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Berkovich spaces embed in Euclidean spaces

Ehud Hrusnovsk1*, Francois Loeser** and Bjorn PoonNen***

Abstract. Let K be a field that is complete with respect to a nonarchimedean absolute value
such that K has a countable dense subset. We prove that the Berkovich analytification
V& of any d-dimensional quasi-projective scheme V over K embeds in R2¢T1  If,
moreover, the value group of K is dense in R~ and V is a curve, then we describe the
homeomorphism type of V@ by using the theory of local dendrites.

Mathematics Subject Classification (2010). Primary 14G22; Secondary 54F50.
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1. Introduction

In this article, valued field will mean a field K equipped with a nonar-
chimedean absolute value | | (or equivalently with a valuation taking values
in an additive subgroup of R). Let K be a complete valued field. Let V' be
a quasi-projective K -scheme. The associated Berkovich space V" [Bel, §3.4]
is a topological space that serves as a nonarchimedean analogue of the com-
plex analytic space associated to a complex variety. (Actually, V" carries more
structure, but it is only the underlying topological space that concerns us here.)
Although the set V(K) in its natural topology is totally disconnected, V" is
arcwise connected if and only if V' is connected; moreover, the topological dimen-
sion of V3 equals the dimension of the scheme V' [Bel, Theorems 3.4.8(iii,iv)
and 3.5.3(iii,iv)]. Also, V" is locally contractible: see [Be3, Be4] for the smooth
case, and [HL, Theorem 13.4.1] for the general case. Although Berkovich spaces
are not always metrizable, they retain certain countability features in general; cf.
[Fa] and [Poi].

* Supported by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013)/ERC Grant agreement no. 291111/MODAG.

** Supported by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013)/ERC Grant agreement no. 246903/NMNAG.

*** Partially supported by the Guggenheim Foundation and National Science Foundation grant DMS-
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Our goal is to study the topology of V' under a countability hypothesis on
K with its absolute value topology. For instance, we prove the following:

Theorem 1.1. Let K be a complete valued field having a countable dense
subset. Let V be a quasi-projective K -scheme of dimension d. Then V" is
homeomorphic to a topological subspace of R?4+1,

Remark 1.2. The hypothesis that K has a countable dense subset is necessary
as well as sufficient. Namely, K embeds in (A}()a“, so if the latter embeds in a
separable metric space such as R”, then K must have a countable dense subset.

Remark 1.3. The hypothesis is satisfied when K = Q, or F, (). It is satisfied
also when K is the completion of an algebraic closure of a completion of a global

field k, i.e., when K is C, := Q, or its characteristic p analogue TF,(t)) .
because the algebraic closure of k in K is countable and dense. It follows that
the hypothesis is satisfied also for any complete subfield of these two fields.

Recall that a valued field is called spherically complete if every descending
sequence of balls has nonempty intersection. Say that K has dense value group
if ||: KX — R-¢ has dense image, or equivalently if the value group is not
isomorphic to {0} or Z.

Remark 1.4. The separability hypothesis fails for any spherically complete field
K with dense value group. Proof: Let (¢;) be a sequence of elements of K such
that the sequence |¢;| is strictly decreasing with positive limit. For each sequence
€ = (¢;) with ¢; € {0, 1}, define

Ue:={x € K:|x=Y]_ €ti| <|ty| for all n}.

The U, are uncountably many disjoint open subsets of K, and each is nonempty
by definition of spherically complete.

Let us sketch the proof of Theorem 1.1. We may assume that V is projective.
The key is a result that presents V*" as a filtered limit of finite simplicial
complexes. Variants of this limit description have appeared in several places in
the literature (see the end of [Pa, Section 1] for a summary); for convenience, we
use [HL, Theorem 13.2.4], a version that does not assume that K is algebraically
closed (and that proves more than we need, namely that the maps in the inverse
limit can be taken to be strong deformation retractions). Our hypothesis on K is
used to show that the index set for the limit has a countable cofinal subset. To
complete the proof, we use a well-known result from topology, Proposition 3.1,
that an inverse limit of a sequence of finite simplicial complexes of dimension
at most d can be embedded in R24+1,
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Remark 1.5. If we wanted to prove only that the space V*" in Theorem 1.1
is metrizable, we could avoid the use of [HL, Theorem 13.2.4], and instead
simply use the Urysohn metrization theorem, as we now explain. Let K, be
a countable dense subset of K. Let A be the (countable) set of polynomials

in K[x1,...,x,] whose nonzero coeflicients lie in K,. Suppose that D is a
Berkovich n-dimensional polydisk. For each a € A, let r, be an upper bound
for a on D. The map sending a seminorm on K|[xi,...,x,] to its values on

A embeds D in the space [],c4[0.rq] with the product topology, and the latter
is second countable, so D is second countable. Next, (A%)* is a countable
union of such polydisks D, and for any affine variety V, the space V" is
a subspace of some (A%)*, and for any finite-type K-scheme V', the space
V& is a finite union of such spaces V{", so all of these are second countable.
If V is a proper K-scheme, then V# is also compact and Hausdorff [Bel,
Theorems 3.4.8(ii) and 3.5.3(ii)], so the Urysohn metrization theorem applies
to V@, More generally, if V is any separated finite-type K -scheme, Nagata’s
compactification theorem [Nag] (see [Lii, Co] for modern treatments) provides an
open immersion of V into a proper K -scheme V', and then V2" is a subspace
of V™", so V& is metrizable again.

