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Involutions, odd degree extensions and generic splitting

Jodi BLack and Anne QUEGUINER-MATHIEU™

Abstract. Let ¢ be a quadratic form over a field F and let L be a field extension of F
of odd degree. It is a classical result that if g7 is isotropic (resp. hyperbolic) then ¢ is
isotropic (resp. hyperbolic). In turn, given two quadratic forms ¢,q" over F, if q; = q}
then g = ¢’. It is natural to ask whether similar results hold for algebras with involution.
We give a general overview of recent and important progress on these three questions, with
particular attention to the relevance of hyperbolicity, isotropy and isomorphism over some
appropriate function field. In addition, we prove the anisotropy property in some new low
degree cases.

Mathematics Subject Classification (2010). Primary 16WI10; Secondary: 11E04, 11IE72.

Keywords. Algebraic groups; algebras with involution; quadratic forms; odd degree field
extensions; Springer’s theorem; isotropy.

Introduction

Let F be a field of characteristic different from 2. It is well-known that an
anisotropic quadratic form ¢ over F is anisotropic over any finite field extension
of F of odd degree. This result was first published by T. A. Springer [Sp] in 1952,
but Emil Artin had already communicated a proof to Witt by 1937 see [Ka, Remark
1.5.3]. In what follows, we refer to this result as the Artin—Springer theorem. Since
any quadratic form can be decomposed as the sum of an anisotropic part and some
number of hyperbolic planes, an immediate consequence of the Artin—Springer
theorem is that a quadratic form which becomes hyperbolic over an odd-degree
field extension is hyperbolic. Further, since two quadratic forms ¢ and ¢’ are
isomorphic if and only if ¢ 1 —¢q’ is hyperbolic, another consequence of the
Artin—Springer theorem is that two quadratic forms which become isomorphic
over an odd-degree field extension are isomorphic. This last result also extends to

* Support of the French Agence Nationale de la Recherche (ANR) under reference ANR-12-BLO1-
000s.
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similar quadratic forms. Indeed, using the properties of Scharlau’s transfer map
described in [Sch, Chap. 2, Thm. 5.6, Lem. 5.8], one may check that two forms
which become similar after an odd degree field extension are similar.

Recall that every (nondegenerate) quadratic form ¢ on an F -vector space
V' induces the so-called adjoint involution ad, on the endomorphism algebra
Endfr(V), and, conversely, every orthogonal involution on Endg (V) is adjoint
to a quadratic form ¢, uniquely defined up to a scalar factor. Therefore, algebras
with orthogonal involution can be thought of as twisted forms (in the sense of
Galois cohomology) of quadratic forms up to scalars. Since ad, is isotropic (resp.
hyperbolic) if and only if ¢ is isotropic (resp. hyperbolic) and ad, is isomorphic
to ad, if and only if ¢ and ¢’ are similar, it is natural to ask whether the behavior
of quadratic forms under odd-degree field extensions, as described above, extends
to involutions on central simple algebras. More precisely, we are interested in the
following main questions:
Let F be a field and let (A4,0) be an algebra with involution over F. Let L be
an odd-degree field extension of F.

(i) If o is anisotropic, does it remain anisotropic over L ?
(ii) If o is non-hyperbolic, does it remain non-hyperbolic over L ?

(iii) If o and o’ are non-isomorphic involutions, do they remain non-isomorphic
over L?

Question (ii) was solved by Bayer-Fluckiger and Lenstra [BL], in an even more
general context than is discussed above, see §2 below. Question (i) should be posed
differently, as was noticed by Parimala, Sridharan and Suresh. In [PSS, §4], they
constructed an example of an anisotropic unitary involution that becomes isotropic
over an odd-degree field extension. They suggested the following reformulation:

(i’) Let (A,0) be an algebra with involution over F, and let L/F be a field
extension of degree coprime to 2ind(A). If o is anisotropic, does it remain
anisotropic! over L?

Questions (i) and (i’) are equivalent if the involution is orthogonal or symplectic,
since an algebra which admits an involution of either of these types has exponent
2 and the index and exponent of any central simple algebra have the same prime
factors. By similar reasoning, the two questions are equivalent in the unitary case
under the additional hypothesis that the algebra has 2-power exponent.
Question (i’) is open in general, though as we will discuss in § 3, 4, 5
and 7 a positive answer is known for algebras with involution satisfying some
additional conditions. By the aforementioned Bayer-Lenstra theorem, question (i’)

IMore generally, one can ask how the Tits index of an algebraic group behaves over finite field
extensions of degree coprime to the torsion primes of the group. See [ABGV, Problem 7.3]
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has a positive answer for involutions for which isotropy and hyperbolicity are
equivalent. In particular, a positive answer is known for totally decomposable
involutions, by results of Becher [BE] and Karpenko [Kar3]; this is explained in
§3. Parimala, Sridharan and Suresh gave a general argument for algebras of index
2 with orthogonal involution, based on the excellence property of the function
field of a conic [PSS], see §4.

