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Maximal finite subgroups and minimal classes

Renaud Coulangeon and Gabriele Nebe

Abstract. We apply Voronoi's algorithm to compute representatives of the conjugacy classes

of maximal finite subgroups of the unit group of a maximal order in some simple Q-algebra.

This may be used to show in small cases that non-conjugate orders have non-isomorphic

unit groups.
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11H55.
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1. Introduction

Let A be some simple Q-algebra and let A and T be two maximal orders

in A. If A is not a division algebra, then the order A is generated by its unit

group Ax as a Z-lattice (see Lemma 2.1). So Ax and Tx are conjugate in Ax

if and only if the two orders A and T are conjugate, which can be decided

with the arithmetic theory of orders exposed in the next section. By the theorem

of Skolem and Noether we hence have that the unit groups are conjugate if and

only if A and T are isomorphic as orders over the center of A. The motivation
of this paper is to develop tools for deciding whether the two unit groups are

isomorphic, which is in general much more difficult than the conjugacy problem.
In fact this innocent question was raised by Oliver Braun during his work on
the paper [BC] that grew out of his Bachelor thesis in Aachen supervised by the

second author.

One invariant of the isomorphism class of Ax is the number of conjugacy
classes of maximal finite subgroups. Our main result is that these maximal finite
subgroups arise as automorphism groups of well rounded minimal classes, which
will be defined in Section 5. The basic idea underlying this approach is already

apparent in Ryskov's paper [Ry] on the computation of the finite subgroups
of GLfl(Z). Nevertheless, whereas Ryskov classifies all finite subgroups and
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then develops ad hoc arguments to determine the maximal ones, our method

permits in principle to solve the problem directly. Precisely, a refinement of the

classical Voronoi algorithm, involving Berge-Martinet-Sigrist's equivariant version

of Voronoi's theory [BMS], is applied to compute the cellular decomposition of
a suitable retract of a cone of positive definite Hermitian forms, and therewith
also the (finitely many) conjugacy classes of maximal finite subgroups of Ax.
As will be illustrated in Section 8, this turns out to be enough, in some cases, to

distinguish between non-isomorphic unit groups. The argument can of course not
be reversed: non-isomorphic unit groups might have the same conjugacy classes

of maximal finite subgroups. Note also that, as in the classical case of GL„(Z),
the obtained cellular decomposition can be used to compute the integral homology
of Ax. The relevance of Voronoi theory in such homology computations was

first highlighted in the works of Soule [Soul, Sou2] and Ash [AI, A2], and it has

given rise since then to numerous developments (we refer the interested reader

to P. Gunnels' appendix of [St] which provides an excellent survey on this topic,
and to [DES, Ra, RF] for recent related works, especially on Bianchi groups).

The methods apply to arbitrary (semi)-simple Q-algebras, though we are mainly
interested in the case where A is a matrix ring over either an imaginary quadratic
number field or a definite rational quaternion algebra. For these algebras we may
ease these computations by adopting a projective notion of minimal vectors as

exposed in Section 7.

2. Conjugacy classes of maximal orders

The theory in this section is well known and can be extracted from the two
books [Re] and [D]. However, we did not find a self-contained short exposition
of the proof of Theorem 2.4, so we repeat the details here for the reader's

convenience. Fet A be a simple Q-algebra. Then A Mn(K) for some rational
division algebra K with center Z(K). Fet R be the maximal order in Z(K)
and choose some maximal R -order O in K. An O -lattice L of rank n is a

finitely generated G-submodule of the right K -module V := Kn that contains

a K -basis. By Steinitz-theorem (see for instance [Re, Theorem 4.13, Corollary
35.11]) there are right ideals ci,..., cn of Ö and a basis (e\,..., en) of V such

that

L cici © ••• © encn.

