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The number of vertices of a tropical curve
is bounded by its area

Tony Yue YU

Abstract. We introduce the notion of tropical area of a tropical curve defined in an open
subset of R"™. We prove that the number of vertices of a tropical curve is bounded by the
area of the curve. The approach is totally elementary yet tricky. Our proof employs ideas
from intersection theory in algebraic geometry. The result can be interpreted as the fact
that the moduli space of tropical curves with bounded area is of finite type.

Mathematics Subject Classification (2010). Primary 14T0S; Secondary 52B05.

Keywords. Tropical curves, tropical area, moduli space, finite type.

1. Introduction and statement of the theorem

We begin with some heuristic motivations from algebraic geometry. Let X be
a complex projective space. The moduli space of algebraic curves embedded in
X with bounded area with respect to the Fubini-Study metric is of finite type,
because the Hilbert schemes are of finite type [Gr]. This article tries to establish an
analogous result of finiteness in tropical geometry. Some combinatorial techniques
of this paper are used to study the compactness of tropical moduli spaces in [Yu2]
(see also [GS, NS] for related finiteness results).

Theorem 1.1. Let A be a positive real number, U an open subset of R" for
n>2, and K CU a compact subset. There exists an integer N, such that for
any tropical curve G in U with area bounded by A, the number of vertices of
G inside K is bounded by N .

Let us explain some of the terminologies used above.

Definition 1.2. Let Z/2Z act on Z"\ 0 by multiplication by —1, and denote the
quotient by W. For any w € W, we define its norm |w| = />_(w?)? for some
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representative (w!,...,w") € Z" \ 0. We do the same construction for Q" \ 0,
and denote the quotient by Wq.

Definition 1.3. A tropical curve G in an open subset U C R” is a finite
one-dimensional polyhedral complex in U satisfying the following properties:

(i) G is closed in U as a topological subspace. We call the O-dimensional
faces of G vertices, and the one-dimensional faces of G edges. The set of
vertices is denoted by V(G); the set of edges is denoted by E(G). There
are two kinds of edges: those edges which have both endpoints in U are
called internal edges; while the rest are called unbounded edges.

(ii) Each vertex of G is at least 3-valent.

(iii) Each edge e is equipped with a weight vector w, € W parallel to the
direction of e inside R". If w, is k times a primitive integral vector, we
call |k| the weight of the edge e.

(iv) We require that the balancing condition holds, i.e. for any vertex v of G,
we have ) ., W, =0, where the sum is taken over all edges containing v
as an endpoint, and w . is the representative of w, which points outwards
from v.

Remark 1.4. The balancing condition in Definition 1.3(iv) is a necessary condition
for a tropical curve G to be the amoeba of an analytic curve [Mi, NS, Sp, BPR].
It is generalized to a global non-toric setting in [Yul] using vanishing cycles in
k -analytic étale cohomology.

Definition 1.5. For any open subset V' C U, we denote by Gy the restriction
of G to V.

Definition 1.6. For an edge e of a tropical curve G, we define its tropical area
as

Area(e) = |e| - |we|,
where |e| means the Euclidean length of the segment e in R”, and |w,| is the
norm of the weight vector w.. The tropical area of a tropical curve G is by
definition the sum of the tropical areas over all its edges. In this article, tropical
area is simply called area for short.

Example 1.7. Let ¢ be an edge connecting the point 0 = (0,...,0) to the point
x = (x1,...,%,), and let W, = (w!,...,w") € Z"\ 0 be a representative of the
weight vector w,. By definition, there exists A € R such that x = A- w,.. We
have

Area(e) = |A| - Xn:(wi)z.
i=1
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Remark 1.8. To the best of our knowledge, the notion of tropical area in
Definition 1.6 did not appear in the existing literature. It corresponds to the
symplectic area under the tropical limit. There are many ways to see this. For
example, we can explain in the framework of Berkovich spaces [Be]. Let k
be a non-archimedean field with non-trivial valuation, X a closed &k -analytic
annulus of inner radius r; and outer radius rp, and f: X — (GiI)" a k-
analytic morphism. Let 7: (G&')" — R”" denote the tropicalization map taking
coordinate-wise valuations. Suppose that the image (r o f)(X) is an edge e of
the tropical curve G. Put w = t*( Y7, d'x; Ad"x;), which is a (1,1)-form on
(G&" in the sense of [CD]. One computes that [, f*w = |we|? - log % Since
[we| - log 2 = |e|, we obtain that [y f*w = |w,|- |e| = Area(e).