In §7 we prove new results on low-degree algebras, in particular, degree 12
algebras with orthogonal involutions. This answers a question posed in [ABGV,
pg 240]. Moreover, this new case includes some algebras of index strictly larger
than 2, and for which isotropy is not equivalent to hyperbolicity, so that the
question does not reduce to the Bayer-Lenstra theorem. This is a strong evidence
for a positive answer to question (i’).

A natural way to address question (i’) is to try to reduce to quadratic
form theory by extending scalars to a function field?. This method was used
more than a decade ago by Parimala-Sridharan-Suresh [PSS], Dejaiffe [De] and
Karpenko [Karl] to study isotropy of orthogonal involutions. Roughly speaking,
one uses the existence of generic index reduction fields F4, depending on
the algebra A and on the type of the involution, over which o is adjoint to a
hermitian form, which in turn is determined by an associated quadratic form. In
the orthogonal case, one may take a generic splitting field of the algebra A, since
the involution is adjoint to a quadratic form over such a field; see §1 below for
a description of Fy, in the symplectic and unitary cases. If one can prove that
an anisotropic involution of type ¢ remains anisotropic over F4,, then a positive
answer to question (i’) (and even question (i)) follows easily from the Artin—
Springer theorem (see Lemma 1.1). On the other hand, it is a deep result, due to
Karpenko [Kar5], Tignol [Kar5, Apppendix] and Karpenko-Zhykhovich [KZ] that
if anisotropy is preserved under odd-degree field extensions, then it is preserved
under extension to F4,. Therefore, question (i) is equivalent to asking whether
anisotropy is preserved over Fy, (for algebras of 2-power index in the unitary
case). This approach is explained in §5, in a uniform way, regardless of the type of
the involution. We also describe the relation between question (i) and excellence
properties.

For question (iii), an affirmative answer in the symplectic and orthogonal cases
was given by Lewis [Le, Proposition 10], while Barquero-Salavert [Ba, Theorem
3.2] provided an affirmative answer in the unitary case (See also [BlI, Proposition
5.1]). The second-named author and Tignol [QT, §4], produced examples of non-

2This approach also relates our main questions to the following classical question for algebraic groups:
Let F be a field, G and G’ be algebraic groups over F, and X and X’ projective homogeneous
varieties under G and G’, respectively. When does X admit a rational point over the function field

F(X’)? See for instance [Ka] for results for quadratic forms and the so-called index reduction formulas
(e.g. [MPW]) for results for central simple algebras.
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isomorphic orthogonal involutions that become isomorphic after generic splitting
of the underlying algebra. In particular, the behavior of non-isomorphic involutions
is not the same under finite odd-degree extensions and extension to F4,, see §6.

The authors would like to thank R. Parimala for many fruitful discussions on
the subject and for her support while they were preparing this work. Thanks also
to Skip Garibaldi, Nikita Karpenko and Jean-Pierre Tignol for helpful comments
on an earlier draft of this work.

1. Background and notation

In this section, we review some of the relevant background. The results on
quadratic forms mentioned in the introduction are explained in [EKM], [Ka], [La],
and [Sch], while general facts on algebras with involution and hermitian forms
are in [KMRT].

Throughout the paper, A denotes a central simple algebra over a field K of
characteristic® different from 2. An involution o on A is an anti-automorphism
of period 2. The involution is said to be of orthogonal type, symplectic type or
unitary type, according to the type of its automorphism group. We consider as
a base field the field F of elements of K fixed by o. If o is unitary, K/F
is a quadratic field extension. Otherwise, K = F and o is K-linear. In all
three cases, we say for short that (A, o) is an algebra with involution over F .
Two F -algebras with involution (A4,0) and (A’,0’) are isomorphic if there is
an F -algebra isomorphism f : A — A’ such that f oo = ¢’ o f. Since in the
unitary case the isomorphism f induces an isomorphism of the centers of the
algebras K and K’, we may assume that K = K’ and that f is K -linear.

By Wedderburn’s theorem, the algebra A can always be represented as an
endomorphism algebra A ~ Endp(V), where D is a central division algebra
Brauer equivalent to A, V is a D-module, and both are uniquely defined up to
isomorphism. The degree of D is called the index of A, and we call the dimension
of V over D, the co-index of A. Thus the degree of A is the product of its index
and its co-index. It follows from the existence criteria for involutions [KMRT, §3]
that D is endowed with an involution 6 of the same type as o. Once such a 6 is
chosen, o can be represented as the adjoint involution with respect to a hermitian
form & over (D, #), which is uniquely defined up to a scalar factor. We will refer
to such a form % as a hermitian form associated to o . For any field extension
L/F, we denote by (Ar,or) the extended algebra with involution, defined by

3'This restriction on the characteristic of K is not always necessary. For instance, the Artin—Springer
theorem is valid in characteristic 2 [EKM, 18.5]. The main result in [Kar2], which will be discussed

in §5 below, holds over a field of arbitrary characteristic. However, as most of the results mentioned in
this survey are for fields of characteristic different from 2, we observe that convention.
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A, = A®F L and o = o0 ® id. Since an involution of any type acts on F
as idg, oz is well-defined. Given a representation (A4,c) = (Endp(V'), ady), for
some hermitian module (V,4) over (D,6f) we denote by Vi the Dp-module
Ve =V ®F L and by hp the extended form Ay : Vi x Vi — (Dp,60L), so that
(Ar,or) =~ (Endp, (VL) adp, ).

