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Systole and X 2g -2 of closed hyperbolic surfaces of genus g

Sugata Mondal

Abstract. We apply topological methods to study eigenvalues of the Laplacian on closed

hyperbolic surfaces. For any closed hyperbolic surface S of genus g, we get a geometric
lower bound on ^2g-2(S) ' ^2g-2iß) > 1/4 + o(*S") > 0, where o(*S") is an explicit
constant which depends only on the systole of S.

Mathematics Subject Classification (2010). Primary 30F; Secondary 35P05, 35P15.
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1. Introduction

Here a hyperbolic surface is a complete two-dimensional Riemannian manifold
with curvature equal to —1. Any hyperbolic surface is isometric to a quotient

H/T, where H is the Poincaré upper halfplane and F is a Fuchsian group,
i.e. a discrete torsion-free subgroup of PSL(2,R). The Laplacian on H is the

differential operator which associates to a C2 -function / the function

It induces a differential operator on S H/T which extends to a self-adjoint
operator Às densely defined on L2(S). Its domain is the Sobolev space H(S)
consisting of the functions (p e L2(S) whose gradient in the sense of distributions
is a measurable vector field which satisfies fs || V<p\\2dv < oo. The Laplacian
is a non-positive operator whose spectrum is contained in a smallest interval
(—oo, —AoC^)] C M- U {0} with AoCS) > 0. The Rayleigh quotients allow us to
characterize the bottom of the spectrum of S :

[ irwiiVff
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where the infimum is taken over all non-constant smooth functions <fi with
compact support. Recall that the bottom of the spectrum on H is Ao(H) =1/4
(cf. [Cha], p. 46, Theorem 5).

Definition 1.1. Let X > 0. A non-zero function / : S —> M is a À -eigenfunction
if / G L2(S) and satisfies À/ + Xf 0. One calls X an eigenvalue. When
0 < À < 1/4, X is called a small eigenvalue and / is called a small eigenfunction.

When S is a compact hyperbolic surface, the spectrum of S is a discrete set:

0 X0(S) < X1(S) < X2(S) <-..<Xn(S)<...
where in the above sequence each number is repeated according to its multiplicity
as an eigenvalue and (S) denotes the i -th non-zero eigenvalue of S for i > 1.

Definition 1.2. For a hyperbolic surface S the systole s(S) of S is defined to
be the minimum of the lengths of closed geodesies on S.

The main result of this paper is

Theorem A. Let S be a closed hyperbolic surface of genus g. Then there exists

an explicit constant 6o(<S") > 0, which depends only on the systole of S, such
that X2g—2 («S") ^ 1/4 T 6o((S").

We recall some general facts about the behavior of X2g-2 as a function on

Aig, the moduli space of closed hyperbolic surfaces of genus g. Any eigenvalue
Xi, in particular X2g-2, is a continuous function on A4g (see for instance [C-C]).
The moduli space Alg is the space of all closed hyperbolic surfaces of genus g
up to isometry. Recall that the set X {S e A4g:s(S) > e} is compact ([Bu],
p. 163). By [O-R], we have X2g-2(S) >1/4 for all S e A4g. Hence there exists

a non-zero constant ??(é) such that X2g-2(S) > 1/4 + r\{) for all S G X. This

proves the theorem with 6q(5) rj(s(S)). The content of Theorem A is to make
this constant explicit in terms of the geometry of S. We shall see that we can
take éo(5) to be any positive number smaller than

1 i((cg
I 4 (g — 1) 4 sinh po / ' '

where 2s(S) sinh po |5|, the area of the surface S. Observe that 4(^gl_1^

We now sketch briefly the proof of the above theorem. It uses topological
methods as in [O-R]. First we recall that an open subset of a surface S is called

incompressible if the fundamental group of any of its connected components maps
injectively into Tri(iS'). It is plain that simply connected open subsets of S are
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incompressible. Let Sx denote the eigenspace of the Laplacian on S for the

eigenvalue X. For > 0, let £*+ be the direct sum of eigenspaces Sx with
X < £ + For / ^ 0 G £*+, define the nodal set 2(f) as /-1(0). It is

proved in [O-R], using the analyticity of eigenfunctions on H, that 2(f) is
the union of a finite graph and a discrete set. Let Q(f) be the subgraph of
2(f) obtained by suppressing those connected components which are homotopic
to a point on S (equivalently, those which are contained in a topological disc).
Due to this modification, each component of S \ G(f) is incompressible. One

of the main observations in [O-R] was that for any / ^ 0 G S *, the Euler
characteristic of at least one component of S \ G(f) is strictly negative. For

> 0 there is no reason, in general, to believe such a result for / ^ 0 G £*+.
However, we will prove the following

Lemma 1.3« Let S be a closed hyperbolic surface of genus g. Then there exists

an explicit constant éo(5) > 0 depending only on the genus g and the systole

of S, such that for any f f 0 e £ï+o(s\ the Euler characteristic of at least

one component of S \ G(f) is strictly negative.

