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Involutions, odd degree extensions and generic splitting

Jodi Black and Anne Queguiner-Mathieu*

Abstract. Let q be a quadratic form over a field F and let L be a field extension of F
of odd degree It is a classical result that if is isotropic (resp hyperbolic) then q is

isotropic (resp hyperbolic) In turn, given two quadratic forms q,qf over F, if qL qfL

then q ^ qf It is natural to ask whether similar results hold for algebras with involution

We give a general overview of recent and important progress on these three questions, with

particular attention to the relevance of hyperbolicity, isotropy and isomorphism over some

appropriate function field In addition, we prove the anisotropy property m some new low

degree cases

Mathematics Subject Classification (2010). Primary 16W10, Secondary 11E04, 11E72

Keywords. Algebraic groups, algebras with involution, quadratic forms, odd degree field

extensions, Springer's theorem, isotropy

Introduction

Let F be a field of characteristic different from 2. It is well-known that an

anisotropic quadratic form q over F is anisotropic over any finite field extension

of F of odd degree. This result was first published by T. A. Springer [Sp] in 1952,

but Emil Artin had already communicated a proof to Witt by 1937 see [Ka, Remark

1.5.3]. In what follows, we refer to this result as the Artin-Springer theorem. Since

any quadratic form can be decomposed as the sum of an anisotropic part and some
number of hyperbolic planes, an immediate consequence of the Artin-Springer
theorem is that a quadratic form which becomes hyperbolic over an odd-degree
field extension is hyperbolic. Further, since two quadratic forms q and qf are

isomorphic if and only if q _L —q' is hyperbolic, another consequence of the

Artin-Springer theorem is that two quadratic forms which become isomorphic
over an odd-degree field extension are isomorphic. This last result also extends to

* Support of the French Agence Nationale de la Recherche (ANR) under reference ANR-12-BL01-
0005
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similar quadratic forms. Indeed, using the properties of Scharlau's transfer map
described in [Sch, Chap. 2, Ihm. 5.6, Lern. 5.8], one may check that two forms
which become similar after an odd degree field extension are similar.

Recall that every (nondegenerate) quadratic form q on an F-vector space
V induces the so-called adjoint involution ad^ on the endomorphism algebra

End^(L), and, conversely, every orthogonal involution on Endp(V) is adjoint
to a quadratic form q, uniquely defined up to a scalar factor. Therefore, algebras

with orthogonal involution can be thought of as twisted forms (in the sense of
Galois cohomology) of quadratic forms up to scalars. Since ad^ is isotropic (resp.

hyperbolic) if and only if q is isotropic (resp. hyperbolic) and ad^ is isomorphic
to adqr if and only if q and q' are similar, it is natural to ask whether the behavior

of quadratic forms under odd-degree field extensions, as described above, extends

to involutions on central simple algebras. More precisely, we are interested in the

following main questions:
Let F be a field and let (A, a) be an algebra with involution over F. Let L be

an odd-degree field extension of F.

(i) If a is anisotropic, does it remain anisotropic over L

(ii) If a is non-hyperbolic, does it remain non-hyperbolic over L

(iii) If a and a' are non-isomorphic involutions, do they remain non-isomorphic
over L?

Question (ii) was solved by Bayer-Lluckiger and Lenstra [BL], in an even more

general context than is discussed above, see §2 below. Question (i) should be posed

differently, as was noticed by Parimala, Sridharan and Suresh. In [PSS, §4], they
constructed an example of an anisotropic unitary involution that becomes isotropic
over an odd-degree field extension. They suggested the following reformulation:

(L) Let (A, a) be an algebra with involution over F, and let L/F be a field
extension of degree coprime to 2ind(A). If a is anisotropic, does it remain

anisotropic1 over L?

Questions (i) and (L) are equivalent if the involution is orthogonal or symplectic,
since an algebra which admits an involution of either of these types has exponent
2 and the index and exponent of any central simple algebra have the same prime
factors. By similar reasoning, the two questions are equivalent in the unitary case

under the additional hypothesis that the algebra has 2-power exponent.
Question (L) is open in general, though as we will discuss in § 3, 4, 5

and 7 a positive answer is known for algebras with involution satisfying some
additional conditions. By the aforementioned Bayer-Lenstra theorem, question (L)

xMore generally, one can ask how the Tits index of an algebraic group behaves over finite held
extensions of degree coprime to the torsion primes of the group See [ABGV, Problem 7 3]
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has a positive answer for involutions for which isotropy and hyperbolicity are

equivalent. In particular, a positive answer is known for totally decomposable

involutions, by results of Becher [BE] and Karpenko [Kar3]; this is explained in
§3. Parimala, Sridharan and Suresh gave a general argument for algebras of index
2 with orthogonal involution, based on the excellence property of the function
field of a conic [PSS], see §4.