One may easily check that if some hermitian form associated with o is
isotropic (resp. hyperbolic), so is every hermitian form associated with o. The
involution is said to be isotropic or hyperbolic accordingly. A right ideal I C A
is called an isotropic ideal if o(x)x = 0 for all x € I. Given a representation
(A,0) ~ (Endp(V'),ady), isotropic right ideals are given by endomorphisms of
V- with image contained in a given totally isotropic D -subspace W of V. The
reduced dimension of such an ideal is the product of the index of A and the
dimension of W over D. Hence, one may also use isotropic ideals to give a
statement of the definition of isotropy and hyperbolicity of involutions, independent
of the choice of a representation in terms of a hermitian module. Namely, (A4, o)
is isotropic if and only if A contains a nonzero isotropic ideal and (A,o) is
hyperbolic if and only if A contains an isotropic ideal of reduced dimension
%deg(A) (see [BST] or [KMRT, §6]). In particular, hyperbolic involutions can
only exist on algebras of even co-index.

Given an algebra A with an involution o of any type ¢, we define below
a field F4, such that the involution o, , is either adjoint to a quadratic form
or adjoint to a hermitian form determined by a quadratic form. In particular,
even in the case of a unitary or symplectic involution, there is a quadratic form
g defined over Fu, such that ox,, is isotropic (resp. hyperbolic) if and only
if ¢ is isotropic (resp. hyperbolic). The field F4, depends on the algebra A
and on the type ¢ of o and is defined as follows. We set ¢t = o (respectively
s,u) when o is of orthogonal (respectively symplectic, unitary) type. Assume
the involution o is of orthogonal type. We let F4, be the function field of the
Severi-Brauer variety SB(A) of A. Since A is split over F4, the involution
0r,, is adjoint to a quadratic form. If o is unitary, we need an extension of the
fixed field F = K to extend the involution. Thus, we consider the function field
Fau of the Weil transfer of the Severi-Brauer variety of A. Since A is split
over Fyu, the extended involution oz, , is adjoint to a hermitian form /4, with
values in the quadratic extension F4, ® r K. We can associate to /, the quadratic
form g : V — Fy, defined by gp(x) := h(x,x). It is classically known that the
hermitian form /% is uniquely determined by ¢; and g is called the trace form of
h. Moreover, the isotropy or hyperbolicity of % is determined by that of g5 [Sch,
Chap. 10, Thm. 1.1]. A symplectic involution on a split algebra is hyperbolic.
So, rather than considering a splitting field of A, we let F4, be the function
field of the generalized Severi-Brauer variety SB;(A) of right ideals of reduced
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dimension 2. This field generically reduces the index of A to 2. Further, given
H a quaternion algebra over F4, Brauer equivalent to Ar, and taking the
canonical involution ~ on H, the involution ox, . is adjoint to a hermitian form
over (H, ) determined as in the unitary case by its trace form [Sch, Chap. 10,
Thm. 1.7].

We will make frequent use of the following straightforward consequence of
the Artin—Springer theorem:

Lemma 1.1. Let (A,0) be an algebra with involution of type t over F. If
o is non-hyperbolic (resp. anisotropic) over the function field Fa., then it is
non-hyperbolic (resp. anisotropic) over any odd degree extension L of the base
field F.

Proof. Assume o is hyperbolic (resp. isotropic) over an odd degree extension L
of the base field F. Then o is hyperbolic (resp. isotropic) over the compositum
L = Fa,L, which is an odd degree extension of F4,. Since the involution o
is determined by a quadratic form over F4, and over £, we can apply the
Artin—Springer theorem to deduce that ox,, is hyperbolic (resp. isotropic). [

2. Hyperbolicity of involutions

We begin by considering question (ii) above. As we mentioned, a complete answer
to this question was given in 1990 by Bayer-Fluckiger and Lenstra [BL], who
aimed at proving the existence of a self-dual normal basis for any odd-degree
Galois field extension. Their argument is based on the following, which is the
result we are interested in:

Theorem 2.1. [BL, Proposition 1.2] Let B be a finite dimensional F -algebra
endowed with an F -linear involution 6, and (V,h) a hermitian module over
(B,0). Let L be a field extension of F of odd degree. If (Vi,hr) is hyperbolic,
then (V,h) is hyperbolic.

In view of the definition of hyperbolic involutions via the associated hermitian
forms, this result gives a positive solution to question (ii). Since a K -central
division algebra with K/F unitary involution is an F -algebra with F -linear
involution, Theorem 2.1 applies to involutions of any type. Further, since there
is no simplicity assumption on the algebra B, Theorem 2.1 applies to a broader
class of algebras with involution than is specified in the statement of question
(ii). The proof is quite similar to the classical proof in quadratic form theory
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and is based on Scharlau’s transfer homomorphism, which, as the authors prove,
extends naturally to the setting of hermitian forms.