Having introduced all the notions, we now explain the proof. Intuitively, if
we regard tropicalization as a classical limit from strings to particles, then the
balancing condition resembles a conservation of momentum. The idea of the proof
is to cover our tropical curve by a collection of paths (Section 3), thought of as
paths of particles, and then try to bound the number of vertices on each path
(Section 4).

We begin by observing that the balancing condition defined locally around
each vertex has the following global consequence.

Lemma 1.9. Let G be a tropical curve in an open set U C R"*, and let W be
an open subset of R" such that
i) WcU.
(i) W is a smooth manifold with corners.
(iii)y V(G)N oW = @.
(iv) G intersects oW transversely.

For each edge e of G that intersects OW, let W . denote the representative of
the weight vector w, pointing from the inside of W to the outside. Then we have

(1) Y We=0.

eNIW #£g

Proof. Let vq,...,v; be the vertices of G inside W, eq,...,e, the edges of G

contained in W. Let Bi,..., B; be open balls of radius r > 0 and with center
v1,...,0;. Let Cy,...,C,, be open cylinders of radius r and with central axis
e1,...,em. We choose r small enough so that the closures of the balls and the

cylinders do not intersect nearby edges and that all of them are contained in W.
Let B = Ule B; . We consider a chain of open sets in R” verifying (i)—(iv):

BcBUCiCcBUCIUC,C---CBUCIU---UC,, CW.
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The equation (1) holds for B by the definition of the balancing condition. Then
we show by induction that (1) holds for every open set in the chain above, and
in particular holds for W. [

Next, we note that it suffices to prove Theorem 1.1 in a particular situation.
Let K’ be the n-simplex obtained as the convex hull of the n + 1 points

©,...,0), (1,0,...,0), ...,(0,...,0,1) in R", and let Uy be the interior of
the convex hull of the n + 1 points (—6,—6,...,—68), (1 + 38,—6,—4,...,—0),
(-6,1+36,—6,...,—8), ..., (—06,...,—8,1 + 38), where & is a positive real

number. Let U, K be the open subset and the compact subset in the statement
of Theorem 1.1. For any point x € K, we can find a pair (Uy, K;) which is
isomorphic to (U{, K’) for some § > 0 up to a similarity transformation, such
that x is in the interior K} of K, and that Uy is included in U. By the
compactness of K, there is a finite subset {xi,...,x,;,} C K such that

m m m
kKcl|Jk; cl ks clJUuy cU

Therefore, we can deduce Theorem 1.1 from the following particular situation.

Theorem 1.10. Let A be a positive real number. Let K',U; be the compact
subset and the open subset of R" as defined above. Put K = K', U = Uy.
Let K° denote the interior of K. There exists an integer N such that for any
tropical curve G in U with area bounded by A, the number of vertices of Gk
is bounded by N .

The proof of Theorem 1.10 consists of two parts. The first part (Sections 2—4)
treats the case where we have a nice interpretation of the area of a tropical curve
as intersection numbers; the second part (Sections 5-6) explains how to reduce
the general case to the case considered in the first part via a certain modification.
In Section 7, we give an example to better illustrate Theorem 1.1.

2. Interpretation of the area as intersection numbers

Let K be as in Theorem 1.10. In this section, we study a particular type of
tropical curves in K°, called saturated tropical curves. We prove that in this case,
the area is equal to certain intersection numbers.

The boundary 0K is a simplicial complex of dimension n — 1. We denote
by (dK)"~2 its skeleton of dimension n — 2. In this section, we study an even
simpler situation, where G is a tropical curve in K°, and G is saturated in the
sense of the following definition.
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Definition 2.1. A tropical curve G in K° is said to be saturated if GN(0K)" 2 =
@ and if G intersects 3K \ (0K)"~2 perpendicularly, where G denotes the closure
of G in R" as a topological subspace.

Remark 2.2. The word “saturated” is used because in this case, the area is
concentrated in K in some sense.