In §7 we prove new results on low-degree algebras, in particular, degree 12

algebras with orthogonal involutions. This answers a question posed in [ABGV,
pg 240]. Moreover, this new case includes some algebras of index strictly larger
than 2, and for which isotropy is not equivalent to hyperbolicity, so that the

question does not reduce to the Bayer-Lenstra theorem. This is a strong evidence

for a positive answer to question (L).
A natural way to address question (P) is to try to reduce to quadratic

form theory by extending scalars to a function field2. This method was used

more than a decade ago by Parimala-Sridharan-Suresh [PSS], Dejaiffe [De] and

Karpenko [Karl] to study isotropy of orthogonal involutions. Roughly speaking,

one uses the existence of generic index reduction fields Taj depending on
the algebra A and on the type of the involution, over which a is adjoint to a

hermitian form, which in turn is determined by an associated quadratic form. In
the orthogonal case, one may take a generic splitting field of the algebra A, since

the involution is adjoint to a quadratic form over such a field; see §1 below for

a description of Taj in the symplectic and unitary cases. If one can prove that

an anisotropic involution of type t remains anisotropic over Taj >
then a positive

answer to question (P) (and even question (i)) follows easily from the Artin-
Springer theorem (see Lemma 1.1). On the other hand, it is a deep result, due to

Karpenko [Kar5], Tignol [Kar5, Apppendix] and Karpenko-Zhykhovich [KZ] that

if anisotropy is preserved under odd-degree field extensions, then it is preserved
under extension to Taj • Therefore, question (i) is equivalent to asking whether

anisotropy is preserved over Taj. (f°r algebras of 2-power index in the unitary
case). This approach is explained in §5, in a uniform way, regardless of the type of
the involution. We also describe the relation between question (i) and excellence

properties.
For question (iii), an affirmative answer in the symplectic and orthogonal cases

was given by Lewis [Le, Proposition 10], while Barquero-Salavert [Ba, Theorem

3.2] provided an affirmative answer in the unitary case (See also [Bll, Proposition
5.1]). The second-named author and Tignol [QT, §4], produced examples of non-

2 This approach also relates our main questions to the following classical question for algebraic groups
Let F be a field, G and G' be algebraic groups over F, and X and X' projective homogeneous
varieties under G and G', respectively When does X admit a rational point over the function field
F{Xf)7 See for instance [Ka] for results for quadratic forms and the so-called index reduction formulas
(e g [MPW]) for results for central simple algebras
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isomorphic orthogonal involutions that become isomorphic after generic splitting
of the underlying algebra. In particular, the behavior of non-isomorphic involutions
is not the same under finite odd-degree extensions and extension to Taj > see §6.

The authors would like to thank R. Parimala for many fruitful discussions on
the subject and for her support while they were preparing this work. Thanks also

to Skip Garibaldi, Nikita Karpenko and Jean-Pierre Tignol for helpful comments

on an earlier draft of this work.

1. Background and notation

In this section, we review some of the relevant background. The results on

quadratic forms mentioned in the introduction are explained in [EKM], [Ka], [La],
and [Sch], while general facts on algebras with involution and hermitian forms

are in [KMRT].
Throughout the paper, A denotes a central simple algebra over a field K of

characteristic3 different from 2. An involution a on A is an anti-automorphism
of period 2. The involution is said to be of orthogonal type, symplectic type or
unitary type, according to the type of its automorphism group. We consider as

a base field the field F of elements of K fixed by a. If a is unitary, K/F
is a quadratic field extension. Otherwise, K F and a is K -linear. In all
three cases, we say for short that (A, a) is an algebra with involution over F.
Two F -algebras with involution (A, a) and {A', a') are isomorphic if there is

an F -algebra isomorphism / A -> A' such that / o a a' o /. Since in the

unitary case the isomorphism / induces an isomorphism of the centers of the

algebras K and Kf, we may assume that K K' and that f is K -linear.

By Wedderburn's theorem, the algebra A can always be represented as an

endomorphism algebra A ~ EndJo(F), where D is a central division algebra
Brauer equivalent to A, V is a D -module, and both are uniquely defined up to

isomorphism. The degree of D is called the index of A, and we call the dimension

of V over D, the co-index of A. Thus the degree of A is the product of its index
and its co-index. It follows from the existence criteria for involutions [KMRT, §3]

that D is endowed with an involution 9 of the same type as a. Once such a 9 is

chosen, a can be represented as the adjoint involution with respect to a hermitian
form h over (D,9), which is uniquely defined up to a scalar factor. We will refer

to such a form h as a hermitian form associated to a. For any field extension

L/F, we denote by (Al,<Jl) the extended algebra with involution, defined by

3 This restriction on the characteristic of K is not always necessary For instance, the Artin-Springer
theorem is valid in characteristic 2 [EKM, 18 5] The main result in [Kar2], which will be discussed

in §5 below, holds over a field of arbitrary characteristic However, as most of the results mentioned in
this survey are for fields of characteristic different from 2, we observe that convention
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Al A <S>f L and ox a 0 id Since an involution of any type acts on F
as nip, ox is well-defined Given a representation (A,o) (End/) (E), ad/*), for

