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An elementary approach to dessins d'enfants and the
Grothendieck-Teichmüller group

Pierre Guillot

Abstract. We give an account of the theory of dessins d'enfants which is both elementary
and self-contained We describe the equivalence of many categories (graphs embedded

nicely on surfaces, finite sets with certain permutations, certain held extensions, and some
classes of algebraic curves), some of which are naturally endowed with an action of the

absolute Galois group of the rational held We prove that the action is faithful Eventually
we prove that Gal(Q/Q) embeds into the Grothendieck-Teichmuller group QTo introduced

by Drmfeld There are explicit approximations of QTo by hmte groups, and we hope to

encourage computations m this area

Our treatment includes a result which has not appeared m the literature yet the

action of Gal(Q/Q) on the subset of regular dessms - that is, those exhibiting maximal

symmetry - is also faithful
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Introduction

The story of dessins d'enfants (children's drawings) is best told in two
episodes.

The first side of the story is a surprising unification of different-looking
theories: graphs embedded nicely on surfaces, finite sets with certain permutations,
certain field extensions, and some classes of algebraic curves (some over C, some

over Q), all turn out to define equivalent categories. This result follows from
powerful and yet very classical theorems, mostly from the 19th century, such as

the correspondence between Riemann surfaces and their fields of meromorphic
functions (of course known to Riemann himself), or the basic properties of the

fundamental group (dating back to Poincare).

One of our goals with the present paper is to give an account of this theory
that sticks to elementary methods, as we believe it should. (For example we shall

never need to appeal to "Weil's rigidity criterion", as is most often done in the

literature on the subject; note that it is also possible, in fact, to read most of this

paper without any knowledge of algebraic curves.) Our development is moreover
as self-contained as is reasonable: that is, while this paper is not the place to

develop the theory of Riemann surfaces, Galois extensions or covering spaces
from scratch - we shall refer to basic textbooks for these - we give complete

arguments from there. Also, we have striven to state the results in terms of actual

equivalences of categories, a slick language which unfortunately is not always

employed in the usual sources.

The term dessins d'enfants was coined by Grothendieck in [Gr], in which a

vast programme was laid out, giving the theory a new thrust which is the second

side of the story we wish to tell. In a nutshell, some of the categories mentioned
above naturally carry an action of Gal(Q/Q), the absolute Galois group of the

rational field. This group therefore acts on the set of isomorphism classes of
objects in any of the equivalent categories; in particular one can define an action

of the absolute Galois group on graphs embedded on surfaces. In this situation

however, the nature of the Galois action is particularly mysterious - it is hoped
that, by studying it, light may be shed on the structure of Gal(Q/Q). It is the

opportunity to bring some kind of basic, visual geometry to bear in the study of
the absolute Galois group that makes dessins d'enfants - embedded graphs - so

attractive.

In this paper we explain carefully, again relying only on elementary methods,
how one defines the action, and how one proves that it is faithful. This last

property is clearly crucial if we are to have any hope of studying Gal(Q/Q) by

considering graphs. We devote some space to the search for invariants of dessins

belonging to the same Galois orbit, a major objective in the field.
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When a group acts faithfully on something, we can usually obtain an embedding
of it in some automorphism group. In our case, this leads to the Grothendieck-
Teichmüller group QT, first introduced by Drinfeld in [Dr], and proved to

contain Gal(Q/Q) by Ihara in [Ih]. While trying to describe Ihara's proof in any
detail would carry us beyond the scope of this paper, we present a complete,

elementary argument establishing that Gal(Q/Q) embeds into the slightly larger

group QTo also defined by Drinfeld. In fact we work with a group QT isomorphic
to QTo, and which is an inverse limit

QT ]imQT(n);
n

here QT(n) is a certain subgroup of Out(Hn) for an explicitly defined finite

group Hn. So describing Hn and QT(n) for some n large enough gives rough
information about Gal(Q/Q) - and it is possible to do so in finite time.

In turn, we shall see that understanding Hn amounts, in a sense, to

understanding all finite groups generated by two elements, whose order is less

than n. We land back on our feet: from the first part of this paper, those groups
are in one to one correspondence with some embedded graphs, called regular,

exhibiting maximal symmetry. The classification of "regular maps", as they are

sometimes called, is a classical topic which is still alive today.

Let us add a few informal comments of historical nature, not written by an expert
in the history of mathematics.

The origin of the subjet is the study of "maps", a word meaning graphs
embedded on surfaces in a certain way, the complement of the graph being a

disjoint union of topological discs which may be reminiscent of countries on a

map of the world. Attention has focused quickly on "regular maps", that is, those

for which the automorphism group is as large as possible. For example, "maps"
are mentioned in the 1957 book [Co] by Coxeter and Moser, and older references

can certainly be found. The 1978 paper [JS] by Jones and Singerman has gained

a lot of popularity; it gave the field stronger foundations, and already established

bijections between "maps" and combinatorial objects such as permutations on the

one hand, and also with compact Riemann surfaces, and thus complex algebraic

curves, on the other hand. For a recent survey on the classification of "maps",
see [Si].

Then came the Esquisse d'un programme [Gr], written by Grothendieck
between 1972 and 1984. Dessins can be seen as algebraic curves over C with
some extra structure (a morphism to P1 with ramification above 0,1 or oo only),
and Grothendieck knew that such a curve must be defined over Q. Since then,
this remark has been known as "the obvious part of Belyi's theorem" by people
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working in the field, even though it is not universally recognized as obvious,
and has little to do with Belyi (one of the first complete and rigorous proofs
is probably that by Wolfart [Wo]). However, Grothendieck was very impressed

by the simplicity and strength of a result by Belyi [Be] stating that, conversely,

any algebraic curve defined over Q can be equipped with a morphism as above

(which is nowadays called a Belyi map, while it has become common to speak of
Belyi's theorem to mean the equivalence of definability of Q on the one hand,

and the possibility of finding a Belyi map on the other hand). Thus the theory of
dessins encompasses all curves over Q, and Grothendieck pointed out that this

simple fact implied that the action of Gal(Q/Q) on dessins must be faithful.
The esquisse included many more ideas which will not be discussed here. For a

playful exposition of many examples of the Galois action on dessins, see [LZ].
Later, in 1990, Drinfeld defined QT in [Dr] and studied its action on braided

categories, but did not relate it explicitly to Gal(Q/Q) although the motivation
for the definition came from the esquisse. It was Ihara in 1994 [Ih] who proved
the existence of an embedding of Gal(Q/Q) into QT ; it is interesting to note

that, if dessins d'enfants were the original idea for Ihara's proof, they are a little
hidden behind the technicalities.

The Grothendieck-Teichmüller group has since been the object of much

research, quite often using the tools of quantum algebra in the spirit of Drinfeld's
original approach. See also [Fr] by Fresse, which establishes an interpretation
of QT in terms of operads.

Here is an outline of the paper. In Section 1, we introduce cell complexes, that

is, spaces obtained by glueing discs to bipartite graphs; when the result is a

topological surface, we have a dessin. In the same section we explain that dessins

are entirely determined by two permutations. In Section 2, we quote celebrated,
classical results that establish a number of equivalences of categories between that

of dessins and many others, mentioned above. In Section 3 we study the regularity
condition in detail. The Galois action is introduced in Section 4, where we also

present some concrete calculations. We show that the action is faithful. Finally in
Section 5 we prove that Gal(Q/Q) embeds into the group QT described above.

In the course of this final proof, we obtain seemingly for free the following
refinement: the action of Gal(Q/Q) on regular dessins is also faithful. This fact

follows mostly from a 1980 result by Jarden [Ja] (together with known material

on dessins), and it is surprising that it has not been mentioned in the literature

yet. While this work was in its last stages, I have learned from Gareth Jones that
the preprint [JG] by Andrei Jaikin-Zapirain and Gabino Gonzalez-Diez contains

generalizations of Jarden's theorem while the faithfulness of the Galois action
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on regular dessins is explicitly mentioned as a consequence (together with more

precise statements). Also in [BCG], a preprint by Ingrid Bauer, Fabrizio Catanese

and Fritz Grunewald, one finds the result stated.
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1. Dessins

In this section we describe the first category of interest to us, which is that of
graphs embedded on surfaces in a particularly nice way. These have been called

sometimes "maps" in the literature, a term which one should avoid if possible

given the other meaning of the word "map" in mathematics. We call them dessins.

The reader may be surprised by the number of pages devoted to this first

topic, and the level of details that we go into. Would it not suffice to say that the

objects we study are graphs embedded on surfaces, whose complement is a union
of open discs, perhaps with just a couple of technical conditions? (A topologist
would say "a CW-complex structure on a surface".)

This would not be appropriate, for several reasons. First and foremost, we
aim at proving certain equivalences of categories, eventually (see next section).
With the above definition, whether one takes as morphisms all continuous maps
between surfaces, or restricts attention to the "cellular" ones, in any case there

are simply too many morphisms taken into account (see for example [JS]). Below,

we get things just right.
Another reason is that we already present two categories in this section,

not just one: dessins are intimately related to finite sets endowed with certain

permutations. The two categories are equivalent and indeed so close that we

encourage the reader to always think of these two simultaneously; we take the

time to build the intuition for this.

Note also that our treatment is very general, including non-orientable dessins

as well as dessins on surfaces with boundary.

Finally, the material below is so elementary that it was possible to describe it
with absolutely no reference to textbooks, an opportunity we took. We think of
the objects defined in this section as the most down-to-earth of the paper, while
the other categories to be introduced later are here to shed light on dessins.

1.1. Bipartite graphs. We start with the definition of bipartite graphs, or
bigraphs for short, which are essentially graphs made of black and white vertices,
such that the edges only connect vertices of different colours. More formally, a

bigraph consists of

• a set B, the elements of which we call the black vertices,

• a set W, the elements of which we call the white vertices,
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• a set D, the elements of which we call the darts,

• two maps £: D —> B and IT: D —> W.

In most examples all of the above sets will be finite, but in general we only
specify a local finiteness condition, as follows. The degree of w e W is the

number of darts d such that 1V(d) w; the degree of b e B is the number of
darts d such that £{d) b. We require that all degrees be finite.

For example, the following picture will help us describe a bigraph.

Here B {b\,b2}, while W {uq, 1^2,^3} and D {d\, d2, d2, d4}. The

maps £ and IT satisfy, for example, £(d\) b\ and 1V(d\) w2. Note that

bigraphs according to this definition are naturally labeled, even though we will
often suppress the names of the vertices and darts in the pictures.

The notion of morphism of bigraphs is the obvious one: a morphism
between ^ (B, W, D, <S, IT) and (B\ Df, IT') is given by three

maps B —> B', W —> W' and A \ D ^ D' which are compatible with
the maps <S, IT, 1T/. Isomorphisms are invertible morphisms, unsurprisingly.
(Pedantically, one could define an unlabeled bigraph to be an isomorphism class

of bigraphs.)
To a bigraph ^ we may associate a topological space \§\, by attaching

intervals to discrete points according to the maps £ and IT; in the above

example, and in all others, it will look just like the picture. To this end, take for
each d e D a copy /j of the unit interval [0,1] with its usual topology. Then

consider

O wi

y LI u

with the disjoint union topology, and

x r
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(Here B and W are given the discrete topology.) On X there is an equivalence
relation corresponding to the identifications imposed by the maps B and 3T.

In other words, the equivalence class [b\ of b e B is such that [b\ n {0}
if B (d) b and [b\ n /j 0 otherwise, while [b\HB {b} and [b\HW 0;
the description of the equivalence class [w] when w e W is analogous,
with [w] n Id {1} precisely when W(d) w. All the other equivalence
classes are singletons. The space \§\ is the set of equivalence classes, with the

quotient topology. Clearly, an isomorphism of graphs induces a homeomorphism
between their topological realizations.

Finally, we point out that usual graphs (the reader may pick their favorite

definition) can be seen as bigraphs by "inserting a white vertex inside each

edge". We will not formalize this here, although it is very easy. In what follows

we officially define a graph to be a bigraph in which all white vertices have

degree precisely 2; a pair of darts with a common white vertex form an edge.

The next picture, on which you see four edges, summarizes this.

1.2. Cell complexes. Suppose a bigraph 1? is given. A loop on ^ is a sequence
of darts describing a closed path on ü alternating between black and white
vertices. More precisely, a loop is a tuple

such that 3^(^21+i) 3^(^+2) anc* <S(^2j+2) <S(<^+3), for 0 <i < n — 1,

where d2n+i is to be understood as d\. We think of this loop as starting
and ending with the black vertex B(d\), and visiting along the way the points
3T(ö?2), <S(tf?3), 3T(ö?4), B (d5), 3V(de),... (It is a little surprising to adopt such

a convention, that loops always start at a black vertex, but it does simplify what

follows.)

o

(d\ ,d2,..., d2n) £ D2n

For example, consider the following square:
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On this bigraph we have a loop d$, df) for example. Note that

d2,d{) is also a loop, as well as (d\,d\).
Loops on ü form a set We have reached the definition of a cell

complex (or 2-cell complex, for emphasis). This consists of

• a bigraph i/,
• a set F, the elements of which we call the faces,

• a map 9: F -> L{§), called the boundary map.

The definition of morphisms between cell complexes will wait a little.

A cell complex £? also has a topological realization [C\: briefly, one attaches

closed discs to the space \§\ using the specified boundary maps. In more details,
for each f e F we pick a copy D/ of the unit disc

D {z e C : |z| < 1}.

Consider then

Zo — 1J D/
f*F

and

Z \S\ U Z0.

We define [C\ to be the following identification space of Z, with the quotient
topology. Fix / g F and let 9/ (d\, d2,..., d2n) • We put co g D/.
The discussion will be easier to understand with a picture:
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The letters are simply here to indicate the intended glueing.
Let I [0,1] and consider the homeomorphism

A,: / — [<v2l,w2l+1],

where [a>21, a>2l+1] denotes the circular arc from or1 to a>2l+1, defined by ht (t)
0)2l+t. We shall combine it with the continuous map

\S\

which is obtained as the identification I Id2l+X followed by the canonical

map Id2i+\ ~~H^I (see ^e definition of \§\). We can now request, for all t e /,
the identification of gt (t) and ht (t), these being both points of Z.

Similarly there is an identification of the arc [o)2\o)2l~l] with the image
of Id2l We prescribe no more identifications, and this completes the definition
of pei.

Example 1.1. Let us return to the square as above. We add one face /,
with 9/ (di, d2, tf?3, d4). We obtain a complex £? such that \*\ is homeomorphic
to the square [0,1] x [0,1], and which we represent as follows:
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We shall often place a * inside the faces, even when they are not labeled, to
remind the reader to mentally fill in a disc. The reader is invited to contemplate
how the complex obtained by taking, say, 9/ (d2instead, produces
a homeomorphic realization. These two complexes ought to be isomorphic, when

we have defined what isomorphisms are.

Example 1.2. This example will be of more importance later than is immediately
apparent. Let B,W,D and F all have one element, say b,w,d and /
respectively; and let 9/ (d,d). Then |£?| is homeomorphic to the sphere S2.

This example shows why we used discs rather than polygons: we may very
well have to deal with digons.

Example 1.3. It is possible to convey a great deal of information by pictures
alone, and with this example we explore such shorthands. Consider for example:

Q

1

2 6

3 5

4

O

Here we use integers to label the darts. We can see this picture as depicting
a cell complex with two faces, having boundary (2,3) and (5,6) respectively.



304 P. Guillot

Should we choose to do so, there would be little ambiguity in informing the

reader that we mean for there to be a third face "on the outside", hoping that the

boundary (1,1,2,3,4,4,5,6) (or equivalent) will be understood. The centre of
that face is placed "at infinity", that is, we think of the plane as the sphere S1

with a point removed via stereographic projection, and that point is the missing *.
Of course with these three faces, one has |£?| homeomorphic to S2.

Suppose we were to draw the following picture, and specify that there is a

third face "at infinity" (or "on the outside"):

This is probably enough information for the reader to understand which cell

complex we mean. (It has the same underlying bigraph as the previous one,
but the cell complexes are not isomorphic). The topological realization, again a

sphere, is represented below.

Example 1.4. It is harder to draw pictures in the following case. Take B

{b\,b2,b?)} and W {uq, w2, W3}, and add darts so that 1/ is "the complete

bipartite graph on 3 + 3 vertices": that is, place a dart between each bt and

each Wj for 1 < i,j S 3. Since there are no multiple darts between any two
vertices in this bigraph, we can designate a dart by its endpoints; we may also

describe a loop by simply giving the list of vertices that it visits. With this
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convention, we add four faces:

/i through bi,W2,b3,W3,b2,wi,

f2 through bi9W2,b2,W3,

f3 through b2,W2,b3,wi,

/4 through b\, W3, Z?3, w\

(Each of these returns to its starting point in the end.) The topological realization

[G\ is homeomorphic to the projective plane MP2. We will show this with
a picture:

\h

"2(J &2 */i

W3 0^— »< O IÜ1\ '

Here we see MP2 as the unit disc D with z identified with —z whenever |z|

1; we caution that the dotted arcs, indicating the boundary of the unit circle, are

not darts.

Here are some very basic properties of the geometric realization.

Proposition 1.5. (1) The space [G\ is connected if and only if \§\ is.

(2) The space [\ is compact if and only if the complex is finite (ie B, W, D
and F are all finite).

Proof. (1) It is quite easy to prove this directly, after showing that each path

on |£?| is homotopic to one lying on \§\. The reader who has recognized that the

space |£?| is, by definition, the realization of a CW-complex, whose 1-skeleton

is \§\, will see the result as a consequence of the cellular approximation theorem

([Br], Theorem 11.4).

(2) By construction there is a quotient map

q: K Y\}B\}w\JZ0^\-e\
where the notation is as above. Clearly K is compact if the complex is finite,
so q{K) |^| must be compact, too, and we have proved that the condition is

sufficient.
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To see that it is necessary as well, one can argue that the map q is proper,
or else use elementary arguments as follows. We show that the faces must be

finite in number when [C\ is compact, and the reader will do similarly with the

vertices and darts.

For each / e F, consider the open set Uf C K whose complement is the

union of the closed discs of radius \ in all the discs Dfr for f'^f (this

complement is closed by definition of the disjoint union topology). By definition
of the quotient topology q(Uf) is open in \\, and the various open sets q(Uf)
form a cover of \U\ (each q(Uf) is obtained by removing a closed disc from
each face of \U\ but one). By compactness, finitely many of them will cover the

space, and so finitely many of the open sets Uf will cover K. It follows that F
is finite.