For an intersection point between G and 0K, we define its multiplicity to be
the weight of the corresponding edge of G.

Proposition 2.3. The balancing condition implies that G intersects each face of
0K by the same number of times (counting with multiplicity as defined above),
which we denote by d.

Proof. We use Lemma 1.9, where we take U to be K° and
W = {x € K°|dist(x, 0K) > €}

for € a positive number sufficiently small such that (U \ W) N V(G) = @. For
1 <i <n, let d;i be the number of intersections (counting with multiplicity)
between G and the face of K defined by x; = 0. Let d be the number of
intersections (counting with multiplicity) between G and the face of K defined
by x; +---+4+ x, = 1. Then equation (1) means that

die; + drey + -+ dpey, = d(eg + -+ + &),

where we denote by eq,...,e, the vectors with coordinates (1,0,...,0), ...,
(0,...,0,1) respectively. Therefore we obtain that dy =d, =---=d, =d. U

Proposition 2.4. Area(G) =d.

Proof. Let eq,...,e, denote the points in R” with coordinates (1,0,...,0),...,
(0,...,0,1) respectively. Let K! be the union of the n segments connecting
0 and e;, for i € {I,...,n}. We define a measure © on K'. We start with

the zero measure on K!. For each edge e of G, we add to pu a measure
e defined as follows: Let (x1,...,x,),(V1,...,Vn) € K be the two endpoints
of e and let (w',...,w") € Z" \ {0} be a representative of the weight vector
of e. We define the restriction of u, to the segment connecting O and e; to
be 1,y |w'|-v, where 1, ,.1 is the characteristic function of the segment
[x;,vi] C R, and v denotes the one-dimensional Lebesgue measure. Then by
Definition 1.6, the area of G is the total mass of . Let us calculate the
measure .
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Lemma 2.5. Let z(V, ...z be the intersection points between G and the face
of K defined by xi + --- + x, = 1 with multiplicity m@,... . m© respectively.
We have m® + ...+ mYD = d by Proposition 2.3. Let (zgk),.. (k)) be the
coordinates of z® for k = 1,...,1. We fix i € {l,...,n} and assume that
zi(l) < zl.(z) < ... < Zl-(l). Let p; denote the restriction of | to the segment
connecting 0 and e;. We have

Zm(k) 1 (k) almost everywhere.

Proof. Let zl.(o) =0, z (H'l) =1, and ¢ € (0,1). Assume that there is no
vertex of G with it coordlnate equal to ¢ and that z(’ ) < { < Z(J +1),
for some j € {0,...,1}. Let us show that the density of Wi at the point
¢-e is d —Yi_, m®, which we denote by dg. Let H; be the half space

{(x1.....xy) € R"|x; < ¢}, W the interior of K N Hy . Lemma 1.9 implies

that .
Z |w2(p)’ = dq,
peGﬂaHé_

where e(p) denotes the edge of G containing p. So by construction, the
tropical curve G contributes d; to the density of p; at the point { -e; €
[0, ¢;]. O

We continue the proof of Proposition 2.4. We calculate the total mass of wu,
denoted by m(u). We have

n n I
m(p) = Zm(ui) = Z Zm( (k) Zm(k) Zz(k) Zm(k) =d.

i=1 i=1k=1 i=1

3. Paths and collection of paths

In this section, we introduce the notion of paths and collection of paths.

Let R be an n-dimensional polyhedron in R”, V an open subset of R”
containing R. In this section, we fix a direction i € {1,...,n} and assume that
R has an (n — 1)-dimensional face F contained in a hypersurface defined by
x; = ¢, for some ¢ € R, and that R is contained in the half space x; > c.
Morally, we can think of the i direction as time, and the rest as space directions.
Let H be a tropical curve in V such that there is an edge ey, of H whose
interior intersects the relative interior of F transversely.
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Definition 3.1. A path P starting from ey with direction i is a chain of weighted
segments so, S, ...,57, such that

(i) so =e NR, 51, =eyNR for some edge e; of H such that exactly one
endpoint of e does not belong to the interior R°.

(ii) $1,...,87,—1 are edges of H, and sy,...,5,—1 C R°.