Remark 1.6. Although V2" is metrizable, it typically has no canonical metric.
To be precise, if K is nondiscrete, there is no metric on (Pg)™ that is Aut(Pg)-
invariant. This is because Aut(IP’[1<) acts transitively on pairs of points of P!(K),
so all distances would have be the same, contradicting the fact that the subspace
topology on P!'(K) induced from (Pg)™ is the usual, nondiscrete one. See
Remark 8.7, however.

Remark 1.7. It seems likely also that Theorem 1.1 holds for any separated finite-
type K-scheme V of dimension d.

Our article is organized as follows. Sections 2 and 3 give a quick proof of
Proposition 3.1. Section 4 proves a result needed to replace K by a countable
subfield, in order to obtain a countable index set for the inverse limit. Section 5
combines all of the above to prove Theorem 1.1. The final sections of the paper
study the topology of Berkovich curves: after reviewing and developing the theory
of dendrites and local dendrites in Sections 6 and 7, respectively, we show in
Section 8 how to obtain the homeomorphism type of any Berkovich curve over K
as above. For example, as a special case of Corollary 8.2, we show that (P(ép)an
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FiGure 1
The Berkovich projective line over C,, also known as the Wazewski universal dendrite

is homeomorphic to a topological space first constructed in 1923, the Wazewski
universal dendrite [Wa], depicted in Figure 1.!

I'We believe that ours is the first topologically accurate depiction of (]P’(}:p)*‘m in the literature: to
obtain the correct topology, the branches emanating from each branch point must have diameters tending
to 0. In our depiction, all branches (including branches of ... of branches) are similar; but eventually,
at a scale too small to see on the page, they must cease to meet at equal angles and their diameters
should decrease faster than geometrically, in order to avoid unwanted intersections.
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2. Approximating maps of finite simplicial complexes by embeddings

If X is a topological space, a map f: X — R” is called an embedding if f
is a homeomorphism onto its image. For compact X, it is equivalent to require
that f be a continuous injection. When we speak of a finite simplicial complex,
we always mean its geometric realization, a compact subset of some R". A set
of points in R” is said to be in general position if for each m <n—1, no m+2
of the points lie in an m-dimensional affine subspace.

Lemma 2.1. Let X be a finite simplicial complex of dimension at most d.
Let € € Rwg. For any continuous map f: X — R??+1 there is an embedding
g: X — R4+ gych that |g(x) — f(x)| <€ for all x € X.

Proof. 'The simplicial approximation theorem implies that f can be approximated
within €/2 by a piecewise linear map gq. For each vertex x; in the corresponding
subdivision of X, in turn, choose y; € R2¢+! within €/2 of go(x;) so that the
y; are in general position. Let g: X — R24+1 be the piecewise linear map, for
the same subdivision, such that g(x;) = y;. Then g is injective, and g is within
€/2 of go, so g is within € of f. O

3. Inverse limits of finite simplicial complexes

Proposition 3.1. Let (X,)n>0 be an inverse system of finite simplicial complexes
of dimension at most d with respect to continuous maps pyn: Xp+1 — Xn. Then
the inverse limit X = 1<£an embeds in R24+1,
Proof. For m > 0, let A,, € X,,, x X, be the diagonal, and write (X, x Xy,)—A,
= U?:m Cpnn with Cp,,, compact. For 0 <m <n, let D,,, be the inverse image
of Cpup in X, x X,,. Let K,, = Ufn=1 D,,n. Since K, is closed in X,, x X,,, it
is compact.

For n > 0, we inductively construct an embedding f,: X, — R?¢*! and
numbers oy, €, € R-o such that the following hold for all n > 0:

(i) If (x,x") € Ky, then |fp(x) — fu(x)] = o .
(il) €, < an /4.
(iii) €, <e€p—1/2 (Gf n>1).
(iv) If x € Xp41, then [fri1(x) — fu(pn(x))] < €.