some hermitian module (E, h) over (D,9) we denote by Vl the Dl -module

Vl V L and by the extended form Vl x Vl -> (Dl, Ol), so that

(Al,ol) — (End^(FL), ad^)
One may easily check that if some hermitian form associated with a is

isotropic (resp hyperbolic), so is every hermitian form associated with a The

involution is said to be isotropic or hyperbolic accordingly A right ideal I c A

is called an isotropic ideal if o(x)x 0 for all x e I Given a representation

(A,o) 22 (End/)(E), ad/*), isotropic right ideals are given by endomorphisms of
V with image contained m a given totally isotropic D-subspace W of V The

reduced dimension of such an ideal is the product of the index of A and the

dimension of W over D Hence, one may also use isotropic ideals to give a

statement of the definition of isotropy and hyperbolicity of involutions, independent
of the choice of a representation m terms of a hermitian module Namely, (A,o)
is isotropic if and only if A contains a nonzero isotropic ideal and (A,o) is

hyperbolic if and only if A contains an isotropic ideal of reduced dimension

\ deg(A) (see [BST] or [KMRT, §6]) In particular, hyperbolic involutions can

only exist on algebras of even co-mdex

Given an algebra A with an involution o of any type t, we define below

a field Fa t such that the involution ojrA t is either adjoint to a quadratic form

or adjoint to a hermitian form determined by a quadratic form In particular,
even m the case of a unitary or symplectic involution, there is a quadratic form

q defined over Fa t such that ojrA t is isotropic (resp hyperbolic) if and only
if q is isotropic (resp hyperbolic) The field Fa t depends on the algebra A

and on the type t of a and is defined as follows We set t o (respectively

s,u) when o is of orthogonal (respectively symplectic, unitary) type Assume
the involution o is of orthogonal type We let Fa o be the function field of the

Severi-Brauer variety SB (A) of A Since A is split over Fao the involution

ojrA o is adjoint to a quadratic form If o is unitary, we need an extension of the

fixed field F K° to extend the involution Thus, we consider the function field

Fa u of the Weil transfer of the Severi-Brauer variety of A Since A is split
over Fau the extended involution c>fAu is adjoint to a hermitian form A, with
values m the quadratic extension Fau®f K We can associate to h, the quadratic
form qh V -> Fa u defined by qh(x) h(x,x) It is classically known that the

hermitian form h is uniquely determined by qh and qh is called the trace form of
h Moreover, the isotropy or hyperbolicity of h is determined by that of qh [Sch,

Chap 10, Ihm 11] A symplectic involution on a split algebra is hyperbolic
So, rather than considering a splitting field of A, we let Fas be the function
field of the generalized Severi-Brauer variety SB2(A) of right ideals of reduced
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dimension 2. This field generically reduces the index of A to 2. Further, given
H a quaternion algebra over Ta,s Brauer equivalent to Aj=As and taking the

canonical involution on H, the involution ojrA s
is adjoint to a hermitian form

over (//, ~) determined as in the unitary case by its trace form [Sch, Chap. 10,

Ihm. 1.7].

We will make frequent use of the following straightforward consequence of
the Artin-Springer theorem:

Lemma 1.1. Let (A, a) be an algebra with involution of type t over F. If
a is non-hyperbolic (resp. anisotropic) over the function field Taj >

then it is

non-hyperbolic {resp. anisotropic) over any odd degree extension L of the base

field F.

Proof Assume a is hyperbolic (resp. isotropic) over an odd degree extension L
of the base field F. Then a is hyperbolic (resp. isotropic) over the compositum
C FajL, which is an odd degree extension of Faj • Since the involution a
is determined by a quadratic form over Taj and over we can aPPly the

Artin-Springer theorem to deduce that ojrA t is hyperbolic (resp. isotropic).

2. Hyperbolicity of involutions

We begin by considering question (ii) above. As we mentioned, a complete answer
to this question was given in 1990 by Bayer-Fluckiger and Lenstra [BL], who
aimed at proving the existence of a self-dual normal basis for any odd-degree
Galois field extension. Their argument is based on the following, which is the

result we are interested in:

Theorem 2.1. [BL, Proposition 1.2] Let B be a finite dimensional F -algebra
endowed with an F -linear involution 6, and (V, h) a hermitian module over

Let L be afield extension of F of odd degree. If (Fl, hjf) is hyperbolic,
then (F, h) is hyperbolic.

In view of the definition of hyperbolic involutions via the associated hermitian
forms, this result gives a positive solution to question (ii). Since a K -central
division algebra with K/F unitary involution is an F -algebra with F -linear

involution, Theorem 2.1 applies to involutions of any type. Further, since there

is no simplicity assumption on the algebra B, Theorem 2.1 applies to a broader
class of algebras with involution than is specified in the statement of question

(ii). The proof is quite similar to the classical proof in quadratic form theory
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and is based on Scharlau's transfer homomorphism, which, as the authors prove,
extends naturally to the setting of hermitian forms.