The family (c*, £z)i<j<rc is called a pseudo-hasis of L. The Steinitz-invariant of
L, denoted St(L), is the class

St(L) [ci] + • • • + [cn]
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in the group C\(0) of stable isomorphism classes of right O -ideals and does not
depend of the choice of a pseudo-basis. By Eichler's theorem (see [Re, Theorem

(35.14)]) the reduced norm

nr : CI(O) -> ClK(R)

induces a group isomorphism between C\{ö) and the ray class group C\k(R),
the quotient of the ideal group of R modulo those principal ideals aR for which

i(a) >0 for all real places i of Z{K) that ramify in K.
If n > 2 (which we assume in the following) then, as a consequence of

Corollary 35.13 of [Re], two lattices L\,L2<V are isomorphic as Ö-modules,

if and only if they have the same Steinitz-invariant. In particular, L is isomorphic
to L(c) where

A(c) C\(D ® ® en—\ö ® enc

for any ideal c with [c] St(L). The endomorphism ring

Endo(A) {X e Mn(K) \ XL c L}

is a maximal order in End^(E) ^ A. In fact any maximal order in A is obtained

this way (see [Re, Corollary 27.6]). If [c] St(L) then Endo(A) is conjugate in
GLfl (K) to

Endo (L(c)) A(c) :

where ö' 0/(c) {x e K \ xc c c}.

O

o
\ c

o

o

-! \

Lemma 2.1. For n > 2 any maximal order A in A Mn (K) is generated as

a Z -order by its unit group.

Proof. Without loss of generality let A A(c) and let

(xi,...,xj), (yu...,yd), (zi,...,zrf)

be Z-bases of Ö, c, respectively c_1. We denote by etJ the matrix units in

Mn{K) having an entry 1 at /, j and 0 elsewhere, and In e\\ + + enn the

unit matrix. Let X be the Z-order spanned by A(c)x. Since In and In F x^etJ
g A(c)x we obtain that x^j e X for all k 1,...,J, 1 < i ^ j < n — 1.

Similarly ykem and Zjem, as well as yicZjenn and are in X for all
i 1,..., n — 1, k,j 1,..., d. As the generate Ö' and the zy y^ generate
Ö the order X contains A(c).
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Corollary 2.2. Let A and T be two maximal orders in the simple algebra A

and assume that A is not a division algebra. Then Ax and Tx are conjugate in
Ax if and only if A and T are conjugate.

A separating invariant of the conjugacy classes of maximal orders in A can
be constructed in a suitable class group of the center of A.

Definition 2.3. Let CIk(u) := Cl^(^)/(nr(a)w | a < O) denote the quotient of
the ray class group Cl^(R) defined above modulo the n-th powers of the reduced

norms of the two-sided Ö -ideals.

Note that the subgroup (nr(a)'1 | a < O) can be obtained from the discriminant
of K. In particular it does not depend on the choice of the maximal order Ö.
Also if K is commutative then CIx(n) CI(K)/ Cl( K)n is just the class group
of K modulo the n-th powers.

Theorem 2.4. Let A Mn (I<) be a simple Q -algebra and O a maximal order
in K. For any two right Ö-ideals c and c/, the corresponding maximal orders

A(c) and A(V) are conjugate in Ax GLn(K) if and only if nr([c]) nr([c/])
in CIk(p)>

Proof. We use the approach in [D, Section VI.8]. Let T := Mn(ö) A(O).
Then any other maximal order in A arises as the left order of some T-right
ideal, in particular

A(c) 0/ (/(c)) {a e A \ al(t) c /(c)} where /(c)

O

o

\ c

o \

o
c /

Two left orders <9/(/) and Oi(V) are conjugate, if and only if F alJ for

some a e Ax and some two-sided fractional T-ideal J. By Morita theory any
two-sided T-ideal J is of the form J Mn(a) for some two-sided Ö-ideal a

in K. By [Re, Lemma (35.8)], the reduced norm of J Hom0(On, an) equals

nr(a)" e CIk(R) and the reduced norm of /(c) Hom0(L(0), L(c)) is nr(c).
By [Re, Theorem 35.14] the reduced norm is injective, so

/(c) aI(t')Mn(d) for some a e A* if and only if nr(c) nr(cOnr(a)L
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3. Positive cones

Let K be some rational division algebra and A Mn(K). Then Ar := A<S>qR

is a semi-simple real algebra, hence a direct sum of matrix rings over one of
H, R or C. It carries a canonical involution that we use to define symmetric
elements. Let d denote the degree of K, so d2 dimz(K)(K), and let

L\,..., ls be the real places of Z(K) that ramify in K,
<Ti,..., or the real places of Z{K) that do not ramify in K,

ti,..., the complex places of Z(K).