(iii) Every two consecutive segments in the chain share one endpoint.

th coordinate R” — R restricted to P is injective.

(iv) The projection to the i
v) Each segment s; carries the weight vector w’ = w./|wl| € Wy, where e
g J g 5 e Q

is the edge of H containing s; .

Definition 3.2. A union U of m paths Py,..., P, is a sub-polyhedral complex
of H ., such that

(i) Set theoretically U = |J/_, P;.

(ii) Each segment s of U carries the weight vector w} = k - we/|wl| € Wy,
where e is the edge of H containing s, and k = #{; | P; contains s}.

Lemma 3.3. Let m = |wé 0|. Then there exists a collection of m paths Py, ..., Py,
starting from ey with direction i such that each segment s in the union
U = U71=1 P; verifies the following property:

Let e be the edge of H containing s, and let W', and W, be representatives
of the weight vectors w} and w, respectively. By construction W', and w. are
parallel so there exists q € Q such that W', = q W .. The property is that |q] < 1.

Proof. We assign to each edge e of our tropical curve H an integer c;(e) called
capacity (in the i direction). Initially we set c;(e) = |wi|. To construct the path
P, we start with the segment so = ¢p N R, and we decrease the capacity c;(eg)
by 1. Suppose we have constructed a chain of segments sg,s1,...,5;. Let B be
the endpoint of 5; with larger i coordinate. If B € AR we stop, otherwise we
choose ej; to be an edge of H such that:

(i) B is an endpoint of e;;.

th th

(ii) For any point x € ej4; \ B, the i
coordinate of B.

coordinate of x is larger than the i

(iii) The capacity c;(e;j4+1) is positive.

The existence of such ej;; is ensured by the balancing condition on H . After
choosing e;;, we decrease the capacity c;(e;j+1) by 1 and set 5,41 =ej11 NR.
We iterate this procedure until we stop, and we obtain the path P;. We apply
the same procedure m times and obtain the collection of paths Py,..., P, as
required in the lemma. ]



264 T.Y. Yu
4. Tropical vertex bound and genus bound

Let K be as in Theorem 1.10, and let G be a saturated tropical curve in K°
with area d as in Section 2. In this section, we give a very coarse bound on the
number of vertices of G in terms of the area d and the dimension 7.

Proposition 4.1. #V(G) <2(n — 1)%d?>.

Proof. Let (x1,...,x,) be the standard coordinates on R”. We fix a direction
i e{l,...,n}. Let zi(l), ...,zl.(l) be the intersection points between G and the
face of K defined by x; = 0 with multiplicity m™,..., m® respectively. By
Proposition 2.4, we have m® + ...+ m® = d. Let ¢ be the edge of G
l.(k). For each intersection point zl.(k),

by Lemma 3.3, we obtain a collection of m®*) paths starting from e with

corresponding to the intersection point z

0i
direction i. So for Kk = 1,...,], we obtain in total d paths, and we label them
as Pj1,..., P;g. For each such path P, let V(P) denote the set of vertices of

P that lies in K°, and let V,(P) be the following subset of V(P).
A vertex Q belongs to Vy(P) if and only if there is an edge of G, denoted
by e(Q), such that
(i) The vertex Q is an endpoint of the edge e(Q).
(ii) The edge e(Q) is not in contained in the path P.
(iii) There exists j € {l,...,n}, j # i, such that the j™ component of We(Q)

iS non-zero.

We claim that (see Lemma 4.2)

(2) #Vo(P) <2d(n —1).
Now we vary i, and in the same way, we get nd paths P;; for i = 1,...,n,
k=1,...,d. We claim that (see Lemma 4.3)
n—1 d
(3) U U ve(Pi) o V(6.
i=1 k=1
Combining equations (2) and (3), we have proved our proposition. [

Lemma 4.2. For a path P among the paths P;i constructed in the proof above,
we have the following bound

#Vo(P) <2d(n —1).
Proof. Let Sp;j = Y gevycp) [Whigyl for j e {l,.... 0, ...onbi={1,....n}\{i},

where e(Q) is the edge of G associated to the vertex Q as in the definition of
Vo(P) in the proof of Proposition 4.1. Now we fix j, and let
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Eo;(P) ={e(Q)[Q € Vo(P), T (o) < 0},