In the sequel, we will frequently use the following corollary of Bayer-Lenstra's
theorem:

Corollary 2.2. [BL, Corollary 1.4] Let (U, h) and (V\hf) be two hermitian forms
over (B,9), and let L be an extension of F of odd degree. If the extended forms

and (V[,hfL) are isomorphic, then (U,h) and (V',hf) are isomorphic.

Note that this result does not answer the isomorphism question for involutions,
since a ~ a' implies only that their associated hermitian forms are similar.

However, as we describe in §6, one can use Scharlau's norm principle to deduce

a positive answer to the isomorphism question.

Though Theorem 2.1 gives a very nice and purely algebraic solution to question

(ii), it is natural to ask whether non-hyperbolicity is preserved under scalar

extension to the function field Taj (see §1 for the definition of Taj > depending

on the type t of a). The following result is due to Karpenko for orthogonal
and unitary involutions, and Tignol for symplectic involutions4; it was previously

proven by Dejaiffe [De] and Parimala, Sridharan and Suresh [PSS] for algebras

of index 2 with orthogonal involutions:

Theorem 2.3. [Kar3, Theorems 1.1 & A.l][Kar7, Theorem 1.1] Let (A, a) be an

algebra with involution of type t over F. If the extended involution ojA t
is

hyperbolic, then a is hyperbolic.

Using this result and the Artin-Springer theorem for quadratic forms (or even

its weak version, for hyperbolicity) one gets another argument for a positive answer

to question (ii) (see Lemma 1.1). Therefore, Theorem 2.3 can be considered as

a generalization of Bayer-Lenstra's Theorem 2.1 in the setting of central simple
algebras. Its proof, based on computations of cycles on the underlying varieties,

requires much more machinery than the original proof of Bayer and Lenstra,

including for instance the Steenrod operations on Chow groups with coefficients in

Z/2. Yet, in addition to generalizing this previous result, Theorem 2.3 can be seen

as an intermediate result that helped to pave the way for Karpenko and Karpenko-
Zhykovich's later results on isotropy [Kar5], [KZ]. Moreover, Theorem 2.3 also

implies an interesting connection between isotropy and hyperbolicity of totally
decomposable involutions which we shall discuss in the next section.

4 Tignol's argument also applies to the unitary case if the underlying algebra has exponent 2
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3. First results on isotropy

Though question (F) is largely open, there is some evidence in support of an

affirmative answer. In the case where A is split and a is orthogonal or unitary, or
A has index 2 and a is symplectic, one can reduce to quadratic form theory (see

§1) where the Artin-Springer theorem shows that anisotropy is preserved under

any odd degree extensions. Since every symplectic involution on a split algebra
is hyperbolic, this resolves the split case, for involutions of all three types. For
division algebras, an affirmative answer to question (F) is a consequence of the

fact that, since [L : F] is coprime to the index of A, the extended algebra Al
is division. A division algebra admits no isotropic involution, hence ox remains

anisotropic.
Next we highlight two cases in which isotropy reduces to hyperbolicity, so

that a positive answer to question (F) follows from results in §2 above. The first
such case is when A has co-index 2. In this setting, the involution a is adjoint to

a 2-dimensional hermitian form. Since isotropy is equivalent to hyperbolicity for
such a form, Theorem 2.1 gives that anisotropy is preserved under field extensions

of degree coprime to 2ind(A).
One can make a similar reduction for totally decomposable involutions. The

following result, due to Becher [BE] in the orthogonal and symplectic cases, will
prove useful for this purpose:

Theorem 3.1. [BE, Theorem 1 & Corollary] Let (A, a) be an algebra with
involution over F that decomposes as a tensor product of quaternion algebras
with involution. We assume moreover that A is split if a is orthogonal or unitary,
and has index 2 if a is symplectic. Then there exists a Pfister form n such that

(A, a) decomposes as follows:

(1) (A, a) Adn if a is orthogonal;

(2) (A, a) Adjr if a is unitary;

(3) (A, a) Adn ~) if a is symplectic.

Proof. Assertions (1) and (3) are Theorem 1 and its Corollary in [BE]. Assertion

(2) also follows easily from those results. Indeed, assume (A, a) is a tensor product
of quaternion algebras, each endowed with a K/F unitary involution. By [KMRT,
(2.22)], each factor decomposes as {Hl, ~) <8>f (K, ~), for some quaternion algebra

Ht over F. Therefore, (A, a) has a decomposition (A, a) (A0,cro) <S>f

where (A0,cro) is a totally decomposable algebra with orthogonal or symplectic
involution, depending on the parity of the number of factors. Moreover, since

A Aq <S>f K is split, Aq has index at most 2. Therefore, by [BE, Corollary
& Theorem 2], (A0,cro) Ad^0 (g>(//0, y) for some Pfister form 7r0 and
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some quaternion algebra with orthogonal or symplectic involution (//0,y). To

conclude, it only remains to observe that since Hq K is split, y ® ~

is adjoint to a 2-dimensional hermitian form with values in (K,~). Up to

a scalar, this form has a diagonalisation (1, —/z) for some /z e Fx, so

that (Ho,y) <S>p (K,~) ~ Ad(ij_A6) ~). This concludes the proof, with
7T 7To 0 (1, —/Z)