1.3. Morphisms between cell complexes; triangulations. Let us start with
a provisional definition: a naive morphism between U (ß,F,d) and U'
{ß'.F'.d') is given by a morphism H iF together with a map <J>: F -> F'
such that 9/0(/) A(9/) for / e F; here the map A \ D ^ Dr has been

extended to the set L(ß) in the obvious way. With this definition, it is clear that
naive morphisms induce continuous maps between the topological realizations.

However this definition does not allow enough morphisms. Let us examine

this.

Example 1.6. We return to Example 1.1, so we consider the cell complex U

depicted below:

Here 9/ (di, d4). Now form a complex U' by changing only 9 to 9/,

with 9'/ {di,d\,d4,d?). There is indeed a naive isomorphism between U

and given by "the reflection in the line joining the white vertices".

However, suppose now that we equip U with two faces f\ and f2 (leaving
the bigraph unchanged) with 9/i (d\,d2,d?),d4) 9/2; then \U\ is the
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sphere S2. On the other hand consider C having the same bigraph, and two
faces satisfying df{ d2, d4) and 9/2 (d2, d\,d2, d4). Then it is readily
checked that there is no naive isomorphism between £? and C.

This is disappointing, as we would like to see these two as essentially "the
same" complexes. More generally we would like to think of the boundaries of
the faces in a cell complex as not having a distinguished (black) starting point,
and not having a particular direction.

The following better definition will be sufficient in many situations. A
lax morphism between £? (ß,F, 9) and yCf (ßf,Ff,df) is given by a

morphism i? -> *§' together with a map 0: F -> F' with the following property.
If / e F with 9/ (d\,..., d2n), and if 9/0(/) (d[,..., d'2m), then

A ({d1,...,d2n}) {d[9...,dlm}9

where A is the map D -> D'. So naive morphisms are lax morphisms, but not

conversely.

Example 1.7. Resuming the notation of the last example, the identity on 1/ and

the bijection F -> F', f\ i-> //, /2 i-> /2, together define a lax isomorphism
between £? and C.

It is not immediate how lax morphisms can be used to induce continuous

maps. Moreover, the following phenomenon must be observed.

Example 1.8. We build a bigraph H with only one black vertex, one white vertex,
and two darts d\ and d2 between them; \§\ is a circle. Turn this into a cell

complex £? by adding one face / with 9/ (d\, d2, d\, d2). The topological
realization [C\ is obtained by taking a copy of the unit disc D, and identifying z
and —z when |z| 1: in other words, |£?| is the real projective plane MP2.

Now consider the map z^-z, from D to itself, and factor it through RP2;
it gives a self-homeomorphism of |£?|. The latter cannot possibly be induced

by a lax morphism, for it is the identity on \§\: to define a corresponding lax

isomorphism we would have to define the self maps of B, W and F to be the

identity. Assuming that we had chosen a procedure to get a continuous map from
a lax morphism, surely the identity would induce the identity.

However the said self-homeomorphism of RP2 is simple enough that we
would like to see it corresponding to an isomorphism of

Our troubles seem to arise when repeated darts show up in the boundary
of a single face. We solve the problem by subdividing the faces, obtaining the

canonical triangulation of our objects.
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Let ^ be a cell complex. We may triangulate the faces of \*\ by adding a

point in the interior of each face (think of the point marked * in the pictures), and

connecting it to the vertices on the boundary. More precisely, for each face /,
with 9/ (di,..., d2n), we identify 2n subspaces of \\, each homeomorphic
to a triangle, as the images under the canonical quotient map of the sectors

obtained on the unit disc in the fashion described on the picture below for n 3.

We denote them tf with 1 < i < 2n.

(As before the labels dt indicate the intended gluing, while the sector bearing
the name tf will map to that subspace under the quotient map.) The space [C\ is

thus triangulated, yet it is not necessarily (the realization of) a simplicial complex,
as distinct triangles may have the same set of vertices, as in Example 1.2. This same

example exhibits another relevant pathology, namely that the disc corresponding
to a face might well map to something which is not homeomorphic to a disc

anymore (viz. the sphere), while the triangles actually cut the space |£?| into

"easy" pieces. It also has particularly nice combinatorial properties.
We write T for the set of all triangles in the complex. We think of T as

an indexing set, much like B, W, D or F. One can choose to adopt a more
combinatorial approach, letting t{, t(n be (distinct) symbols attached to
the face / whose boundary is (d\,..., d2n), with T the set of all symbols.
There is a map <©: T -> D which associates tf with £)(tf) dt, there is

also a map F: T -> F with F(tf) /. We will gradually use more and

more geometric terms when referring to the triangles, but it is always possible
to translate them into combinatorial relations.

Each t e T has vertices which we may call •, o and * unambiguously. Its
sides will be called • — o, * — • and * — o. Each t also has a neighbouring
triangle obtained by reflecting in the * — • side; call it a(t). Likewise, we may
reflect in the * — o side and obtain a neighbouring triangle, which we call c(t).
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In other words, T comes equipped with two permutations a and c, of order two
and having no fixed points. (In particular if T is finite it has even cardinality.)
The notation a,c is standard, and there is a third permutation b coming up soon.

Later we will write ta and tc instead of a(t) and c(t), see Remark 1.15.

Example 1.9. In Example 1.2, there are two triangles, say T {1,2}, and a c

the transposition (12).

Example 1.10. Let us consider the second complex from Example 1.3, that is let
us have a look at

Let us first assume that there is no "outside face", so let the the triangles be

numbered from 1 to 6. The permutation a is then

a (14) (23) (56),

while

c (12) (34) (56).

If one adds a face at infinity, there are six new triangles, and the permutations a
and c change accordingly. We leave this as an exercise.

We have at long last arrived at the official definition of a morphism
between £? (ß,F, 9) and *' We define this to be given by
a morphism H (thus including a map A \ D D') and a map 0: T Tf
which

(1) verifies that for each triangle t, one has <0'(@(£)) A(<©(£)),

(2) is compatible with the permutations a and c, that is ®(a(t)) a(®(t))
and 0(c(t)) c(0(O).

It is immediate that morphisms induce continuous maps between the topological
realizations. These continuous maps restrict to homeomorphisms between the

triangles.
Should this definition appear too complicated, we hasten to add:
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Lemma 1.11. Let * be a cell complex such that, for each face f with 9/
(di,..., d2n)y the darts d\,..., distinct. Let *' be another cell complex
with the same property. Then any lax morphism between £? and *' defines a

unique morphism, characterized by the property that F(&(t)) &(F (t)) for
every triangle t.

(Recall that lax morphisms have a map <J> between the sets of faces, and

morphisms have a map 0 between the sets of triangles.)

Many cell complexes in practice satisfy the property stated in the lemma, and

for these we specify morphisms by giving maps B -> B', W -> W', D -> D',
and F -> F'.

Proof. Any triangle t in ^ is now entirely determined by the face F(t) and the

dart <0(0; the same can be said of triangles in *'. So 0(0 must be defined

as the only triangle t' such that F ft') and F>(t') are appropriate (in symbols

F(tf) ®(F(t)) and S)(t') A(£>(t))). The definition of lax morphisms

guarantees the existence of t'.
That 0 is compatible with a and c is automatic here. Indeed a(t) is the only

triangle such that F(a(t)) F(t) and such that D(a(t)) has the same black
vertex as F>(t). An analogous property is true of both S(a(t)) and a(0(t)),
which must be equal. Likewise for c.

Example 1.12. We come back to Example 1.8. The face / is divided into 4

triangles, say We can define a self-isomorphism of £? by 0(O tl+2
(indices mod 4), and everything else the identity. The induced continuous

map [\ |£?| is the one we were after (once some identification of \*\
with RP2 is made and fixed).

We are certainly not claiming that any continuous map [\ or even

any homeomorphism, will be induced by a morphism £? *'. For a silly
example, think of the map z i-> |z|z from the unit disc D to itself, which

moves points a little closer to the origin; it is easy to imagine a cell complex £?

with [G\ ^ D such that no self-isomorphism can induce that homeomorphism.
In fact, whenever a self-homeomorphism of [C\ leaves the triangles stable, then

the best approximation of it which we can produce with an automorphism of £?

is the identity.

However, the equivalence of categories below will show that we have "enough"
morphisms, in a sense.
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1.4. Surfaces. Here we adress a natural question: under what conditions on U

is [C\ a surface (topological manifold of dimension 2), or a surface-with-

boundary?

A condition springing to mind is that each dart should be on the boundary
of precisely two faces (one or two faces for surfaces-with-boundary). However
this will not suffice, as we may well end up with "two discs touching at their
centres", that is, a portion of |U| might look like this:

(On this picture you are meant to see a little bit of six faces, three at the

top and three at the bottom, all touching at the black vertex; each visible dart is

on the boundary of precisely two faces, yet |U| is not a manifold near the black

vertex.)
This is the only pathology that can really occur. To formulate the condition

on U, here is some terminology. We say that a dart d is on the boundary of
the face / if, of course, d shows up in the tuple 9/; since d may appear
several times in 9/, we define its multiplicity with respect to / accordingly.
We say that two darts d and df appear consecutively in / if 9/ contains

either the sequence d,df or d\d. In this case d and df have an endpoint
in common; conversely if they do have a common point, say a black one, then

they appear consecutively in / if and only if there are triangles t and tf
with !F(t) 3r{tf) / such that d <0(0, dr £)(t'), and t, t' are the image
of one another under the permutation a (the symmetry in the * —• side). Use c

if the common point is white.

Now let us fix a vertex, say a black one b e B. It may be surprising at first
that the condition that follows is in terms of graphs; but it is the quickest way to
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phrase things. We take <S~l(b), the set of darts whose black vertex is b, as the

set of vertices of a graph ^, and called the connectivity graph at b. We place

an edge between d and d' whenever they appear consecutively in some face /.
Note that this may create loops in ^ as d d' is not ruled out.

We note that ^ has finitely many vertices. If we assume that the darts in ^
are on the boundary of no more than two faces, counting multiplicities, then it
follows that each vertex in ^ is connected to at most two others (corresponding
to the images under a of the two triangles, at most, which may have the dart as

a side). Thus when ^ is connected, it is either a straight path or a circle.
There is a similar discussion involving a graph *w for a white vertex w e W.
Here is an example of complex with the connectivity graphs drawn:

Proposition 1.13. Let * be a complex. Then [\ is a topological surface if and

only if the following conditions are met:

(1) each vertex has positive degree,

(2) each dart is on the boundary of precisely two faces, counting multiplicities,

(3) all the connectivity graphs are connected.

Necessary and sufficient conditions for [G\ to be a surface-with-boundary are
obtained by replacing (2) with the condition that each dart is on the boundary

of either one or two faces, counting multiplicities.

This should be obvious at this point, and is left as an exercise.



Dessins d'enfants and the Grothendieck-Teichmüller group 313

We have reached the most important definition in this section. A dessin is a

complex G such that [C\ is a surface (possibly with boundary). Whenever S is a

topological surface, a dessin on S is a cell complex G together with a specified

homeomorphism h: |G| —> S. Several examples of dessins on the sphere have

been given.
Dessins have been called hypermaps and dessins d'enfants in the literature.

When all the white vertices have degree precisely two, we call a dessin clean.

Clean dessins are sometimes called maps in the literature.

1.5. More permutations. Let G be a dessin. Each triangle t e T determines a

dart d £)(t), and d belongs to one or two triangles (exactly two when [C\
has no boundary). We may thus define a permutation b of T by requiring

It if no other triangle has d as a side,

tr if tr has d as a side and tr ^ t.

Theorem 1.14. Let T be a finite set endowed with three permutations a, b, c,
each of order two, such that a and c have no fixed points. Then there exists

a dessin G, unique up to unique isomorphism, such that T and a,b,c can be

identified with the set of triangles of G with the permutations described above.

Later we will rephrase this as an equivalence of categories (with the proof
below containing all that is necessary).

Remark 1.15. It is time for us to adopt a convention about groups of permutations.
If X is any set, and S(X) is the set of permutations of X, there are (at least)

two naturals ways of turning S(X) into a group. When a, x e S(X), we choose

to define ax to be the permutation x i-> r(a(x)). Accordingly, we will write xa
instead of a(x), so as to obtain the formula xaT (xa)T.

With this convention the group S(X) acts on X on the right. This will simplify
the discussion later when we bring in covering spaces (personal preference is also

involved here).

Proof. Let G be the group of permutations of T generated by a, b, and c,
let Gab be the subgroup generated by a and b alone, and similarly define Gbc,

Gac, Ga, Gb and Gc. Now put

B T/Gab W T/ Gbc D T/Gb F T/Gac

The maps <S: D ^ B and IT: D W are taken to be the obvious ones, and we

already have a bigraph i/. It remains to define the boundary map 9: F L(ß)
in order to define a cell complex.
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So let / e F, and let t e T represent / (the different choices we can make

for t will all lead to isomorphic complexes). Consider the elements t, tc, tca,
tcac fcaca

^ alternating between a and c. Since T is finite, there can be

only finitely many distinct points created by this process. Using the fact that a
and c are of order two, and without fixed points, it is a simple exercise to check

that the following list exhausts the orbit of t under Gac:

^ j.c j.ca jcac—acacac

(There is an even number of elements, and the last one ends with a c.) We then

let 9/ (d\,..., d2n), where d2, is the G& -orbit of t, tc,
We have thus defined a cell complex G out of T together with a, b and c.

It is a matter of checking the definitions to verify that T can be identified with
the set of triangles of G, in a way that is compatible with all the structure - in

particular, the map T -> T/G^ is the map <© which to a triangle t associates

the unique dart which is a side of t, and from the fact that b has order two we

see that G satisfies condition (2) of Proposition 1.13 (while (1) is obvious).
Let us examine condition (3). Any two darts in U having the same black

endpoint in p e B can be represented mod G^ respectively by t and tw where w

is a word in a and L As we read the letters of w from left to right and think
of the successive darts obtained from t, each occurrence of a replaces a dart
with a consecutive one, by definition; occurrences of b do not change the dart.

So Gp is connected, and G is a dessin.

The uniqueness statement, to which we turn, is almost tautological given our
definition of morphisms. Suppose G and G' are dessins with sets of triangles
written Te and 7^/, such that there are equivariant bijections l\ 7^ T
and i'\ TV T. Then 0 (O-1 ol is an equivariant bijection between Tc
and TV • Since B, W and D can be identified with certain orbits within Tc,
and similarly with B', W' and TU, the maps B -> B', W ->W' and D -> D'
must and can be defined as being induced from 0. Hence there is a unique
isomorphism between G and G'.

We have learned something in the course of this proof:

Corollary 1.16 (of the proof of Theorem 1.14). Let G and G' be dessins. Then a

morphism G ^G' defines, and is uniquely defined by, a map 0: T T' which
is compatible with the permutations a,b and c.

Proof. By definition a morphism furnishes a map 0: T —> T' which is compatible
with a and c, and satisfies an extra condition of compatibility with <£); however

given the definition of b, this condition is equivalent to the equivariance of T
with respect to b.
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Conversely if we only have 0, equivariant with respect to all three of a, b,

c, we can complete it to a fully fledged morphism G as in the last proof,

The group G introduced in the proof will be called the full cartographic

group of G (below we will define another group called the cartographic group).

Lemma 1.17. Let G he a compact dessin. Then |G| is connected if and only if
the full cartographic group acts transitively on the set of triangles.

Proof Let T\, T2, be the orbits of G in T, and let Xt c [C\ be the union
of the triangles in Tt. Each Xl is compact as a finite union of compact triangles,
hence Xt is closed in [C\. Also, |G| is the union of the Xfs, since a dessin

does not have isolated vertices (condition (1) above).

Thus we merely have to prove that the Xt 's are disjoint. However when two

triangles intersect, they do so along an edge, and then an element of G takes

one to the other.

1.6. Orientations.

Proposition 1.18. Let G he a compact, connected dessin. Then the surface |G| is

orientahle if and only if it is possible to assign a colour to each triangle, black

or white, in such a way that two triangles having a side in common are never of
the same colour.

Proof. We give a proof in the case when there is no boundary, leaving the general

case as an exercise. We use some standard results in topology, first and foremost:

|G| is orientable if and only if

To compute this group we use cellular homology. More precisely, we exploit the

CW-complex structure on |G| for which the two-cells are the triangles (of course
this space also has a CW-complex in which the two-cells are the faces, but this
is not relevant here). Recall from an earlier remark that simplicial homology is

not directly applicable.
We need to orient the triangles, and thus declare that the positive orientation

is * — • — o; likewise, we decide to orient the 1-cells in such a fashion that * — •,
• — o and o — are oriented from the first named 0-cell to the second. Writing 9

for the boundary in cellular homology, we have then

identifying B, W and D with certain orbits in T.

//2(|G|,Z)^0.

(*) dt [ - •] + [• - o] + [o - ]



316 P. Guillot

in notation which we hope is suggestive.
So let us assume that there is a 2-chain

(**) a ^ ntt 0,
teT

where nt e Z, such that da 0. Suppose t is such that nt ^ 0. From (*), we
know the coefficients of the neighbours of ^ in a, namely

JT ftt — JT -j-b — n fC — n f

Since the full cartographic group acts transitively on T by the last lemma, it
follows that for each tf e T, the coefficient nt' is determined by nt, and in
fact nt'

Now let triangles tf such that ntr > 0 be black, and let the others be white. We

have coloured the triangles as requested. The converse is no more difficult: given
the colours, let nt 1 if t is black and —1 otherwise. Then the 2-chain defined

by (**) is non-zero and has zero boundary, so the homology is non-zero.

When [\ is orientable, we will call an orientation of ^ a colouring as

above; there are precisely two orientations on a connected, orientable dessin. An
isomorphism will be said to preserve orientations when it sends black triangles
to black triangles. Note the following:

Lemma 1.19. A morphism *C —> where "6? and are oriented dessins,

preserves the orientations if and only if 0 sends black triangles to black triangles,
and white triangles to white triangles.

1.7. More permutations. Suppose that ^ is a dessin, and suppose that the

surface [\ is oriented, and has no boundary. Then each dart is the intersection
of precisely two triangles, one black and one white. The next remark is worth

stating as a lemma for emphasis:

Lemma 1.20. When IS is oriented, without boundary, there is a bijection between

the darts and black triangles.

Of course there is also a bijection between the darts and the white triangles,
on which we comment below.