Let fo: Xo — R2¢*1 be any embedding (apply Lemma 2.1 to a constant map,
for instance). Now suppose that n» > 0 and that f, has been constructed. Since
Jfn is injective and K, is compact, we may choose o, € R.( satisfying (i).
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Choose any €, € R.( satisfying (ii) and (iii). Apply Lemma 2.1 to p, o f, to
find f,41 satisfying (iv). This completes the inductive construction.
Now > 72, € < 2, < /2 by (iii) and (ii). Let 7,1 be the composition

X - X, U R24+1 For x € X, (iv) implies | f ni1(x) — f n(x)| < €n, so the
maps [ , converge uniformly to a continuous map f: X — R24+1 gatisfying
| f(x) = fulxn)| <an/2.

We claim that f is injective. Suppose that x = (x,) and x’ = (x],) are distinct
points of X . Fix m such that x,, # x],. Fix n > m such that (x,,x},) € Cnun.
Then (xp.X),) € Dmn C Kpn. By (), | fu(xn) — fu(x))| = o, . On the other hand,

| f(X) = fa(xn)| < n/2 and | f(x") = fa(xp)| <an/2, 80 f(x) # f(x)). u

Remark 3.2. Proposition 3.1 was proved in the 1930s. Namely, following a
1928 sketch by Menger, in 1931 it was proved independently by Lefschetz [Le],
Nobeling [NO], and Pontryagin and Tolstowa [PT] that any compact metrizable
space of dimension at most d embeds in R2¢*!. The proofs proceed by using
Alexandroff’s idea of approximating compact spaces by finite simplicial complexes
(nerves of finite covers), so even if it not obvious that the 1931 result applies
directly to an inverse limit of finite simplicial complexes of dimension at most d
(i.e., whether such an inverse limit is of dimension at most d ), the proofs still
apply. And in any case, in 1937 Freudenthal [Fr] proved that a compact metrizable
space is of dimension at most d if and only if it is an inverse limit of finite
simplicial complexes of dimension at most d. See Sections 1.11 and 1.13 of [En]
for more about the history, including later improvements.

4. Berkovich spaces over noncomplete fields

Berkovich analytifications were originally defined only when the valued field
K was complete [Bel, Sections 3.4 and 3.5]. For a quasi-projective variety V' over
an arbitrary valued field K, there are two approaches to defining the topological
space V.

1. Use the same definition as for complete fields in [Bel], in terms of seminorms.
2. Use a definition as in [HL, Section 13.1] in terms of types over K UR.

As shown in [HL, Section 13.1], these two definitions yield homeomorphic
topological spaces when K is complete. One advantage of the second definition
is that it can be used in more general situations, for fields with a valuation whose
value group is not contained in R. But given the aims of this paper, we will use
the first definition from now on.
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The following proposition shows that no new spaces arise by allowing
noncomplete fields: it would have been equivalent to define V* as (V)™
(the subscript denotes base extension).

Proposition 4.1. Let K < L be an extension of valued fields such that K is
dense in L. Let V be a quasi-projective K -variety. Then (V)™ is naturally
homeomorphic to V.

Proof. This follows by tracing through the construction of V#" in [Bel, Sections

3.4 and 3.5]. The key point is that each multiplicative seminorm on KJt1,...,?,]
is the restriction of a unique multiplicative seminorm on L|[fq,...,t,], obtained
as the unique continuous extension. L]

Remark 4.2. Proposition 4.1 can be proved also for the second definition, in
terms of types not extending the value group, even for fields with value group
not contained in R; the restriction map remains bijective. This shows that the
two definitions produce homeomorphic topological spaces for any valued field K
with value group contained in R, even when K is not complete.

S. Embeddings of Berkovich spaces

Proposition 5.1. Let K be a valued field having a countable dense subset. Let
V' be a projective K -scheme of dimension d. Then V*" is homeomorphic to an
inverse limit 1<i£1Xn where each X, is a finite simplicial complex of dimension
at most d and each map Xp4+1 — X, is continuous.

Proof. First suppose that K is countable. Since V is projective, V#" is compact,
so we may apply [HL, Theorem 13.2.4] to V* to obtain that V*" is a filtered
limit of finite simplicial complexes over an index set /. Since K is countable,
the proof of [HL, Theorem 13.2.4] shows that / may be taken to be countable,
so our limit may be taken over a sequence, as desired.

Now assume only that K has a countable dense subset. Since V is of finite
presentation over K, it is the base extension of a projective scheme V|, over a
countable subfield Ky of K. By adjoining to K, a countable dense subset of K,
we may assume that K is dense in K. By Proposition 4.1, V#" is homeomorphic
to (Vo)*, which has already been shown to be an inverse limit of the desired
form. [

Proposition 5.2. Let K be a complete valued field. If U is an open subscheme
of V, then the induced map U™ — V¥ js a homeomorphism onto an open
subspace.
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Proof. This is a consequence of the construction of V¥ by gluing the analyti-
fication of affine open subschemes of V: see step (2) in the proof of [Bel,
Theorem 3.4.1], and see [Bel, Proposition 3.4.6(8)] for the statement itself; in
that section, the valuation on K is assumed to be nontrivial, but as remarked in
the first sentence of the proof of [Bel, Theorem 3.5.1], the same argument works
when the valuation is trivial. []

Theorem 1.1 follows immediately from Propositions 3.1, 5.1, and 5.2.

