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Maximal finite subgroups and minimal classes

Renaud CouranceonN and Gabriele NEBE

Abstract. We apply Voronoi’s algorithm to compute representatives of the conjugacy classes
of maximal finite subgroups of the unit group of a maximal order in some simple Q-algebra.
This may be used to show in small cases that non-conjugate orders have non-isomorphic
unit groups.

Mathematics Subject Classification (2010). Primary 20HO0S5; Secondary: 11F75, 20HI0,
11H5S.

Keywords. Unit groups of orders, Voronoi algorithm, minimal classes.

1. Introduction

Let A be some simple Q-algebra and let A and I' be two maximal orders
in A. If A is not a division algebra, then the order A is generated by its unit
group A* as a Z-lattice (see Lemma 2.1). So A* and ' are conjugate in A
if and only if the two orders A and I' are conjugate, which can be decided
with the arithmetic theory of orders exposed in the next section. By the theorem
of Skolem and Noether we hence have that the unit groups are conjugate if and
only if A and I' are isomorphic as orders over the center of A. The motivation
of this paper is to develop tools for deciding whether the two unit groups are
isomorphic, which is in general much more difficult than the conjugacy problem.
In fact this innocent question was raised by Oliver Braun during his work on
the paper [BC] that grew out of his Bachelor thesis in Aachen supervised by the
second author.

One invariant of the isomorphism class of A* is the number of conjugacy
classes of maximal finite subgroups. Our main result is that these maximal finite
subgroups arise as automorphism groups of well rounded minimal classes, which
will be defined in Section 5. The basic idea underlying this approach is already
apparent in RySkov’s paper [Ry] on the computation of the finite subgroups
of GL,(Z). Nevertheless, whereas RySkov classifies all finite subgroups and
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then develops ad hoc arguments to determine the maximal ones, our method
permits in principle to solve the problem directly. Precisely, a refinement of the
classical Voronoi algorithm, involving Bergé-Martinet-Sigrist’s equivariant version
of Voronoi’s theory [BMS], is applied to compute the cellular decomposition of
a suitable retract of a cone of positive definite Hermitian forms, and therewith
also the (finitely many) conjugacy classes of maximal finite subgroups of A*.
As will be illustrated in Section 8, this turns out to be enough, in some cases, to
distinguish between non-isomorphic unit groups. The argument can of course not
be reversed: non-isomorphic unit groups might have the same conjugacy classes
of maximal finite subgroups. Note also that, as in the classical case of GL,(Z),
the obtained cellular decomposition can be used to compute the integral homology
of A*. The relevance of Voronoi theory in such homology computations was
first highlighted in the works of Soulé [Soul, Sou2] and Ash [Al, A2], and it has
given rise since then to numerous developments (we refer the interested reader
to P. Gunnels’ appendix of [St] which provides an excellent survey on this topic,
and to [DES, Ra, RF] for recent related works, especially on Bianchi groups).

The methods apply to arbitrary (semi)-simple Q-algebras, though we are mainly
interested in the case where A is a matrix ring over either an imaginary quadratic
number field or a definite rational quaternion algebra. For these algebras we may
ease these computations by adopting a projective notion of minimal vectors as
exposed in Section 7.

2. Conjugacy classes of maximal orders

The theory in this section is well known and can be extracted from the two
books [Re] and [D]. However, we did not find a self-contained short exposition
of the proof of Theorem 2.4, so we repeat the details here for the reader’s
convenience. Let A be a simple Q-algebra. Then A = M, (K) for some rational
division algebra K with center Z(K). Let R be the maximal order in Z(K)
and choose some maximal R-order O in K. An O-lattice L of rank n is a
finitely generated O-submodule of the right K-module V := K" that contains
a K-basis. By Steinitz-theorem (see for instance [Re, Theorem 4.13, Corollary
35.11]) there are right ideals cq,...,c, of O and a basis (e1,...,e,) of V such
that

L =eic1P---PBeycy,.

