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On the incenters of triangular orbits on elliptic billiards

Olga RoMASKEVICH*

Abstract. We consider 3-periodic orbits in an elliptic billiard. Numerical experiments
conducted by Dan Reznik have suggested that the locus of the centers of inscribed circles
of the corresponding triangles is an ellipse. We prove this fact by the complexification of
the problem coupled with the complex law of reflection.

Mathematics Subject Classification (2010). Primary 37D50; Secondary 14HS50.
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1. The statement of the theorem and the idea of the proof

Elliptic billiards are at the same time a classical and popular subject (see, for
example [KoT], [CM], [Tal] and [Ta2]) since they continue to deliver interesting
problems. We will consider an ellipse and the corresponding billiard: a point-like
particle follows straight lines inside the ellipse and bounces along the boundary
obeying to the standard reflection law, the angle of incidence equals the angle of
reflection. Let the trajectory from a point on the boundary repeat itself after two
reflections: this means that we obtained a triangle which presents a 3-periodic
trajectory of the ball in the elliptic billiard. Poncelet’s famous theorem [Po] states
that the sides of these triangles are tangent to some smaller ellipse confocal to
the initial one.

We prove the following fact which was observed experimentally by Dan Reznik
[Re]:

Theorem 1.1. For every elliptic billiard the set of incenters (the centers of the
inscribed circles) of its triangular orbits is an ellipse.

The proof uses very classical ideas: complexify and projectivize, that is, replace
the Euclidean plane by the complex projective plane. This approach was used by
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Ph. Griffiths and J. Harris in [GH] and, more recently, by R. Schwartz in [Sch].
The main tool in the proof is that of complex reflection: we consider an ellipse
as a complex curve and define a complex law of reflection off a complex curve.
The locus of the incenters will be also a complex algebraic (even rational) curve.
We will prove that the latter curve is a conic in CP?. Its real part will be a
bounded conic — an ellipse.

The reasons for developing complex methods for the solution of a problem
in planimetry are twofold: first of all, such an approach shows that sometimes
complexification paradoxically simplifies things. We think that complex methods
could be a useful apparatus in obtaining many results of this kind. Ideologically,
this work is related with the recent work by A. Glutsyuk where he studies complex
reflections, see for example [G] and the joint work with Yu. Kudryashov [GK].
The second reason to develop the complex approach for this particular problem
was the incompetence of the author to prove this fact by computing everything
in Euclidian coordinates. The reader is encouraged to find an alternative proof of
Theorem 1.1.

The complex reflection law and its basic properties needed here are reviewed
in Section 2. Section 3 contains the proof of Theorem 1.1. In Section 4 we discuss
the position of the foci for the resulting incenters ellipse.

2. Complex reflection law

For our purposes it will be useful to pass from the Euclidean plane R? to
the complex projective plane CP?: the metric now is replaced, in local complex
coordinates (z,w), by a quadratic form ds? = dz? + dw?. In the following
we will be interested in the geometry of this new space CP? with quadratic
form ds?. One could have replaced the initial Euclidean metric by a pseudo-
Euclidean one: the geometry of billiard motion in such a space is also interesting
and somewhat similar to our case. The best references here will be [KT] and
[GR].

Definition 2.1. The lines with directing vectors that have zero length are called
isotropic. All other lines are said to be non-isotropic.

Let us fix a point x € CP? and define complex symmetry with respect to a
line passing through x as a map acting on the space L, of all lines passing
through x. There are two isotropic lines L% and LY> in £, with directing
vectors vy = (1,i) and vy, = (1, —i).
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Definition 2.2 (Complex reflection law). For a point x € CP?, the complex
reflection (symmetry) in a non-isotropic line L, € L, is the mapping given by
the same formula as in the case of standard real symmetry: it’s a linear map
that in the coordinates defined by the line L, and its orthogonal line Ly has
. . 1 O

diagonal matrix ( 0 —1

The image of any line L under reflection in an isotropic line L}' (or L3}?)
is defined as a limit of its images under reflections with respect to a sequence
of non-isotropic lines converging to L' (or L3}?).

Moreover, the complex reflection in a curve at a point x of the curve is the
reflection in the tangent of the curve at x.