In the sequel, we will frequently use the following corollary of Bayer—Lenstra’s
theorem:

Corollary 2.2. [BL, Corollary 1.4] Let (V,h) and (V', k') be two hermitian forms
over (B, 0), and let L be an extension of F of odd degree. If the extended forms
(Vr.hr) and (V],h}) are isomorphic, then (V,h) and (V',h') are isomorphic.

Note that this result does not answer the isomorphism question for involutions,
since o ~ ¢’ implies only that their associated hermitian forms are similar.
However, as we describe in §6, one can use Scharlau’s norm principle to deduce
a positive answer to the isomorphism question.

Though Theorem 2.1 gives a very nice and purely algebraic solution to question
(ii), it is natural to ask whether non-hyperbolicity is preserved under scalar
extension to the function field F4, (see §1 for the definition of F4,, depending
on the type ¢ of o). The following result is due to Karpenko for orthogonal
and unitary involutions, and Tignol for symplectic involutions#; it was previously
proven by Dejaiffe [De] and Parimala, Sridharan and Suresh [PSS] for algebras
of index 2 with orthogonal involutions:

Theorem 2.3. [Kar3, Theorems 1.1 & A.l1][Kar7, Theorem 1.1] Let (A,0) be an
algebra with involution of type t over F. If the extended involution or,, is
hyperbolic, then o is hyperbolic.

Using this result and the Artin—Springer theorem for quadratic forms (or even
its weak version, for hyperbolicity) one gets another argument for a positive answer
to question (ii) (see Lemma 1.1). Therefore, Theorem 2.3 can be considered as
a generalization of Bayer—Lenstra’s Theorem 2.1 in the setting of central simple
algebras. Its proof, based on computations of cycles on the underlying varieties,
requires much more machinery than the original proof of Bayer and Lenstra,
including for instance the Steenrod operations on Chow groups with coefficients in
Z /2. Yet, in addition to generalizing this previous result, Theorem 2.3 can be seen
as an intermediate result that helped to pave the way for Karpenko and Karpenko-
Zhykovich’s later results on isotropy [Kar5], [KZ]. Moreover, Theorem 2.3 also
implies an interesting connection between isotropy and hyperbolicity of totally
decomposable involutions which we shall discuss in the next section.

4Tignol’s argument also applies to the unitary case if the underlying algebra has exponent 2.



384 J. BLack and A. QUEGUINER-MATHIEU
3. First results on isotropy

Though question (i’) is largely open, there is some evidence in support of an
affirmative answer. In the case where A is split and o is orthogonal or unitary, or
A has index 2 and o is symplectic, one can reduce to quadratic form theory (see
§1) where the Artin—Springer theorem shows that anisotropy is preserved under
any odd degree extensions. Since every symplectic involution on a split algebra
is hyperbolic, this resolves the split case, for involutions of all three types. For
division algebras, an affirmative answer to question (i’) is a consequence of the
fact that, since [L : F] is coprime to the index of A, the extended algebra Ap
is division. A division algebra admits no isotropic involution, hence o7 remains
anisotropic.

Next we highlight two cases in which isotropy reduces to hyperbolicity, so
that a positive answer to question (i’) follows from results in §2 above. The first
such case is when A has co-index 2. In this setting, the involution o is adjoint to
a 2-dimensional hermitian form. Since isotropy is equivalent to hyperbolicity for
such a form, Theorem 2.1 gives that anisotropy is preserved under field extensions
of degree coprime to 2ind(4).

One can make a similar reduction for totally decomposable involutions. The
following result, due to Becher [BE] in the orthogonal and symplectic cases, will
prove useful for this purpose:

Theorem 3.1. [BE, Theorem 1 & Corollary] Let (A,0) be an algebra with
involution over F that decomposes as a tensor product of quaternion algebras
with involution. We assume moreover that A is split if o is orthogonal or unitary,
and has index 2 if o is symplectic. Then there exists a Pfister form w such that
(A,0) decomposes as follows:

(1) (A,0) = Ad, if o is orthogonal;
(2) (A,0) =Ad, ®F(K,") if o is unitary,
(3) (A,0) =Ad, ®F(H,") if o is symplectic.