The family (c;,e;);<;<, is called a pseudo-basis of L. The Steinitz-invariant of
L, denoted St(L), is the class

St(L) = [e1] + -+~ + [en]
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in the group Cl(Q) of stable isomorphism classes of right O-ideals and does not
depend of the choice of a pseudo-basis. By Eichler’s theorem (see [Re, Theorem
(35.14)]) the reduced norm

nr : Cl(O) — Clg(R)

induces a group isomorphism between CI(O) and the ray class group Clg(R),
the quotient of the ideal group of R modulo those principal ideals «R for which
t(a) > 0 for all real places ¢ of Z(K) that ramify in K.

If n > 2 (which we assume in the following) then, as a consequence of
Corollary 35.13 of [Re], two lattices L1, L, <V are isomorphic as O-modules,
if and only if they have the same Steinitz-invariant. In particular, L is isomorphic
to L(c) where

L(c)=e¢106®...0e,—10 @ eye

for any ideal ¢ with [c] = St(L). The endomorphism ring
Endo(L) = {X € M,(K) | XL € L}

is a maximal order in Endg (V) = A. In fact any maximal order in A is obtained
this way (see [Re, Corollary 27.6]). If [¢] = St(L) then Endn(L) is conjugate in
GL,(K) to

0o ... 0 !

Endo (L(c)) = A(c) := (9 o
¢

¢ c O

where O’ = O;(c) = {x € K | x¢c C ¢}.

Lemma 2.1. For n > 2 any maximal order A in A = M,(K) is generated as
a Z.-order by its unit group.

Proof. Without loss of generality let A = A(c) and let

(X1,...,%3), V1seeesva), (z1,...,24)

be Z-bases of O, c, respectively ¢~!. We denote by e;; the matrix units in
M,(K) having an entry 1 at i,j and O elsewhere, and I, = ey1 + ...+ ey, the
unit matrix. Let X be the Z-order spanned by A(c)*. Since I, and I, + xie;;
€ A(c)* we obtain that xge;; € X for all k =1,...,d, 1 <i #j <n-—1.
Similarly yxe,; and zje;,, as well as yxzje,, and z;yre; are in X for all
i=1,....,n—1,k,j=1,...,d. As the yxz; generate O' and the z;y; generate
O the order X contains A(c). ]
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Corollary 2.2. Let A and T" be two maximal orders in the simple algebra A
and assume that A is not a division algebra. Then A* and T are conjugate in
A* if and only if A and T are conjugate.

A separating invariant of the conjugacy classes of maximal orders in A can
be constructed in a suitable class group of the center of A.

Definition 2.3. Let Clg(n) := Clg(R)/(nr(a)” | a < O) denote the quotient of
the ray class group Clg(R) defined above modulo the n-th powers of the reduced
norms of the two-sided O -ideals.

Note that the subgroup (nr(a)” | @ < O) can be obtained from the discriminant
of K. In particular it does not depend on the choice of the maximal order O.
Also if K is commutative then Clg(n) = CI(K)/CI(K)" is just the class group
of K modulo the n-th powers.

Theorem 2.4. Let A = M, (K) be a simple Q-algebra and O a maximal order
in K. For any two right O-ideals ¢ and <, the corresponding maximal orders
A(c) and A(c) are conjugate in A* = GL,(K) if and only if nr([c]) = nr([c])
in Clg(n).

Proof. We use the approach in [D, Section VL.8]. Let I' := M,(O) = A(O).
Then any other maximal order in A arises as the left order of some I'-right
ideal, in particular

o ... O

A(c) = Oy(I(c)) ={a € A |al(c) € I(c)} where I(c) = '
@

C ... ¢

Two left orders O;(I) and O;(I’) are conjugate, if and only if 7' = alJ for
some a € A* and some two-sided fractional I'-ideal J. By Morita theory any
two-sided I'-ideal J is of the form J = M, (a) for some two-sided O-ideal a
in K. By [Re, Lemma (35.8)], the reduced norm of J = Homp(O",a") equals
nr(a)” € Clg(R) and the reduced norm of I(c) = Homp(L(O), L(c)) is nr(c).
By [Re, Theorem 35.14] the reduced norm is injective, so

I(c) = al(<YM,(a) for some a € A* if and only if nr(c) = nr(c’) nr(a)”.