E§;(P) = {e(Q) 0 € Vo(P), T g > O},
where W .(g) is the representative of w,(p) that points outwards from Q. Let

—~ = _J
Sp; = E Wy,

eeE(Ij (P)

+ o ~j
Spj = Z Wi

ecEy (P)

Let p;: R* — R be the projection to the i coordinate, and p; the projection
to the j™ coordinate. By Definition 3.1(iv), pi|p is injective. Assume that the
image of p; p is the closed interval [0, ZiP ]. Let

(pijp)~1(0)  for x; € (—o0,0]
qi = (pijp)'(xi) for x; €0,z

(pip)~'(z[) for xi € [zf. 00)

Ri_ = {(xl, ...,xp) €R" |xj < pj(qi(xi)) —e}.
We choose ¢ to be a sufficiently small positive real number such that
(i) R;_D{(x1,...,x,) € R" |x; <0}.
(ii) IR,—NV(G)=2.
(iii) OR;_ intersects G transversely.
(iv) Vee Ej ;(P), eNR;_# 2.
Let
Tj— = d(Ri— N K)\ (K N {x; = 0}).

Then for any y € T, N G, let e(y) denote the edge of G corresponding to the
intersection point y. By Lemma 1.9, we have

J _
Z wll =d.

yET,',ﬂé

Therefore Sy . < d, and similarly S;{’j <d,so Sp; =Sp; + S;{’j <2d. Let
SP = D 1<j<n.j2i Sp.j- We have Sp < 2d(n —1). By the definition of the set
Vo(P), each vertex Q € Vo(P) contribute at least 1 to the quantity Sp so we
obtain that #V,(P) <2d(n —1). ]
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Lemma 4.3. Let Pjx,Vy be as in the proof of Proposition 4.1, we have
n—1 d
U U %P 5 V(6).
i=1k=1

Proof. By Lemma 1.9 and Lemma 3.3, we see that for any edge ¢ C G, any
i € {l,...,n} such that w! # 0, there exists k € {1,...,d} such that the path
P;x constructed in the proof of Proposition 4.1 contains e. Now for any vertex
v of G, since v is at least 3-valent by definition, there exists an edge e¢ of G
containing v such that w? # 0 for some i € {1,...,n—1}. This means that there
exists k € {1,...,d} such that the path P;; contains e by what we have just
said. However it can happen that v ¢ Vy(P;r). In such cases, by the definition

of the set Vy(Pix), there exists another edge ¢ ¢ P;;r such that wg, = 0 for

any j e€{l,...,i,...,n}. Since wé, # 0, there exists k' € {1,...,d} such that
the path P,z contains e’. Since ¢’ # e, there exists j € {1,...,7,...,n} such
that wg # 0, which implies that v € Vy(P;x/). To sum up, we have proved that
for any vertex v of G, there exists i € {l,...,n— 1}, k € {1,...,d} such that
v € Vy(P;x), so we have proved our lemma. l

Remark 4.4. By analogy with algebraic geometry, we can expect a much better
bound on the number of vertices based on the Castelnuovo bound on the genus
of a smooth curve of given degree in the projective space P" (see for example
[ACGH]"). Indeed, once we know how to bound the genus of our tropical
curve G, which is by definition rankH;(G), we can bound the number of
vertices immediately. For example, using cellular homology to calculate the Euler
characteristic of G, we have

1 —rankH{(G) = #V(G) — #{internal edges of G}.

Then it suffices to observe that the number of internal edges is bounded below
by the hypothesis that each vertex is at least 3-valent.

Conjecture 4.5. The number of vertices of G is bounded by 2x(d,n) + (n + 1)
d —2, where n(d,n) is defined by

m(m — 1)

n(d,n) = 5

(n —1) + me,

where

—1
mz[d 1} and e =d — 1 —m(n—1).

n —
This should be achieved when d > 2n by a tropical analogue of Castelnuovo
curves.

!Many thanks to Olivier Debarre for pointing out this reference to me.
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S. Bound on the weight vectors by the area

In this section, we show that the weight vectors of the edges of a tropical
curve can be bounded by the area.

Proposition 5.1. Fix i € {1,...,n}. Let R be the convex hull of the 2" points
{(61,...,En) e R" |eJ~ e{=1,+1}for j€f{l,....7,....n} e €0, 1}}.

