

L2

Proof. We may assume that ﬁ [qu = 0. Integrating by parts we have

[t = f e o

and using Young’s inequality with ¢ > 0 we get
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1 1
/|Du|25/ |ug|+f |uf|ssf |u|2+—[ |g|2+e/ |u|2+—f P
Q a0 Q a0 de Joq Q de Jo

Now, we have
fm ul? < Ul Yu e W2(Q) N C@):

SO
fg |Dul® < eCo(Q)[ull 12 + C3(R2,8) [llglro + 1 £1172]

and, as u € €, using the Poincaré inequality, we get

fQ |Dul? < eCa(Q, N)||Du72 + Cs(2, ) [lglEra + 1/ 10a]-
Choosing & < 1/C4(2, N) and using the Poincaré inequality we have
lullz2 < Co(R2, N)[[Dullr2 < C(lIgllcre + I fllcoe).
with C = C(R2,N). [

The second lemma proves a local estimate for a solution of Poisson’s equation:

Lemma 4.3 ([Se, Theorem 1, p. 255, and Theorem 2, p. 259]). Let Q be a
domain of RN . Let f e L?(Q) with p > N/2 and u € C%(2) be a solution of
Au = f in Q. Then, for every ball B(y,2R) C 2, we have

_N _N
sup |u| < C(R™ 2 ||[ullz2yary + RZ7 | fllLr@)
B(y,R)

with C = C(N, p).

Following an idea of N. Fusco, we can now give the second proof of
Theorem 4.1.

Second proof of Theorem 4.1. We may assume that ﬁ fQu = 0. We give an
estimate for supyg [u|. As Q is a C%*%-domain, for every small enough & we
have

(x —en(x)) € Vx €9Q

where n(x) denotes the unit outer-pointing normal to 92 at x. Then, by the
Lagrange theorem, for every x € dQ2 there exists t = t(x,&) € (0,1) such that

u(x — sn(x)) =u(x) + (Du(x —ten (x)), —sn(x)).

Defining Q2. = {x € | dist(x, 0R2) > ¢} and taking the supremum for x € d2 in
the previous relationship we get:
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(4.8) sup |u| < sup|u| + esup|Dul.
R Qe Q

Let R < &/2. We consider a finite cover of €, denoted by {B(y;, R)}™  with

i=1
M = M(e, 2) (B(y;, R) denotes an open ball of radius R centered at y;). As
feC%Q) then f e LNT1(Q) and, by Lemma 4.3, we have

M

_N __N
sup [u] < ZB(SUPR) | < MCy(N)(R™2 |[ullz28(yry + B2NFTI £ llLv+1(ay)
€ i=12Vi;

which implies that

(4.9) sgzlplul < Ca(e, 2, N) (Jullp2 + 1./ llpv+1)

By Theorem 3.7 in [GT, p. 36] and (4.8), we have

sup [u| < sup |u| + esup |Du| + C3($2) sup | /|
Q Q¢ Q Q

and, by (4.9), we get

Sgplul < Co(e, 2, N)(llullzz + L f lw+1) + SSgplDul + C3(Q) Slglzplfl-

Using Lemma 4.2, we get

Slglzplul < Ca(e. 2, N) (I fllcow + l18llcre) + ellull 2

and, by (3.3), we have
lullc2w = Cs(2.a, No&) (Il f llcow + lIgllcre) +eCo(R 0, N) il c2.
Choosing ¢ < 1/Cg(N, 2, ) the theorem ensues. ]

We now give the third proof of Theorem 4.1. We thank R. Gianni who gave
us some ideas for this proof.

Third proof of Theorem 4.1. We assume that [, u =0 and, because of (3.3), we
just need to prove an estimate for |u||co in terms of || f||co.« and | g||c1.-
Let M = max|u| and p € Q be such that [u(p)| = M . Moreover, we suppose
Q

M > (| fllco«+|gllct.e), otherwise there is nothing to prove. By (3.3), we have
(4.10) IDullco < Ci(ll fllcoe + lIglcre + lullco) = K

with C; = C1(R2,a, N). We distinguish two cases: p € Q and p € IQ2.