O
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3. Positive cones

Let K be some rational division algebra and A = M, (K). Then AR := AQQR
is a semi-simple real algebra, hence a direct sum of matrix rings over one of
H, R or C. It carries a canonical involution that we use to define symmetric
elements. Let d denote the degree of K, so d? = dimz)(K), and let

[1ye..sls be the real places of Z(K) that ramify in K,
01,...,0r the real places of Z(K) that do not ramify in K,
71,...,7;  the complex places of Z(K).

Then
Kr =K ®qR =@ Myp2(H) & P MaR) & ) Ma(C).

i=1 i=1 i=1
The “canonical” involution * (depending on the choice of this isomorphism)
is defined on any simple summand of Kgr to be transposition for My (R),
transposition and complex (respectively quaternionic) conjugation for M;(C) and
My/»(H). The resulting involution on Kgr is again denoted by *. As usual it
defines a mapping T : My, ,(KR) — M, »(Kr) by applying * to the entries and
then transposing the m x n-matrices. In particular this defines an involution T
on AR = M,(KR). In general this involution will not fix the set A.

Definition 3.1. ¥ := Sym(A4r) :={F € Ar | F t=F } is the R-linear subspace
of symmetric elements of Agr. It supports the positive definite inner product

(F1, Fp) := trace(F1 F3)

where trace is the reduced trace of the semi-simple R-algebra Ag. The real
vector space X contains the open real cone of positive elements

P:={(q1,-. . qs. f1.-, fr b1, .. ) € T gi, f;, hg pos. def.}.

Let V' be the simple left A-module K”. Then Vg :=V ®@ R = K and for
any x € Vg the matrix xx¥ lies in X. The following lemma is easily checked:

Lemma 3.2. Any F € X defines a quadratic form on VR by:
Flx]:= (F,xx") e R for all x € W.
This quadratic form is positive definite if and only if F € P.

As a consequence, with a slight abuse of language, we will sometimes refer
to elements of X as forms.



236 R. CourLanceon and G. NEBE
4. Minimal vectors

Let A = M,(K) for some division algebra K. As before we fix some
maximal order O in K and choose some right O-lattice L in the simple left
A-module V = K". Then A := Endp(L) is a maximal order in A with unit
group A :=GL(L)={a€ A|alL =L}.

Following [A2], we will define the L-minimum of a form F € P with respect
to a weight.

Definition 4.1. A weight ¢ on L is a GL(L)-invariant map from the projective
space P(K™) to the positive reals, such that max,epxn) ¢(x) = 1.

A natural choice for the weight is ¢o(x) =1 for all x € K" —{0}. However,
another rather standard choice for ¢ is possible, which allows for definitions
having a natural geometric interpretation and somehow simplify the computations,
at least in the case of imaginary quadratic fields or definite quaternion algebras
(see Section 7). Roughly speaking, this alternative weight is given by the inverse of
the gcd of the coeflicients of a vector in K" with respect to a given pseudo-basis
of the lattice L. To be more precise, we need the following definition

Definition 4.2. Let L = ejc; @ --- D epcy. To any £ = > 7 eil; € L —{0} we
associate the integral left O-ideal

n
ag = Zci_lﬁi
i=1
as well as its norm
N(ag) := [0/a¢| = Nzx)q (nr(ap)?).

Lemma 4.3. (a) N(ag) > 1 for all £ € L —{0}.
(b) For any A € K* and ¢ =Y _,e;l; € L —{0}, one has ag, = agh.
(c) If g€ GL(L) and € =Y /_jeil; € L —{0}, then agq = ay.

Proof. (a) is clear, because all ¢;'¢; are integral left O-ideals, and (b) is
straightforward.

To see (c) write ge; = Z;‘l:le]’g]‘j. Since gL C L we get g;; € ¢jc;'. Then
gt =73"7_ e i gjiti) and

n n
_ -1 -1, —1
Qg = E ¢; E gijti C E oG i Coay.
ji=1 i=1 I

One obtains equality by applying g~! € GL(L). [
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Now for any x € K", we can find A € K — {0} such that xA € L. It follows
from the previous lemma that the class of nr(ay;) in Clg(R) does not depend
on the choice of an element A with this property. Consequently, if we define the
norm of a class in Clg(R) as the smallest possible norm of an integral ideal in
that class, we can associate to x a well-defined quantity N, by the formula

Ny = N([nr(axp)]) = mnin Nz (nr (%),
[nr(D)]=[nr(axx)]

where as before A is any element in K — {0} such that xA € L. This in turn can
be used to define a weight ¢; on K" setting

(1) p1(x) = N2/EQ

(that this is indeed a weight follows immediately from Lemma 4.3).