Let S be a Riemannian surface. Let Q ç E be an open set such that the

closure Q is a submanifold with piecewise smooth boundary. Then denote by À
the Laplace operator of E restricted to Q. Dirichlet eigenvalues of Q are the

A's such that the problem

Au Xu on Q,

u 0 on dS2,

admits a non-zero solution u, continuous on Q and smooth on Q. The smallest
X for which such a solution exists is denoted by Ao(ß) and is called the first
Dirichlet eigenvalue of Q. This number can be defined in terms of Rayleigh
quotients in a similar way as the bottom of the spectrum of Q :

/ ||V(/>||2rf«

A0(ß) inf^7
I (p2dv
Jq

where the infimum is taken over all non-zero smooth functions (p with compact
support in Q. From this characterization it is evident that for any two submanifolds
Q\ and Q2 as above with compact closure, we have /lo(12i) 5 /lo(^2) when

Q\ c Q2 The above lemma will be deduced from the following
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Proposition 1.4. Let S be a closed hyperbolic surface of genus g. Let £2 C S
be a surface with smooth boundary which is homeomorphic either to a disc or
to an annulus. Then there exists a constant ^(£2) > 0, depending on the length
Iq, of the geodesic in S homo topic to a generator of tti(£2) and on the area of
£2, such that the first Dirichlet eigenvalue of £2 satisfies Ao(£2) > 1/4+ 6 (£2).
Furthermore there exists an explicit constant 6o(S) > 0 depending only on the

systole of S such that e(£2) > eo(£)-

Notation 1.5. For any surface £2 ç S with smooth boundary, |£2| denotes the

area of £2 for the area measure on S, and L(9£2) denotes the length of the

boundary of £2.

We shall see in the proof that e(£2) is a strictly decreasing function of |£2|

when Iq is kept fixed and a strictly increasing function of Iq when |£2| is kept
fixed. The statement in the proposition then follows from the observation that
both parameters, i.e. |£2| and Iq are bounded: the former being bounded above

by 4jr(g — 1) and the latter being bounded below by s(S).
The proof of the above proposition depends mainly on two geometric

inequalities: the Faber-Krahn isoperimetric inequality and Cheeger's inequality.
The scheme of the proof of Theorem A then follows the same lines as that of
Theorem 1 in [O-R].

Existence of surfaces with small eigenvalues was proved originally by
Randol [Rl]. We shall recall a construction of P. Buser [Bu] for the construction
of such surfaces. The construction is carried out by first considering a genus

g hyperbolic surface admitting a pair of pants decomposition with very short

boundary geodesies, then constructing an orthogonal family of functions with small
Rayleigh quotient. The number of functions in that family is exactly (2g — 2).
This gives the existence of at least (2g — 3) small eigenvalues (which is the

maximum possible number by [O-R]).
After proving Theorem A in §2, in the subsequent parts of the paper we study

the behavior of A; as a function on the moduli space Aig. We recall that the

moduli space Aig is the space of all closed hyperbolic surfaces of genus g
up to isometry. We focus our interest on the first 2g — 2 non-zero eigenvalues.
Theorem A (or even a continuity argument on A4g implies one direction of the

following

Claim 1.6. For a family Sn of closed hyperbolic surfaces in Mg, A2g-2(Sn)
tends to 1/4 if and only if the systole s(Sn) tends to zero.

The other direction follows from a constmction due to P. Buser [Bu], as we
shall see in §3.

The above proposition can be compared with the following result of Schoen,

Wolpert and Yau [S-W-Y]. Let M be a closed oriented surface of genus g
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with a metric of (possibly variable) Gaussian curvature K. For an integer n > 1

consider the family Cn of curves on M which are a disjoint union of simple closed

geodesies and which divide M into n + 1 components (necessarily n <2g — 3).
Define a number ln by

ln min{L(C): C e Cn},

where L(C) denotes the length of C.

Theorem 1.7 (Schoen-Wolpert-Yau). Suppose that for some constant k > 0 we
have —l<K<—k. Then there exist positive constants ot\,ot2 depending only
on g such that for 1 < n < 2g — 3, we have a\k3^2ln < Xn < «2In and

a\k ^ À2g—2 —

Recall that the Bers constant ß, see [B], which depends only on g, has

the property that hg-2 < ß- So this theorem implies that ^2g-2 is bounded
above by a constant depending only on g. Observe also that the construction of
Buser ([Bu], Theorem 8.1.3) leads to the same conclusion. Namely by Buser's
construction for any 8 > 0 there exists a constant > 0 such that À2g-2 < \ + 8

for any S e Aig with s(S) < e. Since ^2g-2 is a continuous function on Aig
and X {S" e A4g:s(S) > e} is compact the existence of an upper bound is
clear. In this context we would like to mention a paper due to Dodziuk, Pignataro,
Randol and Sullivan [D-P-R-S] where the authors obtained results similar to that
of [S-W-Y] in the context of arbitrary (non-compact) hyperbolic surfaces.

In §3 we will study the behavior of (S) as s(S) tends to zero. More

precisely, let Aig denote the compactification of A4g obtained by adding the
moduli spaces of (not necessarily connected) non-compact finite area hyperbolic
surfaces with area equal to 4jr(g—1). Let 3Aig Aig\Aig be the corresponding
boundary of Aig. We study the behavior of Xi(Sn) when Sn e M.g tends to a

point in 3Aig. By Theorem 1.7 and the above discussion, it is clear that A/(5)
is bounded above for all S G Aig and for 1 < i < 2g — 2. Indeed the method

using Buser's construction works for any i, showing that A; is bounded by a

constant depending only on g and i. So for any i we can consider the set

Vi { lim Xi(Sn):(Sn)is a sequence in Aig converging to a point in 3Aig
n—>oo

such that lim A, (iS„) exists}.
n—> oo

With this notation, the above claim says that V^g-2 — {^}- Using a result of
Courtois and Colbois [C-C], we will also prove the following assertion:

Claim 1.8. For any 1 < i < 2g — 3, there exists a Ai (g) e (0, such that Vi

contains the interval [0, A/ (g)].
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In §4 we study non-compact hyperbolic surfaces of finite area. Recall that for
a non-compact hyperbolic surface S of finite area, the spectrum of the Laplace
operator is composed of two parts: the discrete part and the continuous part.
The continuous part covers the interval [1/4, oo) and is spanned by Eisenstein
series. The discrete part is the union of the residual spectrum and cuspidal
spectrum. The residual spectrum is a finite set contained in the interval (0,1/4)
and it corresponds to poles of the analytic continuation of Eisenstein series. The

cuspidal spectrum consists of those eigenvalues whose associated eigenfunctions
tend to zero uniformly near any cusp. The number of cuspidal eigenvalues is
known to be infinite for arithmetic groups [I]. The cuspidal eigenvalues can
possibly appear anywhere in the interval (0, oo). Denote by Xe i (S) the i -th

cuspidal eigenvalue of S.
In analogy to Theorem A, one can investigate the following conjecture.

Conjecture 1. Let S be a finite area hyperbolic surface of type (g,n), i.e.

topologically equivalent to a genus g surface with n punctures. Then there exists

an explicit constant eo(£) > 0, depending only on the systole of S, such that

XC2g-2+n(S) > 1/4 + o(S).

This would be an extension of a result of Jean-Pierre Otal and Eulalio Rosas

(Theorem 2 in [O-R]). However our methods do not suffice to settle this conjecture.
In this connection we state the following conjecture of Otal and Rosas in [O-R]
which is motivated by [O], Propositions 2 and 3.

Conjecture 2. Let S be a finite area hyperbolic surface of type (g, n). Then

XC2g-2(S)>l/4.

Now we consider a finite area hyperbolic surface S of type (g, n). Denote

by Tg,n the Teichmüller space of all marked hyperbolic surfaces of type (g, n).
For any choice of pair of pants decomposition of S one can define a system
of coordinates on Tg,n the Fenchel-Nielsen coordinates which consist, for each

curve in the pants decomposition, of the length of that curve and a twist parameter
along that curve ([Bu], Chapter 6). Now we consider the set 7~g,n° of all
hyperbolic surfaces in Tg,n for which all twist parameters are equal to zero.
Each surface in Tg,n° carries an involution l which when restricted to each pair
of pants is the orientation reversing involution that fixes the boundary components.
This involution induces an involution on each eigenspace of the Laplacian. The

eigenfunctions corresponding to the eigenvalue —1 are called antisymmetric and
the corresponding eigenvalue is called an antisymmetric eigenvalue. We denote
the i -th antisymmetric cuspidal eigenvalue of S G 7~g,n° by X°,ci(S).

Theorem B. For any So G 7~g,n° there exists an explicit constant eo(So) >
depending only on the systole of the surface So, such that X°,cg(So) > J+eoOSo)-
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As a matter of fact, the constant eo(<S) can be taken equal to any number
below

mini i £ / /Coshpo
<j2 _ j \ i

' 2(2g — 2 + n) 4 \ V sinh po ' ' '

where 2s(S) sinh po |S|.

Acknowledgements. I would like to express my sincere gratitude to my advisor
Jean-Pierre Otal whose encouragements, kindness and patience were significant
ingredients in the work.

2. Geometric lower bound on X ig-2 (S)

2.1. Proof of Proposition 1.4. Suppose first that ß ç S is a disc or more
generally a domain such that tz\ (£2) maps to zero in 7t\ (S). Then choose an
isometric lift of Q to H, still denoted by Q. We will use the Faber-Krahn
inequality ([Cha], p. 87) in the following form.

Theorem 2.1 (Faber-Krahn inequality). Let ß çH be a domain such that 3£2

is smooth. Let D be a geodesic disc in H with same area as Q, i.e. |£2| \D\.
Then

A0(ß) > A0(2>),

with equality if and only if Q is isometric to D.

Let B(t) be the geodesic disc in H with radius t. The geodesic disc with
same area as Q has radius /(£2) 2 sinh-1 (4^). By the Faber-Krahn inequality
X0(B(t(Q)))^X0(tt).

Since Q is contained in S whose area equals 27r(2g — 2), by the Gauss-
Bonnet theorem, |£2| < 2jr(2g — 2). Therefore, i?(/(£2)) is contained in the disc
with radius to 2 sinh-1 (g — 1). Recall that for two subsurfaces D\ and D2
in H with compact closure, Ao(üi) > Xo(D2) when D\ c D2. Thus Ao(A?(/))
is a strictly decreasing function of t. Hence /lo(J5(/(£2))) > Ao(J5(/o))- Now by
Theorem 5 in [Cha], we have

X0(B(t)) > lim A0(£(s))
s—*oo 4

Hence we finally have a strictly positive éi(|£2|) which depends only on the area
|£2| of Q, such that Ào(5(/(^))) A + éi(|Œ|). Since Ao(A?(0) is a strictly
decreasing function of t, 6i(|ß|) is a strictly decreasing function of |£2| which
is bounded below by the constant \(S) Xo(B(to)) —
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Suppose now that £2 is an annulus and that the image of tti(£2) in 7t\(S)
is a non-trivial cyclic subgroup (r). Let T denote the cylinder H/(r). Let y
denote the core geodesic of T and / the length of y. Then / is the length
of the shortest geodesic of S homotopic to a generator of 7t\ (£2). Consider an
isometric lift of the annulus £2 to H/(r), still denoted by £2. We need to prove
that Ao(£2) > ^ +6o(S) where eo(S) depends only on / and |£2|. We will use

Cheeger's inequality ([Cha], p. 95) in the following form:

Theorem 2.2 (Cheeger's inequality). Let QCT be a submanifold with piecewise
smooth boundary. Let hß) be the Cheeger constant of £2. Then

MM s JE®.