Now consider the permutations a ab, a be and f ca. Each preserves
the subset of T comprised by the black triangles, so we may see a, a and f
as permutations of D. It is immediate that they satisfy aotf 1, the identity
permutation.
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Let us draw a little picture to get a geometric understanding of these

permutations. We adopt the following convention: when we draw a portion of an

oriented dessin, we represent the black triangles in such a way that going from *
to • to o rotates us counterclockwise. (If we arrange this for one black triangle,
and the portion of the dessin really is planar, that is embeds into the plane, then

all black triangles will have this property).

(Recall our convention on permutations as per Remark 1.15.)

On this picture, we see that our intuition for a should be that it takes a dart

to the next one in the rotation around its black vertex, going counterclockwise.
Likewise a is interpreted as the rotation around the white vertex of the dart. As
for 0, seen as a permutation of T, it takes a black triangle to the next one on
the same face, going counterclockwise. This can be made into more than just an

intuition: if 9/ (d\,... ,d2n)^ and if tf is black, then ^{dt) dl+2. Note that

if the triangle tf is white, then </> takes it to tf_2. In particular if one changes
the orientation of the dessin, the rotation </> changes direction, as do a and a.

This is also reflected algebraically in the relation b~1ab cr_1 (which
translates the fact that a2 1): conjugating by b amounts to swapping the roles

of the black and white triangles (or to identifying D with the white triangles
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instead of the blacks), and that turns a into a 1. This relation is important in
the proof of the following.

Theorem 1.21. Let D be a finite set endowed with three permutations a, a, f
such that aotfi 1. Then there exists a dessin *, oriented and without boundary,

unique up to unique orientation-preserving isomorphism, such that D and a, a,
(j) can be identified with the set of darts of £? with the permutations described
above.

Proof Let T Dx{=bl}. We extend a to a permutation ö on T by the formula

a{d, e) (<as(d), e),

and likewise a induces ä on T by

ä(d, s) (as(d), s).

We also define a permutation b of T by

b{d, e) (d, —s).

Putting a ab and c äb, it is immediate that a and c are of order 2 and

have no fixed points.

By Theorem 1.14, the set T together with a, b and c defines a dessin

Since b has no fixed points, £? has no boundary. Calling the triangles in Dx{l}
black, and those in D x {—1} white, we see that £? is naturally oriented.

The remaining statements are straightforward to prove.

Remark 1.22. We point out that one may prove Theorem 1.21 without appealing
to Theorem 1.14 first: one can identify B, resp W, resp F, with the cycles of a,
resp. a, resp <p, and proceed from there. We leave this to the reader.

In particular, we may identify the topological surface |£?| easily: since it is

compact, orientable, and without boundary, it is determined by its genus or its
Euler characteristic. The latter is

X(\^\) nG +na-n +n(f),

where n is the cardinality of D (the number of darts), while nG, resp. na, resp.

«0 is the number of cycles of cr, resp. a, resp. <fi.

Note that the group of permutations of D generated by a, a and f is called
the cartographic group of C, or sometimes the monodromy group.



Dessms d'enfants and the Grothendieck-Teichmuller group 319

1.8. Categories. Next we promote Theorems 1.14 and 1.21 to equivalence of
categories. We write Qzssxxxs for the category whose objects are compact, oriented
dessins without boundary, and whose morphisms are the orientation-preserving

maps of cell complexes. Also, ilQzssms will be the category whose objects

are compact dessins without boundary (possibly on non-orientable surfaces), and

whose morphisms are all morphisms of cell complexes.
We leave to the reader the task of proving the next theorem based on

Theorem 1.14 and Corollary 1.16, as well as Theorem 1.21.

Theorem 1.23. Consider the category &zt$a,b,c whose objects are the finite sets T

equipped with three distinguished permutations a, b, c, each of order two and

having no fixed points, and whose arrows are the equivariant maps. Then the

assigment C -> T extends to an equivalence of categories between iCDeaama

and 6et$a,b,c-

Likewise, consider the category whose objects are the finite sets D

equipped with three distinguished permutations a, a, f satisfying aotf 1,

and whose arrows are the equivariant maps. Then the assigment C -> D extends

to an equivalence of categories between Dzssxxxs and

If one removes the requirement that b have no fixed point, in the first part, one
obtains a category equivalent to that of compact dessins possibly with boundary.

1.9. The isomorphism classes. It is very easy for us now to describe the set of
isomorphism classes of dessins. There are different approaches in the literature
and we try to give several points of view.

Proposition 1.24. (1) A dessin C in Dzssxxxs determines, and can be recon¬

structed from, an integer n, a subgroup G of Sn, and two distinguished

generators a and a for G. Two sets of data (n,G,a,ot) and (nf,G',a',otf)
determine isomorphic dessins if and only if n n' and there is a conjugation
in Sn taking a to a' and a to a' (and in particular G to G').

(2) The set of isomorphism classes of connected dessins in Qzssxxxs is in bijection
with the set of conjugacy classes of subgroups of finite index in the free

group on two generators (a, a).
(3) Any connected dessin in Qzssxxxs determines, and can reconstructed from, a

finite group G with two distinguished generators a and a, and a subgroup H
such that the intersection of all the conjugates of H in G is trivial. We

obtain isomorphic dessins from (G,a,a, H) and (Gf,a',otf, Hf) if and only

if there is an isomorphism G —> G' taking a to a', ot to ot', and H to a

conjugate of H'.
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Proof At this point this is very easy. (1) is left as an exercise. Here are some

indications with (2): A connected object amounts to a finite set X with a

transitive, right action of {a, a), so X must be isomorphic to K\(a,a), where

an isomorphism is obtained by choosing a base-point in X (whose stabilizer
is K); different choices lead to conjugate subgroups. (2) follows easily.

We turn to (3). It is clear that a connected object X is isomorphic to H\G
where G is the cartographic group and H is the stabilizer of some point; elements

in the intersection of all conjugates of H stabilize all the points of A, and so

must be trivial since G is by definition a subgroup of S(X). Conversely any

object of the form //\G, with the actions of a and a by multiplication on
the right, can be seen in 6eth is connected since a and a generate G;
and its cartographic group must be G itself given the condition on H. What
is more, there is a canonical map /: (<r,a) G sending a and a to the

elements with the same name in G, and the inverse image K f~x(H) is the

subgroup corresponding to the dessin as in (2), while the intersection N of all
the conjugates of K is the kernel of /. Thus we deduce the rest of (3) from
(2).

In §3 we shall come back to these questions (see §3.2 in particular). For the

moment let us add that it is common, in the literature, to pay special attention to

certain dessins for which some condition on the order of a, a and f is prescribed.
For example, those interested in clean dessins very often require a2 1. Assuming
that we are interested in the dessins for which, in addition, the order of a divides

a fixed integer k, and that of f divides I, then the objects are in bijection with
the conjugacy classes of subgroups of finite index in

Tk,i (<J,ot,(j) : ak ot2 <fil 1, aotf 1),

usually called a triangle group. (We point out that, in doing so, we include more
than the clean dessins, for a may have fixed points.)

The variant in the unoriented case is as follows.

Proposition 1.25. Consider the group {a,b,c : a2 b2 c2 1) C2 * C2 * C2,

the free product of three copies of the group of order 2. The isomorphism classes

of connected objects in ifD zssms are in bijection with the conjugacy classes of
subgroups H of C2* C2* C2 having finite index, and with the property that no

conjugate of H contains any of a, b, c.

Note that the last condition rephrases the fact that the actions of a, b and c

on H\C2 * C2 * C2 (on the right) have no fixed points.
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2. Various categories equivalent to Bessins

We proceed to describe a number of categories which are equivalent to
the category Qzssxns of dessms - the word dessm will henceforth mean

compact, oriented dessm without boundary These should be familiar to the

reader, and there will be little need for long descriptions of the objects and

morphisms
As for proving the equivalences, it will be a matter of quoting celebrated

results the equivalence between covering spaces and sets with an action of the

fundamental group, the equivalence between Riemann surfaces and their fields of
meromorphic functions, the equivalence between algebraic curves and their fields

of rational functions as well as some elementary Galois theory, which we have

taken from Volklem's book [Vo] There is a little work left for us, but we hope

to convince the reader that the theory up to here is relatively easy - given the

classics' What makes all this quite deep is the combination of strong theorems

m many different branches of mathematics

2.1. Ramified covers. Let S and R be compact topological surfaces A
map p S ^ R is a ramified cover if there exists for each s e S a couple of charts,
centered around s and p(s) respectively, m which the map p becomes

for some integer e > 1 called the ramification index at s (this index at s is

well-defined, for p cannot look like z^ze for e' e m other charts, as can
be seen by examining how-many-to-1 the map is)

Examples are provided by complex surfaces if S and R have complex
structures, and if p is analytic (holomorphic), then it is a basic result from
complex analysis that p must be a ramified cover m the above sense (as long as

it is not constant on any connected component of S) However we postpone all

complex analysis for a while
Instead, we can obtain examples (and m fact all examples) by the following

considerations The set of s e S such that the ramification index e is > 1 is

visibly discrete m S and closed, so it is finite by compactness Its image m R

under p is called the ramification set and written Rr It follows that the restriction

p S \ f~l{Rr) —> Rr

is a finite covering m the traditional sense Now, it is a classical result that

one can go the other way around namely, start with a compact topological
surface R, let Rr denote a finite subset of R, and let p U —> R \ Rr denote

a finite covering map, then one can construct a compact surface S together with
a ramified cover p S -> R such that U identifies with /?_1(R\Rr) and p
identifies with the restriction of p The ramification set of p is then contained



322 P. Guillot

in Rr. See §5 of [Vö] for all the details in the case R P1 (the general case

is no different).

Thus when the ramification set is constrained once and for all to be a subset of
a given finite set Rr, ramified covers are in one-one correspondence with covering

maps. To make this more precise, let us consider two ramified covers p: S -> R

and p': S' -> R both having a ramification set contained in Rr, and let us

define a morphism between them to be a continuous map h: S -> Sf such

that pr o h p. Morphisms, of covering maps above R^Rr are defined similarly.
We may state:

Theorem 2.1. The category of finite coverings of R \ Rr is equivalent to the

category of ramified covers of R with ramification set included in Rr.

Now let us quote a well-known result from algebraic topology:

Theorem 2.2. Assume that R is connected, and pick a base point * e R^Rr. The

category of coverings of R^Rr is equivalent to the category of right 7t\(R^Rr, *)-
sets. The functor giving the equivalence sends p: U -> R^Rr to the fibre
with the monodromy action.

We shall now specialize to R F1 S2 and Rr {0, l,oo}. With
the base point * f (say), one has ^(P1 \ {0,1, oo}, *) {a, ot), the free

group on the two distinguished generators a and a; these are respectively the

homotopy classes of the loops t i-> \e2l7Zt and t i-> 1 — \e2l7Zt. The category of
finite, right 7Ti(P1 \{0,1, oo}, *)-sets is precisely the category 6et5a,a,0 already
mentioned.

The following result combines Theorem 1.23 from the previous section,
Theorem 2.1 above, as well as Theorem 2.2:

Theorem 2.3. The category Dtssins of oriented, compact dessins without

boundary is equivalent to the category ^od(P1) of ramified covers of P1 having
ramification set included in {0, l,oo}.

2.2. Geometric intuition. There are shorter paths between dessins and ramified

covers of the sphere, that do not go via permutations. Here we comment on this

approach.

First, let us examine the following portion of an oriented dessin:
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Consider the identification space obtained from this by gluing the two white
vertices into one, and the four visible edges in pairs accordingly. The result is

a sphere; more precisely, we can canonically find a homeomorphism with S2

sending • to 0 and o to 1, while * is sent to oo. Doing this for all pairs
where t is black, yields a single map [C\ -> S2. The latter is the ramified cover

corresponding to £? in the equivalence of categories above.

We will not prove this last claim in detail, nor will we rely on it in the sequel.

On the other hand, we do examine the reverse construction more closely. In fact
let us state:

Proposition 2.4. Let * correspond to /?: S —> P1 in the above equivalence of
categories. Then [G\ S, under a homeomorphism taking \§\ to the inverse

image /?-1([0,1]).

For the proof it will be convenient to have a modest lemma at our disposal. It
gives conditions under which a ramified cover p: S -> R, which must be locally
of the form z ^ ze, can be shown to be of this form over some given open set.

We will write

D {z G C : |z| < 1}

as before, while
ED {z e C : |z| < 1},

and

ED/ ED \ {0}

Lemma 2.5. Let p: S —> R be a ramified cover between compact surfaces.
Let x G Rr, and let U be an open neighbourhood of x. We assume that U is

homeomorphic to a disc, and that U H Rr {x}.
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Then each connected component V of p~l{U) contains one and only one

point of the fibre p~l(x). Moreover; each V is itself homeomorphic to a disc

and there is a commutative diagram

Proof Let us start with the connected components of p 1(U ^{x}). Let us form
the pullback square

E^+p-\U^{x})

U \ {x}

The map n is a covering map. The connected coverings of ED' are known of
course: if W is a connected component of E, then it can be identified with D/

itself, with n(z) ze.

If V is as in the statement of the lemma, then it is a surface, so it remains
connected after removing finitely many points. It follows that

V i-> W V^p-^x)
is well-defined, and clearly injective, from the set of connected components
of p~l(U) to the set of connected components of p~l(U ^{v}).

Let us prove that V i-> W is surjective, so let W be a component. Let Kn
be the closure in S of

{z e W ED' : |z| < —

n

Since S is compact, there must be a point s e S belonging to all the closed

subsets Kn, for all n > 1. It follows that p(s) x. The point s must belong to

some component V; and by definition s is in the closure of W, so V n W 0.
Thus the component V \ p~l(x) must be W.

We have established a bijection between the L's and the W's, and in passing

we have proved that each V contains at least an s such that p(s) x. Let us show

that it cannot contain two distinct such points s and sf. For this it is convenient

to use the following fact from covering space theory: given a covering c: X Y

with X and Y both path-connected, there is no open subset ß of I, other

than X itself, such that the restriction c : Q ^ Y is a covering of Y. From
this, we conclude that if Q and are open subsets of D/, such that the

restriction of n to either of them yields a covering map, over the same pointed
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disc Y, then Q and £2' must be both equal to X 7t~l{Y). If now s,sf e V

satisfy p{s) p(s') x, using the fact that p is a ramified cover we see that
all the neighbourhoods of s and sf must intersect, so s sf.

So we have a homeomorphism

h: W D/ — V ^{s}
and we extend it to a map h: ED ^ F by putting h(0) s. We see that this

extension of h is again continuous, for example by using that a neighbourhood
of s in V mapping onto a disc around x must correspond, under the bijection h,
to a disc around 0, by the above "fact". This shows also that h is an open map,
so it is a homeomorphism.

Proof of Proposition 2.4. Let us start with p: S —> P1, a ramified cover with
ramification in {0, l,oo}, and let us build some dessin We will then prove
that it is the dessin corresponding to p in our equivalence of categories, so this

proof will provide a more explicit construction.
So let B /?-1(0), W p~l{1). There is no ramification along (0,1),

and this space is simply-connected, so /?_1((0,1)) is a disjoint union of copies
of (0,1); we let D denote the set of connected components of /?_1((0,1)).

For each b e B we can find a neighbourhood U of b and a neighbourhood V
of 0 g P1, both carrying charts onto discs, within which p looks like the

map z^zg. Pick e such that [0, e) Cf; then the open set U with /?_1([0, s))r\U
drawn on it looks like a disc with straight line segments connecting the centre to
the e-th roots of unity. Taking s small enough for all b e B at once, /?-1([0, e))
falls into connected components looking like stars and in bijection with B. As

a result, each d e D determines a unique b e B, corresponding to the unique

component that it intersects. This is S(d); define W(d) similarly.
We have defined a bigraph ^, and it is clear that \§\ can be identified with the

inverse image /?_1([0,1]). We turn it into a cell complex now. Let F p~l(oo).
We apply the previous lemma to P1 \ [0,1], which is an open subset in P1

homeomorphic to a disc and containing only one ramification point, namely oo.

By the lemma, we know that p^iF1 \ [0,1]) is a disjoint union of open discs,
each containing just one element of F. We need to be a little more precise in
order to define 9f.

We consider the map h: D P1 constructed in two steps as follows. First,
let D —> D/~ be the quotient map that identifies z and z if and only if |z| 1;

then, choose a homeomorphism D/~P1, satisfying 1 i-> 0, — 1 i-> 1, 0 i-> oo,
and sending both circular arcs from 1 to —1 in D to [0,1]. We think of h as

the map D [C\ in Example 1.2. In D, we think of 1 as a black vertex, of —1

as a white vertex, of the circular arcs just mentioned as darts, and of the two
half-discs separated by the real axis as black and white triangles.
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Let ED1 D \ {1, —1,0} and in fact define U)n D \ {co : co2n 1} U {0}.
We emphasize that IP contains numbers of modulus 1. There is a covering

map EP -> D1 given by z i-> zn. Since ED1 retracts onto a circle, its fundamental

group is Z, and we see that any connected covering of finite degree n must

actually be of this form.
Now let Sf -> P1 \ {0,1, oo} be the covering defined by p. Let us construct

a pull-back square

E *S'
Q

{0,1, oo}

Here E -> D1 is a finite covering map, so each connected component of E can
be identified with EP for some n, while the map q becomes z i-> zn. These

components are in bijection with F, so we write D" for f e F.
If co is a 2n-th root of unity, the circular arc {(o\col+l) c ED" is mapped

onto a dart by the map 9: E -> S'. This defines, for each face /, a sequence
of darts which is 9/. This completes our construction of a cell complex from a

ramified cover of P1. Note that 9: ED^ Sf can be extended to a map D 5,
clearly, and it follows easily that \*\ is homeomorphic to S itself, or in other
words that ^ is a dessin on S.

It remains to prove that £? is the dessin corresponding to the ramified cover p
in the equivalence of categories at hand. For this we compare the induced actions.

To £? are attached two permutations a and a of the set D of darts. Note that D
is here in bijection with the fibre p~l{\), and taking \ as base point we have the

monodromy action of 7Ti(P1 \{0, 1,oo}) (cr/,a/), defining the permutations a'
and af. We must prove that a a' and a af. Here a' and af are the classes

of the loops defined above (where we used the notation a and a in anticipation).
We will now use the fact that S can be endowed with a unique smooth structure

and orientation (in the sense of differential geometry), such that p: S P1 is

smooth and orientation-preserving. We use this first to obtain, for each dart, a

smooth parametrization y: [0,1] S such that p o y is the identity of [0,1].
Each dart belongs to two triangles, and it now makes sense to talk about the
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triangle on the left of the dart as we travel along y. Colour it black. We will
prove that this is a colouring of the type considered in §1.6.