Then
s r t

KR := K &>q R s 0 MJ/2(H) ® 0 (R) ® 0 (C).
I 1 I 1 I 1

The "canonical" involution * (depending on the choice of this isomorphism)
is defined on any simple summand of ÄTr to be transposition for Mj(R),
transposition and complex (respectively quaternionic) conjugation for Mj(C) and

Md/iiH). The resulting involution on ^r is again denoted by *. As usual it
defines a mapping ^ by applying * to the entries and

then transposing the m x n -matrices. In particular this defines an involution ^

on Ar Mn (ÄTr) In general this involution will not fix the set A.

Definition 3.1. S := Sym(AR) := [F e Ar | F} is the R-linear subspace

of symmetric elements of Ar. It supports the positive definite inner product

{F\,F2) := trace(FiF2)

where trace is the reduced trace of the semi-simple R-algebra Ar. The real

vector space E contains the open real cone of positive elements

V := e £ | ql,fJ,hk pos. def.}.

Let V be the simple left A-module Kn. Iben Lr := V (8>qR and for

any v e Lr the matrix xx^ lies in E. The following lemma is easily checked:

Lemma 3.2. Any F e E defines a quadratic form on Lr by:

F[x] := (F,xx^) e R for all x e Lr.

This quadratic form is positive definite if and only if F eV.

As a consequence, with a slight abuse of language, we will sometimes refer

to elements of E as forms.
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4. Minimal vectors

Let A Mn(K) for some division algebra K. As before we fix some

maximal order O in K and choose some right Ö -lattice L in the simple left
A-module V Kn. Then A := Endo(L) is a maximal order in A with unit

group Ax := GL(L) {a e A \ aL L}.
Following [A2], we will define the L -minimum of a form F e V with respect

to a weight.

Definition 4.1. A weight <p on L is a GL(L)-invariant map from the projective

space P(Kn) to the positive reals, such that maxxp(Kn)<p(x) 1.

A natural choice for the weight is <po(x) 1 for all x e Kn — {0}. However,
another rather standard choice for cp is possible, which allows for definitions

having a natural geometric interpretation and somehow simplify the computations,
at least in the case of imaginary quadratic fields or definite quaternion algebras

(see Section 7). Roughly speaking, this alternative weight is given by the inverse of
the gcd of the coefficients of a vector in Kn with respect to a given pseudo-basis

of the lattice L. To be more precise, we need the following definition

Definition 4.2. Let L e\C\ 0 • • • 0 encn. To any I Y^=\ £ L — {0} we
associate the integral left Ö -ideal

n

<*<? := J2c~l£'
1 1

as well as its norm

N(at) := \0/at\ NZW/q (nr(af)rf).

Lemma 4.3. (a) N(c^) > 1 for all I e L - {0}.

(b) For any X e K* and I Y^= i ei^i ^ L — {0}, one has au atX.

(c) If g g GL(L) and I Yü=\ e L — {0}, then agt a*.

Proof (a) is clear, because all c~llt are integral left Ö-ideals, and (b) is

straightforward.
To see (c) write get YTj=\ejSji - Since gL c L we get gJt e c,c"1. Then

^llj=\ ej (I2i=i SjAi) and

n n

Hi L/71 ^J2c7lcJc~l1' - H-
7 1 ^ 1 J,i

One obtains equality by applying g~l e GL(L).
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Now for any x e Kn, we can find X e K — {0} such that xX e L. It follows
from the previous lemma that the class of nr(axA) in Cl^(/?) does not depend

on the choice of an element X with this property. Consequently, if we define the

norm of a class in Cl^(^) as the smallest possible norm of an integral ideal in
that class, we can associate to x a well-defined quantity Nx by the formula

Nx N ([nr(a^A)]) min ^z(K)/q (nr (I)d
[nr(/)] [nr(axA)]

where as before X is any element in K — {0} such that xX e L. This in turn can
be used to define a weight <p\ on Kn setting

(1) n(x) N-2^K:®

(that this is indeed a weight follows immediately from Lemma 4.3).