Proof. Assertions (1) and (3) are Theorem 1 and its Corollary in [BE]. Assertion
(2) also follows easily from those results. Indeed, assume (A, o) is a tensor product
of quaternion algebras, each endowed with a K/F unitary involution. By [KMRT,
(2.22)], each factor decomposes as (H;, ) ®F (K, "), for some quaternion algebra
H; over F. Therefore, (A,0) has a decomposition (A4,0) = (4g,00) QF (K,"),
where (Ag,09) is a totally decomposable algebra with orthogonal or symplectic
involution, depending on the parity of the number of factors. Moreover, since
A = Ag ®F K is split, Ay has index at most 2. Therefore, by [BE, Corollary
& Theorem 2], (Ag,00) = Ady, ®(Hp,y) for some Pfister form my and
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some quaternion algebra with orthogonal or symplectic involution (Hy,y). To
conclude, it only remains to observe that since Hy ® K is split, y ® ~
is adjoint to a 2-dimensional hermitian form with values in (K,”). Up to
a scalar, this form has a diagonalisation (1,—u) for some pu € F*, so
that (Ho,y) ®F (K,”) =~ Ad(,—,) ®F(K,”). This concludes the proof, with
7 =mo® (1,—pn). [

For totally decomposable involutions, we get an affirmative answer to question
(i"). Indeed, given Becher’s Theorem 3.1, Karpenko’s Theorem 2.3 admits the
following corollary:

Corollary 3.2. Let (A,0) be an algebra with involution over F that decomposes
as a tensor product of quaternion algebras with involution over F. If o is
isotropic, then it is hyperbolic. In particular, if o is anisotropic, it remains
anisotropic over any odd degree extension of the base field.

Proof. If o is isotropic, then or,, is isotropic. Therefore, in view of 2.3, it is
enough to prove that isotropy implies hyperbolicity over F4,, or equivalently,
that isotropy implies hyperbolicity for split algebras with orthogonal or unitary
involution and index 2 algebras with symplectic involution. This was shown by
Becher [BE] in the orthogonal and symplectic cases, and follows easily from 3.1. In
the orthogonal case, o is adjoint to a Pfister form . In the unitary and symplectic
cases, o is adjoint to a hermitian form with trace form ¢, = 7 ® (1,—§) and
gn = m @ng respectively, where § is given by K = F(+/5), and ny denotes the
norm form of H . In particular, in all three cases, the involution ¢ is determined
by a quadratic form which is a Pfister form. Since isotropy implies hyperbolicity
for Pfister forms, we obtain the desired result. The last assertion follows by
Bayer-Lenstra’s Theorem 2.1. [

The first example of a positive answer to question (i’) that does not reduce
to hyperbolicity is due to Parimala, Sridharan and Suresh [PSS]. That result is
the main subject of the next section.

4. Orthogonal involutions on algebras of index 2
and excellence for hermitian forms

An affirmative answer to question (i’) for algebras of index 2 with orthogonal
or symplectic involution was proven by Parimala, Sridharan and Suresh [PSS].
The argument in the symplectic case is elementary and was explained at the
beginning of the previous section (see also [PSS, Proof of thm 3.5]). The key
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result in the orthogonal case is an excellence result for function fields of conics.
We recall that a field extension L/F is said to be excellent for a hermitian form
h over F if there is a hermitian form 4’ over F such that £} is isomorphic to
the anisotropic part of /7. The authors prove the excellence of the function field
of any smooth projective conic defined over the base field.

Theorem 4.1. [PSS, Theorem 2.2] Let (D,0) be an algebra with orthogonal or
symplectic involution over F and let C be a smooth, projective conic over F,
with function field F. The field extension F/F is excellent for hermitian forms
over (D,0).

Since when A has index 2, the field F4, is a purely transcendental extension
of the function field of a conic, with Theorem 4.1 in hand, one can show the
following:

Corollary 4.2. [PSS, Corollary 3.4, Theorem 3.5] Let A be an algebra of index 2,
and let Fy, be the function field of the Severi-Brauer variety of A. Anisotropic
orthogonal involutions on A remain anisotropic over the function field Fy,,
hence also over all odd-degree field extensions of F.

The argument in [PSS] goes as follows. Let Q be a quaternion division
algebra Brauer equivalent to A. Pick an orthogonal involution 6 on Q so that
o is adjoint to some hermitian form & over (Q,60). If o is isotropic over Fy4,,
then & is isotropic over F4,. Since A has index 2, the field F4, is a purely
transcendental extension of the function field of a conic and thus by excellence,
there is a hermitian form %’ over (Q,6) such that &', Ly, I8 isomorphic to the
anisotropic part of Az, . Hence, the form h L —h’ is hyperbolic over Fyu,
and by Theorem 2.3 (see also [De, Prop], [PSS, Proposition 3.3]), it follows that
h 1 —h" is hyperbolic over F. In view of the dimensions, this implies that
h is isotropic. The second assertion follows immediately, by the Artin—Springer
theorem (see Lemma 1.1). Hence this gives a positive answer to question (i) for
orthogonal involutions on algebras of index 2.

The excellence property of function fields of conics used in this section does
not extend to function fields of Severi-Brauer varieties. For instance, 1zhboldin-
Karpenko [IK] and Sivatski [Si2] proved that the function field of a division
biquaternion algebra does not satisfy the excellence property for quadratic forms
over the base field. However, the proof of Corollary 4.2 only uses a very particular
case of the excellence property, namely excellence for hermitian forms over the
underlying quaternion algebra with orthogonal involution (Q, #). This part of the
argument is general, and one can reduce the anisotropy question to an excellence
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question. This latter result is due to Karpenko and Tignol and is discussed in the
next section.