Remark 4.4. As explained in [A2], the space of weights is isomorphic to R#x~1,
where /g stands for the class number of K. In particular, the trivial weight ¢
is the only possible choice if hx =1 (and ¢; = ¢ in that case).

Having fixed a weight ¢ on L, we can define the minimum of a form and
its set of minimal vectors as follows:

Definition 4.5. The L-minimum of F € P with respect to the weight ¢ is

ming (F) := min @(¢)F[{].
eeL—{o}

The set of minimal vectors of F in L is defined as

SL(F):={t € L—{0} | p(¢{) F[¢] = minz (F)}.

Remark 4.6. The set S;(F) is finite. Indeed, let m := min{p({) | £ € L \ {0}}.
Then m > 0 as ¢ takes only finitely many positive real values, so Sp(F) C
{teL|F[{] <m 'miny(F)} which is a finite set and can be computed as the
set of vectors of smallest length in a Z-lattice.

5. Minimal classes

We keep the general assumptions of the previous section: K is a division
algebra, © a maximal order in K and L a right O-lattice in K", on which a
weight ¢ is fixed.
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Definition 5.1. Two elements F; and F, € P are called minimally equivalent
with respect to L and ¢, if Sp(F1) = Sp(F2). We denote by

ClL(Fy) := {F € P | SL(F) = SL(F1)}

the minimal class of Fy. If C = Clp(F;) is a minimal class then we define
S.(C) = Sp(Fy) the associated set of minimal vectors. A minimal class C is
called well rounded, if S;(C) contains a K-basis of V. The form F € P is
called perfect with respect to L, if Clp(F)={aF |a € R,a > 0}.

Remark 5.2. Note that minimal classes and all subsequent definitions in this
section actually depend on the weight ¢, although we do not indicate it
systematically in our notations. No inconstancy can arise from this, since we
work with fixed weight ¢ (and fixed lattice L).

The group GL,(K), and hence also its subgroup GL(L), acts on X by
(F,g) — gTFg (where we embed A into AR to define the multiplication). Two
forms in X are called L -isometric, if they are in the same GL(L)-orbit. For
F € P we denote by

Auty (F):={g e GL(L) | ¢' Fg = F}

the automorphism group of F. Then Autz(F) is always a finite subgroup of
GL(L). The group GL(L) acts on the set of minimal classes. Two minimal
classes are called equivalent, if they are in the same orbit under this action. The
stabiliser of a minimal class is called the automorphism group of the class,

Aut (C) = {g € GL(L) | gSL(C) = SL(C)}.

Lemma 5.3. (see [Ba, Proposition 2.9]) Let C be a well rounded minimal
class. Then the canonical form Tc¢ = Y 5, ) xx™ € P is positive definite
and Autp (C) = Auty (T Y. Two well rounded minimal classes C and C’ are
equivalent, if and only if Tz' and TZ! are L-isometric.

Proof. The proof is similar to the one in [Ba]. The well roundedness of C implies
that the rank of T¢ is maximal: The mapping (,): V x V — KRg.(x,y) := xTy
is Hermitian and non-degenerate. Let {x;,...,x,} C SL(C) be a K-basis of V,
then for any v e V

n n
inx;rv = in(xi,v) =0 if and only if ve Vi ={0}
i=1 i=1

so the kernel of the positive semidefinite matrix Zlexixj is {0}, therefore

Tc is invertible and hence in P. Clearly Aut,(C) C Autp (T 1y, To see the
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converse put s :=|S.(C)| and let S € M, ((K) be a matrix whose columns are
the elements of Sy (C), in particular T¢ = SST. Take some g € Aut(T C =
{g € GL(L) | gTcg" = Tc} and put S’ :=gS. Then S'(S")' = T¢ = SST and
for any F € P

(*) Y. Flyl=trace((S)TFS') = (S"(SH.F)=(SST.F)= >  FIx].
yecols(S”) x€S7(C)