Recall that the Cheeger constant

ranges over all compact submanifolds
The proof of Proposition 1.4 in the

inequality and the next lemma.

of £2 is equal to inf{L|^}, where V
of £2 with smooth boundary.

case of an annulus follows from Cheeger's

Lemma 2.3. Let £2 c T be a submanifold with piecewise smooth boundary and
let h(£2) be the Cheeger constant of £2. Then we have

h{ß) > l + 2(|ß|,/),

for some 62 (| £2|,/) > 0 which depends only on the area of £2 and on the length
I of the core geodesic of T.

Proof First we observe that the Cheeger constant is bounded below by the quantity

infj^pP} where V ranges over connected submanifolds of £2. Secondly, this
infimum is the same when V ranges over all discs or essential annuli contained
in £2. Recall that an annulus is essential when it is not homotopically trivial in
T. This is because any connected, compact submanifold V ç £2 is diffeomorphic
either to a disc with some discs removed or to an essential annulus with some
discs removed. In both cases, taking the union of V with those removed discs,

one obtains a submanifold V which is either a disc or an essential annulus

which satisfies L(dV') < L{dV) and \V'\ > \ V\. Therefore * < ^ypp-
Suppose now that V ç Q is diffeomorphic to a disc. By the isoperimetric

inequality ([B-Z], p. 11), one has (^jpp)2 > 1 + ^. Therefore if V ç £2 then

(^fP)2 > 1 +f| Since pf| < 2?r(2g — 2), we get >1 + ^1-
Now we suppose that V ç £2 is an essential annulus. In order to prove the

claim in this case we will need the following notion of symmetrization, which is
close to the notion of Steiner symmetrization ([H], p. 18).
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Definition 2.4. Let V ç T be an essential annulus. The symmetrization of V is
the annulus Vo ^ T symmetric with respect to y with constant width and which
has the same area as V.

Recall that the Fermi coordinates on T assign to each point p the pair
(s, r) G {y}xi, where r is the signed distance of p from y, and s is the

point of y nearest to p. After parametrizing the geodesic y by arc-length, these

coordinates provide a diffeomorphism between T and I//ZxM. The hyperbolic
metric in these coordinates equals dr2 + cosh r2ds2.

Lemma 2.5. Let V ç T be an essential annulus with piecewise smooth boundary
and Vq be the symmetrization of V. Then L(dV) > L(dVo).

Figure 1

Proof First we consider the case when each component of dV is a graph over

y. By that we mean that there exist two functions ri and r^ - [0, /] —> R such that

rz is a piecewise smooth map (there is a partition 0 si <52 < ••• < sm I
such that each restriction |[s .+1] is smooth) with rz (0) rz (/) and the

components of 3V are parametrized in Fermi coordinates as {(s, rz (5)), s G [0, /]}
for i 1,2. Then the components of the symmetrization Vq of V are the graphs

of the constant functions r^ p and r$ —p with p sinh-1(^). Up to
exchanging n and r2, we may suppose that ri(s) > ^*2(5) for all 0 < s < I.
Then we calculate the areas of V and Vq :

çî çr2(s) çî
\V\ I I cosh r dr ds I {sinh^Cs1) — sinhri(s)} âfs

Jo Jr\(s) Jo

and
çî çP çî

I Vol I I cosh r dr ds I 2 sinh p ds 21 sinli p.
Jo J-p Jo

The length of 3Vb is

L(3Fb) 2/ cosh p



12 S. Mondal

and the length of dV satisfies

./

L(dV) f {ri(s)2 + l}1/2 coshri(s) ds + f {r2(s)2 + l}1^2 cosh r2(s) ds
J 0 J0

> / {coshri(s) + cosh r2(s)}ds.

Call Lq the constant equal to the last expression. Observe that L(dV) Lq
if and only if r\{6) 0 r2(0). This implies that r\ and r2 are constants.

One has

L(dV)2-\V\2>(Lo + \V\HL0-\V\).
Now,

Lo + \ V\ I ((coshr2(s) + sinh r2(s)) + (cosh ^(5) — sinh ri(s)))ds
Jo

/ (exp(r2(s)) + exp(—ri(s)))ds
Jo

and similarly

L0-\V\= f (exp(-r2(s)) + exp(ri(s)))ds.
Jo

Thus we have

(Lo + \V\)(Lo-\V\)

^ (exp(r2(j)) + exp(-ri(j)))rfjj

x (exp(-r2(s)) + exp(ri(s)))d/j

> (exp(r2(s)) + exp(-ri(s)))2 (exp(-r2(s)) + exp(ri(s)))2dsj
(by the Cauchy-Schwarz inequality)

(^J (2 + 2cosh(ri(s) + r2(s)))2d/j

Since coshx >1 Vx, we get (Lq + |F|)(Lq — |E|) > 412 L(9Po)2 — A(Vo)2.
Equality holds if and only if ri,r2 are independent of s and if r\ — r2.