Pick b e B, and a centered chart ED -> U onto a neighbourhood U of b,
such that the map p when pulled-back to ED is z ze. The monodromy
action of ^(D') on the cover ED' -> ED/ given by z^zg is generated by the

counterclockwise rotation of angle Now it is possible for us to insist that
the chart ED -> U be orientation-preserving, so "counterclockwise" can be safely

interpreted on S as well as ED. Let us draw a picture of U with 1)) n U

on it, together with the triangles, for e 4.

The complement of the star-like subset of U given by /?_1([0,1)) falls into
connected components, each contained in a face; so two darts obtained by a rotation
of angle are on the boundary of the same face, and must be consecutive.

The symmetry a, that is the symmetry in the * — • side, is now clearly seen to

exchange a black triangle with a white one. What is more, calling b as usual

the symmetry in the darts, the permutation a ab sends a black triangle to

its image under the rotation already mentioned. This is also the effect of the

monodromy action, and a o'.
Reasoning in the same fashion with white vertices, we see that c, the symmetry

in the * — o side, also exchanges triangles of different colours. So the colouring
indeed has the property that neighbouring triangles are never of the same colour.
That a a! is observed similarly. This concludes the proof.

Example 2.6 (Duality). The geometric intuition gained with this proposition and

its proof may clarify some arguments. Let ^ be a dessin, whose sets of triangles
and darts will be written T and D, so that £? defines the object (D,a,a,0)
in <3ztS(j,ot,(t> • Now let p: S —> P1 correspond to What is the dessin

corresponding to 1 /p And what is the object in 6ei5a?a,0

Let us use the notation ^/, T' and D'. We can think of £? and as being
drawn on the same surface S. Zeroes of 1 /p are poles of p and vice-versa, so

black vertices are exchanged with face centres, while the white vertices remain
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in place. In fact, the most convenient property to observe is that £? and C have

exactly the same triangles, as subspaces of S, and we identify T T'. The * — o

sides are promoted to darts.

The symmetries of T which we have called a,b and c become, for C,
the symmetries a' a, bf c and c' b (simply look at the definitions and

exchange * and • throughout). It follows that a ab becomes a' a'bf

ac (j)~l and similarly one obtains a' a~l and <// a~x.

One must be careful, however. The object in 6ei5a?a,0 defined by 1 //?, which

we are after, is hidden behind one more twist. The triangles in T for £?

are those mapping to the upper half plane under p; the white triangles for £? are

the black ones for C as a result. Identifying darts and black triangles, we see T
as the disjoint union of D and D'. While it is the case that C corresponds
to in 6ei5a?a,0, this notation is confusing since we tend

to think of </>_1 as a map defined on either f or D, when in fact it is the

induced map on Df which is considered here (in fact we should write something
like 4>~x |/y). It is clearer to use for example the map b' \ D ^ D' and transport
the permutations to D, which is simply a conjugation. As already observed, this

"change of orientation" amounts to taking inverses for a' and a'.
The conclusion is that replacing p by l/p takes the object (D,cr,a,<f>) to

the object (D, 0, a, a~loa).

Example 2.7 (Change of colours). As an exercise, the reader will complete
the following outline. If £? is represented by p: S P1, with corresponding
object (D,a,a,0), then 1— p: S ^P1 corresponds to {D,ot,a,ot(j)ot~l). Indeed,
£? and have the same triangles, as subsets of 5, and the black triangles
for £? are precisely the white ones for and vice-versa; the vertices of
are those of £? with the colours exchanged, while the face centres remain in

place. (Informally is just that: the same as £? with the colours exchanged.)
So c' a, bf b and a' c, and cr/ cac-1, c/ bab~x, as maps of 7\
As maps of D, using the bijection b: D D' to transport the maps induced

on D\ we end up with the permutations announced.

2.3. Complex structures. When p: S R is a ramified cover, and R is

equipped with a complex structure, there is a unique complex structure on S

such that p is complex analytic ([DD], 6.1.10). Any morphism between S and S',
over R, is then itself complex analytic. Conversely if S and R both have complex
structures, an analytic map S ^ R is a ramified cover as soon as it is not constant

on any connected component of S.
We may state yet another equivalence of categories. Recall that an analytic

map S P1 is called a meromorphic function on S.
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Theorem 2.8. The category Qzssms is equivalent to the category QSetyi of
compact Riemann surfaces with a meromorphic function whose ramification set

is contained in {0, l,oo}

(The arrows considered are the maps above P1 A pair (S, p) with p S -> P1

meromorphic, not ramified outside of {0, l,oo}, is often called a Belyi pair,
while p is called a Belyi map

Example 2.9. Let us illustrate the results up to now with dessms on the sphere,

so let t be such that \*\ is homeomorphic to S2 By the above, t corresponds
to a Riemann surface S equipped with a Belyi map p S -> P1

By Proposition 2 4, S is itself topologically a sphere The uniformization
theorem states that there is a complex isomorphism 9 P1 —> S, so we may as

well replace S with P1 equipped with F poQ Then (P1,^) is a Belyi pair
isomorphic to (5, p)

Now F P1 -> P1, which is complex analytic and not constant, must be

given by a rational fraction, as is classical The higraph *§ can he realized as the

inverse image F-1([0,1]) where F P1 —^P1 is a rational fraction
Let us take this opportunity to explain the terminology dessins d'enfants

(children's drawings), and stress again some remarkable features By drawing a

simple picture, we may as m Example 1 3 give enough information to describe

a cell complex £? Very often it is evident that |£?| is a sphere, as we have

seen m this example What the theory predicts is that we can find a rational
fraction F such that the drawing may be recovered as F_1([0,1]) This works
with pretty much any planar, connected drawing that you can think of, and gives
these drawings a ngidified shape

To be more precise, the fraction F is unique up to an isomorphism of P1, that

is, up to precomposmg with a Moebius transformation This allows for rotation
and stretching, but still some features will remain unchanged For example the

darts around a given vertex will all have the same angle between them,

since F looks like m conformal charts

2.4. Fields of meromorphic functions. When 5 is a compact, connected

Riemann surface, one can consider all the meromorphic functions on S,

comprising a field M(S) When S is not assumed connected, the meromorphic
functions form an etale algebra, still written M(S) m this paper an etale algebra

is simply a direct sum of fields, here corresponding to the connected components
of S In what follows we shall almost always have to deal with an etale algebra

over K where K is some field, by which we mean an etale algebra which is
also a K -algebra, and which is finite-dimensional over K (In the literature etale
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algebras have to satisfy a separability condition, but we work in characteristic 0

throughout the paper.)

If now p: S -> R is a ramified cover between compact surfaces, we may speak

of its degree, as the degree of the corresponding covering p~1(R^Rr) -> R^Rr.
The following is given in §6.2.4 in [DD].

Theorem 2.10. Fix a compact, connected Riemann surface R. The category of
compact Riemann surfaces S with a ramified cover S R is and-equivalent to
the category ofetale algebras over M(R). The equivalence is given by S i-> M(S),
and the degree of S -> R is equal to the dimension of M(S) as a vector space

over M(R).

(Here and elsewhere, "anti-equivalent" means "equivalent to the opposite

category".)
Taking R P1, we get a glimpse of yet another category that could be

equivalent to Qzssms. However to pursue this, we need to translate the condition
about the ramification into a statement about etale algebras (lest we should end

up with a half-baked category, consisting of algebras such that the corresponding
surface has a certain topological property; that would not be satisfactory). For
this we reword §2.2.1 of [Vö].

Recall that ^(P1) C(x), where x is the identity of P1. So let us start with

any field k at all, and consider a finite, Galois extention L of k{x). We shall say
that L/k{x) is not ramified at 0 when it embeds into the extension k((x))/k(x),
where as usual k((x)) is the field of formal power series in x. In this paper
we will not enter into the subtleties of the field k((x)), nor will we discuss

the reasons why this definition makes sense. We chiefly want to mention that
there is a simple algebraic statement corresponding to the topological notion of
ramification, quoting the results we need.

Now take any s e k. From L we construct Ls L ®k(x) k(x), where

we see k{x) as an algebra over k{x) via the map k{x) -> k{x) which
sends x to x + s; concretely if we pick a primitive element y for L/k{x),
so that L ^ k(x)[y]/(P), then Ls is k(x)[y]/(Ps) where Ps is the result of
applying x i-> x + s to the coefficients of P. When Ls/k{x) is not ramified
at 0, we say that L/k(x) is not ramified at s.

Finally, using the map k(x) k(x) which sends x to x"1, we get an

extension LOQ/k{x), proceeding as above. When the latter is not ramified at 0,
we say that L/k(x) is not ramified at oo.

When the conditions above are not satisfied, for s e k U {oo}, we will of
course say that L does ramify at s (or is ramified at s). That the topological
and algebraic definitions of ramification actually agree is the essence of the next
lemma.



Dessins d'enfants and the Grothendieck-Teichmüller group 331

Lemma 2.11. Let p: S P1 be a ramified cover, with S connected, and assume

that the corresponding extension M(S)/C(x) is Galois. Then for any s e P1,
the ramification set P/ contains s if and only if M(S)/C(x) ramifies at s in
the algebraic sense.

In particular, the ramification set in contained in {0, l,oo} if and only if the

extension M(S)/C(x) does not ramify at s whenever s $ {0, l,oo}.

This is the addendum to theorem 5.9 in [Vö]. Now we need to get rid of
the extra hypothesis that M(S)/C(x) be Galois (a case not considered in [Vö],
strictly speaking). Algebraically, we say that an extension L/k{x) does not ramify
at s when its Galois closure L/k(x) does not. To see that, with this definition,
the last lemma generalizes to all ramified covers, we need to prove the following.

Lemma 2.12. Let p: S P1 be a ramified cover, where S is connected.

Let p: S -> P1 be the ramified cover such that M(S)/C(x) is the Galois
closure of M(S)/C(x). Then the ramification sets for S and S are equal.

Proof. We have C(x) c M(S) c M(S), so we also have a factorization of p
as S -> S -> P1. From this it is clear that, if p is not ramified at s e P1, then

neither is p.
The crux of the proof of the reverse inclusion is the fact that covering maps have

Galois closures, usually called regular covers. The following argument anticipates
the material of the next section, though it should be understandable now.

Let P/ be the ramification set for p, and let U /^(P1 \ P/), so

that U -> P1 \ P/ is a finite covering map. Now let Ü -> P1 \ P/ be the

corresponding regular covering map. Here "regular" can be taken to mean that
this cover has as many automorphisms as its degree; and U is minimal with
respect to this property, among the covers factoring through U. The existence

of U is standard in covering space theory, and should become very clear in the

next section. Note that, if U corresponds to the subgroup H of 7t\(Vl ^P/),
then Ü corresponds to the intersection of all the conjugates of H.

As above, we can construct a Riemann surface S' from Ü, and the latter does

not ramify outside of P/. To prove the lemma, it is sufficient to show that S'

can be identified with S.
However from basic Galois theory we see that M(S')/C(x) must be Galois

since it possesses as many automorphisms as its degree, and by minimality it
must be the Galois closure of M(S)/C(x). So S' and S are isomorphic covers
ofP1.

Finally, an etale algebra over k{x) will be said not to ramify at s when it
is a direct sum of field extensions, none of which ramifies at s. This clearly
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corresponds to the topological situation when k C, and we have established

the following.

Theorem 2.13. The category Dzssxxxs is anti-equivalent to the category (£tcde(C(x))

of finite, etale algebras over C(x) that are not ramified outside of {0, l,oo}, in
the algebraic sense.

2.5. Extensions of Q(jc). Let L/C fx) be a finite, Galois extension, and let n

[L : C(x)]. We shall say that it is defined over Q when there is a subfield Lrat
of L, containing Q(x) and Galois over it, such that [Lrat '• Q(*)] n. This is

equivalent to requiring the existence of Lrat containing Q(x) and Galois over

it such that L ^ Lrat <S>q C. That these two conditions are equivalent follows

(essentially) from (a) of Lemma 3.1 in [Vö]: more precisely this states that, when
the condition on dimensions holds, there is a primitive element y for L/C fx)
whose minimal polynomial has coefficients in Q(x), and y is also a primitive
element for Lrat/Qfx).

Item (d) of the same lemma reads:

Lemma 2.14. When L is defined over Q, the subfield Lrat is unique.

This relies on the fact that Q is algebraically closed, and would not be true
with Q and C replaced by arbitrary fields.

There is also an existence statement, which is Theorem 7.9 in [Vö]:

Theorem 2.15. If L/C fx) is a finite, Galois extension which does not ramify
at s e C unless s e Q U {oo}, then it is defined over Q.

We need to say a word about extensions which are not assumed to be Galois

over C(x). For this we now quote (b) of the same Lemma 3.1 in [Vö]:

Lemma 2.16. When L/C (x) is finite, Galois, and defined over Q, there is an

isomorphism Gal {L/C fx)) Gal(Lrat/Q(x)) induced by restriction.

So from the Galois correspondence, we see that fields between C(x) and L,
Galois or not over C(x), are in bijection with fields between Q(x) and Lrat.
If K/Cfx) is any finite extension, not ramified outside of {0, l,oo}, we see by
the above that its Galois closure L/C fx) is defined over Q, and thus there is a

unique field Krat, between Q(x) and Lrat, such that K Krat C

Putting together the material in this section, we get:

Theorem 2.17. The category Ozssxns is anti-equivalent to the category (£ta[e(Q(x))

of finite, etale extensions of Q(x) that are not ramified outside of {0, l,oo}, in
the algebraic sense.
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The functor giving the equivalence with the previous category is the tensor

product — C. Theorem 2.15 shows that it is essentially surjective; proving
that it is fully faithful is an argument similar to the proof of Lemma 2.16 above.

2.6. Algebraic curves. Strictly speaking, the following material is not needed to
understand the rest of the paper, and to reach our goal of describing the action

of Gal(Q/Q) on dessins. Moreover, we expect the majority of our readers to fit
one of two profiles: those who know about algebraic curves and have immediately
translated the above statements about fields into statements about curves; and those

who do not know about algebraic curves and do not wish to know. Nevertheless,

in the sequel we shall occasionally (though rarely) find it easier to make a point
in the language of curves.

Let K be an algebraically closed field, which in the sequel will always be

either C or Q. A curve C over K will be, for us, an algebraic, smooth, complete

curve over K. We do not assume curves to be irreducible, though smoothness

implies that a curve is a disjoint union of irreducible curves.
We shall not recall the definition of the above terms, nor the definition of

morphisms between curves. We also require the reader to be (a little) familiar with
the functor ofpoints of a curve C, which is a functor from K-algebras to sets that

we write L i-> C(L). There is a bijection between the set of morphisms C -> C'
between two curves on the one hand, and the set of natural transformations
between their functors of points on the other hand; in particular if C and C'
have isomorphic functors of points, they must be isomorphic. For example, the

first projective space P1 is a curve for which PX(L) is the set of lines in L2

when L is a field. (This holds for any base field K; note that we have already
used the notation P1 for PX(C), the Riemann sphere. We also use below the

notation P"(L) for the set of lines in Ln+l, as is perfectly standard (though Fn
is certainly not a curve for n >2)).

In concrete terms, given a connected curve C it is always possible to find
an integer n and homogeneous polynomials Pt(zo,... ,zn) (for 1 <i <m) with
the following property: for each field L containing K, we can describe C(L) as

the subset of those points [z0 : ••• : zn] in the projective space P"(L) satisfying

(*) Pl(z0,...,zn) 0 (1 <i<m).
Thus one may (and should) think of curves as subsets of Fn defined by
homogeneous polynomial equations. When K is algebraically closed, as is the

case for us, one can in fact show that C is entirely determined by the single
subset C(K) together with its embedding in Fn(K).

We illustrate this with the so-called rational functions on C, which by
definition are the morphisms C -> P1 with the exclusion of the "constant
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morphism which is identically oo". When C(K) is presented as above as a

subset of Fn(K), these functions can alternatively be described in terms of maps
of sets C(K) -> K U {00} of the following particular form: take P and g,
two homogeneous polynomials in n + 1 variables, of the same degree, assume

that g does not vanish identically on C(K), assume that P and g do not
vanish simultaneously on C{K), and consider the map on C(K) sending z
to P(z)/Q(z) if g(z) 0, and to 00 otherwise. (In other words z is sent

to [P(z) : g(z)] in P1^) K U {oc}.)
The rational functions on the connected curve C comprise a field M(C) (an

etale algebra when C is not connected). We use the same letter as we did for

meromorphic functions, which is justified by the following arguments. Assume

that K C. Then our hypotheses guarantee that S C(C) is naturally a

Riemann surface. In fact if we choose polynomial equations as above, then S

appears as a complex submanifold of P"(C). It follows that the rational functions

on C, from their description as functions on 5, are meromorphic. However, a

non-trivial but classical result asserts the converse: all meromorphic functions

on S are in fact rational functions ([GH], chap. 1, §3). Thus M(S) M(C).
When K Q, it still makes sense to talk about the Riemann surface S C(C),
and then M(S) M(C) C. For example M(Pl) K(x), when we see P1

as a curve over any field K.
The following theorem is classical.

Theorem 2.18. The category of connected curves over K, in which constant mor-
phisms are excluded, is anti-equivalent to the category of fields of transcendence

degree 1 over K, the equivalence being given by C 1M(C).

From this we have immediately a new category equivalent to Qzssms, by

restricting attention to the fields showing up in Theorem 2.13 or Theorem 2.17.

Let us define a morphism C P1 to be ramified at s e K U {00} if and only if
the corresponding extension of fields M(C)/K(x) ramifies at s; this may sound

like cheating, but expressing properties of a morphism in terms of the effect on
the fields of rational functions seems to be in the spirit of algebraic geometry. It
is then clear that:

Theorem 2.19. The category Qzssxns is equivalent to the category of curves C,
defined over C, equipped with a morphism C —> P1 which does not ramify
outside of {0, l,oo}. Here the morphisms taken into account are those over P1.

Likewise, Qzssxns is equivalent to the category of curves defined over Q
with a map C —> P1 having the same ramification property.
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(Note that we have used the same notation P1 for an object which is sometimes

seen as a curve over C, sometimes as a curve over Q, sometimes as a Riemann

surface.)