5. Isotropy over the function field Fy4 ,

In his first paper on the topic of the present survey [Karl], Karpenko stated
the following conjecture:

Conjecture 5.1. [Karl, Conjecture 5.2] Let A be a central simple algebra over
a field F. An anisotropic orthogonal involution remains anisotropic over F4,.

The analogous statement for unitary involutions is false in general. Parimala,
Sridharan and Suresh [PSS, Thm 4.3] showed that for every odd prime p, there is
an algebra of p-power index with unitary involution which becomes isotropic over
an odd-degree field extension. By Lemma 1.1, it follows that the involution also
becomes isotropic over F4,. However, whether the conjecture holds not just for
orthogonal involutions, but also for symplectic involutions or unitary involutions
on algebras of 2-power index is an open question. There is some evidence in
support of the conjecture in these settings.

The conjecture holds if A is split and o is orthogonal since in this case Fy4,,
is a purely transcendental extension of F. The same argument applies to the
unitary split case. Since there are no anisotropic symplectic involutions on a split
algebra, the result also trivially holds in the split symplectic case. For division
algebras, Karpenko and Tignol proved the following:

Theorem 5.2. [Karl, Theorem 5.3], [Kar3, Theorems A.l and A.2] Let (D, 0) be
a division algebra with an anisotropic involution of type t. If 0 is unitary, we
assume that D has exponent 2. The involution 6 remains anisotropic over Fp.

In the orthogonal case, Theorem 5.2 is the main result in [Karl]. Its proof
involves cycle computations in Chow groups with values in Z/2. Tignol extended
the result to symplectic involutions, and unitary involutions on algebras of exponent
2. We sketch here the beautiful and rather elementary argument that he gives in
the symplectic case. Given an algebra D with symplectic involution 6 over F,
consider the iterated Laurent series field £ = F((x))((y)), the quaternion division
algebra (x,y)p over F', and the tensor product D = D QF (x,y) £ - Since the
canonical involution y on (x,y)g is symplectic, the involution d=0 y on
D is orthogonal. Using some residue computations, one may check that D is
division if and only if D is division, and that 6 is anisotropic if and only if
0 is anisotropic. Since 6 is anisotropic by assumption, Karpenko’s result in the
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orthogonal case implies that & remains anisotropic over Fp . Further, since

D necessarily splits over F Do then A is Brauer equivalent to (x,y) Fp, OVer
Fho Thus D has index 2 and 6 is anisotropic over this field. It follows that
6 remains anisotropic over the generic index reduction field Fp .

Recall that by Lemma 1.1, a proof of Conjecture 5.1 would give an affirmative
answer to question (i’). In fact, interest in this question seemed to be the initial
motivation for studying Conjecture 5.1. However, within a decade of stating the
conjecture, Karpenko, Tignol and Karpenko-Zhykhovich had proven the following
converse of Lemma 1.1:

Theorem 5.3. [Kar5, Theorem 1] [Kar5, Appendix], [Kar6], [KZ, Theorem 6.1]
Let (A,0) be a central simple algebra over F with an anisotropic involution of
type t. If or,, is isotropic, then there exists an odd-degree field extension L/F
such that oy, is isotropic.

Theorem 5.3 is a very deep result whose proof is related to the incompressibility
of some projective homogeneous varieties. Among its interesting consequences
is the following extension of Theorem 5.2 for unitary involutions, which actually
applies to division algebras of arbitrary 2-power exponent:

Corollary 5.4. [Kar7, Theorem 1.4]5 Let D be a division algebra with 2-power
exponent. Any anisotropic unitary involution on D remains anisotropic over Fp .

Proof. By Theorem 5.3, isotropy over Fp, would imply isotropy over some odd
degree extension L of the base field. But this is impossible, since the hypothesis
on the exponent of D guarantees that D remains division over L. [

A further consequence of Theorem 5.3 is the following:

Corollary 5.5. Let (A,0) be a central simple algebra over F with anisotropic
involution of type t. Fix an involution 0 of type t on the underlying division
algebra D and let h over (D,0) be a hermitian form associated to o. The
following assertions are equivalent:

(i) The extension Fp,/F is excellent for the hermitian form h;

(ii) The involution ¢ remains anisotropic over Fp;;
(iii) The involution o remains anisotropic over any odd degree field extension

L/F.

5In fact, [Kar7, Theorem 1.4] is more general than the consequence we point out here, and was
proven before Theorem 5.3, see 5.6 below. The corollary can also be deduced from the earlier result of
N. Karpenko [Kar4].
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The equivalence between conditions (ii) and (iii) is given by Lemma 1.1 and
Theorem 5.3. Condition (ii) clearly implies condition (i), and conversely, condition
(i) combined with Theorem 2.3 implies condition (ii), as in the proof of Parimala—
Sridharan—Suresh’s result Theorem 4.2.

We conclude this section by pointing out a third interesting consequence of
Theorem 5.3 which is further evidence in support of an affirmative answer to
question (i’). The statement of the result requires the notion of the Witt index
of an involution. We define the Witt-index of an involution ¢ to be the reduced
dimension of a maximal isotropic ideal of the underlying algebra AS. If o is
adjoint to a hermitian form /4, then the Witt indices of o and & satisfy the
equation iy (o) = iw(h)ind(A), where ind(A4) is the Schur index of A [KMRT,
§6.A].