Remark 4.4. As explained in [A2], the space of weights is isomorphic to R^-1,
where hx stands for the class number of K. In particular, the trivial weight <pQ

is the only possible choice if fix 1 (and cp\ cpo in that case).

Having fixed a weight <p on L, we can define the minimum of a form and

its set of minimal vectors as follows:

Definition 4.5. The L -minimum of F eV with respect to the weight <p is

minl{F) := min cp{l)F[l\.
eL-{o}

The set of minimal vectors of F in L is defined as

SL(F) :={leL- {0} | <p(l)F[l] minL(F)}.

Remark 4.6. The set Sl(F) is finite. Indeed, let m := min{<p(l) \ I e L \ {0}}.
Then m > 0 as cp takes only finitely many positive real values, so Sl(F) c
{I g L | F[l\ < m~x minL(i7)} which is a finite set and can be computed as the

set of vectors of smallest length in a Z -lattice.

5. Minimal classes

We keep the general assumptions of the previous section: K is a division
algebra, Ö a maximal order in K and L a right Ö -lattice in Kn, on which a

weight <p is fixed.
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Definition 5.1. Two elements F\ and F2 e V are called minimally equivalent
with respect to L and <p, if Sl{F\) Sl{F2). We denote by

CIl(Fx) := {F g V | SL(F) 5L(Fi)}

the minimal class of F\. If C C\l{F{) is a minimal class then we define

Sl(C) Sl(Fi) the associated set of minimal vectors. A minimal class C is

called well rounded, if Sl(C) contains a K -basis of V. The form F e V is

called perfect with respect to L, if CIl(F) {aF \ a e R,a > 0}.

Remark 5.2. Note that minimal classes and all subsequent definitions in this

section actually depend on the weight although we do not indicate it
systematically in our notations. No inconstancy can arise from this, since we
work with fixed weight cp (and fixed lattice L).

The group GLn(K), and hence also its subgroup GL(L), acts on E by

(F,g) i-> g^ Fg (where we embed A into Ar to define the multiplication). Two

forms in E are called L-isometric, if they are in the same GL(L)-orbit. For

F e V we denote by

AutL(F) := {g e GL(L) | gWg F)

the automorphism group of F. Then Aut/XF) is always a finite subgroup of
GL(L). The group GL(L) acts on the set of minimal classes. Two minimal
classes are called equivalent, if they are in the same orbit under this action. The

stabiliser of a minimal class is called the automorphism group of the class,

AutL(C) {g GL(L) | gSL(C) SL(C)}.

Lemma 5.3. (see [Ba, Proposition 2.9]) Let C he a well rounded minimal
class. Then the canonical form Tc := ^x^sL{C)xx^ G ^ ^ positive definite
and Autl(C) AutTwo well rounded minimal classes C and C' are

equivalent, if and only if TP and Tc} are L-isometric.

Proof. The proof is similar to the one in [Ba]. The well roundedness of C implies
that the rank of Tc is maximal: The mapping : V x V Kr, (x,y) := x^y
is Hermitian and non-degenerate. Let {x\,... ,xn} c Sl(C) be a K-basis of V,
then for any v e V

n n

^2xix^v ^2xi(xi' v) ® if an(f °nly if v e

i=i i=i

so the kernel of the positive semidefinite matrix Y^=\xix] is W» therefore

Tc is invertible and hence in V. Clearly Aut/XC) c Autl(T^1). To see the
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converse put s := |Sl(C)| and let S e Mn^s(K) be a matrix whose columns are

the elements of Sl(C), in particular Tc Take some g e Aut(T^1)
{g GL(L) | gTcg+ Tc} and put 5' := gS. Then 5'(5')+ Tc 55+ and

for any F e V

(*) J2 f It] trace((5/)t^5/) (5'(5')+, F) (55+, F)
yecolsOS'') x»S^(C)

If x is some column of S and y := gx, then <p(y) <p(x), because of the

GL(L)-invariance of cp. Moreover cp(y)F[y] > (p{x)F[x] min£^_{0} (p{l)F[l\,
whence F[y] > F[x], with equality if and only if y e Sl(C). So we can only
have equality in (*) if Sl(C) {cols(S")} and hence g e Aut^CC).