6. Dendrites

When V is a curve, more can be said about V2. But first we recall some
definitions and facts from topology.

6.1. Definitions. A continuum is a compact connected metrizable space (the
empty space is not connected). A simple closed curve in a topological space
is any subspace homeomorphic to a circle. A dendrite is a locally connected
continuum containing no simple closed curve. Dendrites may be thought of as
topological generalizations of trees in which branching may occur at a dense set
of points. A point x in a dendrite X is called a branch point if X —{x} has three
or more connected components; these components are then called the branches
at x.

6.2. Wazewski’s theorems. The following three theorems were proved by
Wazewski in his thesis [Wa].2

Theorem 6.1. Up to homeomorphism, there is a unique dendrite W such that
its branch points are dense in W and there are Ry branches at each branch
point.

The dendrite W in Theorem 6.1 is called the Wazewski universal dendrite.

Theorem 6.2. Every dendrite embeds in W .

2 Actually, Wazewski used a different, equivalent definition: for him, a dendrite was any image
D of a continuous map [0,1] — R” such that D contains no simple closed curve. A dendrite in
Wazewski’s sense is a dendrite in our sense by [Nad, Corollary 8.17]. Conversely, a dendrite in our
sense embeds in R? by [Nad, Section 10.37] (or, alternatively, is an inverse limit of finite trees by [Nad,
Theorem 10.27] and hence embeds in R> by Proposition 3.1), and is a continuous image of [0,1] by
the Hahn—Mazurkiewicz theorem [Nad, Theorem 8.14].
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Theorem 6.3. Every dendrite is homeomorphic to the image of some continuous
map [0,1] — R2.

6.3. Pointed dendrites. A pointed dendrite is a pair (X, P) where X is a
dendrite and P € X. An embedding of pointed dendrites is an embedding of
topological spaces mapping the point in the first to the point in the second. Let
P be the category of pointed dendrites, in which morphisms are embeddings.
By the universal pointed dendrite, we mean W equipped with one of its branch
points w.

Theorem 6.4. Every pointed dendrite (X, P) admits an embedding into the
universal pointed dendrite (W, w).

Proof. Enlarge X by attaching a segment at P in order to assume that P
is a branch point of X. Theorem 6.2 yields an embedding i: X — W.
Then i(P) is a branch point of W. By [Ch, Proposition 4.7], there is a
homeomorphism j: W — W mapping i(P) to w. Then j oi is an embedding
(X,P) > (W, w). [

Proposition 6.5. Any dendrite admits a strong deformation retraction onto any
of its points.

Proof. In fact, a dendrite admits a strong deformation retraction onto any
subcontinuum [I1]. O

7. Local dendrites

7.1. Definition and basic properties. A local dendrite is a continuum such that
every point has a neighborhood that is a dendrite. Equivalently, a continuum is a
local dendrite if and only if it is locally connected and contains at most a finite
number of simple closed curves [Kur, §51, VII, Theorem 4(i)]. Local dendrites
are generalizations of finite connected graphs, just as dendrites are generalizations
of finite trees.

Proposition 7.1.

(a) Every subcontinuum of a local dendrite is a local dendrite.

(b) An open subset of a local dendrite is arcwise connected if and only if it is
connected.

(¢c) A connected open subset U of a local dendrite is simply connected if and
only if it contains no simple closed curve.

(d) A dendrite is the same thing as a simply connected local dendrite.
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Proof.

(a) This follows from the fact that every subcontinuum of a dendrite is a
dendrite [Kur, §51, VI, Theorem 4].

(b) This follows from [Wh, II, (5.3)].

(¢) If U contains a simple closed curve y, [BJ, Theorem on p. 174] shows that
y cannot be deformed to a point, so U is not simply connected. If U does
not contain a simple closed curve, then the image of any simple closed curve
in U is a dendrite, and hence by Proposition 6.5 is contractible, so U is
simply connected.

(d) This follows from (c). []

7.2. Local dendrites and quasi-polyhedra. Recall from [Bel, §4.1] that a
connected locally compact Hausdorff space X is called a (one-dimensional)
quasi-polyhedron if all connected open subsets of X are countable at infinity
and X admits a basis consisting of open subsets U such that U — U is finite
and such that, for every x,y € U, there exists a unique closed subset contained
in U which is homeomorphic to the unit interval with endpoints x and y. We
now relate the notion of quasi-polyhedron to that of local dendrite.

Proposition 7.2.

(a) A connected open subset of a local dendrite is a quasi-polyhedron.