Corollary 5.6. Let (A,0) be an algebra with involution of type t over F. Then,
there exists an odd degree field extension L/F such that iy (or) = iw(0x,,). If
in addition A has 2-power exponent, then iy (or,,) is a multiple of the Schur
index of A.7

Proof. Let L be an odd degree extension of the base field F, and consider
the compositum £ = LF,,. Since the Witt index can only increase under a
field extension, we have iy (or) < iw(oz). On the other hand, as in the proof of
Lemma 1.1, the Artin—Springer theorem gives that iy (07, ,) = iw (o). Therefore,
iw(oL) <iw(or,,). If the inequality is strict, one may apply Theorem 5.3 to the
anisotropic part of (A4,0)r to produce an odd degree extension L’ of L such
that iy (or’) > iw(oL), and an induction argument completes the proof. The last
assertion follows immediately since the Witt index of oz is a multiple of ind(Ayr)
and our hypothesis on the exponent of A guarantees that ind(4) = ind(A4.). U

6. Isomorphism of involutions

While the main result in the previous section was that anisotropy is preserved
under odd-degree extensions if and only if it is preserved under extension to
Fa,:, we shall observe here that though non-isomorphic involutions remain non-
isomorphic over odd degree field extensions, they may become isomorphic over
Far. Recall that Bayer and Lenstra’s Corollary 2.2 gave that non-isomorphic

6'The Witt index of ¢ is the maximal element of the index of (A,o¢) as defined in [KMRT, §6.A].

7For an algebra with orthogonal or unitary involution (A4,0) over F, that the Witt index of 0%, ,
(resp. 0x,, ) is a multiple of the Schur index of A is due to Karpenko [Kar2, Thm 3.3], [Kar7,
Thm. 1.4]. This result preceded Theorem 5.3, though as we have discussed here it can be deduced as a
consequence of Theorem 5.3. The argument in [Kar2] also applies to a quadratic pair over a base field
of characteristic 2 [KMRT, §5.B].
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hermitian forms remain non-isomorphic over odd-degree field extensions. However,
as we noted above, since isomorphic involutions have associated hermitian forms
which are similar rather than isomorphic, this does not immediately answer
question (iii). In 2000, Lewis [Le, Proposition 10] gave an affirmative answer to
question (iii) for involutions of the first kind. Barquero-Salavert [Ba, Theorem 3.2]
gave the proof in the unitary case in 2006 (see also [BI2, Proposition 7.10, 7.20]
and [BIll, Theorem 4.8]). The formal statement is as follows:

Theorem 6.1. [Le, Proposition 10], [Ba, Theorem 3.2] Let A be a central simple
algebra and let o and o' be two involutions on A over F. Assume there is an
odd-degree extension L of F such that oy, is isomorphic to oy . If the involutions
are of unitary type, we assume in addition that the degree of L/F is coprime
to the index of A. Then o and o' are isomorphic.

The idea behind the proof is to use the extension of Scharlau’s norm
principle [Sch, Chap. 2, Theorem 8.6] to hermitian forms to descend the similarity
factors of the hermitian forms associated to o and o’ over L to the base field
F . Since there is no norm map between F4, and the base field F, there is
no hope of using this strategy to produce an isomorphism over F from a given
isomorphism over F4,. Indeed, explicit examples of non-isomorphic orthogonal
involutions that become isomorphic over F4, are given by the second-named
author and Tignol in [QT]. The construction can be sketched as follows.

The starting point is a field F and a degree 8 and exponent 2 central simple
algebra E over F that contains a triquadratic field F(y/a,~/b,/c), but does
not have any decomposition as a tensor product of quaternions H; ® H, ® H3
with /a € Hy, ~b € H, and /c € Hsz. For instance, one may take for E
any indecomposable degree 8 and exponent 2 central simple algebra. Since
the centralizer in £ of K = F(\/a) is a biquaternion algebra containing
F(v/b, J¢), by Albert’s theorem, it does decompose as (b,r) ® (c,s) for some
r,s € K*. The example is defined in terms of these elements a, b, ¢ € F*
and s € F(4/a)*. Pick two variables x,y over F and consider the algebra
A=(a,x)®(b,y)®(c,1) over F(x,y). The element s € F(4/a)* can be viewed
as an element of (a,x) D F(4/a). Endow the quaternion algebras (a,x), (b,y)
and (c, 1) with the unique orthogonal involutions p, v and 6 with discriminant
x, y and c respectively (see [KMRT, (7.4)]). Using cohomological invariants, it
is proven in [QT, Example 4.2] that the orthogonal involutions 0 = p® t ® 6
and o’ = (int(s) o p) ® T ® 6 are non isomorphic, and become isomorphic over
Fa,0- This example was inspired by Hoffmann’s example [Ho, §4] of non-similar
8-dimensional quadratic forms that are half-neighbors where two 8-dimensional
quadratic forms g and ¢’ over a field F are said to be half-neighbors if there
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exists scalars A, u € F such that (A)g®(u)q’ is a 4-fold Pfister form. The relation
between the two constructions is given by triality [KMRT, §42], and Sivatski’s
criterion for isomorphism after generic splitting of orthogonal involutions on
degree 8 algebras [Sil, Proposition 4].