Since by construction \V\ |Fo|, the lemma is proven when V is an annulus
whose boundary components are graphs over y.
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Now we consider the case of an arbitrary annulus with piecewise smooth

boundary. By approximation, it suffices to prove Lemma 2.5 for those V which
satisfy the following property: there exists a partition of y :

0 s\ < S2 <•••< Sk I 0

such that over each interval [si, sï+i], dV is a union of the graphs of finitely
many functions. We consider now such an annulus. We consider the strip over
[Si,Si+i] in T which is diffeomorphic to [Si, sï+i]xR in Fermi coordinates.
Denote by V1 the intersection of V with this strip. For 1 < i < we
denote by fj, j 0,1,2,..., /(z) the boundary curves of V1 i.e. in Fermi
coordinates the components of dV1 are parametrized as {(s, fj(s)): s G [s,, sï+i]}
for j 0,1,2and for any 5 G [sz,s,+i], r(/0(s)) > r(/i(s)) > >
r{fi(i)(s)). Now we calculate the area of V1 :

'Sj+l ffj+ l(s)
|FZ|= ^ / / coshrdrds

j=1(0-1,1(0-

j=i" ° i

The length of dV1 is given by

E
l,/(i)—3 1 1 ?•>

KO psi + l£/ (—1), + 1 sinh fj(s)ds.
: 1 JS;

KO fSi+ 1
w fSi +1 KO

HdV) V / tjj-W + 1} cosh fj(s)ds > / ^cosh /,(.5).
Jsi

7 1 "*l 7 1

Call Lo(i) the constant equal to the last expression and calculate

L(dV)2 — \V\2

te/.
si+1 KO

£exp[(-l)' + 1£(s)]i/s
r

7 1

(E/""EV i JSi =1

i+iM
exp[(-l)'/;(5)]^
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> £ '+lM*)} + exp[(—l)1+1/i(i)])ï/s

"(?c (exp[(-l)°/o(.ï)] + expK-i)1 fi{s)])ds

> (2 + 2cosh(/1{.s) - Mêlpîdvj
(by Cauchy-Schwarz)

>412 L(dV0)2 - \V0\2.

Hence using the same argument as before we finally prove Lemma 2.5.

So now we have fff where \V\ 2/sinhp. Thus

we conclude the proof of Lemma 2.3 by taking

1 i COSh 0 / 47T \ è \

2{9-l) 2mm^M-L(l + W\^ ~l}

where | Q \ =21 sinh 0.

Since is a strictly decreasing function of p we have

/L(3F)\ ^
cosh pi coshpo

^ \V\ ' ~ sinh pi sinhpo

where 2/sinhpi |ß| and 2s(S) sinhpo \S\ 4-7t(g — 1) (since
V ç Œ c S). To conclude the proof of Proposition 1.4 we take

als,.i„ta|a(S,_L_.i((S^)2-1)|.
Remark 2.6. From the expression of eo(<S) we observe that if (Sn) is a sequence
in A4 g, then o(Sn) tends to zero only if s(Sn) tends to zero. The computations
in the proposition also show that for any Q ç S diffeomorphic to a disc or to
an annulus one has

A0(ß) > - + 2o(S).

2.2. Proof of Theorem A. The proof at this point follows the same lines as that
of )i2g-2(S) > \ in [O-R] and we refer to [O-R] for the details. We take eo(£)

as in Proposition 1.4. Consider the space Recall that 8^ is the direct
sum of the eigenspaces of the Laplacian with eigenvalues less than or equal to X.

Let / ^ Og gï+o(.S)
m xhe nodal set 2(f) of / is defined as /-1(0). Recall
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that G(f) is the subgraph of 2(f) obtained by suppressing those connected

components which are zero homotopic on S. Each component of S \S(f) is

an open surface, possibly equal to S when G(f) is empty. The sign of / on
a component of S \ G(f) can be defined as follows. There is a finite collection
of disjoint closed topological discs (Dj) with dDj f)Z(f) 0 such that each

component of 2(f) which is zero homotopic is contained in one of the Dj 's.

Therefore each component of S \ G(f) is a union of a component of S \ 2(f)
with a finite number of those Dj 's. Define the sign of / on such a component to
be the one of / on the corresponding component of S \ 2(f). Now we denote
the union of all components with positive, resp. negative, sign as C+(/), resp.
C~(f). As a consequence of the construction, the surfaces C+(f) and C~(f)
are incompressible. As recalled earlier, an open subset of a surface S is called

incompressible if the fundamental group of any of its connected components maps
injectively into tti(S). The union of the connected components of C+(/), resp.

C~(/), which are neither discs nor rings is denoted by S+(/), resp. S~(f).
The surfaces S±(f) may be empty or disconnected but by construction when

they are nonempty, they are incompressible.
Denote the Euler characteristic of S+(/), resp. S-(/), by j+(/), resp.

/"(/). (We use the convention that the Euler characteristic of the empty
set is zero.) The incompressibility property of S+(f) and S~(f) gives that

X+(f) + X~(f) is grater than /(S). By definition, we have /±(/) < 0 with
equality only if S±(f) is empty.

Lemma 2.7. The Euler characteristic of at least one component of S\G(f) is

negative.

Proof Let us suppose by contradiction that for some / each

component St, 1 < i < m of S \ G(f) has non-negative Euler characteristic.
So, each such component is homeomorphic either to an open disc or to an open
annulus. Since / e £Ï+o(s) the Rayleigh quotient of /, R(f) is < 1+60(5).
Therefore, since G(f) has measure zero, for at least one component, say Si,
one has

Now we shall calculate the Rayleigh quotient R(f\sx) and show that our choice
of 60(5) leads to a contradiction.