Let V. be an open set in R" containing R. Let H be a tropical curve in
V' such that there is an edge ey of H whose interior contains the point
0=1(0,...,0) e R". Then we have

i
Area(H\go) > |wg, |,
where wéo denotes the i"™ component of the weight vectors of the edge eq.

Proof. Denote m = |wf30 . By Lemma 3.3, we obtain a collection of m paths
Py, ..., P, starting from e, with direction i. Each path P; connects the origin
O with a point on the boundary dR, denoted by z;. By Definition 3.1 (iv), the
i™ coordinate of z; is strictly positive. This implies in particular that the length
of P, under the Euclidean metric is at least one, so we have Area(Py) > 1.
By summing up contributions from all Py, for kK = 1,...,m, we obtain that

Area(H|ge) > m. |

Corollary 5.2. Let A,U,K,G,§ be as in Theorem 1.10, and denote by I the
number of intersection points between G and 0K (with no multiplicity concerned).
Then I < A/S.

Proof. By Proposition 5.1, each intersection point contributes at least ¢ to the
total area of G, whence the corollary. [

Corollary 5.3. Let A,U,K,G,§ be as in Theorem 1.10. For any edge e of Gge,
any i € {1,...,n}, we have |w'| < A/S.

Proof. By Proposition 5.1, for any edge e of G|go, any i € {l,...,n}, the
weight vector w, contributes at least |w’|-8 to the total area of G, whence the
corollary. ]

6. The saturation trick

Finally we perform a trick to reduce the general case to the saturated case
considered in Sections 2 and 4. Using the notations and assumptions as in Theorem
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1.10, our aim is to construct from G a saturated tropical curve G’ in K° (in the
sense of Definition 2.1).
Let € be a positive real number and put

K = {x € K°|dist(x, 9K) > €}.

We choose ¢ small enough such that V(G) N (K°\ K)=02.

Lemma 6.1. For any w € 77", there exists non-negative integers ay,...,d, Such
that

n
w = E ae;,
i=0

where we denote eg =—e; fori=1,...,n, and e6 =€) +---+e,. Furthermore
we require that a; is zero for at least one i € {0,...,n}. This determines
ag,...,a, uniquely.

Initially we set G’ = G|go. Then for each edge e of G’ such that the
closure ¢ intersects dK non-perpendicularly, or ¢ N (3K)"~2 # @&, we do the
following modification to G’. Let w, be the weight vector of e and choose the
representative W, that points from K to K°\ K. Now put W, into the lemma
above and we get (n + 1) non-negative integers dg,...,d,. Let P = e N K ,
e = (K°\ K)Ne. We first delete ¢ from G’. Now P becomes an unbalanced
vertex. Then we add to G’ the rays starting from P with direction e, and
multiplicity «; for all i € {0,...,n}. This makes the vertex P balanced again
and we finish our modification concerning the edge e (see Figure I).

Ficure 1

Lemma 6.2. Using notations in Theorem 1.10. By construction we have
(i) G’ is a saturated tropical curve in K°.

(i) #V(G ko) <#V(G').

(iii) Area(G’) < Area(Ggo) +n(A4/8)* < A+ n(A/8)>.
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Proof. (i) follows directly from the construction. (ii) is obvious since our
modification may add new vertices to G|go but never decreases the number
of vertices. For (iii), each time we do a modification to an edge, we add at
most n rays, each of which has area less than 4/§ (Corollary 5.3). Moreover by
Corollary 5.2, there are at most A/ edges of G intersecting with 0K, so the
total area of all the rays we added to G|go is bounded by n(A4/8)>. [

To conclude, combining the previous lemma with Proposition 4.1, we have
proved Theorem 1.10, with 2(n—1)2(A+n(A/8)?)? being the bound on the number
of vertices. We have also proved Theorem 1.1 using the reduction explained at the
end of Section I.

7. An example of a tropical curve with finite area
but infinite number of vertices

To better illustrate Theorem 1.1, we give an example of a tropical curve? G in
an open set U C R? with finite area A but infinite number of vertices. It does not
contradict Theorem 1.1 because the number of vertices of G inside any compact
subset in U will still be finite. Intuitively, Theorem 1.1 says that concentrations
of vertices can only happen near the boundary of U as long as the area of the
tropical curve is bounded.