(b) A compact metrizable quasi-polyhedron is the same thing as a local dendrite.

(¢) A compact metrizable simply connected quasi-polyhedron is the same thing
as a dendrite.

(d) A compact metrizable quasi-polyhedron is special in the sense of [Bel,
Definition 4.1.5].

Proof.

(a) Suppose that V' is a connected open subset of a local dendrite X. By
[Kur, §51, VII, Theorem 1], each point v of V has arbitrarily small open
neighborhoods U with finite boundary. We may assume that each U is
contained in a dendrite. Since V is locally connected, we may replace each U
by its connected component containing x: this can only shrink its boundary.
Now each U, as a connected subset of a dendrite, is uniquely arcwise
connected [Wh, p. 89, 1.3(ii)]. So these U satisfy [Bel, Definition 4.1.1(i)(a)].
By Proposition 7.8(a) (whose proof does not use anything from here on!),
X is homeomorphic to a compact subset of R3, so every open subset of X
is countable at infinity (i.e., a countable union of compact sets). Thus V is
a quasi-polyhedron.
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(b) If X is a local dendrite, it is a quasi-polyhedron by (a) and compact and

metrizable by definition.
Conversely, suppose that X is a compact metrizable quasi-polyhedron. In
particular, X is a continuum. Condition (a; ) in [Bel, Definition 4.1.1] implies
that X is locally connected and covered by open subsets containing no
simple closed curve. By compactness, this implies that there is a positive
lower bound € on the diameter of simple closed curves in X . By [Kur, §5I,
VII, Lemma 3], this implies that X is a local dendrite.

(¢) Combine (b) and Proposition 7.1(d).

(d) A dendrite is special since each partial ordering as in [Bel, Definition 4.1.5]
arises from some x € X, and we can take 6 there to be a radial distance
function as in [MO, Section 4.6], which applies since dendrites are locally
arcwise connected and uniquely arcwise connected. A local dendrite is special
since any simply connected sub-quasi-polyhedron is homeomorphic to a
connected open subset of a dendrite. [

7.3. The core skeleton. By [Bel, Proposition 4.1.3(i)], any simply connected
quasi-polyhedron Q has a unique compactification /Q\ that is a simply connected
quasi-polyhedron. The points of 0 — O are called the endpoints of Q. Given
a quasi-polyhedron X, Berkovich defines its skeleton A(X) as the complement
in X of the set of points having a simply connected quasi-polyhedral open
neighborhood with a single endpoint [Bel, p. 76]. In the case of a local dendrite,
we can characterize this subset in many ways: see Proposition 7.4.

Lemma 7.3. Let X be a local dendrite. Let G be a subcontinuum of X containing
all the simple closed curves. Let C be a connected component of X — G. Then
C is open in X and is a simply connected quasi-polyhedron with one endpoint,
and its closure C in X is a dendrite intersecting G in a single point.

Proof. Since X is locally connected, X — G is locally connected, so C is open.
By Proposition 7.2(a), C is a quasi-polyhedron. Since C contains no simple
closed curve, it is simply connected by Proposition 7.1(c).

The complement of C U G is a union of connected components of X — G,
so C UG is closed, so it contains C. Since X is connected, C # C, so
#CNG)>1.

If C had more than one endpoint, there would be an arc « in C connecting
two of them, passing through some ¢ € C since C —C is totally disconnected
by [Bel, Proposition 4.1.3(i)]; the image of « under the induced map C — X
together with an arc in G connecting the images of the two endpoints would
contain a simple closed curve passing through c, contradicting the hypothesis
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on G. Also, each point in C N G is the image of a point in C — C. Now
1< #(Eﬁ G) <#(C —C) <1, so equality holds everywhere. O

Proposition 7.4. Let X be a local dendrite. Each of the following conditions
defines the same closed subset A of X.

(i) If X is a dendrite, A = &; otherwise A is the smallest subcontinuum of
X containing all the simple closed curves.
(ii) The set A is the union of all arcs each endpoint of which belongs to a
simple closed curve.
(iii) The set A is the skeleton A(X) defined in [Bel, p. 76].

Proof. Let L be the union of the simple closed curves in X. If L = @&, then X
is a dendrite and (i), (ii), (iii) all define the empty set. So suppose that L # &.

For each pair of distinct components of L, there is at most one arc o in X
intersecting L in two points, one from each component in the pair (otherwise
there would be a simple closed curve not contained in L). Let D be the union
of all these arcs o with L. Any arc f in X with endpoints in L must be
contained in D, since a point of B outside D would be contained in some
subarc fB’ intersecting L in just the endpoints of A’, which would then have
to be some «. Thus D is the union of the arcs whose endpoints lie in L.
By Proposition 7.1(b), X is arcwise connected, so D is arcwise connected. By
definition, D is a finite union of compact sets, so D is a subcontinuum.