If x is some column of § and y := gx, then ¢(y) = ¢(x), because of the

GL(L)-invariance of ¢. Moreover ¢(y)F[y] = ¢(x) F[x] = minger {0y (£) F[{],

whence F[y] > F[x], with equality if and only if y € S (C). So we can only

have equality in (x) if Sz(C) = {cols(S’)} and hence g € Auty(C). [

6. Maximal finite subgroups of GL(L)

In this section we will use variants of the Voronoi algorithm to compute a
set of representatives of the conjugacy classes of maximal finite subgroups of
GL(L). The known methods (see e.g. [PP]) start with the list of all conjugacy
classes of finite subgroups of GL,(K). For each group G they compute the
invariant lattices to find the GL(L)-conjugacy classes of subgroups in the class
of G. In particular for reducible groups G this set of invariant lattices is infinite
and one needs to use the action of Ngp,x)(G). Also it seems to be difficult to
restrict to one isomorphism class of O-lattices L.

Here we will start with some lattice L and use the tessellation of the cone
of positive definite Hermitian forms into L-minimal classes to obtain a list
of subgroups of GL(L) that contains representatives of all conjugacy classes
of maximal finite subgroups of GL(L). To check maximal finiteness and also
conjugacy of the groups in the list, we use a relative version of Voronoi’s theory.

Definition 6.1. Let G < GL(L) be some finite subgroup. Let F(G) :=
{Fex|glFg=F for all g € G} denote the space of G -invariant Hermitian
forms. It contains the cone Fxo(G) := F(G)NP of positive definite G -invariant
forms. For F € Foo(G) the G-minimal class of F is Clp(F)N F(G). A form
F € F-o(G) is called G -perfect with respect to L, if Clp(F) N F(G) =
{aF | a € Ryg}.

Lemma 6.2. Let

]
'Y > F(G), Fr>— F
761 S — F(G) H|G|£;g g

be the usual averaging operator and C be a G -invariant minimal class. Then

C N F(G) = ng(C).
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Proof. Since ng(F) = F for all G -invariant forms, it is clear that C N F(G) C
7g(C). So let F € C. Then Sp(F) = Sp(C). Since S;(C) is G -invariant,
S1(C) = S;.(¢TFg) for any g € G. As ng(F) is a sum of positive definite
forms, also Sy (wg(F)) = Sp(C) and so ng(F) € C. [

As in the classical case, Voronoi’s algorithm, as described e.g. in [O] can be
adapted to the case of G -invariant forms to compute the G -perfect forms and
the cellular decomposition of F~¢(G) into G -minimal classes up to the action of
the normaliser (see for instance [Ba, Theorem 2.4] for details on this procedure
in the classical case).

Proposition 6.3. Let G < GL(L) be finite. Then there exists at least one G -perfect
form with respect to L.

Proof. We will show that L — {0} is discrete and admissible in the sense of
[O, Definition 1.4]. Then by [O, Proposition 1.8] there exists a G -perfect form.
Moreover, [O, Theorem 1.9] tells us that the Voronoi domains of the G -perfect
forms form an exact tessellation of F(GT)-g.

Clearly L — {0} is discrete in Vg := V ®q R. For the admissibility we need to
show that for any F € dP, the boundary of P, and any € > O there is some
¢ e L —{0}, such that p({)F[{] <e. If F € dP, it is positive semidefinite, so

{xeVR|Flx] =0} ={xeVp| Fx =0} <y
is a subspace. In particular the volume of the convex set
Ke:={x e W | Flx] <€} =K

is infinite and by Minkowski’s convex body theorem X, contains some 0 # £ € L.
Then F[{] < e and hence also ¢({)F[{] <€ since ¢({) <1. []

Lemma 6.4. Let G < GL(L) be finite. Then any G -perfect form F with respect
to L is well rounded.

Proof. The proof is similar to the classical case. Assume that (Sp(F))x # V.
Then there is some linear form H € V* = K" so that Hx = 0 for all x € S (F).

Let
1

Fo = — Z gTHTHg.
Gl 55
Since Sy (F) is G -invariant, xTFox = 0 for all x € S (F), so S.(F + €Fy) D
SL(F) for all € > 0 with equality, if € is small enough. So F + €¢F; €
Clp(F) N F~o(G) contradicting the assumption that F is G -perfect with respect
to L. ]
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Theorem 6.5. Let G < GL(L) be some maximal finite subgroup of GL(L). Then
G = Auty (C) for some well rounded minimal class C with respect to L, such
that C N F(G) spans a subspace of F(G) of dimension 1.