As a side remark, we note that these equivalences of categories imply in

particular the well-known fact that "Riemann surfaces are algebraic". For if we start

with S, a Riemann surface, and consider the field M(S), then by Theorem 2.18

there must be a curve C over C such that M(C) M(S) (where on the left
hand side M means "rational functions", and on the right hand side it means

"meromorphic functions"). However, we have seen that M(C) (with
the same convention), and the fact that M(S) and M(C(C)) can be identified

implies that S and C(C) are isomorphic (Theorem 2.10). Briefly, any Riemann
surface S can be cut out by polynomial equations in projective space.

Likewise, the above theorems show that if S has a Belyi map, then there is a

curve over Q such that S is isomorphic to C(C). This is usually expressed by
saying that S is "defined over Q", or is an "arithmetic surface". The converse
is discussed in the next section.

2.7. Belyi's theorem. When considering a dessin £?, we define a curve C

over Q. Is it the case that all curves over Q are obtained in this way? Given C,
it is of course enough to find a Belyi map, that is a morphism C -> P1

with ramification in {0, l,oo}: the above equivalences then guarantee that C

corresponds to some In turn, Belyi has proved precisely this existence

statement:

Theorem 2.20 (Belyi). Any curve C over Q possesses a Belyi map.

The proof given by Belyi in [Be], and reproduced in many places, is very
elegant and elementary. It starts with any morphism F: C -> P1, and modifies

it ingeniously to obtain another one with appropriate ramification.

3. Regularity

From now on, it will be convenient to use the word dessin to refer to an

object in any of the equivalent categories at our disposal (especially when we
want to think of it simultaneously as a cell complex and a field, for example).

In this section we study regular dessins. These could have been called "Galois"
instead of "regular", since the interpretation in the realm of field extensions is

precisely the Galois condition, but we want to avoid the confusion with the Galois

group Gal(Q/Q) which will become a major player in the sequel.
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3.1. Definition of regularity. An object in Qzssms has a degree given by the

number of darts. In the other categories equivalent to Qzssms, this translates

in various ways. In 6ei5a?a,0, it is the cardinality of the set having the three

permutations on it. In the categories of etale algebras over C(x) or Q(x), it is

the dimension of the algebra as a vector space over C(x) or Q(x) respectively.
In the category of finite coverings of P1 \ {0,1, oo}, it is the cardinality of any
fibre.

There is also a notion of connectedness in these categories. A dessin X is
connected when \G\ is connected, which happens precisely when the corresponding
etale algebras are actually fields, or when the cartographic group acts transitively
(cf. Lemma 1.17).

In this section we shall focus on the automorphism groups of connected

dessins. We are free to conduct the arguments in any category, and most of the

time we prefer 6et5a,a,0- However, note the following at once.

Lemma 3.1. The automorphism group of a connected dessin is a finite group, of
order no greater than the degree.

Proof This is obvious in (5tcde(Q(x)): in fact for any finite-dimensional extension

of fields L/K, basic Galois theory tells us that the automorphism group of the

extension has order no greater than [L : K].
A proof in 6et5a,a,0 will be immediate from Lemma 3.3 below.

A dessin will be called regular when it is connected and the order of its

automorphism group equals its degree.

In terms of field extensions for example, then L/C fx) is regular if and only
if it is Galois (in the elementary sense, ie normal and separable). In terms of
a covering U -> P1 \ {0, l,oo}, with U is connected, then it is regular if and

only if it is isomorphic to the cover U -> U/G where G is the automorphism

group (this agrees with the use of the term "regular" in covering space theory,
of course).

Remark 3.2. The reader needs to pay special attention to the following convention.
When A is a dessin and ft, ft e Aut(X), we write hk for the composition of k
followed by ft; that is ftft(x) ft(ft(x)), at least when we are willing to make

sense of x e X (for example in Qzssms this will mean that x is in fact a

triangle). In other words, we are letting Aut(X) act on X on the left. While this

will be very familiar to topologists, for whom it is common to see the "group
of deck transformations" of a covering map act on the left and the "monodromy
group" act on the right, other readers may be puzzled to see that we have
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treated the category of sets differently when we took the convention described in
Remark 1.15.

To justify this, let us spoil the surprise of the next paragraphs, and announce
the main result at once: in 6ei5a?a,0, a regular dessin is precisely a group G

with two distinguished generators a and a; the monodromy group is G itself,
acting on the right by translations, while the automorphism group is again G

itself, acting on the left by translations.

If we had taken different conventions, we would have ended up with one of
these actions involving inverses, in a way which is definitely unnatural.

3.2. Sets with permutations. We explore the definition of regularity in the

context of 6ei5a?a,0, where it is very easy to express.
Let X be a set of cardinality n, with three permutations cr, satisfying

aotf 1. Let G denote the cartographic group; recall that by definition, it is

generated by a and a as a subgroup of S(X) ^ Sn, acting on X on the right.
We assume that G acts transitively (so the corresponding dessin is connected).

We choose a base-point The map g i-> *8 identifies H\G with X,
where H is the stabilizer of *. This is an isomorphism in 6ei5a?a,0, with G

acting on H\G by right translations. As we shall insist below that the choice of
base-point is somewhat significant, we shall keep the notation X and not always
work directly with H\G.

Since the morphisms in 6et5a,a,0 are special maps of sets, we can
relate Aut(X) and S(X), where the automorphism group is taken in 6ei5a?a,0,
and S(X) as always is the group of all permutations of X. More precisely,

any h e Aut(X) can be seen as an element of S(X), still written A, and there is

a homomorphism Aut(X) -> S(X) given by hv^h~x; our left-right conventions
force us to take inverses to get a homomorphism. (In other words, Aut(X) is

naturally a subgroup of S(X)op, the group S(X) with the opposite composition

law.) As announced, the conventions will eventually lead to a result without
inverses.

Lemma 3.3. Let X,G, H be as above. We have the following two descriptions

of Aut(X).
(1) Let N(H) be the normalizer of H in G. Then for each g e N(H), the

map H\G H\G given by [x] \-> [gx] is in Aut(H\G). This construction
induces an isomorphism Aut(X) N(H)/H.

(2) The map Aut(X) S(X) is an isomorphism onto the centralizer of G

in S(X).

Proof (1) The notation [x] is for the class of x in H\G, of course. To see

that [gx] is well-defined, let h e //, then ghx ghg~lgx so [ghx] [gx]. The
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map clearly commutes with the right action of G, and so is an automorphism,
with inverse given by [x] i-> [g_1x].

Conversely, any automorphism h is determined by h{[ 1]), which we call [g],
and we must have h([x]) h([l]x) [g]x [gx] for any x; the fact that h is well-
defined implies that g e N(H). So there is a surjective map N(H) -> Aut(H\G)
whose kernel is clearly H.

(2) An automorphism of X, by its very definition, is a self-bijection of X
commuting with the action of G; so this second point is obvious.

We also note the following.

Lemma 3.4. Aut(X) acts freely on X.

Proof If h(x) x for some x e X, then h(xg) h(x)g xg so xg is

also fixed by A, for any g e G. By assumption G acts transitively, hence the

lemma.

Proposition 3.5. The following are equivalent.

(1) Aut(X) acts transitively on X.
(2) G acts freely on X.
(3) H is normal in G.

(4) H is trivial.

(5) G and Aut(X) are isomorphic.

(6) G and Aut(X) are both of order n.

(7) X is regular.

Proof. That (1) implies (2) is almost the argument we used for the last lemma,

only with the roles of Aut(X) and G interchanged. Condition (2) implies (4)

by definition and hence (3); when we have (3) we have N(H)/H G/H,
and the description of the action of N(H)/H on H\G makes it clear that (1)

holds.

Condition (4) implies N(H)/H G, so we have (5); we also have (6)
since X (whose cardinality is n) can be identified with G acting on itself on the

right. Conversely if we have (6), given that the cardinality of X is n \G\/\H\
we deduce (4).

Finally (7), by definition, means that Aut(X) has order n, so it is implied
by (6). Conversely, since this group acts freely on A, having cardinality n,
it is clear that (7) implies that the action is also transitive, which is (1).
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Corollary 3.6 (of the proof). Let X be a regular object in 6ei5a?a,0 with

cartographic group G. Then X can be identified with G itself with its action

on itself on the right by translations. The automorphism group Aut(X) can also
be identified with G, acting on X G on the left by translations.

Conversely any finite group G with two distinguished generators a and a

defines a regular object in this way.

Proof. There remains the (very easy) converse to prove. If we start with G, a

finite group generated by a and a, we can let it act on itself on the right by
translations, thus defining an object in 6ei5a?a,0. The cartographic group is easily
seen to be isomorphic to G (in fact this is the traditional Cayley embedding of G

into the symmetric group S(G)). The action of the cartographic group is, as a

result, free and transitive, so the object is regular.

However, some care must be taken. The identifications above are not canonical,
but depend on the choice of base-point. Also, the actions of g e G on X, given
by right and left multiplications, are very different-looking maps of the set X.
We want to make these points crystal-clear. The letter d below is used for
"dart".

Proposition 3.7. Suppose that X is regular. Then for each d e X there is an

isomorphism

id : G —> Aut(X).

The automorphism td{g) is the unique one taking d to d8.

Changing d to d' amounts to conjugating, in Aut(X), by the unique

automorphism taking d to df.

Proof. This is merely a reformulation of the discussion above, and we only need

to check some details. We take * d as base-point. The map id is clearly
well-defined, and we check that it is a homomorphism: id{gh){d) dgh

(ds)h id(g)(d)h id(g)(dh) Ld(g)id(h)(d), so the automorphisms id(gh)
and id(g)Ld(h) agree at d, hence everywhere by transitivity of the action

of G.

Example 3.8. Consider the dessin on the sphere given by the tetrahedron, as

follows:
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Here we have numbered the darts, for convenience (the faces, on the other

hand, are implicit). There are many ways to see that this is a regular dessin. For

example, one may find enough rotations to take any one dart to any other one,
and apply criterion (1) of Proposition 3.5. Or, we could write the permutations

a (123)(456)(789)(10,11,12), a (14)(2,10)(37)(59)(6,11)(8,12),

and compute the order of the group generated by a and a, which is 12 (a

computer does that for you immediately). Then appeal to criterion (6) of the

same proposition. Finally, one could also determine the automorphism group of
this dessin, and find that it has order 12. This is the very definition of regularity.

Take d 1 as base point, and write i for i\. What is l{g)1 This is the

automorphism taking 1 to 2, which is the rotation around the black vertex

adjacent to 1 and 2. The permutation of the darts induced by l(o) is

(123)(4,10, 7)(6,12, 9)(11, 8, 5).

We see that a and l(g) are not to be confused. Likewise, i{a) is the rotation

taking 1 to 4, and the induced permutation is

(14)(8,12)(2, 5)(3, 6)(10, 9)(11, 7).

3.3. The distinguished triples. From Proposition 3.7, we see that each choice of
dart in a regular dessin ^ defines three elements of AutQC), namely a ^(cr),
ä Ld(ot), and f tdif)- These are generators of AutQC), and they

satisfy oaf 1. Changing d to another dart conjugates all three generators

simultaneously. Any such triple, obtained for a choice of d, will be called a

distinguished triple for L.

Lemma 3.9. If d and d' are darts with a common black vertex, then ^(cr)
^/(cr). Similarly if they have a common white vertex then id{ot) idfot). Finally
if the black triangles corresponding to d and d' respectively lie in the same

face, then td(f) id'if)-
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k
Proof. We treat the first case, for which df d° for some k. Write a idip).
Since d°k ak(d), we see that L^(cr) akaa~k a.

Thus the notation a makes senses unambiguously when it is understood that
the possible base-darts are incident to a given black vertex. Similarly for the other

types of points. We can now fully understand the fixed points of automorphisms:

Proposition 3.10. Let h e Aut(G), where G is regular Suppose that the induced

homeomorphism \G\ \G\ has a fixed point. Suppose also that h is not the

identity. Then the fixed point is a vertex or the centre of a face; moreover there

exists an integer k such that, for any choice of dart d incident with the fixed
point, we can write h ak, ak or <pk, according to the type of fixed point, •
o or *.

In particular, the subgroup of Aut(G) comprised of the automorphisms fixing
a given point of type • is cyclic, generated by o ^(cr) where we have chosen

any dart incident with the fixed point. Likewise for the other types of fixed point.

(In this statement we have abused the language slightly, by saying that a dart
is "incident" to the centre of a face if the corresponding black triangle belongs
to that face.)

Proof. Let t be a triangle containing the fixed point. Note that h(t) ^ t: otherwise

by regularity we would have h identity. We have t nh(t) ^ 0 though, and as

the triangle h(t) is of the same colour as t, unlike its neighbours, we conclude

that t fl h(t) is a single vertex of t, and the latter is our fixed point.
Say it is a black vertex. Let d be the dart on t. Then h(d) is a dart

fc,

with the same black vertex as d, so h(d) d° for some integer k. In other
words h Ld(c>k).

Thus we have a canonical generator for each of these subgroups. Here we

point out, and this will matter in the sequel, that the generator a agrees with
what Völklein calls the "distinguished generator" in Proposition 4.23 of [Vö].
This follows from unwinding all the definitions.

The following result is used very often in the literature on regular "maps".

Proposition 3.11. Let * be a dessin, with cartographic group G, and the

distinguished elements e G. Similarly, let G', G', a', a', ft be of the same
kind. Assume that G and G' are both regular. Then the following conditions are

equivalent:

(1) G and G' are isomorphic,

(2) there is an isomorphism G —> G' taking a to a', a to a' and f to ft,
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(3) there is an isomorphism AutQC) AutQC') taking a distinguished triple to

a distinguished triple.

Proof. That (1) implies (2) is obvious, and holds without any regularity assumption.
Since there are isomorphisms G ^ AutQC) and G' ^ Aut(Cf) taking the

distinguished permutations in the cartographic group to a distinguished triple
(though none of this is canonical), we see that (2) implies (3).

Finally, if we work in 6ei5a?a,0, we can identify G with the group Aut(G)
endowed with the three elements acting by multiplication on the right,
where we have picked some distinguished triple o,a,(j). Thus (3) clearly
implies (1).

The equivalence of (1) and (3), together with Corollary 3.6, reduces the

classification of regular dessins to that of finite groups with two distinguished

generators (or three distinguished generators whose product is 1). We state this

separately as an echo to Proposition 1.24. Recall that dessins are implicitly
compact, oriented and without boundary here.

Proposition 3.12. (1) A regular dessin determines, and can he reconstructed

from, a finite group G with two distinguished generators a and a. We

obtain isomorphic dessins from (G,cr, a) and (G\a\af) if and only if there

is an isomorphism G -> G' taking a to cr/ and a to ot'.

(2) The set of isomorphism classes of regular dessins is in bijection with the

normal subgroups of the free group on two generators. More precisely, if a
connected dessin corresponds to the conjugacy class of the subgroup K as

in Proposition 1.24, then it is regular if and only if K is normal.

Proof. We have already established (1). As for the first statement in (2), we only
need to remark that the groups mentioned in (1) are precisely the groups of the

form G {a,a)/N for some normal subgroup N in the free group F2 (a,a),
and that an isomorphism of the type specified in (1) between G F2/N
and G' F2/N' exists if and only if N Nf.

We turn to the last statement. If a connected dessin corresponds to K, then it
is isomorphic to X K\(a,a) in 6ei5a?a,0. The action of {a, a) on X yields a

homomorphism /: (cr, a) -> S(X) whose image is the cartographic group G, and

whose kernel is the intersection N of all the conjugates of K, so G ^ (cr, a)/N.
Let H be the stabilizer in G of a point in X. Then f~l(H) is the stabilizer of
that same point in (cr, a), so it is a conjugate of K. Now, X is regular if and

only if H is trivial, which happens precisely when f~l(H) A, which in turn
occurs precisely when K is normal.
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3.4. Regular closure & Galois correspondence. In the discussion that follows,
we restrict our attention to connected dessms

When X and X' are two dessms, we call X' an intermediate dessin of X
when there exists a morphism X -> X' To appreciate the term "intermediate", it
is best to move to categories other than Dtssxns In (tohCP1), if ^ corresponds
to p S -> P1 and X' corresponds to p' S' -> P1, then X' is an intermediate
dessm of X when there is a factorization of p as

p S X S' -L P1,

for some map /, so \'\ S' is intermediate between \X\ S and P1, if you
will In (£ta[e(Q(x)), the towers Q(x) c L' c L provide examples where Z//Q(x)
is an intermediate dessm of L/Q(x), and all examples are isomorphic to one of
this kind

Of course the word "intermediate" is borrowed from field/Galois theory,
where the ideas for the next paragraphs come from Let us point out one more
characterization

Lemma 3.13. Let X and X' correspond to the conjugacy classes of the

subgroups H and H' of (a, a) respectively, as in Proposition 124 Then X'
is an intermediate dessin of X if and only if some conjugate of Hf contains H

So H' is intermediate between H and the free group {a, a)

Proof The object m 6etcorresponding to H (and also to £?) is X
H\(a,a}, and likewise for H' we can take X' Hf\(a,a), there is a

map X —> X' if and only if the stabilizer of some point m X is contained

m the stabilizer of some point m Xf hence the lemma

Lemma 3.14. Let X be a connected dessin There exists a regular dessin X such

that X is an intermediate dessin of X Moreover; we can arrange for X to be

minimal in the following sense if X is an intermediate dessin of any regular
dessin X', then X is itself an intermediate dessin of X' Such a minimal X is

unique up to isomorphism
Finally, the cartographic group of X is isomorphic to AutQC)

We call X the regular closure of X

Proof Leaving the last statement aside, m (£ta[e(Q(x)), this is a basic result from
Galois theory Alternatively, we can rely on Proposition 1 24 and the previous
lemma if X corresponds to the conjugacy class of H, then clearly the object
corresponding to N, the intersection of all conjugates of H, suits our purpose



344 P. Guillot

As for the last statement, that the cartographic group of H\(<j,a) is isomorphic
to (a,a}/N was already observed during the proof of Proposition 3.12 (and is

obvious anyway).

The fundamental theorem of Galois theory applied in £ta[e(Q(x)), or some

elementary considerations with the subgroups of (a,a), imply:

Proposition 3.15. Let G be a regular dessin. There is a bijection between the set

of isomorphism classes of intermediate dessins of G on the one hand, and the

conjugacy classes of subgroups of AutQC) on the other hand. Normal subgroups

corresponds to regular, intermediate dessins.

The concepts of this section are, as usual, very easily illustrated within •

A connected object is of the form H\G, as we have seen, where G has two
distinguished generators a and a. The regular closure is the object G, with its right
action on itself, seen in • Of course there is the natural map G -> H\G.
Conversely any X with a surjective, equivariant map G -> X (that is, any
connected, intermediate object of G) must be of the form H\G, clearly. From
this we see that whenever G is regular, its intermediate dessins might called its

quotient dessins instead.