6. Maximal finite subgroups of GL(L)

In this section we will use variants of the Voronoi algorithm to compute a

set of representatives of the conjugacy classes of maximal finite subgroups of
GL(L). The known methods (see e.g. [PP]) start with the list of all conjugacy
classes of finite subgroups of GL„(^T). For each group G they compute the

invariant lattices to find the GL(L)-conjugacy classes of subgroups in the class

of G. In particular for reducible groups G this set of invariant lattices is infinite
and one needs to use the action of Aglw(x:)(G) Also it seems to be difficult to

restrict to one isomorphism class of Ö -lattices L.
Here we will start with some lattice L and use the tessellation of the cone

of positive definite Hermitian forms into L -minimal classes to obtain a list
of subgroups of GL(L) that contains representatives of all conjugacy classes

of maximal finite subgroups of GL(L). To check maximal finiteness and also

conjugacy of the groups in the list, we use a relative version of Voronoi's theory.

Definition 6.1. Let G < GL(L) be some finite subgroup. Let F(G) :=
{F e S | g^Fg F for all g e G} denote the space of G-invariant Hermitian
forms. It contains the cone .F>o(G) := T{G) HV of positive definite G -invariant
forms. For F e J">o(G) the G-minimal class of F is CIl(F) n J"(G). A form
F e J">o(G) is called G-perfect with respect to L, if CIl(F) H J"(G)
{aF | a e R>o}.

Lemma 6.2. Let

' '

gsG

be the usual averaging operator and C be a G-invariant minimal class. Then

cnj(G) ;rG(C).



240 R. Coulangeon and G. Nebe

Proof Since tig(F) F for all G-invariant forms, it is clear that C n F(G) c
7tg(C). So let F e C. Then Sl(F) Sl(C). Since Sl(C) is G-invariant,
SL(C) SL(g^Fg) for any g e G. As tig(F) is a sum of positive definite

forms, also Sl(^g(^)) Sl(C) and so tvg(F) e C.

As in the classical case, Voronoi's algorithm, as described e.g. in [O] can be

adapted to the case of G-invariant forms to compute the G-perfect forms and

the cellular decomposition of .F>o(G) into G-minimal classes up to the action of
the normaliser (see for instance [Ba, Theorem 2.4] for details on this procedure
in the classical case).

Proposition 6.3. Let G < GL(L) be finite. Then there exists at least one G-perfect
form with respect to L.

Proof We will show that L — {0} is discrete and admissible in the sense of
[O, Definition 1.4]. Then by [O, Proposition 1.8] there exists a G-perfect form.

Moreover, [O, Theorem 1.9] tells us that the Voronoi domains of the G-perfect
forms form an exact tessellation of Jr(G^)>0.
Clearly L — {0} is discrete in FR := V (£>q R. For the admissibility we need to
show that for any F e dV, the boundary of V, and any e > 0 there is some

I e L — {0}, such that <p(l)F[l\ < e. If Fe dV, it is positive semidefinite, so

{x e VR | F[x] 0} {x e FR | Fx 0} < FR

is a subspace. In particular the volume of the convex set

JC := {x e VR | F[x] < e} -JC

is infinite and by Minkowski's convex body theorem JC contains some 0/f gL.
Then F[l\ < e and hence also (p(T)F[T\ < e since (p(T) <1.

Lemma 6.4. Let G < GL(L) be finite. Then any G -perfect form F with respect
to L is well rounded.

Proof. The proof is similar to the classical case. Assume that {Sl(F))k ^ V.
Then there is some linear form H e V* Kn so that Hx 0 for all x e Sl(F)
Let

F° 4 E s'x'xs-
1 1

gG
Since Sl(F) is G-invariant, xW0x 0 for all x e Sl(F), so Sl(F + eF0)

Sl(F) for all 6 > 0 with equality, if e is small enough. So F 4- cFq e

C\l(F) n JvoCG) contradicting the assumption that F is G-perfect with respect
to L.
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Theorem 6.5. Let G < GL(L) be some maximal finite subgroup of GL(L). Then

G Autl(C) for some well rounded minimal class C with respect to L, such

that C nj(G) spans a subspace of F{G) of dimension 1.