Let us assume that Si is homeomorphic to an open disc. The case when Si is

an annulus can be dealt with similarly. Since / is smooth and f\dsx 0 we can
choose, by Sard's theorem, a sequence (n) of regular values of / converging
to 0. Then the level set

I F/f
— <T+fo(S).

2 4

{x e S\:f(x) n}
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is a smooth submanifold of S for n large enough. Furthermore one of the

components of this level set confines a domain Dn c Si homeomorphic to a
closed disc with smooth boundary such that S\\ Dn has arbitrarily small area.
Now we consider the Rayleigh quotient, R(fn\Dn) of the function fn f — n
restricted to the region Dn. This function vanishes on dDn. As n converges
to 0, R(fn\Dn) converges to R(f\sl). Thus for any 5 > 0, in particular for
o(S)/2, we can find en small enough such that

R(fn\D„) < ~ + o(S) H ^ < - + 2éo(S).

Now since Dn is a closed disc with smooth boundary which is contained in
Si ç S, it follows from the Rayleigh quotient characterization of the first Dirichlet
eigenvalue of Dn that R(fn\D„) — ^o(Dn)- By Remark 2.6 we have

2-0(A*) — 4
+ 2*o(S)-

This is a contradiction when n is sufficiently large.

So some component of S \ G(f) has negative Euler characteristic. This

component is a component of S'±(/). Thus we obtain

/+</) + *-(/>< 0.

Now we start with some definitions and complete the proof.

Definition 2.8. According to the sign of / on Si, we denote this component as

Si + (f) or Si~(f). For each such surface with negative Euler characteristic, we
consider a compact core, i.e. a compact surface Ki±(f) C S^if) such that the

inclusion is a homotopy equivalence. We then define the surface E+(/), resp.

E-(/), as the union of the compact cores Kt + (f), resp. Ki~(f and of those

components (if any) of the complement S \ (J Ki + (/), resp. S \ (JjRT/—(/),
which are annuli. Therefore, E+(/), resp. £"(/), is obtained from [J Ki + (f),
resp. U Kt~ (f), by adding (if any) the annuli between the components of
(J Ki + (f), resp. (J Ki~(f). We call S(/) E+(/)UE-(/) the, characteristic
surface of /, while E+(/), resp. E-(/), is called the positive, resp. negative,
characteristic surface of /. The definition of these surfaces depends uniquely
on the choice of compact cores and those are well defined up to isotopy. By
construction the Euler characteristic of E+(/), resp. E-(/), is /+(/), resp.

/-(/). It is clear that £+(-/) £"(/) and £"(-/) £+(;/).

2.3. Proof of Theorem A (continued). Let m denote the dimension of the

space £4+o(s). Theorem A will follow from the inequality m < (2g — 2).
Let S(£4+6o(S)) denote the unit sphere of £î+6o(S) (for some arbitrary norm)
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and let P(£î+f°^) be the projective space of £Ï+o(s) ie. the quotient of
S(£?+f°^) by the involution /—»—/.

For each integer i with 2 — 2g < i < — 1, we denote

Ci + /"</)

According to the lemma and its consequence above, S(^i+e°^) U2-2g^i •

On the other hand, each Cz is invariant under the antipodal involution. Let
Pi be the quotient of Ci under the antipodal involution. The projective space
P(£i+eo(S)) is the union of the sets

Lemma 2.9. For any integer i such that 2 — 2g < i < — 1, the covering map
Ci —> Pi is trivial.

Proof. Let / G Ci. We use the notation introduced in the definition of the

characteristic surface of /: S^if) is a connected component of negative Euler
characteristic of S^(f) and Ki±(f) is a compact core of Si±(f). We may
assume that the compact core has been chosen in such a way that any connected

component of 2(f) that is contained in some S^if) is indeed contained in
the interior of the corresponding Ki±(f).

For any function g G £z+o(.s) close enough to /, and for each i, Ki±(f)
is contained in a component (S'/±(g) of 5±(g). Fix a neighborhood V(f) of /
in S^ï+^C5')) such that these inclusions occur on each surface Ki±(f).

We will show that for any g G Ci D V(f), the characteristic surfaces S+(/)
and £+(g), resp. E~(/) and E~(g), are isotopic. Choose the compact cores
Ki±(g) of surfaces <S'±(g) so that when Ki±(f) is contained in Sj±(g), it is
also contained in the interior of Kj±(g). Now observe that if two components
of the boundaries of surfaces Kj + (f) are homotopic in S then the homotopy
between them is achieved by an annulus contained in E+(/), by the definition
of the characteristic surface. Since this annulus joins two curves of Kj+(g)
by definition of the characteristic surface again, it is contained in one of the
connected components S+(g) too.

We deduce from this that each connected component of E±(/) is contained
in a connected component of E±(g) (of the same sign). Since E+(/) and

E-(/) are incompressible in S, they are incompressible in S+(g) and E-(g)
respectively. In particular, their Euler characteristics satisfy

X+ifJ < /+te) and /-(f) < x~(g);

these inequalities can be equalities if and only if the surfaces S+(/) and

X+(g)jesp. S"(/) and 5T(jr), are isotopic. But since g G Ci, we have

xHft + X (/) I /+(g') + X (£)
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Thus E+(/) and E+(g) are isotopic. The same holds for S~(/) and E~(g).
Since the isotopy class of E+(/) and the isotopy class of E~(/) are locally

constant on Ci, they are constant on each connected component of Ci. Finally
we observe that the functions / and —/ cannot be in the same connected

component of Ci, for otherwise E+(/) and S~(/) would be isotopic. But two
disjoint and incompressible surfaces of negative Euler characteristic contained
in S cannot be isotopic. Thus the covering map in Lemma 2.9 is trivial.