4. The action of Gal(Q/Q)

In this section we show how each element X e Gal(Q/Q) defines a self-

equivalence of Dzssxxxs, or any of the other categories equivalent to it. Writing AG

for the object obtained by applying this functor to the dessin G, we show that
there is an isomorphism between A/XG and A(MG), so Gal(Q/Q) acts on the set

of isomorphism classes of dessins.

The definition of the action is in fact given in (£ta[e(Q(x)), where it is most
natural. The difficulty in understanding it in Qzssxrxs has much to do with the

zig-zag of equivalences that one has to go through. For example, the functor
from Riemann surfaces to fields is straightforward, and given by the "field of
meromorphic functions" construction, but the inverse functor is less explicit.

We study carefully the genus 0 case, and include a detailed description of a

procedure to find a Belyi map associated to a planar dessin - which is, so far,

an indispensable step to study the action. We say just enough about the genus 1

case to establish that the action is faithful.
We then proceed to study the features which are common to G and AG, for

example the fact that the surfaces |G| and |aG| are homeomorphic (so that the

action modifies dessins on a given topological surface). Ultimately one would
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hope to know enough of these "invariant" features to predict the orbit of a given
dessin under Gal(Q/Q) without having to compute Belyi maps, but this remains

an open problem.

4.1. The action. Let A: Q -> Q be an element of Gal(Q/Q). We extend it to

a map Q(x) -> Q(x) which fixes x, and use the same letter A to denote it. In
this situation the tensor product operation

- <8>A Q(x)

defines a functor from (5tcde(Q(x)) to itself. In more details, if L/Q(x) is an

etale algebra, one considers

AL L (g)A Q(jc)

The notation suggests that we see Q(x) as a module over itself via the map A.

We turn kL into an algebra over Q(x) using the map t i-> 1 0 t.
To describe this in more concrete terms, as well as verify that AL is an

etale algebra over Q(x) whenever L is, it is enough to consider field extensions,
since the operation clearly commutes with direct sums. So if L ^ Q(x)[y]/(P)
is a field extension of Q(x), with P e Q(x)[y] an irreducible polynomial,
then kL ^ Q(x)[y]/(AT>), where kP is what you get when the (extented) map A

is applied to the coefficients of P. Clearly k P is again irreducible (if it could
be factored as a product, the same could be said of P by applying A-1).
Therefore kL is again a field extension of Q(x), and coming back to the general

case, we do conclude that kL is an etale algebra whenever L is. What is more,
the ramification condition satisfied by the objects of (5tcde(Q(x)) is obviously
preserved.

Let /x e Gal(Q/Q). Note that y ® s ® t i-> y ® p{s)t yields an isomorphism

ß (^L^j L <S>x QW Q(^) —^ L Q(x) ßkL

As a result, the group Gal(Q/Q) acts (on the left) on the set of isomorphism
classes of objects in (5tcde(Q(x)), or in any category equivalent to it. We state

this separately in Qzssins.

Theorem 4.1. The absolute Galois group Gal(Q/Q) acts on the set of isomorphism
classes of compact, oriented dessins without boundaries.

4.2. Examples in genus 0; practical computations. We expand now on

Example 2.9. Let G be a dessin on the sphere. We have seen that we can find a

rational fraction F such that F: P1 —> P1 is the ramified cover corresponding
to G.
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In terms of fields of meromorphic functions, we have the injection C(x) ->
C(z) mapping x to F(z); here x and z both denote the identity of P1, but we

use different letters in order to distinguish between the source and target of F. The

extension of fields corresponding to £?, as per Theorem 2.13, is C(z)/C(F(z)).
We will write x F{z) for simplicity, thus seeing the injection above as an

inclusion. If F P/ Q, note that P(z) — xQ(z) 0, illustrating that z is

algebraic over C(x).
Suppose that we had managed to find an F as above whose coefficients are

in Q. Then z is algebraic over Q(x), and in this case C(z)rat can be taken to
be Q(z). We have identified the extension Q(z)/Q(x) corresponding to £? as in
Theorem 2.17.

Now that theorem and the discussion preceding it do not, as stated, claim that F
can always be found with coefficients in Q: we merely now that some primitive
element y can be found with minimal polynomial having its coefficients in Q. The

stronger statement is equivalent to C(z)rat being purely transcendental over Q,
as can be seen easily. Many readers will no doubt be aware of several reasons

why this must in fact always be the case; we will now propose an elementary

proof which, quite importantly, also indicates how to find F explicitly in practice.
The Galois action will be brought in as we go along.

Let us first discuss the number of candidates for F. Any two rational fractions

corresponding to £? must differ by an isomorphism in the category of Belyi pairs;
that is, any such fraction is of the form F(<f>(z)) where F is one fixed solution
and 0: P1 -> P1 is some isomorphism. Of course 0 must be a Moebius

transformation, 0(z) (az + b)/(cz + d). Let us call a Belyi map F: P1 -^P1
normalized when F(0) 0, F(l) 1 and F(oo) oo.

Lemma 4.2. Let * be a dessin on the sphere. There are finitely many normalized

fractions corresponding to

Proof The group of Moebius transformations acts simply transitively on triples
of points, so we can arrange for there to be at least one normalized Belyi fraction,

say F, corresponding to Other candidates will be of the form F of where 0
is a Moebius transformation, so 0(0) must be a root of F and 0(1) must be

a root of F — 1, while 0(oo) must be a pole of F. Since 0 is determined by
these three values, there are only finitely many possibilities.

We shall eventually prove that any normalized fraction has its coefficients

in Q.
Our strategy for finding a fraction F: P1 -> P1 which is a Belyi map is to

pay attention to the associated fraction
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A
F(F - 1)

*

Proposition 4.3. Let F be a Belyi fraction such that F(oo) oo, and let A be

as above. Then the following holds.

(1) The partial fraction decomposition of A is of the form

mx

wx
a y —— vz—' ^ _ in z—

where the nx's and the ml 's are positive integers, the bx's are the roots

of F, and the wx 's are the roots of F — 1. In fact nx is the degree of the

black vertex bx, and mx is the degree of the white vertex wx.

(2) One can recover F from A as:

l 1_n
F Yl,(z-bi)n'

(3) The fraction A can be written in reduced form

n.v-fX'-1A X

u^-bi) n liz-wt)'
where the fx 's are the poles of F (other than oo), and rx is the multiplicity
of fx as a pole of F. In fact rx is the number of black triangles inside the

face corresponding to f.
Conversely, let A be any rational fraction of the form given in (3), with the

numbers fx, bx, wx distinct. Assume that A has a partial fraction decomposition

of the form given in (1); define F by (2); and finally assume that the fx 's are

poles of F. Then F is a Belyi map, A Ff/(F(F — 1)), and we are in the

previous situation.

We submit a proof below. For the moment, let us see how we can use this

proposition to establish the results announced above. So assume C is a given
dessin on the sphere, and we are looking for a corresponding normalized Belyi
map F: P1 —> P1. We look for the fraction A instead, and our "unknowns" are

the fx's, the bx's, the wx's, and A, cf (3). Of course we now the numbers rx

from counting the black triangles on C, just as we now the number of black

vertices, white vertices, and faces, giving the number of bx 's, wx's, and fx 's

(keeping in mind the pole at oo already accounted for).
Now comparing (3) and (1) we must have

m x n;(z - fi)r'~x y- mi
_ y^ ni

n,(*-*.)n,(*-«>.) ,z~xv' ,z~bt
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where the integers nt and ml are all known, since they are the degrees of the

black and white vertices respectively, and again these can be read from £?.

Further, the f 's must be poles of F, which is related to A by (2). Thus we
must have

(**) '

I I

for all j We also want F to be normalized so we pick indices io and jo and

throw in the equations

(***) bto=°, wJo 1.

Finally we want our unknowns to be distinct. The usual trick to express this as an

equality rather than an inequality is to take an extra unknown rj and to require

(****) rjibx - b2)(fi - f2) • • • 1,

where in the dots we have hidden all the required differences.

Lemma 4.4. The system of polynomials equations given hy (*), (**), (***) and

(****) has finitely many solutions in C. These solutions are all in Q.

Proof By the proposition, each solution defines a normalized Belyi map, and

thus a dessin on the sphere. Define an equivalence relation on the set of solutions,

by declaring two solutions to be equivalent when the corresponding dessins are

isomorphic. By Lemma 4.2, there are finitely many solutions in an equivalence
class. However there must be finitely many classes as well, since for each n
there can be only a finite number of dessins on n darts, clearly, and for all the

solutions we have n Jflnl darts.

It is a classical fact from either algebraic geometry, or the theory of Gröbner

bases, that a system of polynomial equations with coefficients in a field K, having

finitely many solutions in an algebraically closed field containing K, has in fact
all its solutions in the algebraic closure of K. Here the equations have coefficients

in Q.

We may state, as a summary of the discussion:

Proposition 4.5. A dessin )£ on the sphere defines, and is defined hy, a rational

fraction F with coefficients in Q which is also a Belyi map. The dessin k%

corresponds to the fraction obtained by applying X to the coefficients of F.

Example 4.6. Suppose £? is the following dessin on the sphere:
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bi w i
-Q-

W3

bo wo

-O-
W4

-O

Ö
W2

Let us find a fraction F corresponding to £? by the method just described.

Note that, whenever the dessin is really a planar tree, one can greatly improve
the efficiency of the computations, as will be explained below, but we want to
illustrate the general case.

We point out that the letters bt and wt above are used to label the sets B
and W, and the same letters will be used in the equations which we are about

to write down. A tricky aspect is that, in the equations, there is really nothing
to distinguish between, say, w2, and w4; and we expect more solutions to

our system of equations than the one we want. We shall see that some solutions

will actually give a different dessin.

Here there is just one face, so F will have just the one pole at 00; in other

words F will be a polynomial. As for A, it is of the form

(z - b0)(z - bi)(z - b2)(z - if0)(z - if i)(z - w2)(z - w2)(z - w4)
'

The first equations are obtained by comparing this with the expression

4 1 2 2 2 1 1 1

— — H 1 1 1 1

z — bo z — b\ z — b2 z — wo z — w\ z — w2 z — w2 z — w4

There are no ft's so no extra condition, apart from the one expressing that the

unknowns are distinct:

Yj(p0 ^l) * * * (p2 W3) • • • 1,

where we do not write down the 28 terms. Finally, for F to be normalized, we
add

bo 0, if0 1
•

At this point we know that there must be a finite set of solutions. This

is confirmed by entering all the polynomial equations into a computer, which

produces exactly 8 solutions (using Groebner bases). For each solution, we can
also ask the computer to plot (an approximation to) the set F-1([0,1]).
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0 ti " S 9 #-• ti—9—i ti " ti 9"

7 8
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It seems that 5 and 6 look like our original dessin £?, while the other six are

certainly not isomorphic to £? (even the underlying bigraphs are not isomorphic
to that of yC). Let us have a closer look at 5 and 6:

We see precisely what is going on: we have imposed the condition u;0 1,

but in the equations there was nothing to distinguish the two white vertices of
degree two, and they can really both play the role of wQ. These two solutions give
isomorphic dessins, though: one diagram is obtained from the other by applying
a rotation of angle tz that is z^-z, and the two fractions are of the form F{z)
and F{—z) respectively. This could be confirmed by calculations, though we will
spare the tedious verifications.

The other solutions all come in pairs, for the same reason. Let us have a

closer look at 1, 3, 5, 7:

5 7
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Here 1 and 3 present the same bicolored tree; 1, 5 and 7 are non-isomorphic
bicolored trees. However 1 and 3 are not isomorphic dessins - or rather, they are

not isomorphic as oriented dessins, as an isomorphism between the two would
have to change the orientation.

Let a, a and </> be the three permutations corresponding to U. Now suppose
we were to look for a dessin *' with permutations cr/, a' and <// such that a'
is conjugated to a within S7 (there are 7 darts here), and likewise for ot' and a,
and and </>. Then we would write down the same equations, which only relied

on the cycle types of the permutations. Thus yCf would show up among the

solutions, and conversely. So we have an interpretation of this family of four
dessins.

Let us have a look at the Galois action. Here is the number b\ in the cases

1, 3, 5, 7:

L ^—2/ yj5i -Ji-lsfl + 3i V2V7 + 7 \/fjV2,

T ^2 -\J5i V7 + 7y/l — 3i V2V7 + 7

-L ^8 V/3V/7 + 63V/3V/7-21 V3 + 12\/7^V3,

L ^-8 V3V7 + 63V3V7 + 21 V3 + 12 77^73.

One can check that the minimal polynomial for Zq in case 1 has degree 4, and

that the four distinct values for b\ in cases 1, 2, 3, 4 all have the same minimal

polynomial (these are questions easily answered by a computer). Thus they are

the four roots of this polynomial, which are in the same Gal(Q/Q) -orbit. On the

other hand, in cases 5, 6, 7, 8 the values for b\ have another minimal polynomial
(and they have the same one), so Gal(Q/Q) cannot take solution 1 to any of
the solutions 5, 6, 7, 8. In the end we see that the four solutions 1, 2, 3, 4 are

in the same Galois orbit, in particular 1 and 3 are in the same orbit. A similar

argument shows that 5 and 7 also belong to the same orbit. However these orbits

are different.

Understanding the action of the absolute Galois group of Q on (isomorphism
classes of) dessins will be a major theme in the rest of this paper.

Remark 4.7. Let us comment of efficiency issues. A seemingly anecdotal trick,
whose influence on the computation is surprising, consists in grouping the vertices

of the same colour and the same degree. In the last example, we would "group
together" w2, w2 and u;4, and write

(z — w2) (z — W3)(z — W4) z3 + uz2 + vz + s
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All subsequent computations are done with the unknowns u, v and s instead

of W2, w?, and W4, thus reducing the degree of the equations.
More significant is the alternative approach at our disposal when the dessin is

a planar tree. Then F is a polynomial (if we arrange for the only pole to be 00),
and F' divides F(F — 1), so F(F — 1) PFf, where everything in sight is a

polynomial.
Coming back to the last example, we would write

the unknowns being now c,h\,h2,wi,u,v and s. In the very particular case at

hand, there is already a finite number of solutions to the polynomial equations

resulting from the comparison of the expressions for F and F — 1. In general

though, the very easy next step is to compute the remainder in the long division
of F(F — 1) by Ff say in Q(c,bi,b2,wi,u,v,s)[z]. Since F and F' both
have c as the leading coefficient, it is clear that the result will have coefficients

in Q[c, b\, b2, w\, u, v, s]. These coefficients must be zero, and these are the

equations to consider.

Proceeding in this way is, based on a handful of examples, several orders of
magnitude faster than with the general method.

We conclude with a proof of Proposition 4.3.

Proof Let F be as in the proposition, let A F'/F{F — 1), and let us write
the partial fraction decomposition of A over C:

Now we integrate; we do this formally, though it can be made rigorous by

restricting z to lie in a certain interval of real numbers. Note that essentially we

are solving the differential equation F(F — 1) A~XF'. On the one hand:

F cz4(z — b\)(z — b2)2

(incorporating bo 0) and

F — I c{z — 1 )2(z — uq)2(z3 + uz2 + vz + s),

up to a constant. On the other hand this must be equal to
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up to a constant. Thus the exponential of this last expression is a rational fraction,
from which it follows that the first sum above must be zero. In other words, k 1

in all the nonzero terms of the partial fraction decomposition of A. Moreover,
for the same reason all a's must be integers. In the end

a >

z — ra,r

and

a,r

We rewrite this

oi,r

Examination of this expression establishes (1) and (2) simultaneously. Indeed

F{oo) oo implies c 1 (and 0). Likewise, the roots of F are the

numbers r 's such that a < 0, and the roots of F — 1 are the r 's such that a > 0.
The multiplicities are interpreted as degrees of vertices, as already discussed (we
see that 0 amounts to J2mi J2ni >

and as a matter a fact these two
sums are equal to the number n of darts, each dart joining a back vertex and a

white one). Let us now use the notation bt, wt, nt and ml.
We have shown that

A x
B

n,(z - bi)(z - wt)

where B is a monic polynomial. It remains, in order to prove (3), to find the

roots of B together with their multiplicities, knowing that B does not vanish at

any bt or any wt.
Lor this write F P/Q with P, Q coprime polynomials, so that

P>Q + PQ>

P(P-Q) '

If ft is a root of g, with multiplicity rt, then it is a root of P'g + PQ' with
multiplicity rt — 1. Also, it is not a root of P(P — g), so in the end ft is a

root of B of multiplicity rt — 1.

Linally, from the expression A Ff/F(F — 1) we know that the roots of A

are to be found among the roots of F' and the poles of F{F — 1), that is the

roots of g. So a root of A which is not a root of g would have to be a root
of F'. Now we use the fact that F is a Belyi map: a root of F' is taken by F
to 0 or 1, so it is among the bt 's and the wt's. These are not roots of 2?, as

observed, so we have proved (3).
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Now we turn to the converse, so we let A have the form in (3), we suppose
that (1) holds and define F by (2). From the arguments above it is clear
that A Ff/F{F - 1).

Is F a Belyi map? For z0 satisfying F'(zq) 0, we need to examine whether
the value F(z0) is among 0, l,oo. Suppose F(z0) is neither 0 nor 1. Then it is

not a root of F{F — 1), so it is a root of A. If we throw in the assumption that
the roots of A are poles of F, it follows that F(z0) oo.

4.3. Examples in genus 1; faithfulness of the action. Let us briefly discuss the

Galois action in the language of curves, as in §2.6. A dessin defines a curve C,
which can be taken to be defined by homogeneous polynomial equations Pt 0

in projective space, where Pt has coefficients in Q. Also C comes equiped with
a map F: C -> P1, or equivalently F e M(C), and F can be written as a

quotient F P/Q where P and Q are homogeneous polynomials of the same

degree, again with coefficients in Q. Conversely such a curve, assuming that F
does not ramify except possibly at 0, 1 or oo, defines a dessin.

It is then easy to show (though we shall not do it here) that k% corresponds
to the curve kC obtained by applying X to the coefficients of each Pt; it comes
with a Belyi map, namely kF, which we again obtain by applying X to the

coefficients of F. (Note in particular that AC, as a curve without mention of a

Belyi map, is obtained from X and C alone, and F does not enter the picture.)
We illustrate this with dessins in degree 1. An elliptic curve is a curve C

given in P2 by a "Weierstrass equation", that is, one of the form

y2z — x3 — axz2 — bz3 0.