Proof The group G always fixes some G -perfect form F with respect to L.
Let C := C\l(F). Then Sl(C) Sl(F) is G-invariant, so G < AuG(C). By
Lemma 6.4 C is well rounded, so AuG(C) is finite and the maximality of G

implies that G Aut/XC).

With Theorem 6.5 we obtain a finite list of finite subgroups of GL(L) that

contains a system of representatives of conjugacy classes of maximal finite

subgroups. We need to be able to test maximal finiteness and conjugacy in

GL(L) of such groups AuG(C).

Proposition 6.6. Let G < GL(L) be some finite subgroup. Then the maximal

finite subgroups H of GL(L) that contain G are of the form H AuG(Cg)
for some G-minimal class Cq-

Proof Let H be some maximal finite subgroup of GL(L) that contains G.

By Theorem 6.5 there is some G-invariant L-minimal class C such that

H Aut/XC). By Lemma 6.2 Sl(C) Sl(Cq) for the G-minimal class

Remark 6.7. To test whether two maximal finite subgroups G\, G2 of GL(L) are

conjugate, one computes a system of representatives Rl of the Nql(L)(Gt)-orbits
of Gt -perfect forms and then checks whether a given form in Ri is L -isometric
to some form in R2. Since Gt Aut/X^) for all Ft e Rt, any isometry yields
a conjugating element.

7. Imaginary quadratic fields and definite quaternion algebras

In this section we will assume that K is either the field of rational numbers, an

imaginary quadratic number field or a definite quaternion algebra over the rationals.
These are exactly the cases, where Kr is a division algebra and Sym(^fR) R.
We thus have in those cases (and in those cases only) the noteworthy property
that

As a consequence, it is more natural and more efficient to compute minima
with respect to the weight <p\ defined in the previous subsection, because of the

following lemma

Cq 7xq(C) and H AuG(Cg).

(2) VA e Kr, Vx e VR F[xA] XXW[x\.
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Lemma 7.1. For any F e V one has

F[i\
minl(F) := min

leL-{0} N(d£)2/[A;:Q]

where the minimum on the left-hand side is computed with respect to the weight
<PiO N72/[*:Q]

Proof The inequality minl(F) > mini^_{o} Q] *s clear> since Ni <
N(a^) for every I e L — {0}. In the opposite direction, every I e L — {0}, there

exists X e K — {0} such that an &iX c O and N(a^A) N([c^]) Nt
(in particular, IX e L) Using (2), we see that N(n<ffik Q] N(JJßiK Q]

cpi{lX)F[lX] > minl(F), whence the conclusion taking the minimum of the

left-hand side over L — {0}.

Remark 7.2. The reformulation given in Lemma 7.1 of the minimum of a form
with respect to cp\ has two noteworthy applications

(1) It can be interpreted in terms of minimal distance to cusps as explained in

[Me] (see also [EGM, chapter 7]).

(2) One can easily deduce from this that the Voronoi complex will depend only
on the Steinitz class of L modulo nth powers (see [BC, Theorem 3.8]).

8. Examples

We will use the method from the previous section to compute the conjugacy
classes of maximal finite subgroups of GL(L) for imaginary quadratic number
fields K. This is an invariant of the isomorphism class of GL(L) and will show

that for small examples these groups are not isomorphic.

Example 8.1. Let K := Q[V—15], Ö Ok Z[1+^~^], n 2. Then

CI(K) {[Ok], [pi]} where p2 is some prime ideal dividing 2, so there are two

isomorphism classes of Ok -lattices in K2 : one corresponding to the lattice L0
with Steinitz-invariant [Ok] and the other one to the lattice L\ with Steinitz-

invariant [p2]. For both lattices the perfect forms are given in [BC].
For both lattices L, Table 1 lists the GF(L)-orbits of well rounded minimal
classes C according to their perfection corank together with their stabilizers