2.4. Completion of the proof of Theorem A. We conclude the proof of
Theorem A following a method of B. Sévennec [Se]. The double

covering S(£4+*0(S)) p(£4+eo(S)) is associated to a cohomology class

ß e H1(F(£*+e°(s)),Z/2Z). Each covering Cz —» Pi is described by the
Cech cohomology class, ß\pt. Since each of these coverings is trivial, we have

ß\P. 0. Since Ï^ï+fo®) is the union of Pi and since there are at most
2g — 2 of them, we have ß2g~2 0; see [Se], Lemma 8. Since ß has order m

in the Z/2Z-cohomology ring of P(£i+eo(5')), we have m < 2g — 2.

3. Systole and the Laplace spectrum

In this section we study the eigenvalues of the Laplacian as functions on the moduli

space. Recall that the moduli space Aig is the space of all closed hyperbolic
surfaces of genus g up to isometry. Aig can be compactified to a space Aig
by adding the moduli spaces of (not necessarily connected) non-compact finite
area hyperbolic surfaces with area equal to Aix(g — 1). In this compactification
a sequence (£„) in Aig, with s(Sn) —> 0, converges to Soo Mg0,n0 (with
2go — 2 + no 2g — 2 if and only if for any given > 0 the - thick part
(£^[,o°)) converges to in the Gromov-Hausdorff topology. Recall that
the -thick part of a surface S is the subset of those points of S where the

injectivity radius is at least e. Recall also that the injectivity radius of a point
p G S is the radius of the largest geodesic disc that can be embedded in S with
center p.

It is a classical result that for any i, A/ is a continuous function on Aig
(see for instance [C-C]). It is also shown in [C-C] that eigenvalues less than 1/4
are continuous up to dA4g. Let (£«) be a sequence of surfaces in Aig which

tends to Soo £ dA4g A4g \ A4g.

Theorem 3.1 ([C-C] and [He]). Let X(Sn) be a sequence of eigenvalues of Sn

which converges to X < 1/4. Then X is an eigenvalue of Soo and up to extracting
a subsequence and possibly multiplying by a scaling constant the corresponding
eigenfunctions on Sn converge to an eigenfunction on Soo uniformly over compact
subsets.
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Our situation is a bit different. For a fixed i we shall study the behavior of
Ä-i(Sn) when Sn e M.g tends to a point in dAig. Recall

Vi { lim Xi(Sn):(Sn) is a sequence in A4g converging to a point in dAig
Kn-*oo

such that the limit exists}.

In [R3] Randol showed a limiting behavior of X2g-2 over some special family.
Now we apply Theorem A to prove Claim 1.6 in the following form:

Claim 3.2. X2g-2(Sn) tends to ^ if and only if s(Sn) tends to zero. In particular
v2g-2 {£}.

Proof By Theorem A, if X2g-i(Sn) tends to ^ then o(Sn) tends to zero. For
the other direction we use Buser's constmction. By the definition of the systole,
there is a closed geodesic r on 5 such that the length of r is equal to s(S).
Now from the Collar Theorem (cf. [Bu]) of L. Keen [K] (see also [R2]) and the

explicit computations in [Bu], p. 219, we see that for any > 0 and any i > 1

we have 5 > 0 such that whenever s(S) < 8, we can find at least i disjoint
annuli in the collar neighborhood of r such that the first Dirichlet eigenvalue of
each of the annuli is < | + The corresponding eigenfunctions are orthogonal.
Hence we have Xi-i(S) < | + Therefore using Theorem A for an i >2g — \
we obtain the convergence Xi-\(Sn) > j.

Now we show that such a limiting behavior is not true in general for i < 2g—3.
More precisely, we shall prove Claim 1.8, rephrased as follows:

Claim 3.3. For any 1 < i < 2g — 3, there exists A/(g), 0 < A,-(g) < £ such
that Vi [0, A,-(g)].

Before starting the proof we recall the definition of the Teichmüller space, Tg
It is the space of all marked closed hyperbolic surfaces of genus g. Let S G Tg.
Given a pair of pants decomposition of S, we have a coordinate system on Tg,
the Fenchel-Nielsen coordinates. Aig is the quotient of Tg by the action of
Modg the Teichmüller modular group. Since Modg acts properly discontinuously
on Tg, Tg —> A4g is a ramified topological covering. Thus the pre-composition
of this covering map with Xi yields a map, also denoted by from Tg to R.
We shall use the same notation for a point in 7g and its image in ,A4g.

Proof of Claim 3.3. We shall prove the claim for i 1. The proof for
1 < i < 2g — 3 is similar. We choose a pair of pants decomposition V of an
S e Tg and consider the corresponding Fenchel-Nielsen coordinates (lVj,6Vj)
on Tg. Here lvj 's denote the length coordinates and 6vj 's denote the twist
coordinates (cf. [Bu]). We fix two geodesies y and y' among the boundary
geodesies of the pants decomposition V. Thus the length functions ly and ly>
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respectively of y and y' are among lvj 's. Suppose that the pants decomposition
is chosen in such a way that y is non-separating and y' is separating.