Proof. The group G always fixes some G -perfect form F with respect to L.
Let C := Cl (F). Then S (C) = Sp(F) is G-invariant, so G < Autz(C). By
Lemma 6.4 C is well rounded, so Autz(C) is finite and the maximality of G
implies that G = Autz (C). [

With Theorem 6.5 we obtain a finite list of finite subgroups of GL(L) that
contains a system of representatives of conjugacy classes of maximal finite
subgroups. We need to be able to test maximal finiteness and conjugacy in
GL(L) of such groups Aut;(C).

Proposition 6.6. Let G < GL(L) be some finite subgroup. Then the maximal
finite subgroups H of GL(L) that contain G are of the form H = Auty(Cg)
fJor some G -minimal class Cg.

Proof. Let H be some maximal finite subgroup of GL(L) that contains G.
By Theorem 6.5 there is some G -invariant L-minimal class C such that
H = Aut;(C). By Lemma 6.2 S;(C) = Sp(Cg) for the G-minimal class
Cg =ng(C) and H = Autz (Cg). O

Remark 6.7. To test whether two maximal finite subgroups G, G, of GL(L) are
conjugate, one computes a system of representatives R; of the Ngi(r)(G;)-orbits
of Gj-perfect forms and then checks whether a given form in R; is L -isometric
to some form in R,. Since G; = Auty(F;) for all F; € R;, any isometry yields
a conjugating element.

7. Imaginary quadratic fields and definite quaternion algebras

In this section we will assume that K is either the field of rational numbers, an
imaginary quadratic number field or a definite quaternion algebra over the rationals.
These are exactly the cases, where Kg is a division algebra and Sym(KRr) = R.
We thus have in those cases (and in those cases only) the noteworthy property
that

2) Vi€ Kr.Vx € Vg F[xA] = AATF[x].

As a consequence, it is more natural and more efficient to compute minima
with respect to the weight ¢; defined in the previous subsection, because of the
following lemma
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Lemma 7.1. For any F € P one has
Fle]

) = S0 N

where the minimum on the left-hand side is computed with respect to the weight
—2/ [K: Q]
p1(6) =

Proof. The inequality ming (F) > mingey— {O}W%QJ is clear, since Ny <
N(ag) for every £ € L —{0}. In the opposite dlrectlon every { € L — {0}, there
exists A € K — {0} such that agy = apA C O and N(apA) = N([ag]) =

(in particular, £A € L) . Using (2), we see that g fz[fg,( o = N(aef )[9[1(()
p1({A)F[¢A] > ming(F), whence the conclusion taking the minimum of the

left-hand side over L — {0}. [

Remark 7.2. The reformulation given in Lemma 7.1 of the minimum of a form
with respect to ¢; has two noteworthy applications

(1) It can be interpreted in terms of minimal distance to cusps as explained in
[Me] (see also [EGM, chapter 7]).

(2) One can easily deduce from this that the Voronoi complex will depend only
on the Steinitz class of L modulo nth powers (see [BC, Theorem 3.8]).

8. Examples

We will use the method from the previous section to compute the conjugacy
classes of maximal finite subgroups of GL(L) for imaginary quadratic number
fields K. This is an invariant of the isomorphism class of GL(L) and will show
that for small examples these groups are not isomorphic.

Example 8.1. Let K = Q[v—15], O = Ox = Z[*¥=13] » = 2. Then
CI(K) = {[Ock], [g2]} where g, is some prime ideal dividing 2, so there are two
isomorphism classes of Ok -lattices in K?: one corresponding to the lattice L
with Steinitz-invariant [O] and the other one to the lattice L; with Steinitz-
invariant [g]. For both lattices the perfect forms are given in [BC].