G Aut/XC). The two classes of perfection corank 0 contain the perfect forms.
The third column gives the dimension of 7Tg(C). If this dimension is one,
then 7tg(C) c (F) for some G -perfect form F, the next column gives the

automorphism group Aut/XF) and the last one indicates whether G is maximal
finite.
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Table 1

Well rounded minimal classes for K Q[V—15]

C G AutL(C) dim (jtoiC)) AufL (F) maximal

II o perf. corank 0

Pi c6 1 c6 no

Pi C4 1 c4 no

perf. corank 1

Ci D\2 1 D\2 yes

c2 D\2 1 D\2 yes

c3 C2 2 no
C4 C2 2 no

perf. corank 2

Di Ds 1 Ds yes

d2 Ds 1 Ds yes

d3 v4 1 v4 yes

d4 v4 1 V4 yes

L Li perf. corank 0

P C3 : C4 1 C3 : C4 yes

perf. corank 1

Ci Ds 1 Ds yes
c2 Ds 1 Ds yes
C3 D\2 1 D\2 yes

perf. corank 2

D v4 1 V4 yes

L L0: The two groups G D% and G D\2 are absolutely irreducible
maximal finite subgroups of GL2(K). Since dim(J7(G)) 1 for both groups
and Ct and Dl are inequivalent (z 1,2) one gets 2 conjugacy classes of
maximal finite subgroups of both isomorphism types T>8 and D12. To prove
that G := AutL(T>3) is maximal finite, we compute the well rounded G-
minimal classes, using Voronoi's algorithm and starting with the G -perfect form
F e 7Tg(T>3). Sl(F) {±vi,±v2} with aVl Ok, aV2 p2. Therefore both

minimal vectors are G -eigenvectors and the G -Voronoi domain has 2 faces, both
of which are dead ends (see [Ma, Definition 13.1.7]). So F is the unique G-perfect
form and there are no other well rounded G -minimal classes. The situation is the

same for AutL(T>4). The two G-perfect forms in D3 and D4 (rescaled to have

minimum 1) are Galois conjugate but not L -isometric, with shows that AuG(D3)
and AuG(D4) are not conjugate in GL(L).

The proof that G := AuG(^) is not maximal finite is similar for both cases

i 1,2. The space of invariant forms has dimension 2, there are two G -orbits
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on Sl(Pi), so the G-Voronoi domain of Pt has two faces, corresponding to
1-dimensional G-minimal classes with automorphism group D\2 (for P\) resp.

Ds (for P2). One checks for z= 1,2 that Aut/X^) is properly contained in
these groups.

L Li: As in the free case the uniform groups Aut/XP) and AuG(Q),
i 1,2,3 are maximal finite and represent distinct conjugacy classes. For the

group G AuIl(D) F4 we again have a unique G-perfect form F and

the two L -minimal vectors of F are eigenvectors for G. So both faces of the

G-Voronoi domain of F are dead ends and G Aut/XF) is maximal finite.

As GL2(Ok) and GL(Li) have different conjugacy classes of maximal finite
subgroups one finds the following corollary.

Corollary 8.2. GL2(Ok) GL(L0) and GL(Li) are not isomorphic.

Example 8.3. Table 2 lists the results of similar computations which we did for
certain small imaginary quadratic fields. In particular we find

Corollary 8.4. Let K he one of the six fields in Table 2. Then non-conjugate
maximal orders in M2(K) have non-isomorphic unit groups.

Table 2

Number of conjugacy classes of maximal finite subgroups

£>8 D\i v4 SL2(3) 08 C3 : C4

K Q[V-15] w II Oft 2 2 2 - - -
St(L) \p2] 2 1 1 - - 1

K Q[V^5] w II oft 3 2 1 - 1 -
St(L) [p2] 1 2 1 1 - -

K Q[V^6] w II oft 3 2 1 1 - -
St(L) [p2] 1 1 2 - 1 1

K Q[V—10] St(L) [0K] 3 2 1 - 1 -
St(L) [p2] 1 - 3 1 - 2

K Q[V—21] St(L) [0K] 6 4 2 - - 2

St(L) [p2] 2 - 6 - - -
St(L) [p3] - 2 6 2 - -
St(L) [p5] - - 8 - 2 -
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