We suppose that p € Q2 and we denote by B(p,r) the open ball of radius
r centered at p. We consider in particular r < ro = dist (p, d2) so that such a
ball is contained in 2.
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Now, we can prove that for every r < ry, we have
|lu| > M —rK, in B(p,r).

In fact, for every x € B(p,r) we have

1 d 1
u(x)—u(p):f0 Eu(p—l—t()c—p))dt:/0 (Du(p +t(x — p)),x — p)dt

S0
u(x)| = [u(p)| — Kr = M — Kr.

Choosing r < min{1/4Cy,r¢}, for every x € B(p,r), we have:
)| =M —rK =0 —-rCOM —rCi(| fllcow + lIgllcre)

3
> M —rCi(l f lcow + lglcre).

Then, as M > (|| f|lco.« + ||gllc1.«) and ¥ < 1/4C;, we get
3 M
[u(x)| > ZM —CirM > 5 Vx € B(p,r)

and, denoting by wy the measure of the unit ball of RY, we get

v wl/? 1/2

SN N2 < Ju|? / < |Ju]]

22820 = = Lz
B(p,r)

Then, by Lemma 4.2, we can state that

+2

272 r”

lullco = ———=7—Co(Q. N)([ fllco.e +llgllcre),
On

W=

which implies that
lullcze = C(| fllcoa + lIgllcre),

with C = C(2,a, N).

We suppose now that p € 9Q. As Q is a C?-domain, it satisfies the interior
sphere condition (see [GT, p. 33]). Then, there exists ry > 0 such that the open
ball B(p — rn(p),r) with r < ry is contained in Q2 (n(p) denotes the unit
outer-pointing normal to the boundary at p).

Thus, as p is not the center of the ball, similarly to the previous case we
obtain

|u| > M —2rK in B(p —rn(p),r) r<ry.

Then, by choosing r < min{1/8Cy,r¢}, we get the result by the same argument
used above applied to the ball B(p —rn(p),r). ]
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5. Appendix: A preliminary result

In this section we recall some results used in Section 3. We consider a
C?%®_domain Q and the operator

L:C*(Q)—>R,

s — al 0%u ul . du
U = Z aij(x)axiaxj + Z,i(x)a—xi + c(x)u,
1,j=1 =1
where a;;,b;,c € CO*(Q) for every i,j = 1,...,N and c(x) < 0 for every

x €.

We say that L is elliptic if the matrix A(x) = [a; ;(x)] is positive definite
for every x € Q. Moreover, denoting by A(x) the smallest eigenvalue of A(x),
we say that L is uniformly elliptic if there exists Aoy > O such that A(x) > A
for every x € Q.

We refer to [GT, p. 130] for the following alternative result for the oblique
derivative problem:

Theorem 5.1. Let Q be a C?>%-domain. Let L be an elliptic operator, which
is uniformly elliptic in Q and with C%*(Q)-coefficients. Let [,m € CY¥(Q) be
such that m # 0 for every x € 02. Then exactly one of the following holds:

(1) The homogeneous problem

Lu=0 in Q,
0
[(x)u —|—m(x)£ =0 on 2,

admits nontrivial solutions;

(2) the homogeneous problem has only the trivial solution, in which case for
every f € C%¥(Q),g € CL¥(Q) there exists a solution u € C*>*(Q) to the
inhomogeneous problem

Lu=f in Q,
0
[(x)u —i—m(x)—u =g on dRQ.
on
We can now prove the following theorem:

Theorem 5.2. Let Q be C?*%-domain. Then for every f € C%*(Q) and
g € CY¥(Q) there exists a unique solution u € C>%(Q) to the problem

Au—u=f inQ,

ou )
— =g on iQ.
on
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Proof. 'The problem
Au—u=0 in Q,
ou

— =0 02,
o on

admits only the trivial solution. Using Point 2 of Theorem 5.1 the result ensues. [l
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