By Proposition 7.1(b), any subcontinuum Y C X is arcwise connected, so if
Y contains L, then for each o as above, Y contains an arc B with the same
endpoints as «, and then B = a (otherwise there would be subarcs of o and
B whose union was a simple closed curve not contained in L); thus Y D D.
Hence D is the smallest subcontinuum containing L.

Let A be the A(X) of [Bel, p. 76]. If x were a point in a simple closed curve
y in X with a neighborhood Q as in the definition of A, then Q must contain
v, since otherwise Q Ny would have a connected component homeomorphic to
an open interval 7, and the two points of T — 1 would map to two distinct
points of /Q\ — Q, contradicting the choice of Q. Thus A O L. But D is the
smallest subcontinuum containing L, so A 2 D. On the other hand, Lemma 7.3
shows that the points of X — D lie outside A. Hence A = D. []

We call A the core skeleton of X, since in [HL, Section 10] the term “skeleton”
is used more generally for any finite simplicial complex onto which X admits
a strong deformation retraction. If A # @, then A is a finite connected graph
with no vertices of degree less than or equal to 1 [Bel, Proposition 4.1.4(ii)].
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7.4. G -dendrites.

Proposition 7.5. For a subcontinuum G of X, the following are equivalent.

(i) G contains the core skeleton of X.

(i) G is a deformation retract of X.

(ili) G is a strong deformation retract of X.

(iv) There is a retraction r: X — G such that there exists a homotopy
h:[0,1] x X — X between h(0,x) = x and h(l,x) = r(x) satisfying
r(h(t,x)) = r(x) for all t and x (i.e., “points are moved only along the
fibers of r”); moreover, r is unique, characterized by the condition that it
maps each connected component C of X —G to the singleton C N G.

Proof. First we show that a retraction r as in (iv) must be as characterized.
Suppose that C is a connected component of X —G. Any ¢ € C is moved by
the homotopy along a path ending on G, and if we shorten it to a path y so
that it ends as soon as it reaches G then y stays within X — G until it reaches
its final point g and hence stays within C until it reaches g; Hence g € CNG,
and r(c) = g. Thus r(C) CC NG. By Lemma 7.3, #(CNG) =1, so r is as
characterized.

(i)=(iv): See [Bel, Proposition 4.1.6] and its proof.

(iv) = (iii): Trivial.

(iii)= (ii): Trivial.

(ii) = (i): The result of deforming the inclusion of a simple closed curve y in
X is a closed path whose image contains y [BJ, Theorem on p. 174], so if G is
a deformation retract of X, then G must contain each simple closed curve, so
G contains the core skeleton. [

Given an embedding of local dendrites G — X, call X equipped with
the embedding a G -dendrite if the image of G satisfies the conditions of
Proposition 7.5; we generally identify G with its image. Let Dg be the category
whose objects are G -dendrites and whose morphisms are embeddings extending
the identity 16: G — G. Given a G-dendrite X and g € G, let X, be the fiber
r~(g) with the point g distinguished; say that g is a sprouting point if X, is
not a point. Theorem 7.6 below makes precise the statement that any G -dendrite
is obtained by attaching dendrites to countably many points of G . Recall that &
is the category of pointed dendrites, defined in Section 6.3.

Theorem 7.6. There is a fully faithful functor F: Dg — ngG P sending a
G -dendrite X to the tuple of fibers (Xq)geG, and its essential image consists of
tuples (Dg) such that {g € G : #Dg > 1} is countable.
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Proof. Let X be a G -dendrite. For each g € G, the homotopy restricts to
a contraction of Xg to g, so Xg is a (pointed) dendrite. By [Kur, §51, IV,
Theorem 5 and §51, VII, Theorem 1], {g € G : #X > 1} is countable.

The characterization of the retraction in Proposition 7.5(iv) shows that a
morphism of G-dendrites X — Y respects the retractions, so it restricts to a
morphism X, — Y, in & for each g € G. This defines F'.

Given (Dg)gec € [lzeq P with {g € G : #Dg > 1} countable, choose a
metric dp, on Dg such that the diameters of the D, with #D, > 1 tend to 0
if there are infinitely many of them. Identify the distinguished point of D, with
g. Let X be the set [[,cg Dg with the metric for which the distance between
x €Dy and x' € Dy is

dp,(x,x'), if g =g,
dp,(x,8) +dg(g.&') +dp,(¢g'.x), ifg#g.

It is straightforward to check that X is compact and locally connected and that the
map G — X is an embedding. By Proposition 6.5, there is a strong deformation
retraction of Dg onto {g}; running these deformations in parallel yields a strong
deformation retraction of X onto G. Thus X is a G -dendrite. Moreover, F
sends X to (Dg)gec . Thus the essential image is as claimed.