For totally decomposable involutions, we get an affirmative answer to question
(F). Indeed, given Becher's Theorem 3.1, Karpenko's Theorem 2.3 admits the

following corollary:

Corollary 3.2. Let (A, a) be an algebra with involution over F that decomposes

as a tensor product of quaternion algebras with involution over F. If a is

isotropic, then it is hyperbolic. In particular, if a is anisotropic, it remains

anisotropic over any odd degree extension of the base field.

Proof. If a is isotropic, then ojrA t
is isotropic. Therefore, in view of 2.3, it is

enough to prove that isotropy implies hyperbolicity over Taj, or equivalently,
that isotropy implies hyperbolicity for split algebras with orthogonal or unitary
involution and index 2 algebras with symplectic involution. This was shown by
Becher [BE] in the orthogonal and symplectic cases, and follows easily from 3.1. In
the orthogonal case, a is adjoint to a Pfister form n. In the unitary and symplectic

cases, a is adjoint to a hermitian form with trace form qh n <g> (1,-5) and

qh 7t<S>nn respectively, where 8 is given by K F(<sf$), and nu denotes the

norm form of H. In particular, in all three cases, the involution a is determined

by a quadratic form which is a Pfister form. Since isotropy implies hyperbolicity
for Pfister forms, we obtain the desired result. The last assertion follows by

Bayer-Lenstra's Theorem 2.1.

The first example of a positive answer to question (F) that does not reduce

to hyperbolicity is due to Parimala, Sridharan and Suresh [PSS]. That result is

the main subject of the next section.

4. Orthogonal involutions on algebras of index 2

and excellence for hermitian forms

An affirmative answer to question (F) for algebras of index 2 with orthogonal
or symplectic involution was proven by Parimala, Sridharan and Suresh [PSS].
The argument in the symplectic case is elementary and was explained at the

beginning of the previous section (see also [PSS, Proof of thm 3.5]). The key
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result in the orthogonal case is an excellence result for function fields of conics.

We recall that a field extension LIF is said to be excellent for a hermitian form
h over F if there is a hermitian form hf over F such that hfL is isomorphic to
the anisotropic part of The authors prove the excellence of the function field
of any smooth projective conic defined over the base field.

Theorem 4.1. [PSS, Theorem 2.2] Let (D,9) be an algebra with orthogonal or
symplectic involution over F and let C be a smooth, projective conic over F,
with function field J7. The field extension T/F is excellent for hermitian forms
over (D,6).

Since when A has index 2, the field Ta,o is a purely transcendental extension

of the function field of a conic, with Theorem 4.1 in hand, one can show the

following:

Corollary 4.2. [PSS, Corollary 3.4, Theorem 3.5] Let A be an algebra of index 2,

and let Ta,o be the function field of the Severi-Brauer variety of A. Anisotropic
orthogonal involutions on A remain anisotropic over the function field Ta,o>

hence also over all odd-degree field extensions of F.

The argument in [PSS] goes as follows. Let Q be a quaternion division
algebra Brauer equivalent to A. Pick an orthogonal involution 9 on Q so that

a is adjoint to some hermitian form h over (Q,9). If a is isotropic over Ta,o,
then h is isotropic over Ta,o- Since A has index 2, the field Ta,o is a purely
transcendental extension of the function field of a conic and thus by excellence,
there is a hermitian form hf over (Q,9) such that hfAo is isomorphic to the

anisotropic part of hj=A o. Hence, the form h _L —h' is hyperbolic over Ta,o
and by Theorem 2.3 (see also [De, Prop], [PSS, Proposition 3.3]), it follows that
h _L —h' is hyperbolic over F. In view of the dimensions, this implies that
h is isotropic. The second assertion follows immediately, by the Artin-Springer
theorem (see Lemma 1.1). Hence this gives a positive answer to question (F) for

orthogonal involutions on algebras of index 2.

The excellence property of function fields of conics used in this section does

not extend to function fields of Severi-Brauer varieties. For instance, Izhboldin-

Karpenko [IK] and Sivatski [Si2] proved that the function field of a division

biquaternion algebra does not satisfy the excellence property for quadratic forms

over the base field. However, the proof of Corollary 4.2 only uses a very particular
case of the excellence property, namely excellence for hermitian forms over the

underlying quaternion algebra with orthogonal involution (Q,9). This part of the

argument is general, and one can reduce the anisotropy question to an excellence
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question. This latter result is due to Karpenko and Tignol and is discussed in the

next section.