Assuming we work over Q or C, the surface C(C) is then a torus. One can
show conversely that whenever C(C) has genus 1, the curve is an elliptic curve.

The equation is of course not uniquely determined by the curve. However one

can prove that

j 1728 (4a)3/16 (4a 3 + 27b2)

depends only on C up to isomorphism. (The notation is standard, with 1728

emphasized.) What is more, over an algebraically closed field we have a converse:
the number j determines C up to isomorphism. Further, each number j e K
actually corresponds to an elliptic curve over K. These are all classical results,

see for example [Si].
Now we see that, in obvious notation, j(kC) Ay(C), with the following

consequence. Given X e Gal(Q/Q) which is not the identity, there is certainly
a number j e Q such that k j ^ j Considering the (unique) curve C such

that j(C) j, we can use Belyi's theorem to make sure that it possesses a
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Belyi map F (it really does not matter which, for our purposes), producing at

least one dessin It follows that is not isomorphic to £?, and we see that
the action of Gal(Q/Q) on dessins is faithful.

As it happens, one can show that the action is faithful even when restricted

to genus 0, and even to plane trees. What is more, the argument is easy and

elementary, see the paper by Schneps [Sehl], who ascribes the result to Lenstra.

We note for the record:

Theorem 4.8. The action of Gal(Q/Q) on dessins is faithful. In fact, the action

on plane trees is faithful, as is the action on dessins of genus 1.

In this statement it is implicit that the image of a plane tree under the Galois

action is another plane tree. Theorem 4.11 below proves this, and more.

4.4. Invariants. We would like to find common features to the dessins £? and

assumed connected for simplicity. First and foremost, if L/Q(x) corresponds to £?,

one must observe that there is the following commutative diagram:

QW »-QW

L L®ld Q(x) L q(x) AL_

Here both horizontal arrows are isomorphisms of fields (but the bottom one is

not an isomorphism of Q(x)-extensions, of course). It follows that there is an

isomorphism
X* : Gal (L/Q(x)) — Gal (ÄL/Q(x)),

obtained by conjugating by the bottom isomorphism (this is the approach taken

in [Vö]). Alternatively, the existence of a homomorphism A* between these groups
is guaranteed by the functoriality of the Galois action; while the fact that A* is

a bijection is established by noting that its inverse is (A-1)*. The two definitions
of A* agree, as is readily seen.

For the record, we note:

Lemma 4.9. If £? is regular, so is kxC.

Proof. It is clear that £? and k% have the same degree, and their automorphism

groups are isomorphic under A*, so the lemma is obvious.
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Using curves, we can guess a property of A* which is essential (a rigorous
argument will be given next). Let C be a curve in projective space corresponding
to G. It is a consequence of the material in §2 that C(C) is homeomorphic
to |G|. The automorphism a must then correspond to a self-map C -> C, and

the latter must fix a black vertex by Proposition 3.10. This black vertex has its
coordinates (in projective space) lying in Q.

Now, this map a: C -> C is a map of curves over Q, and so is given, at

least locally, by rational fractions with coefficients in Q. Applying A* amounts

to applying A to these coefficients. Thus we get a map A* (a): kC ->XC, and

clearly it also has a fixed point. By Proposition 3.10 again, we see that A*(a) must
be a power of the distinguished generator ax (in suggestive notation). Likewise
for A* (a) and A*(0).

With a little faith, one may hope that the map C -> C, having a fixed point,
looks like z \-+ in local coordinates, where £ is some root of unity. If so, the

power of b\ could be found by examining the effect of A on roots of unity, and

we may hope that it is the same power for a, ä and 0.
Exactly this is true. The result even has an easy and elementary proof, that

goes via fields.

Proposition 4.10 (Branch cycle argument). Assume that G is regular,; and let a,a
and 0 he a distinguished triple for Gal(L/Q(x)) AutQC). Let n he the degree

of G, let £n and let m he such that

A"1^) C •

Finally, let ax, ax and fx be a distinguished triple for Gal(AL/Q(x)).
Then A*(crm) is conjugated to ax, while X*(am) is conjugated to äx and

A*(0m) is conjugated to fx-

Proof This is Lemma 2.8 in [Vö], where it is called "Fried's branch cycle

argument". The following comments may be helpful. In loc. cit., this is stated

using the "conjugacy classes associated with 0, l,oo"; in the addendum to
theorem 5.9, these are identified with the "topological conjugacy classes associated

with 0, l,oo"; and we have already observed (after Proposition 3.10) that they
are the conjugacy classes of a,a,f.

We should pause to compare this with Proposition 3.11, which states that a

regular dessin, up to isomorphism, is nothing other than a finite group G with
two distinguished generators a, a (and 0 (aa)_1 is often introduced to clarify
some formulae). Let us see the map A* as an identification (that is, we pretend
that it is the identity). Then the action of A on (G, a, a) produces the same group,
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with two new generators, which are of the form gamg 1 and hamh 1; moreover,
if we call these ax and otx respectively, then fx (oa^a)-1 is conjugated to fm.

Of course, not all random choices of g,h,m will conversely produce new

generators for G by the above formulae. And not all recipes for producing new

generators out of old will come from the action of a X e Gal(Q/Q). Also note

that, if g h and m 1, that is if we simply conjugate the original generators,

we get an object isomorphic to the original dessin - more generally when there

is an automorphism of G taking a to ax and o; to o;^, then AG ^ G.

One further remark. In the regular dessin G is modeled by the

set X Aut(C) with the distinguished triple a,ot,f acting by right multiplication;

similarly for kG. Now, if we simply look at A, and its counterpart kX,
in the category of sets-with-an-action-of-a-group, that is if we forget the specific

generators at our disposal, then X and kX become impossible to tell apart, by
the discussion above.

We expand on this idea in the next theorem, where we make no assumption
of regularity.

Theorem 4.11. Let G be a compact, connected, oriented dessin without boundary,
and let X e Gal(Q/Q).

(1) G and kG have the same degree n.

(2) It is possible to number the darts of G and AG in such a way that these

two dessins have precisely the same cartographic group G C Sn.

(3) Let m be such that A_1(£/v) where N is the order of G

and £/v e2^. Then within G, the generator ax is conjugated to am,
while otx is conjugated to am and fx A conjugated to fm.

(4) Within Sn, the generator ax is conjugated to a, while otx A conjugated
to a and fx A conjugated to f.

(5) G and G/ have the same number of black vertices of a given degree, white

vertices of a given degree, and faces of a given degree.

(6) The automorphism groups of G and AG are isomorphic.

(7) The surfaces |G| and |aG| are homeomorphic.

There is an ingredient in the proof that will be used again later, so we isolate

it:

Lemma 4.12. Let G be a regular dessin, and let G/ be the intermediate dessin

corresponding to the subgroup H of AutiyC). Then AG is regular, and is

its intermediate dessin corresponding to the subgroup X*(H).
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Proof. This is purely formal, given that the action of A is via a self-equivalence
of the category (£ta[e(Q(x)) which preserve degrees (this is the first point of
the proposition, and it is obvious!). Clearly regular objects must be preserved.

If K/Q(x) is an intermediate extension of L/Q(x) corresponding to //, then

the elements of H are automorphisms of L fixing K, so the elements of X*(H)
are automorphisms of kL fixing XK. Comparing degrees we see that A*(H) is

precisely the subgroup corresponding to XK.

Proof of the theorem. We need a bit of notation. Let G be the regular cover
of G. Let us pick a dart d of G as a base-dart. This defines an isomorphism
between the cartographic group G and AutQC), under which a is identified
with a, and likewise for a and <fi. Finally, let H be the stabilizer of the dart d,
so that in 6et5a,a,0 our dessin is the object H\G. The subgroup H of G

corresponds to G in the "Galois correspondence" for G.

By the lemma, XG is the regular closure of XG, and the latter
corresponds to the subgroup Therefore in 6et<*,</> we can represent XG

by A*(H)\A*(G). In the category of G-sets, this is isomorphic to H\G via A*.
If we use the bijection H\G -> X*(H)\X*(G) in order to number the elements

of A*(H)\A*(G), then we have arranged things so that the cartographic groups
for G and kG coincide as subgroups of Sn.

This proves (1) and (2). Point (3) is a reformulation of the previous proposition.
To establish (4), we note that m is prime to the order N of G, and in particular
it is prime to the order of a. In this situation am has the same cycle-type
as a and is therefore conjugated to a within Sn. Likewise for a and f. Those

cycle-types describe the combinatorial elements refered to in (5).
Point (6) follows since the automorphism groups of G and XG are both

isomorphic to the centralizer of G in
Finally, point (7) is obtained by comparing Euler characteristics, as in

Remark 1.22.

Example 4.13. We return to Example 4.6. While looking for an explicit Belyi
map, we found four candidates, falling into two Galois orbits. Let us represent
them again, with a numbering of the darts.
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7

In all four cases one has a (1234)(56), while a is given on the pictures.
The following facts are obtained by asking GAP: in cases A and B, the group
generated by a and a is the alternating group A7 (of order 2520); in cases C
and D, we get a group isomorphic to PSL^{F2) (of order 168). This prevents
A and B from being in the same orbit as C or D, by the theorem, and suggests
that A and B form one orbit, C and D another. We have seen earlier that this is

in fact the case.

Note that the cartographic groups for A and B are actually the same subgroups
of S7, and likewise for C and D. The theorem asserts that this can always be

arranged, though it does not really provide an easy way of making sure that

a numbering will be correct. With random numberings of the darts, it is a

consequence of the theorem that the cartographic groups will be conjugated. In

general the conjugation will not preserve the distinguished generators, unless the

two dessins under consideration are isomorphic, cf Theorem 1.24.

5. Towards the Grothendieck-Teichmüller group

In this section we define certain finite groups Hn for n > 1, and prove that
there is an injection

Gal(Q/Q) —> lim Out(Hn).
n

We further prove that the image lies in a certain subgroup, which we call QT
and call the coarse Grothendieck-Teichmüller group. The group QT is an inverse

limit of finite groups, and one can compute approximations for it in finite time.

Beside these elementary considerations, we shall also use the language of
profinite groups, which has several virtues. It will show that our constructions are

independent of certain choices which seem arbitrary; it will help us relate our
construction to the traditional literature on the subject; and it will be indispensable
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to prove a refinement of Theorem 4.8: the action of Gal(Q/Q) on the set of
regular dessins is also faithful.

5.1. The finite groups Hn. Let F2 denote the free group on two generators,
written a and a. We encourage the reader to think of F2 simultaneously as (a, a)
and (er, \ oaf 1).

For any group G we shall employ the notation G^ to denote the intersection
of all normal subgroups of G whose index is < n. We define then Hn F2/F^.
It is easily seen that Hn is a finite group; moreover the intersection of all the

normal subgroups of Hn of index < n is trivial, that is {1}.
In fact Hn is universal among the groups sharing these properties, as the

following proposition makes precise (it is extracted from [Vö], see §7.1). The

proof is essentially trivial.

Proposition 5.1. (1) For any finite group G of order < n and gi,g2 G G,
there is a homomorphism Hn -> G sending o to g\ and a to g2.

(2) If g\, g2 are generators of a group G having the property that G^ {1},
then there is a surjective map Hn -> G sending a to g\ and a to g2.

(3) If h\,h2 are generators of Hn, there is an automorphism of Hn sending a
to h\ and a to h2.

(Here we have written a and a for the images in Hn of the generators
of F2.)

In particular, there is a surjective map Hn+i -> Hn. The kernel of this map
is H^_x, which is characteristic ; it follows that we also have maps Aut(Hn+1)
Aut(Hn) as well as Out(Hn+1) Out(Hn).

Here is a concrete construction of Hn. Consider all triples (G,x,y) where G

is a finite group of order < n and x,y are generators for G, and consider

two triples (G,x,y) and (G/,x/,y/) to be isomorphic when there is an isomorphism

G G/ taking x to x' and y to y'. Next, pick representatives for the

isomorphism classes, say (Gi, xi, yi),..., (G^v, x^v, By the material above,

this is equivalent to classifying all the regular dessins on no more than n darts.

Consider then

U Gi x • • • x Gn

and its two elements a (x1?..., x#) and a (jq,..., The subgroup K
of U generated by a and a is then isomorphic to Hn. Indeed, if G is any

group generated by two elements gi,g2 satisfying G^ {1}, by considering
the projections from G to its quotients of order < n we obtain an injection of G

into U; under this injection gi, resp. g2, maps to an element similar to cr, resp.

a, except that some entries are replaced by l's, for those indices i such that Gt
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is not a quotient of G. As a result there is a projection K -> G sending a to gi
and a to g2. Since K satisfies the "universal" property (2) of Proposition 5.1,

just like Hn does, these two groups must be isomorphic.
The finite groups Hn will play a major role in what follows. Variants are

possible: other collections of quotients of F2 could have been chosen, and we

comment on this in §5.5. We shall presently use the language of profinite groups,
which allows a reformulation which is plainly independent of choices. Yet, in
the sequel where elementary methods are preferred, and whenever we attempt a

computation in finite time, the emphasis is on Hn or the analogous finite groups.
The use of profinite groups is necessary, however, to prove Theorem 5.7.

Lemma 5.2. The inverse limit \imn Hn is isomorphic to F2f the profinite
completion of F2.

Proof By definition the profinite completion is

F2 lim F2/N

where the inverse limit is over all normal subgroups N of finite index.

Each such N contains some F^ for n large enough, so the collection of
subgroups F^ is "final" in the inverse limit, implying the result.

Lemma 5.3. There is an isomorphism Out{F2) \imn Out(Hn).

Note that Out(F2) is, by definition, Autc(F2)/Inn{F2) where Autc(F2) is

the group of continuous automorphisms of F2. The proof will give a description
of Autc{F2) as an inverse limit of finite groups.

Proof We will need the fact that normal subgroups of finite index in F2 are

in bijection with open, normal subgroups of F2 (which are automatically closed

and of finite index), under the closure operation N i-> N: in fact the quotient

map F2 -> F2/N extends to a map F2 -> F2/N whose kernel is N. It follows

easily that N\ n N2 N\ n N2, where Nt has finite index in F2. In particular,
the closure of F^ in F2, which is the kernel of F2 TTn, is preserved by all
continuous automorphisms - we call it characteristic.

We proceed with the proof. Using the previous lemma we identify F2

and linifl Hn. There is a natural map

lim Aut{Hn) —> Autc(limHn),
n n

and since the kernel of F2 Hn is characteristic there is also a map going the

other way:
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Autc(F2) —> lim Aut(Hn).
n

These two maps are easily seen to be inverses to one another.

Next we show that the corresponding map

7r: lim Aut(Hn)—> lim Out (Hn)
n n

is surjective. This can be done as follows. Suppose that a representative yn e

Aut(Hn) of yn e Out(Hn) has been chosen. Pick any representative yn+\
of Yn+i - H may not be the case that yn+i maps to yn under the map Aut(Hn+1)
Aut(Hn), but the two differ by an inner automorphism of Hn ; since Hn+i Hn
is surjective, we can compose yn+i with an inner automorphism of Hn+\ to

compensate for this. This defines (yn)n> 1 £ limn Aut(Hn) by induction, and shows

that 7r is surjective.
To study the kernel of 7T, we rely on a deep theorem of Jarden [Ja], which

states that any automorphism of F2 which fixes all the open, normal subgroups
is in fact inner. An element ß e ker(7r) must satisfy this assumption: indeed

each open, normal subgroup of F2 is the closure N of a normal subgroup N
of finite index in F2, and each such subgroup contains some for some n

large enough, so if ß induces an inner automorphism of Hn it must fix N. We

conclude that the kernel of ti is Inn(F2), and the lemma follows.

5.2. A group containing Gal(Q/Q). We make use of the axiom of choice, and

select an algebraic closure Q of Q(x).
The finite group Hn with its two generators gives a regular dessin, and so

also an extension of fields Ln/Q(x) which is in (£ta[e(Q(x)); it is Galois with

Gal(L„/Q(x)) ^ Hn. Now we may choose Ln to be a subfield of £2. What
is more, Ln is then unique: for suppose we had L'n c Q such that there is

an isomorphism of field extensions Ln -> L'n, then we would simply appeal

to the fact that any map Ln Q has its values in Ln, from basic Galois

theory. In the same vein, we point out that if L/Q(x) is any extension which
is isomorphic to Ln/Q(x), then any two isomorphisms Ln L differ by
an element of Gal(L„/Q(x)). From now on we identify once and for all Hn
and Gal(L„/QO)).

Now let X g Gal(Q/Q). We have seen that kLn is again regular (just like Ln
is), and that it corresponds to a choice of two new generators ax and ax of Hn.
However by (3) of Proposition 5.1 there is an automorphism Hn Hn such

that a i-^ ax and a \-^ ax, and so Ln and kLn are isomorphic. In other words

there exists an isomorphism i\ Ln —> kLn of extensions of Q(x), which is

defined up to pre-composition by an element of Gal(L„/Q(x)) Hn.
Given h e Hn, we may consider now the following diagram, which does not

commute.
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Lyi
* A Ln

k*(h)

Ln kL

The map t o A*(A) depends on the choice of £, and more precisely it is

defined up to conjugation by an element of Hn As a result the automorphism h i->
£-1 oX*(h)ot of Hn induces a well-defined element in Out(Hn), which depends

only on A.

Theorem 5.4. 77zcrc is an injective homomorphism of groups

T: Gal(Q/Q) —> lim Out(Hn) ^ Out(F2).
n

Proof We have explained how to associate to 1 e Gal(Q/Q) an element

in Out(Hn). First we need to prove that this gives a homomorphism

rn: Gal(®/Q)^>Out(Hn),

for each fixed n. Assume that Tn(Xt) is represented by h i-> q_1 o A* (ft) oil9
for i 1,2. Iben Tn(Ai) o rw(A2) is represented by their composition, which is

ft i—^ g
^

o (AiA2) o ^3 5

where AG2 o ^. Since is an isomorphism Ln -> XlXlLn, we see that this

automorphism represents r„(AiA2), so r„(AiA2) r„(Ai)r„(A2), as requested.