Theorem 2.3 ([G], Lemma 2.3). a. The complex symmetry with respect to any
isotropic line L at some point x € L is well defined for all non-isotropic lines
(i.e. the latter limit of the images of a sequence of non-isotropic lines exists
independently of the approximating sequence) and maps every non-isotropic

line containing x to L.
b. Under the reflection at the point x with respect to some isotropic line
L € Ly, the line L itself may be mapped to any line passing through x
(i.e. the mapping in this case is multivalued). In particular, it can stay fixed.

The isotropic directions generated by the vectors v; and v, can be represented
by the points I; = (1 :i:0) € CP? and I, = (1 : —i : 0) € CP?, respectively.
We choose an affine coordinate z on the projective line CP! = CUoo at infinity,
that is, the line through points 7/; and 7/, in such a way that /; =0 and I, = oco.
The lemma below implies Theorem 2.3 and follows easily from the definition. It
describes the reflection in a line close to isotropic.

Lemma 2.4 ([G], Proposition 2.4). For any ¢ € C \ {0,00}, let Ly be the line
through the origin (0,0) € C? and having direction ¢. Let 1, : CP! — CP! be
the reflection in L, acting on the space CP of the lines through the origin.
Then t.(z) = é in the above introduced coordinate z.

Proof. The map t, is a projective transformation that preserves L, as well as the
set of isotropic lines. So t.(¢) = ¢ and t.{0,00} = {0, 00}. Let us show that 7,
permutes 0 and oo. Otherwise, it would have three fixed points on the infinity
line CP?\ C? and therefore be the identity map of the infinity line. Moreover,
the points lying on L, are fixed for 7,. In this case 7, should be identity but
it’s a nontrivial involution, contradiction.

We see that the restriction of 7, is a nontrivial conformal involution of

&

CP?\ C? fixing ¢ and permuting 0 and oo. So it should map z to - [
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3. The proof

Let us consider triangular orbits of the complexified elliptic billiard: the
triangles are inscribed into a complexified ellipse and satisfying the complex
reflection law. Denote the initial ellipse from Theorem 1.1 by I', and the Poncelet
ellipse tangent to all triangular orbits by y. We use the same symbols for
complexifications of these conics. The following classical fact will be used for I’
and y, and for the inscribed circles.

Lemma 3.1 ([KI], p. 179, [Bel, p. 334). a. Ellipses I" and y in the real plane
are confocal if and only if their complexifications have 4 common isotropic
tangent lines and their common foci lie on the intersections of these lines.

b. The two tangent lines to a complexified circle passing through its center are
isotropic.

Definition 3.2 (Sides and degenerate sides of a triangle). A side of a triangle in
CP? with disctinct vertices is a complex line through a pair of its vertices. A
triangle is called degenerate if all its vertices lie on the same line. A priori, a
triangular orbit may have coinciding vertices. We will call A the degenerate side
through two coinciding vertices if A is obtained as a limit of sides Ag;,& — 0 of
non-degenerate triangular orbits. For such a side A its image under reflection is
defined as a limit (which exists as the limit in Definition 2.2) of images of A.

By taking a family A, of lines tangent to y and converging to A, and
computing their images (in fact, applying Lemma 3.3 below), one could deduce
the structure of degenerate triangular orbits formulated in Lemma 3.4.

Lemma 3.3. Let A be a common isotropic tangent line to two analytic (algebraic)
curves y and 1" and let the tangency points be quadratic and distinct. If A is
deformed in a family A, (A = Ay) of lines tangent to y then the image of Ag
under the reflection in T" tends to some non-isotropic line as & — 0.

Proof. An essentially equivalent, if not more general, case of this lemma is
contained in [G], see Proposition 2.7 and its Addendum. Albeit (now) logically
independent, Glutsyuk’s statement inspired our formulation.

The isotropic line A is deformed in a family A,: let us suppose that the
family is chosen in such a way that the angle between A and A, is precisely
e. Suppose that A, intersects I' in some point a. tending to the point ay of
isotropic tangency. A simple computation shows that since the tangency points
are quadratic, the tangent line 7, to I' at the point a. has the angle of the order
/¢ with A. This with Lemma 2.4 shows that the limit of the reflected lines is
a non-isotropic one. ]
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Now we can describe the degenerate triangles occurring in our problem.

Lemma 3.4. If a triangular orbit in the complexified ellipse T' is degenerate then
it has two coalescing non-isotropic non-degenerate sides B and one degenerate
isotropic side A.