5. Isotropy over the function field Taj

In his first paper on the topic of the present survey [Karl], Karpenko stated

the following conjecture:

Conjecture 5.1. [Karl, Conjecture 5.2] Let A be a central simple algebra over
a field F. An anisotropic orthogonal involution remains anisotropic over Ta,o •

The analogous statement for unitary involutions is false in general. Parimala,
Sridharan and Suresh [PSS, Ihm 4.3] showed that for every odd prime /?, there is

an algebra of p -power index with unitary involution which becomes isotropic over

an odd-degree field extension. By Lemma 1.1, it follows that the involution also

becomes isotropic over Taj • However, whether the conjecture holds not just for

orthogonal involutions, but also for symplectic involutions or unitary involutions

on algebras of 2-power index is an open question. There is some evidence in

support of the conjecture in these settings.
The conjecture holds if A is split and a is orthogonal since in this case Ta,o

is a purely transcendental extension of F. The same argument applies to the

unitary split case. Since there are no anisotropic symplectic involutions on a split
algebra, the result also trivially holds in the split symplectic case. For division
algebras, Karpenko and Tignol proved the following:

Theorem 5.2. [Karl, Theorem 5.3], [Kar3, Theorems A.l and A.2] Let (D,9) be

a division algebra with an anisotropic involution of type t. If 0 is unitary, we

assume that D has exponent 2. The involution 6 remains anisotropic over Tdj-

In the orthogonal case, Theorem 5.2 is the main result in [Karl]. Its proof
involves cycle computations in Chow groups with values in Z/2. Tignol extended

the result to symplectic involutions, and unitary involutions on algebras of exponent
2. We sketch here the beautiful and rather elementary argument that he gives in
the symplectic case. Given an algebra D with symplectic involution 6 over F,
consider the iterated Laurent series field F F((x))((y)), the quaternion division
algebra (x,y)p over F, and the tensor product D D (x,y)p. Since the

canonical involution y on (x,y)p is symplectic, the involution 9 9 ® y on

D is orthogonal. Using some residue computations, one may check that D is

division if and only if D is division, and that 9 is anisotropic if and only if
9 is anisotropic. Since 9 is anisotropic by assumption, Karpenko's result in the
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orthogonal case implies that a remains anisotropic over o. Further, since

D necessarily splits over Tf)0 then A is Brauer equivalent to (x>y)jrDo over
Thus D has index 2 and 9 is anisotropic over this field. It follows that

6 remains anisotropic over the generic index reduction field Tv^s.
Recall that by Lemma 1.1, a proof of Conjecture 5.1 would give an affirmative

answer to question (F). In fact, interest in this question seemed to be the initial
motivation for studying Conjecture 5.1. However, within a decade of stating the

conjecture, Karpenko, Tignol and Karpenko-Zhykhovich had proven the following
converse of Lemma 1.1:

Theorem 5.3. [Kar5, Theorem 1] [Kar5, Appendix], [Kar6], [KZ, Theorem 6.1]

Let (A, a) be a central simple algebra over F with an anisotropic involution of
type t. If ojrA t is isotropic, then there exists an odd-degree field extension L/F
such that gl Is isotropic.

Theorem 5.3 is a very deep result whose proof is related to the incompressibility
of some projective homogeneous varieties. Among its interesting consequences
is the following extension of Theorem 5.2 for unitary involutions, which actually
applies to division algebras of arbitrary 2-power exponent:

Corollary 5.4. [Kar7, Theorem 1.4]5 Let D be a division algebra with 2-power
exponent. Any anisotropic unitary involution on D remains anisotropic over •

Proof. By Theorem 5.3, isotropy over Td,u would imply isotropy over some odd

degree extension L of the base field. But this is impossible, since the hypothesis

on the exponent of D guarantees that D remains division over L.

A further consequence of Theorem 5.3 is the following:

Corollary 5.5. Let (A, a) be a central simple algebra over F with anisotropic
involution of type t. Fix an involution 9 of type t on the underlying division

algebra D and let h over (D,9) be a hermitian form associated to a. The

following assertions are equivalent:

(i) The extension Fdj/F is excellent for the hermitian form h;

(ii) The involution a remains anisotropic over Fuji
(iii) The involution a remains anisotropic over any odd degree field extension

L/F.
5 In fact, [Kar7, Theorem 1 4] is more general than the consequence we point out here, and was

proven before Theorem 5 3, see 5 6 below The corollary can also be deduced from the earlier result of
N Karpenko [Kar4]
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The equivalence between conditions (ii) and (iii) is given by Lemma 1.1 and

Theorem 5.3. Condition (ii) clearly implies condition (i), and conversely, condition

(i) combined with Theorem 2.3 implies condition (ii), as in the proof of Parimala-
Sridharan-Suresh's result Theorem 4.2.

We conclude this section by pointing out a third interesting consequence of
Theorem 5.3 which is further evidence in support of an affirmative answer to

question (L). The statement of the result requires the notion of the Witt index

of an involution. We define the Witt-index of an involution a to be the reduced

dimension of a maximal isotropic ideal of the underlying algebra A6. If a is

adjoint to a hermitian form A, then the Witt indices of a and A satisfy the

equation iw (cr) z^(A) ind(A), where ind(A) is the Schur index of A [KMRT,
§6.A].