For both lattices L, Table 1 lists the GL(L)-orbits of well rounded minimal
classes C according to their perfection corank together with their stabilizers
G = Autz (C). The two classes of perfection corank O contain the perfect forms.
The third column gives the dimension of mg(C). If this dimension is one,
then ng(C) C (F) for some G -perfect form F, the next column gives the
automorphism group Autz(F) and the last one indicates whether G is maximal
finite.
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TaBLE 1
Well rounded minimal classes for K = Q[v—15]

C G = Aut,(C) dim (nG (C )) Auty, (F) maximal
L =1Ly perf. corank = 0
P Ce 1 Ce no
Pz C4 1 C4 no
perf. corank = 1
C] D12 1 D12 yes
Cy Di> 1 Di> yes
C3 Cy 2 no
Cy Cy 2 no
perf. corank = 2
D1 Dg 1 Dg yes
D; Dsg 1 Dg yes
D3 Va 1 Va yes
D4 V4 1 V4 yes
L=1L perf. corank = 0
P Cs:Cq4 1 Cs3:Cq4 yes
perf. corank =1
Cq Dg 1 Dsg yes
Cs Dg 1 Dsg yes
C3 D> 1 D12 yes
perf. corank = 2
D Va 1 Va yes

L = Lg: The two groups G = Dg and G = D, are absolutely irreducible
maximal finite subgroups of GL,(K). Since dim(F(G)) = 1 for both groups
and C; and D; are inequivalent (i = 1,2) one gets 2 conjugacy classes of
maximal finite subgroups of both isomorphism types Dg and Di,. To prove
that G := Autz(D3) is maximal finite, we compute the well rounded G -
minimal classes, using Voronoi’s algorithm and starting with the G -perfect form
F € ng(D3). SL(F) = {£vy, £v2} with a,, = Ok, ay, = 2. Therefore both
minimal vectors are G -eigenvectors and the G -Voronoi domain has 2 faces, both
of which are dead ends (see [Ma, Definition 13.1.7]). So F is the unique G -perfect
form and there are no other well rounded G -minimal classes. The situation is the
same for Autz(D,). The two G -perfect forms in D3 and D4 (rescaled to have
minimum 1) are Galois conjugate but not L -isometric, with shows that Autz (D3)
and Autz(D4) are not conjugate in GL(L).

The proof that G := Autz (P;) is not maximal finite is similar for both cases
i = 1,2. The space of invariant forms has dimension 2, there are two G -orbits
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on Sp(P;), so the G-Voronoi domain of P; has two faces, corresponding to
I-dimensional G -minimal classes with automorphism group Di, (for P;) resp.
Dg (for P,). One checks for i = 1,2 that Autz(P;) is properly contained in
these groups.

L = Lyi: As in the free case the uniform groups Autz(P) and Autz(C;),
i = 1,2,3 are maximal finite and represent distinct conjugacy classes. For the
group G = Autp (D) =~ V4, we again have a unique G -perfect form F and
the two L-minimal vectors of F are eigenvectors for G. So both faces of the
G -Voronoi domain of F are dead ends and G = Auty (F) is maximal finite.

As GL,(Og) and GL(L) have different conjugacy classes of maximal finite
subgroups one finds the following corollary.

Corollary 8.2. GL,(Ok) = GL(L¢) and GL(L) are not isomorphic.
Example 8.3. Table 2 lists the results of similar computations which we did for
certain small imaginary quadratic fields. In particular we find

Corollary 8.4. Let K be one of the six fields in Table 2. Then non-conjugate
maximal orders in M,(K) have non-isomorphic unit groups.

TABLE 2
Number of conjugacy classes of maximal finite subgroups

Dg  Dix Vi SLa(3) Qs GC3:C4

K =Q[v=15] St(L)=[0k] 2 2 2 - - -
St(L) = [p2] 2 1 1 - - 1
K =Q[v/=35]  St(L)=[0x] 3 2 1 - 1 -
St(L) = [p2] 1 2 1 1 - -
K =Q[v/—=6]  St(L)=[0x] 3 2 1 1 = =
St(L) = [pa] 1 1 2 - 1 1
K =Q[v=10] St(L)=[0kx] 3 2 1 - 1 -
St(L) = [pa] 1 - 3 1 - 2
K =Q[vV=21] StuL)=[0kx] 6 4 2 - - 2
SU(L) =[p2] 2 - 6 - - -
St(L) = [p3]  ~ 2 6 2 — —
St(L) = [ps] - - 8 — 2 -
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