Next we study the compatibility with the maps Out(Hn+1) Out(Hn).
The point is that Ln c Ln+i, and that Ln corresponds to a characteristic

(n)
subgroup of Hn+i in the Galois correspondence (namely Z/„+1). It follows that

any isomorphism Ln+\ xLn+\ must carry Ln onto xLn. Together with the

naturality of A*, this gives the desired compatibilities.
Finally we must prove that Y is injective. We have seen that the action

of Gal(Q/Q) on dessins is faithful; so it suffices to shows that whenever

T(A) 1, the action of A on dessins is trivial.
To see this, pick any extension L of Q(x), giving an object in (£ta[e(Q(x)).

It is contained in Ln for some n, and corresponds to a certain subgroup K
of Hn in the Galois correspondence. By Lemma 4.12, XL corresponds to A*(K)
as a subfield of xLn. The condition T(A) 1 means that, if we identify kLn
with Ln by means of some choice of isomorphism i (which we may), the

map A* becomes conjugation by a certain element of Hn. So XL corresponds
to a conjugate of K, and is thus isomorphic to L (this is part of the Galois

correspondence).
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5.3. Action of Out(Hn) on dessins. We seek to define a down-to-earth

description of an action of lim„ Out(Hn) on (isomorphism classes of) dessins.

In fact we only define an action on connected dessins in what follows, and will
not recall that assumption. (It is trivial to extend the action to all dessins if the

reader wishes to do so.)

We work in 6et<*,</>, in which a typical (connected) object is K\G, where G

is a finite group with two generators a and a and K is a subgroup. Assume that G

has order < n. Then there is a surjective map p: Hn -> G, sending a and a to
the elements bearing the same name. We let N ker(p) and K p~l(K).

Now suppose y is an automorphism of Hn We can consider yG Hn/y(N),
which we see as possessing the distinguished generators a and a, the images
under Hn -> Hn/y(N) of the elements with the same name. We certainly do not
take y(a) and y(a) as generators; on the other hand y induces an isomorphism
of groups G -> yG which is not compatible with the distinguished generators.

Finally yG has the subgroup yK, the image of y(K) under Hn -> Hn/y(N).
The object yK\yG in is the result of applying y to K\G. Clearly
this defines an action of Out(Hn) on isomorphism classes of dessins whose

cartographic group has order < n.

Lemma 5.5. Suppose y e Out(Hn) is of the form y Tn(A) for some X e

Gal(Q/Q). Then the action of y on (isomorphism classes of) dessins agrees with
that of X.

Proof We keep the notation introduced above, and write G for the regular
dessin defined by the finite group Hn with its two canonical generators. The

dessin X K\G considered is the intermediate dessin of G corresponding to
the subgroup K of AutQC) Hn. Thus kX corresponds to the subgroup X*{K)
of Aut(xG) X*(Hn). Picking an isomorphism i between G and as before,

we see that xX is isomorphic y(K)\Hn as requested.

Lemma 5.6. The actions defined above are compatible as n varies and can be

combined into a single action of \imn Out(Hn) on the isomorphism classes of
dessins.

Proof It suffices to prove that, for any integers n, s, if we pick yn+s e Out(Hn+s)
and let yn be its image under the projection Out(Hn+s) Out(Hn), then for

any dessin X whose cartographic group G has order < n the dessins yn+*X
and YnX are isomorphic. However this follows easily from the fact that the

projection pn+s: Hn+S G factors as pn°rtn+s> where we write 7in+s: Hn+S

Hn for the natural map.
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Now we seek to prove that the action of lim„ Out(Hn) on dessins is faithful.

Theorem 5.7. The group \imn Out(Hn) Out(F2) acts faithfully on the set of
regular dessins.

Proof Let ß e Aut(F2) correspond to y (yn)n> 1 £ lim« Out(Hn). If the action

of this element is trivial on the set of all regular dessins, then the automorphism ß

must fix all open, normal subgroups of F2. However the theorem of Jarden already
used in the proof of Lemma 5.3 implies then that ß is an inner automorphism
of f2. As a result, yn 1 for all n.

Here it was necessary to see limnHn as Out(F2) to conduct the proof (or
more precisely, to be able to apply Jarden's theorem which is stated in terms

of F2).

Corollary 5.8. The group Gal(Q/Q) acts faithfully on the set of regular dessins.

Example 5.9. Suppose y is an automorphism of Hn for which you have an

explicit formula, say

y(a) otfoT1 y(a) a

What is the effect of y on dessins, explicitly? Discussing this for regular dessins

for simplicity, say you have G, a finite group of order < n with two distinguished

generators written as always a and a. Can we compute the effect of y on (G, cr, a)
immediately?

The answer is that some care is needed. Looking at the definitions,
we write G Hn/N for some uniquely defined N, and the new dessin

is (Hn/y(N),a, a). If we want to write this more simply, according to the

principle that "applying y gives the same group with new generators", we exploit
the isomorphism of groups

G Hn/N — Hn/y(N)

which is induced by y. Transporting the canonical generators of Hn/y{N) to G

via this isomorphism gives is fact (G, y_1(cr), y~x(a)) (note the inverses!).
In our case we compute y~l{o) 0, y~x(a) a. In short

y(G, cr, a) (G, 0, a)

with, as ever, f (aa)~x. Incidentally, if we compare this with Example 2.6,

we see that the action of y is to turn a dessin into its "dual".
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5.4. The coarse Grothendieck-Teichmüller group. Let us give a list of conditions

describing a subgroup of lim Out(Hn) containing the image of Gal(Q/Q).

Lemma 5.10. Let y r„(A) e Out(Hn), for some X e Gal(Q/Q). Then y can
he represented by an element of Aut{Hn), still written y for simplicity, and

enjoying the following extra properties: there exists an integer k prime to the

order of Hn, and an element f e [Hn, Hn\, the commutator subgroup, such that

y{p) ok and y(a) f~lak f
Moreover y(aa) is conjugated to (aa)k.

Proof This follows from Proposition 4.10 (the branch cycle argument) applied
to Ln. More precisely, let us write a for a and a for a, etc. Then there is an

isomorphism i between Ln and xLn, under which ox G Aut(xLn) is identified
with a e Hn, and similarly for ax and fx ; as for A*, it becomes Tn(A) when

viewed in Out(Hn). Thus a simple translation of the notation shows that y(a)
is conjugated to ak, where k is determined by the action of X on roots of
unity, while y(a) is conjugated to ak and y(aa) is conjugated to (aa)k. By
composing with an inner automorphism, we may thus assume that y(a) ak.

Let g e Hn be such that y(ct) g~lakg. Every element of the abelian

group Hn/[Hn, Hn\ can be written a3a1 for some integers i,j, so let us

write g a3alc\ for some c\ e [Hn,Hn\. Further put alc\ C2C\ol; here ex

is a commutator, so that / cxci e [Hn, Hn\. Thus g a3 fa1 and

y(a) gakg~l (a"' f~xa~')ak (*J fa1) <r"'(/«*/"V •

By composing y with conjugation by a1, we obtain a representative which is of
the desired form.

For each n there is an automorphism 8n of Hn satisfying 8n(a) afa~l
a~la~l, 8n(a) a, Sn(<fi) a. We write 8 (8n)n>i for the corresponding
element of \imn Out(Hn). The letter 8 is for duality, as the next lemma explains.

Lemma 5.11. (1) The dessin 8%C resulting from the application of 8 to an

arbitrary dessin )£ is its "dual". Tf )£ corresponds to the surface S endowed

with the Belyi map F: S P1, then 8%C corresponds to S endowed

with 1 /F.
(2) Tf y T(A) G lim„ Out{Hn) for X e Gal(Q/Q), then y and 8 commute.

Note that 8 squares to conjugation by a. Thus in Out(Hn), it is equal to its

inverse, and the letter co is often used in the literature for 8~x.
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Proof (1) follows from the computations in Example 2.6 and Example 5.9.

Since the Galois action proceeds by the effect of X e Gal(Q/Q) on the

coefficients of the equations defining S as a curve, and the coefficients of the

rational fraction F, the first point implies that ^ 8X%C for any dessin G.
Since the action of lim„ Out(Hn) on isomorphism classes of dessins is faithful,
this implies X8 8X.

Note that we have relied on the point of view of algebraic curves in this

argument.
Now we turn to the study of the automorphism of Hn usually written 9n which

satisfies 9n(a) a and 9n(a) a. We write 9 (9n)n>i for the corresponding
element of lim„ Out(Hn).

Lemma 5.12. (1) The dessin e% resulting from the application of 9 to an

arbitrary dessin T is simply obtained by changing the colours of all the

vertices in G. If G corresponds to the surface S endowed with the Belyi
map F: S -> P1, then corresponds to S endowed with 1 — F.

(2) If y T(A) G linifl Out(Hn) for X e Gal(Q/Q), then y and 9 commute.

Proof As the previous proof, based on Example 2.7.

We come to the definition of the coarse Grothendieck-Teichmüller group, to
be denoted QT. In fact, we start by defining the subgroup QT(n) of Out(Hn)
comprised of all the elements y such that:

(GTO) y has a representative in Aut(Hn), say y, for which there exists an

integer kn prime to the order of Hn, and an element fn e [Hn, Hn], such

that

y(o) okn and y(pt) f~xakn f„
(GT1) y commutes with 9n.

(GT2) y commutes with 8n,

Remark that conditions (GT2) and (GTO) together imply that y(aa) is

conjugated to (oa)kn
We let QT lim„ QT(n). The contents of this section may thus be summarized

as follows, throwing in the extra information we have from Proposition 4.10:

Theorem 5.13. There is an injective homomorphism

T: Gal(Q/Q) —> QT.

Moreover; for y T (A), the integer kn can be taken to be any integer satisfying

VW) d" •

Here N is the order of Hn, and £#



Dessins d'enfants and the Grothendieck-Teichmüller group 369

5.5. Variants. It should be clear that the groups Hn are not the only ones we
could have worked with. In fact, let JV" be a collection of subgroups of F2 with
the following properties:

(i) each N e JV" has finite index in F2

(ii) each N e JV" is characteristic (and in particular normal),

(iii) for any normal subgroup K in F2, there exists N e JV" such that N c K.
(iv) for each N e JV", the group G F2/N has the following property: given two

pairs of generators (gi,g2) and (h\,h2) for G, there exists an automorphism
of G taking gt to ht, for i 1,2.

So far we have worked with JV" the collection of all subgroups F^ (for n > 1).

Other choices include:

• For n > 1, let F^ the intersection of all normal subgroups of F2 of
order dividing n. Then take JV" the collection, for all n > 1, of all the

groups F^.
• For G a finite group, let Ng the intersection of all the normal subgroups N

of F2 such that F2/N is isomorphic to G (the group G not having
distinguished generators). Then take JV" the collection of all Nq where G

runs through representatives for the isomorphism classes of finite groups
which can be generated by two elements.

To establish condition (iv) in each case, one proves a more "universal" property
analogous to (2) of Proposition 5.1 for Hn.

The reader will check that all the preceding material is based only on these

four conditions, and the results below follow mutatis mutandis. First, as in §5.1

we have

F2 ^ lim F2/N
NeJS

and

Out(F2) lim Out(F2/N).
NeJsf

In particular we have maps Gal(Q/Q) Out(F2/N) for N running through JV",

and any non-trivial element of Gal(Q/Q) has non-trivial image in some

Out(F2/N).
Let us introduce the notation QT(K), for any characteristic subgroup K of

finite index in F2, to mean the subgroup of Out(F2/K) of those elements

satisfying (GTO) - (GT1) - (GT2). Note that N being characteristic, it makes

sense to speak of 8 and 9 as elements of Out(F2/N). In the same fashion we
define QT(K), as a subgroup of Out{F2/K), when K is open and characteristic

in F2.
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With this terminology, one proves that the elements of Out(F2/N) coming
from elements of Gal(Q/Q) must in fact lie in GT(N). If we let GT(Jf) denote

the inverse limit of the groups GT(N) for N e JT, then it is isomorphic to a

subgroup of Out(F2) and we have an injection of Gal(Q/Q) into GT{JT).
The next lemma then proves that GT(W) is independent of JV":

Lemma 5.14. Let ß e Out(F2). Then ß lies in GT(JT) if and only if for each

open, characteristic subgroup K of F2f the induced element of Out(F2/K) is

in GT(K).
In particular; the group GT(JT), as a subgroup of Out(F2) is independent

of the choice of JT.

Proof The condition is clearly sufficient, as we see by letting K run through the

closures of the elements of JT.

To see that it is necessary, we only need to observe that K contains the closure

of an element N e JV", so F2/K is a quotient of F2/N and the automorphism
induced by ß on F2/K is also induced by an element of GT(N); thus it must
lie in QT(K).

This characterization of elements of GT(JT) visibly does not make any
reference to W.

In theory, all choices for JV" are equally valid, and in fact no mention of
any choice is necessary: one may state all the results of this section in terms

of Out(F2), for example defining GT by the characteristic property given in the

lemma. In practice however, choosing a collection JV" allows us to compute GT(N)
explicitly for some groups N e JV", and that is at least a baby step towards a

description of Gal(Q/Q). The difficulty of the computations will depend greatly
on the choices we make. For example, with the groups F^n\ the order of Hn
increases very rapidly with n, but the indexing set is very simple; with F^n\ the

order of F2/F^ is much less than the order of Hn, but the inverse limits are

more involved. In a subsequent publication, computations with the family JT of
all the groups of the form Nq will be presented.

We conclude with yet another definition of GT which does involve choosing
a collection JV". This is the traditional definition.

5.6. Taking coordinates; the group GT o • We start with a couple of observations

about Hn.

Lemma 5.15. If k\ and k2 are integers such that okl and ak2 are conjugate
in Hn, then k\=k2 mod n. Similarly for a.
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Proof We use the map Hn -> Cn (x), where Cn is the cyclic group of
order n, sending both a and a to x. The image of akl is xkl (for i 1,2),
and conjugate elements of Cn are equal, so k\ k2 mod n.

Corollary 5.16. Let y e GT(n). For i 1,2, let yt be a representative for y
in Aut(Hn) such that pi (a) is conjugate to akl. Then k\ k2 mod n. This

defines a homomorphism

GT(n) — (Z/n)x

which we write y i-> k(y) (or sometimes kn(y) for emphasis).

Letting n vary, we obtain a homomorphism

k: GT —> Zx

Here Z lim^Z/nZ is the profinite completion of the ring Z.

Proposition 5.17. Let y e GT. Then y has a lift ß e Aut(F2) satisfying

ß(o) o«v\ ß(a) f-1akWf,

for some f e [F2, F2\, the commutator subgroup. The element f is unique, and

as a result, so is ß.

Proof. Start with any lift ßQ. The elements ßo(cr) and ak^ are conjugate in

every group Hn, so ßo (a) is in the closure of the conjugacy class of <jk(yK

However this class is closed (the map x i-> xak^x~1 is continuous and its image
must be closed since its source F2 is compact). So ßo (a) is conjugated to ok(yy\

and likewise ßo(a) is conjugated to ak^yK Now, argue as in Lemma 5.10 to
obtain the existence of a representative ß as stated.

We turn to the uniqueness. If f can replace /, then / c\f'c2 where c2

centralizes a and c\ centralizes a. However the centralizer of a in F2 is the

(closed) subgroup generated by a and likewise for a. Since / and f are

assumed to be both commutators, we can reduce mod [F2,F2\ and obtain a

relation c\c2 1; the latter must then hold true in any finite, abelian group
on two generators a and a, and this is clearly only possible if c\ c2 1

in F2.

We observe at once:

Corollary 5.18. The injection T: Gal(Q/Q) Out(F2) lifts to an injection
f: Gal(Q/Q) Aut(F2). In particular, an element of Gal(Q/Q) can be entirely
described by a pair (k, /) e Zx x [F2, F2].
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Proof. Let f (A) be the lift of T(A) described in the proposition. The composition
of two automorphisms of F2 of this form is again of this form, so f (A)f (/z)

must be the lift of T (A)T(/z) T(A/z), that is, it must be equal to f(A/z).

We want to describe a group analogous to QT in terms of the pairs (k,f).
There is a subtlety here, in that if we pick k e Zx and / e [F2, F2] arbitrarily,
the self-homomorphism ß of F2 satisfying

(*) ß(p) ok, ß(a) rlakf
may not be an automorphism. Keeping this in mind, we define a group QTo

now - the notation is standard, and the index "0" is not to be confused with our

writing QT(n) for n 0; moreover the notation does not refer to a profinite
completion of some underlying group QTo. So let QTo be the group of all

pairs (k, /) e Zx x [F2, F2\ such that:

• Let ß be the self-homomorphism defined by (*); then ß is an automorphism.

• ß commutes with 8 in Out(F2).

• ß commutes with 9 in Out(F2).

The composition law on QTo is defined via the composition of the corresponding
automorphisms of F2; one may recover k and / from ß, and indeed QTo could
have been defined as a subgroup of Aut{F2), though that is not what has been

traditionally done in the literature.
The definition of QTo was given by Drinfeld in [Dr]. The reader who is

familiar with loc. cit. may not recognize QTo immediately behind our three

conditions, so let us add:

Lemma 5.19. This definition of QTo agrees with Drinfeld's.

Proof This follows from [Sch2], §1.2, last theorem, stating that "conditions (I) and

(II)" are equivalent with the commutativity conditions with 6 and 8 respectively
(the author using the notation co for an inverse of 8 in Out{F2)).

The natural map Aut(F2) Out(F2) induces a map QTo QT. The

existence and uniquess statements in Proposition 5.17 imply the surjectivity and

injectivity of this map, respectively, hence:

Proposition 5.20. QTo and QT are isomorphic.

One may rewrite the main theorem of this section, Theorem 5.13, as follows:

Theorem 5.21. There is an injective homomorphism of groups

Gal(Q/Q) — QTo
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Composing this homomorphism with the projection QTo Zx gives the

cyclotomic character of Gal(Q/Q).

We conclude with a few remarks about the (real) Grothendieck-Teichmüller

group. This is a certain subgroup of QTo, denoted QT also defined by Drinfeld
in [Dr]. It consists of all the elements of QTo satisfying the so-called "pentagon
equation" (or "condition (III)").

Ihara in [Ih] was the first to prove the existence of an injection of Gal(Q/Q)
into QT His method is quite different from ours, and indeed proving the

pentagon equation following our elementary approach would require quite a bit
of extra work, assuming it can be done at all.

Another noteworthy feature of Ihara's proof (beside the fact that it refines

ours by dealing with QT rather than QTo) is that it does not, or at least not

explicitly, refer to dessins d'enfants. It is pretty clear that the original ideas stem

from the material in the esquisse [Gr] on dessins, but the children's drawings
have disappeared from the formal argument. We hope to have demonstrated that
the elementary methods could be pushed quite a long way.
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