Corollary 5.6. Let (A, a) be an algebra with involution of type t over F. Then,

there exists an odd degree field extension L/F such that iw(&l) iw(&FAt)> If
in addition A has 2-power exponent, then iw(®TAt) A a multiple of the Schur
index of A.7

Proof Let L be an odd degree extension of the base field F, and consider

the compositum C LTAj. Since the Witt index can only increase under a

field extension, we have iw{&l) < iw (<Tc)- On the other hand, as in the proof of
Lemma 1.1, the Artin-Springer theorem gives that iw(Pta t) lw(&c) • Therefore,

< lw{vTAt)- If the inequality is strict, one may apply Theorem 5.3 to the

anisotropic part of (A,g)l to produce an odd degree extension L' of L such

that iw(vu) > and an induction argument completes the proof. The last

assertion follows immediately since the Witt index of gl is a multiple of ind(A^)
and our hypothesis on the exponent of A guarantees that ind(A) ind{Ajfi.

6. Isomorphism of involutions

While the main result in the previous section was that anisotropy is preserved
under odd-degree extensions if and only if it is preserved under extension to

Faj > we shall observe here that though non-isomorphic involutions remain non-

isomorphic over odd degree field extensions, they may become isomorphic over

TAj Recall that Bayer and Lenstra's Corollary 2.2 gave that non-isomorphic

6 The Witt index of cr is the maximal element of the index of (A,cr) as defined in [KMRT, §6 A]
7 For an algebra with orthogonal or unitary involution (A,cr) over F, that the Witt index of c>tAo

(resp oTau) is a multiple of the Schur index of A is due to Karpenko [Kar2, Thm 33], [Kar7,
Ihm 1 4] This result preceded Theorem 5 3, though as we have discussed here it can be deduced as a

consequence of Theorem 5 3 The argument in [Kar2] also applies to a quadratic pair over a base field
of characteristic 2 [KMRT, §5 B]
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hermitian forms remain non-isomorphic over odd-degree field extensions. However,

as we noted above, since isomorphic involutions have associated hermitian forms
which are similar rather than isomorphic, this does not immediately answer

question (iii). In 2000, Lewis [Le, Proposition 10] gave an affirmative answer to

question (iii) for involutions of the first kind. Barquero-Salavert [Ba, Theorem 3.2]

gave the proof in the unitary case in 2006 (see also [B12, Proposition 7.10, 7.20]
and [Bll, Theorem 4.8]). The formal statement is as follows:

Theorem 6.1. [Le, Proposition 10], [Ba, Theorem 3.2] Let A be a central simple

algebra and let a and a' be two involutions on A over F. Assume there is an

odd-degree extension L of F such that ox is isomorphic to o'L. If the involutions

are of unitary type, we assume in addition that the degree of LIF is coprime
to the index of A. Then a and a' are isomorphic.

The idea behind the proof is to use the extension of Scharlau's norm
principle [Sch, Chap. 2, Theorem 8.6] to hermitian forms to descend the similarity
factors of the hermitian forms associated to a and a' over L to the base field

F. Since there is no norm map between Taj and the base field F, there is

no hope of using this strategy to produce an isomorphism over F from a given
isomorphism over Taj • Indeed, explicit examples of non-isomorphic orthogonal
involutions that become isomorphic over Ta,o are given by the second-named

author and Tignol in [QT]. The construction can be sketched as follows.

The starting point is a field F and a degree 8 and exponent 2 central simple
algebra E over F that contains a triquadratic field F(^fa, Vb, *Jc), but does

not have any decomposition as a tensor product of quaternions H\ ® H2 ®
with +Ja e Hi, afb e H2 and +Jc e //3. For instance, one may take for E

any indecomposable degree 8 and exponent 2 central simple algebra. Since

the centralizer in E of K F{^fa) is a biquaternion algebra containing
F(-Jb,^fc), by Albert's theorem, it does decompose as (b,r) <g> (c,s) for some

r,se Kx. The example is defined in terms of these elements a, b, c e Fx
and s g F(^fa)x. Pick two variables x,y over F and consider the algebra
A (a,x)<8>(b,y)<8)(c, 1) over F(x,y). The element s e F(^fa)x can be viewed

as an element of (a,x) z> F{^fa). Endow the quaternion algebras (a,x), (b,y)
and (c, 1) with the unique orthogonal involutions p, r and 6 with discriminant

x, y and c respectively (see [KMRT, (7.4)]). Using cohomological invariants, it
is proven in [QT, Example 4.2] that the orthogonal involutions a p ® r ® 6

and g' (int(s) o p) ® r ® 9 are non isomorphic, and become isomorphic over

Ta,o - This example was inspired by Hoffmann's example [Ho, §4] of non-similar
8-dimensional quadratic forms that are half-neighbors where two 8-dimensional

quadratic forms q and qf over a field F are said to be half-neighbors if there
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exists scalars A, /z e F such that (A)#©(/z)#' is a 4-fold Pfister form. The relation
between the two constructions is given by triality [KMRT, §42], and Sivatski's
criterion for isomorphism after generic splitting of orthogonal involutions on

degree 8 algebras [Sil, Proposition 4].
In addition to being of independent interest, these results on isomorphism give

new insights on isotropy. In the next section we use Lewis and Barquero-Salavert's
Theorem 6.1 to give an affirmative answer to question (i') for some algebras of
low degree.