Given X,Y € D¢, and given morphisms f,: Xg — Y, in P for all g € G,
there exists a unique morphism f: X — Y in Dg mapped by F to (fg)geG;
namely, one checks that the union f of the f; is a continuous injection, and
hence an embedding. Thus F is fully faithful. [

7.5. The universal G -dendrite. Let G be a local dendrite. Given a countable
subset Gg € G, Theorem 7.6 yields a G-dendrite Wg g, whose fiber at g € G
is the universal pointed dendrite (W,w) if ¢ € Gy and a point if g ¢ Go. By
Theorems 7.6 and 6.4, any G -dendrite with all sprouting points in Gy admits a
morphism to Wg g, .

Now let G be a finite connected graph. Fix a countable dense subset Gy € G
containing all vertices of G. Define Wg = Wg,, and call it the universal
G -dendrite. Its homeomorphism type is independent of the choice of Gy, since
the possibilities for Gy are permuted by the self-homeomorphisms of G fixing
its vertices. Any G -dendrite has its sprouting points contained in some Gq as
above (just take the union with a Gy from above), so every G -dendrite embeds
as a topological space into Wg.

Theorem 7.7. Let X be a local dendrite, and let G be its core skeleton. Suppose
that G # @, that the branch points of X are dense in X, and that there are
Ro branches at each branch point. Then X is homeomorphic to Wg.
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Proof. 'The vertices of G of degree 3 or more are among the branch points of
X . After applying a homeomorphism of G (to shift degree 2 vertices), we may
assume that all the vertices of G are branch points of X . Since the branch
points of X are dense in X, the sprouting points must be dense in G. For each
sprouting point g € G, the fiber X, satisfies the hypotheses of Theorem 6.1,
so X, is the universal pointed dendrite. Thus X is homeomorphic to Wg, by
construction of the latter. L1

7.6. Euclidean embeddings.

Proposition 7.8.

(a) Every local dendrite embeds in R3.
(b) Let X be a local dendrite, and let G C X be a finite connected graph
containing all the simple closed curves. Then the following are equivalent:
(i) X embeds into R?.
(i) G embeds into R?.
(iii) G does not contain a subgraph isomorphic to a subdivision of the
complete graph Ks or the complete bipartite graph K3 3.

Proof.

(a) A local dendrite is a regular continuum [Kur, §51, VII, Theorem 1], and
hence of dimension 1, so it embeds in R3 as discussed in Remark 3.2.

(b) See [Ku]. [

8. Berkovich curves

Finally, we build on [Bel] (especially Section 4 therein) and the theory of
local dendrites to describe the homeomorphism type of a Berkovich curve. See
also the forthcoming book by Ducros [Du], which will contain a systematic study
of Berkovich curves.

Theorem 8.1. Let K be a complete valued field having a countable dense subset.
Let V' be a projective K -scheme of pure dimension 1.
(a) The topological space V* is a finite disjoint union of local dendrites.
(b) Suppose that V is also smooth and connected, and that K has nontrivial
value group.
(i) If V™ is simply connected, then V® is homeomorphic to the Wazewski
universal dendrite W .
(ii) If V* is not simply connected, let G be its core skeleton; then V"
is homeomorphic to the universal G -dendrite Wg.
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Proof.

(a)

(b)

We may assume that V is connected, so V* is connected by [Bel,
Theorem 3.4.8(iii)]. Also, V¥ is compact by [Bel, Theorem 3.4.8(ii)], It
is metrizable by Remark 1.5 (or Theorem 1.1). It is a quasi-polyhedron
by [Bel, Theorem 4.3.2 and the proof of Corollary 4.3.3]: indeed, one may
assume that K is algebraically closed and V is reduced; since V is obtained
from its normalization by glueing together a finite number of closed points,
we may assume that V is smooth; this case follows directly from [Bel,
Theorem 4.3.2]. So V® is a local dendrite by Proposition 7.2.

Let k& be the residue field of K. Since K has a countable dense subset, k
is countable, so any k-curve has exactly g closed points.

First suppose that K is algebraically closed. In particular K has dense
value group. Choose a semistable decomposition of V" (see [BPR, Def-
inition 5.15]). Each open ball and open annulus in the decomposition is
homeomorphic to an open subspace of (]P’Il<)a“, in which the branch points
(type (2) points in the terminology of [Bel, 1.4.4]) are dense by the as-
sumption on the value group, so the branch points are dense in V. At
each branch point, the branches are in bijection with the closed points of a
k -curve by [BPR, Lemma 5.66(3)], so their number is Ry.

Now suppose that K is not necessarily algebraically closed. Let K’ be the
completion of an algebraic closure of K. Then [Bel, Corollary 1.3.6] implies
that V" is the quotient of (Vks)?" by the absolute Galois group of K. It
follows that the branch points of V2" are the images of the branch points of
(Vk/)®, and that the branches at each branch point of V" are in bijection
with the closed points of some curve over a finite extension of k. Thus, as
for (Vg/)*, the branch points of V" are dense, and there are 8y branches
at each branch point.