In addition to being of independent interest, these results on isomorphism give
new insights on isotropy. In the next section we use Lewis and Barquero-Salavert’s
Theorem 6.1 to give an affirmative answer to question (i’) for some algebras of
low degree.

7. Isotropy of involutions on some algebras of low degree

In [ABGYV, p. 240] Auel, Brussel, Garibaldi and Vishne note that it is unknown
whether anisotropy is preserved under odd degree extensions for orthogonal
involutions on algebras of degree 12. We prove that this result holds and thus
give a second example of a positive answer to question (i) that does not reduce
to hyperbolicity.

Theorem 7.1. Let (A,0) be a degree 12 algebra with orthogonal involution over
F. Let L be a finite field extension of F of odd degree. If or, is isotropic, then
o is isotropic.

Proof. Since the cases where ind(A4) = 1 or ind(A4) = 2 were discussed above, we
need only consider the case where ind(A4) = 4. So, we may assume A = M3(D),
for some division biquaternion algebra over F. Let us denote by § € F*/F*? the
discriminant of o, and let F' = F[X]/(X? —§) be the corresponding quadratic
étale extension.

Assume o is isotropic over L. Since D remains division over L, the
anisotropic part of (A4,0); has degree 4; therefore, it is isomorphic to (D, d),
for some orthogonal involution ¢ of Dy . The involution ¢ being Witt-equivalent
to op, it has discriminant § € F*/F>*? C L*/L*? and by the exceptional
isomorphism [KMRT, (15.7)], we have

(D,5) = Npy(0.),

where L' = L[X]/(X?—§), and the quaternion algebra O over L’ is the Clifford
algebra of &. Hence, since L’ has odd degree over F’, the Clifford algebra of
o itself is Brauer-equivalent to a quaternion algebra Q over F’ such that Q;/
is isomorphic either to O or to its conjugate (see [DLT, prop. 3]). In both cases,
we have (Np//p(Q.7)), =~ Npy(0.7).

To conclude, we will use the so-called fundamental relation [KMRT, (9.14)],
which shows that Ng//r(Q) is isomorphic to the division algebra D . Therefore,
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A = M3(D) has a unique isotropic orthogonal involution oy with anisotropic
part Np/,p(Q,”). Moreover, the involutions o and oy are isomorphic over L.
Hence they are isomorphic over F by Lewis [Le, Proposition. 10] (see 6.1 above),
and o is isotropic. []

One may proceed as in Tignol’s appendix [Kar5, Appendix] to derive a
positive answer to question (i’) for an algebra of degree 6 and exponent 2 with
unitary involution as a consequence of Theorem 7.1. Indeed, Tignol’s construction
associates to a degree m algebra with K/F unitary involution (A4,0) a degree
2m algebra with orthogonal involution (A, &) over the Laurent series field F( (x)),
and he proves the anisotropy property holds for (A,&) if it holds for (A4,0).
Alternatively, one can prove this result by using an argument similar to that in
the proof of Theorem 7.1. We give the details of the latter approach below.

Theorem 7.2. Let (A,0) be an exponent 2 and degree 6 algebra with unitary
involution over F. Let L be a finite field extension of F of odd degree. If o,
is isotropic, then o is isotropic.

Proof. Let F’ be the center of the algebra A and let L’ = LF’. Since the case
of a split algebra was discussed in 3 we may assume that A is non-split and
therefore that A = M3(D) for some quaternion division algebra D over F’.
The involution o7 is an L’/L unitary involution on A; which is isotropic by
assumption. Since D remains division over L’, the anisotropic part of (A4,0)r
has degree 2 and therefore, it is isomorphic to (D, t) for some L’/L -unitary
involution ¢ on Dy/. By a result of Albert (see [KMRT, (2.22)]), there exists
a unique quaternion algebra Q over L such that (Dy,7) = (Q,7) ® (L',"),
where ~ denotes the respective canonical involutions on the quaternion algebra
Q and the quadratic extension L’ over L. Now, as explained in [KMRT, p.
129], the quaternion algebra Q is the discriminant algebra of (Dy/, t), hence it
is Brauer-equivalent to the discriminant algebra of (A4,0)r. Since L/F has odd
degree, it follows that the discriminant algebra of (A,c) is Brauer equivalent
to a quaternion algebra Q¢ over F such that (Q¢)r >~ Q. By [KMRT, Prop.
10.30], (Qo)F’ is Brauer-equivalent to A, so A = M3(Q¢)F/ admits a unique
involution o Witt-equivalent to (Qg, ) ® (F’,”). The involutions o and oy
are isomorphic over L, hence they are isomorphic over F by [Ba, Theorem 3.2],
hence o is isotropic. [
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