7. Isotropy of involutions on some algebras of low degree

In [ABGV, p. 240] Auel, Brüssel, Garibaldi and Vishne note that it is unknown
whether anisotropy is preserved under odd degree extensions for orthogonal
involutions on algebras of degree 12. We prove that this result holds and thus

give a second example of a positive answer to question (L) that does not reduce

to hyperbolicity.

Theorem 7.1. Let (A, a) be a degree 12 algebra with orthogonal involution over
F. Let L be a finite field extension of F of odd degree. If ox is isotropic, then

a is isotropic.

Proof. Since the cases where ind(A) 1 or ind(A) 2 were discussed above, we
need only consider the case where ind(A) 4. So, we may assume A M3(D),
for some division biquaternion algebra over F. Let us denote by 8 e fx/Fx2 the

discriminant of cr, and let F' F[X]/(X2 —8) be the corresponding quadratic
etale extension.

Assume a is isotropic over L. Since D remains division over L, the

anisotropic part of (.A,g)l has degree 4; therefore, it is isomorphic to {Dp, a),
for some orthogonal involution a of Dp The involution a being Witt-equivalent
to ox, it has discriminant 8 e Fx/Fx2 c Lx/Lx2 and by the exceptional

isomorphism [KMRT, (15.7)], we have

(DL,G) Nu/l(Q,-),
where V L[X]/{X2 — 8), and the quaternion algebra Q over V is the Clifford
algebra of a. Hence, since L' has odd degree over F', the Clifford algebra of
a itself is Brauer-equivalent to a quaternion algebra Q over F' such that Qy
is isomorphic either to Q or to its conjugate (see [DLT, prop. 3]). In both cases,

we have (Np'/f(Q, ))L — NU/L(Q,
To conclude, we will use the so-called fundamental relation [KMRT, (9.14)],

which shows that Npr/p(Q) is isomorphic to the division algebra D. Therefore,
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A M3(D) has a unique isotropic orthogonal involution cr0 with anisotropic

part Npr/p(Q,~). Moreover, the involutions a and cr0 are isomorphic over L.
Hence they are isomorphic over F by Lewis [Le, Proposition. 10] (see 6.1 above),
and a is isotropic.

One may proceed as in Tignol's appendix [Kar5, Appendix] to derive a

positive answer to question (L) for an algebra of degree 6 and exponent 2 with
unitary involution as a consequence of Theorem 7.1. Indeed, Tignol's construction
associates to a degree m algebra with K/F unitary involution (A, a) a degree
2m algebra with orthogonal involution (A, a) over the Laurent series field F((x)),
and he proves the anisotropy property holds for (Ä,ä) if it holds for (A, a).
Alternatively, one can prove this result by using an argument similar to that in
the proof of Theorem 7.1. We give the details of the latter approach below.

Theorem 7.2. Let (A, a) be an exponent 2 and degree 6 algebra with unitary
involution over F. Let L be a finite field extension of F of odd degree. If ox
is isotropic, then a is isotropic.

Proof. Let F' be the center of the algebra A and let L' LF'. Since the case

of a split algebra was discussed in 3 we may assume that A is non-split and

therefore that A M3(D) for some quaternion division algebra D over F'.
The involution ox is an L'/L unitary involution on Ap which is isotropic by
assumption. Since D remains division over Z/, the anisotropic part of (A,o)p
has degree 2 and therefore, it is isomorphic to (Dp',x) for some Lf/L -unitary
involution r on Dp'. By a result of Albert (see [KMRT, (2.22)]), there exists

a unique quaternion algebra Q over L such that (Dp',x) (Q, ~) ® (Z/, ~),

where ~ denotes the respective canonical involutions on the quaternion algebra

Q and the quadratic extension L' over L. Now, as explained in [KMRT, p.

129], the quaternion algebra Q is the discriminant algebra of (Z>//,t), hence it
is Brauer-equivalent to the discriminant algebra of {A, a)p. Since L/F has odd

degree, it follows that the discriminant algebra of (A, a) is Brauer equivalent
to a quaternion algebra go over F such that (Qo)p — Q- By [KMRT, Prop.

10.30], (Qo)f' is Brauer-equivalent to A, so A M3(Q0)f/ admits a unique
involution cr0 Witt-equivalent to (Qo, ~) <8>f The involutions a and cr0

are isomorphic over L, hence they are isomorphic over F by [Ba, Theorem 3.2],
hence a is isotropic.
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