Proof. Since degl’ = 2, two vertices should merge, so the degenerate side A
through them is tangent to I' and to y, and hence is isotropic by Lemma 3.1.
The other two sides are non-isotropic by Lemma 3.3 and they coincide. [

Lemma 3.5 (Main lemma). The complex curve of incenters C intersects the
complex line F through the foci of T" at exactly two points with multiplicity 1.

Proof. Let ¢ € CN F and suppose that the corresponding triangle is degenerate,
see Figure 1. By Lemma 3.4 one of its sides is isotropic, and two other sides
coincide and are non-isotropic. We will denote the isotropic line as A and the
non-isotropic line as B. Line A is tangent to the inscribed circle, so by Lemma
31, c e FNA. Also ¢ is a point of intersection of bisectors, so either ¢ € B
or ¢ € BL. Note that B is tangent to the inscribed circle, hence if ¢ € B, then
B should be isotropic, which is contradictory. So ¢ € B+, but by Lemma 3.1 ¢
is a focus. B+ is tangent to I' and passes through the focus, so it should be
isotropic which is impossible since B is not isotropic.

Now consider the case of a not degenerate triangle corresponding to ¢ € CNF .
Consider the reflection in F: the inscribed circle, as well as its center ¢, are
mapped to themselves. If the set of the sides of a triangle and their images under
the reflection in F consists of six lines, then the inscribed circle and the ellipse
y should be tangent to all of them. But five tangent lines already define a conic,
so y must be a circle. But in this case, Theorem 1.1 is trivial and the locus under
consideration is a point.

Therefore some sides of the triangle should map to some other sides. One
needs to consider two cases: either there is a side which maps to itself, or there
are two sides which map to each other. But the latter case reduces to the former:
indeed, the points of intersection of the two exchanging lines with I (not lying
on F') are mapped to each other, so the line connecting them is mapped to itself.
Therefore, in the non-degenerate case, the corresponding triangle has a side which
is symmetric with respect to F and tangent to y. There are only two such lines,
and hence only two intersections c¢; and c;, both real (see Figure 2), and only
two triangles corresponding to them, for each ¢;, i = 1,2.

Let us now prove that the intersections C N F have multiplicity 1. Let us
parametrize the ellipse y by a parameter ¢, and consider the corresponding center
c(e) € C, assuming that ¢(0) € F. It suffices to prove that g—g(O) # 0. Suppose
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Ficure 1
Two complex confocal ellipses I' and y having four common isotropic tan-
gent lines. The line F of real foci passes through the intersections of
isotropic lines. A degenerate trajectory for an elliptic billiard in ' with
caustic y: the degenerate triangle is an interval between points 1 and 2
and its sides are lines A and B. Line A is isotropic while B is not.

FiGURrE 2
Two triangular orbits in I' corresponding to the centers cp,c»
of inscribed circles lying on the foci line F
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the contrary: the centers of the circles do not change in the linear approximation:
c(e) = ¢(0) + O(£?). Then the radius of the incircle r(g) has nonzero derivative
at ¢ =0, unless for ¢ = 0 both the incircle and the ellipse y are tangent to the
sides of the triangle at the same points. This is impossible if y is not a circle,
since two distinct conics can not be tangent at more than two distinct points. So
we have that the radii of the incircles change linearly: r(g) = r(0) 4+ ae(1 + o(1))
for some o # 0. But this is not possible due to symmetry: indeed, the radius has
to be an even function of ¢. L]

Theorem 1.1 follows directly from Lemma 3.5 since an algebraic curve
intersecting some line in exactly two points (with multiplicities) is a conic.

4. Foci study

One could surmise that the ellipse C that is obtained in Theorem 1.1 is confocal
to the initial one. It appears that it is not so. Figure 3 shows how the foci of the
ellipse C move regarding the foci of the ellipse I'.

We suppose that the ratio between the semi-axis of the initial ellipse I' is
t € (0,1). The upper branch on Figure 3 is the graph of the distance from the
center of T' to its foci: just the arc of the circle {(t,+'1—1t2?),t € (0,1)}. The
lower branch is the graph of an analogous (quite complicated) function for the
ellipse C. This graph was obtained by brute force computation. The reader is
encouraged to find a geometrical meaning for the position of the foci of C.

FiGure 3
Distances between the common center of ellipses I' and C and their foci
as functions of the ratio of semi-axes of the initial ellipse
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