Let (x,y) be coordinates on R?. Let C be the convex hull of the four points
(0,0),(0,1),(1,0),(1,1) in R? and let U be the interior of C . Our tropical curve
G consists of the following segments (they are all taken after intersection with
U):

(i) the segment [(47",47"), (4~ =D 4=0—D)] with multiplicity 2"~ !,

(ii) the ray starting at the point (47",47") with direction (—1,0) and multiplicity
2n—1

(iii) the ray starting at the point (47",4™") with direction (0, —1) and multiplicity
2n—1

(iv) the ray starting at the point (47",47") with direction (—1,2) and multiplicity
2",

(v) the ray starting at the point (47",47") with direction (2, —1) and multiplicity
2",

where n is taken over all positive integers (see Figure 2). One checks that the

balancing condition is verified (see Definition 1.3(iv)).

2Here we drop the finiteness assumption in Definition 1.3 of tropical curves.
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FiGure 2

Proposition 7.1. We have Area(G) = 14.

Proof. For each integer n > 1, the segments from (i)-(v) contributes to Area(G)
by 3.27%, 2=+ =041 5.9-n 5.2 respectively. Summing over all n > 1
we get Area(G) = 14. [

Acknowledgments. I am very grateful to Maxim Kontsevich, Bernhard Keller
and Antoine Chambert-Loir for discussions and comments.

References

[ACGH] E. ArBarReLLO, M. CornNaLBA, P. A. GrirriTHs, and J. HARrRIS, Geometry of
algebraic curves. Vol. I, volume 267 of Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, New York, 1985. Zbl 0559.14017 MR 0770932

[BPR] M. Baker, S. Payng, and J. RaBinorr, Nonarchimedean geometry, tropicaliza-
tion, and metrics on curves. arXiv preprint arXiv:1104.0320, 2011.

[Be] V. G. BerkovicH, Spectral theory and analytic geometry over non-Archimedean
fields, volume 33 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 1990. Zbl 0715.14013 MR 1070709

[CD] A. CaamBERT-LoIR and A. Ducros, Formes différentielles réelles et courants
sur les espaces de berkovich. arXiv preprint arXiv:1204.6277, 2012.

[GS] M. Gross and B. SieBert, Logarithmic Gromov-Witten invariants. J. Amer.
Math. Soc. 26 (2013) 451-510. Zbl 1281.1404 MR 3011419
[Gr] A. GroTHENDIECK, Techniques de construction et théoréemes d’existence en

géométrie algébrique. IV. Les schémas de Hilbert. In Séminaire Bourbaki,
Vol. 6, pages Exp. No. 221, 249-276. Soc. Math. France, Paris, 1995.
Zbl 0236.14003 MR 1611822



[Mi]

[NS]

[Spl

[Yul]

[Yu2]

The number of vertices of a tropical curve is bounded by its area 271

G. MikHALKIN, Enumerative tropical algebraic geometry in R?. J. Amer. Math.
Soc. 18 (2005), 313-377. Zbl 1092.14068 MR 2137980

T. NisniNnou and B. SieBert, Toric degenerations of toric varieties and tropical
curves. Duke Math. J. 135 (2006), 1-51. Zbl 1105.14073 MR 2259922

D. E SpeYER, Uniformizing tropical curves I: genus zero and one. arXiv preprint
arXiv:0711. 2677, 2007.

T.Y. Yu, Balancing conditions in global tropical geometry. arXiv preprint
arXiv:1304. 2251, 2013. To appear in Annales de [’Institut Fourier.

T.Y. Yu, Tropicalization of the moduli space of stable maps. arXiv preprint,
2014.

(Regu le 16 juin 2013)

Tony Yue Yu, Institut de Mathématiques de Jussieu, CNRS-UMR 7586, Case 7012,
Université Paris Diderot, Batiment Sophie Germain, 75205 Paris Cedex 13 France

e-mail: yuyuetony @gmail.com

© Fondation IENSEIGNEMENT MATHEMATIQUE



	The number of vertices of a tropical curve is bounded by its area