Finally, according to whether G is simply connected or not, Theorem 6.1 or
Theorem 7.7 shows that V" has the stated homeomorphism type. [

Corollary 8.2. Let K be a complete valued field having a countable dense subset
and dense value group. Then (Pg)™ is homeomorphic to W .

Proof. Tt is simply connected by [Bel, Theorem 4.2.1], so Theorem 8.1(b)(i)
applies. []

Remark 8.3. Any finite connected graph with no vertices of degree less than
or equal to 1 can arise as the core skeleton G in Theorem 8.1(b)(ii): see [Bel,
proof of Corollary 4.3.4]. In particular, there exist smooth projective curves V
such that V# cannot be embedded in R?.
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Remark 8.4. Theorem 8.1 also lets us understand the topology of Berkovich spaces
associated to curves that are only quasi-projective. Let U be a quasi-projective
curve. Write U = V — Z for some projective curve V and finite subscheme
Z C V. Then Z* is a closed subset of V¥ with one point for each closed point
of Z,and U™ = V& — Z3",

Remark 8.5. The smoothness assumption in Theorem 8.1(b) can be weakened to
the statement that the normalization morphism V — V has no fibers with three
or more schematic points.

Remark 8.6. If in Theorem 8.1(b) we drop any of the hypotheses, then the result
fails; we describe the situations that arise.

— If V is the non-smooth curve consisting of three copies of IP’}< attached
at a K-point of each, then V# consists of three copies of W attached
in the same way; this is a dendrite, but it has a branch point of order 3,
so it cannot be homeomorphic to W . More generally, if the normalization
V  has three distinct schematic points above some point a of V, the same
argument applies.

— If V is disconnected, then so is V", so it cannot be homeomorphic to W
or Wg. In this case, V" is the disjoint union of the analytifications of the
connected components of V.

— Suppose that V' is smooth and connected, but K has trivial value group.
Then V¥ is a dendrite consisting of R intervals emanating from one branch
point; cf. [Be2, p. 71]. Equivalently, V*" is the one-point compactification
of |V|x]0,00), where |V| is the set of closed points of V' with the discrete
topology.

Remark 8.7. As is well-known to experts [Th, BPR], there is a metrized variant
of Theorem 8.1. We recall a few definitions; cf. [MNO]. An R-free is a uniquely
arcwise connected metric space in which each arc is isometric to a subarc of R.
Let A be a countable subgroup of R, and let A>( (resp. A-o) be the set of
nonnegative (resp. positive) numbers in A. An A-tree is an R-tree X equipped
with a point x € X such that the distance from each branch point to x lies in
A.

More generally, we may introduce variants that are not simply connected. Let
us define an R-graph to be an arcwise connected metric space X such that
each arc of X is isometric to a subarc of R and X contains at most finitely
many simple closed curves. Define an A-graph to be an R-graph X equipped
with a point x € X such that the length of every arc from x to a branch point
or to itself is in A. Given an A-graph (X,x), let B(X) be the set of points
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¥ € B not of degree 1 such that y is an endpoint of an arc of length in Ay
emanating from x. Then let £(X) be the A-graph obtained by attaching W
isometric copies of [0,00) and of [0,a] for each a € A~ to each y € B(X)
(i.e., identify each 0 with y). Let £"(X) := E(E(--- (E(X))---)). The direct limit
of the £"(X) is an A-graph W)‘(‘i. If X is a point, define W4 := Wj}, which
is a universal separable A-tree in the sense of [MNO, Section 2], because it
contains the space obtained by attaching only copies of [0, 00) at each stage; the
latter is the universal separable A-tree constructed in [MNO, Theorem 2.6.1].

Let K be a complete algebraically closed valued field having a countable
dense subset. Let A be the value group of K, expressed as a Q-subspace of R.
Let V' be a projective K -scheme of pure dimension 1. Let VV*"~ be the subset of
V@ consisting of the complement of the type (1) points (the points corresponding
to closed points of V). Then V¥~ admits a canonical metric, whose existence
is related to the fact that on the segments of the skeleta of V", away from the
endpoints, one has an integral affine structure [KS, Section 2]. If V"~ is simply
connected, then V3~ is isometric to W4 : otherwise V¥~ is isometric to W’G‘l,
where G is the core skeleton of V#" with the induced metric.

Warning 8.8. The metric topology on V¥~ is strictly stronger than the subspace
topology on V¥~ induced from V2" : see [FJ, Chapter 5] and [BR, Section B.6].
Nevertheless, when V' is smooth and complete, the topological space V" can
be recovered from the metric space V"~
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