First we prove that Vi is not empty. From a construction of P. Buser [Bu],
Theorem 8.1.3, it follows that if 0 < 5 < ^ then ^2g-3(S) < £ for any S G Tg

with lVj(S) < 8 for all j (the number ^ has no particular significance other
than ensuring this condition). We fix one such 8 and consider one M G Tg such

that lVj(M) < 8 for all j. Now consider a sequence of surfaces (5«) G Tg
such that (lVj,0Vj)(Sn) (lVj,6Vj)(M) for all (lVj,6Vj) except ly and the

ly(Sn) coordinate decreases to zero as n goes to infinity. Then (Sn) converges
to a point Soo dAig. By our choice of 5 (for M and since the number
of components of Soo is exactly one, it follows from [C-C], Theorem 0.1, that
0 < lim„_>.00Ai(iS,n) A 1(500) p <\ - Now consider another sequence (5 n),
constructed in the same way as (Sn) except that we vary the coordinate It
instead of ly. In this case the limiting surface of the sequence (Srn) has two

components. So using [C-C] again limn^.0OAi(5 n) 0. Thus we see that 0 and

p are in V\, proving that V\ is not empty.

Next we prove that whenever some 0 < c, < | is in V\, the whole interval
(0, c] is contained in V\. Since c, is in V\ we have a sequence (Pn) in Aig
such that limw^.ooAi(Pw) c. Up to extracting a subsequence, we may assume
that (Pn) converges to Poo dAig. Then Poo is a finite area connected (since
c > 0) non-compact hyperbolic surface of type (g' ,m) (where g' + y g). For
some marking of Pn, there is a pants decomposition of S, yi,... ,yjc,, y3g-3
such that y\,... ,yk are exactly those curves on Pn whose lengths tend to
zero. Consider the corresponding Fenchel-Nielsen coordinates (/z, @i)i=\,2 3g-3
on Te. These coordinates induce coordinates on T> m which will be denoted

o g Til
by the same notation. In these coordinates we can choose representatives of
Pn in Tg such that (hn,0in)(Pn) converges to (/z-°°, 0i°°) for i > k and,
for i < k, li1 converges to zero. Next, using the Buser construction ([Bu],
Theorem 8.1.3), we choose an Noo T> ^ such that Ai(Noo) < c. Then

6
by [C-C], Theorem 0.1, for any sequence (Nn) in Aig converging to Noo in

dAig, one has limn_>.0OAi(./Vn) In particular we consider the sequence (Nn)
such that (li,0i)(Nn) (h, ft)(Noo) for i > k and (/,-, 0,-)(iV„) (li,6i)(Pn)
for i < k. Then limn_>.0OAi(./VM)

At this point we construct a path an in Aig joining Pn and Nn for each n.
Let us consider the path given by the coordinate axes i.e. the path first goes
along the li axes from li(Pn) to li (Nn) for each i =k-\-l,k-\-2,...,3g — 3

in the increasing order and then the same for 0,'s. Finally for any t G [é, c]
we apply the continuity property of Ai on Aig to get a surface Qn on cyn

such that Ai(Qn) t. By construction each point on a, in particular Qn, has

(li, 0i)(Qn) (li, 6i)(Pn) for i < k and all other (h,0i)(Qn) are bounded by
the corresponding coordinates of Poo and Noo Hence Qn converges to a point
Qoo G dAig and since X\(Qn) t for each n we have limn^.ooAi(Qw) t.
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Therefore V\ contains [c,c] and being arbitraiy, the whole of (0, c\. That
Az (g) < \ follows from the last claim.

Remark 3.4. A relevant question to ask here is whether ^ belongs to or not.
It is not hard to show, using [C-C], Theorem 0.1, that the existence of a surface

N G dA4g which has k components and X\(N) > ^ would guarantee that

\eVk. In this connection we would like to mention that if g, the genus of the

surface, is large then a result of Brooks and Makover in [B-M] (see also [B-B-D])
shows that for any given e there exists a surface S G A4g with Ai (5) > ^ — e

(and > ^ — if one assumes the Selberg conjecture).

4. Non-compact finite area hyperbolic surfaces

In this section we study non-compact finite area hyperbolic surfaces. Recall that
7~g,n denotes the Teichmüller space of all marked hyperbolic surfaces with finite
area and of geometric type (g, n). Given any pair of pants decomposition of any
Sf G 7~g,n one can consider the Fenchel-Nielsen coordinates on Tg,n • Fix one
such coordinate system on Tg,n • Denote by 7^,«° the set of all surfaces in Tg,n

all of whose twist parameters are equal to zero. Recall that each surface in Tg,n°
carries an involution i which when restricted to each pair of pants is the orientation
reversing involution that fixes the boundary components. This involution induces an
involution on each eigenspace of the Laplacian. The eigenfunctions corresponding
to the eigenvalue —1 are called antisymmetric and the corresponding eigenvalue
is called an antisymmetric eigenvalue. We denote the i -th antisymmetric cuspidal
eigenvalue of S G Tg,n° by X°,ci(S).

We observe that in Proposition 1.4 we have considered domains in S which
are diffeomorphic either to discs or to annuli. Since S is compact, the domains
have compact closures. Now for So G Tg,n, we may have nodal domains whose
closure is not compact. To tackle this problem we consider only those domains
which are diffeomorphic either to discs or to annuli and where respective boundary
curves are not homotopic to a puncture. For any such disc or annulus, Cheeger's
inequality is still true (cf. [Cha]). The computations in Lemma 2.9 then apply.
Therefore for any ç So diffeomorphic either to a disc or to an annulus whose

boundary curves are not homotopic to a puncture, we have an explicit constant
o(So) > 0 such that

Ao(^) — 4
2*o(So) > ^ + 0(So).

Proof of Theorem B. The proof proceeds along the same lines as that of Theorem

A. We choose 6o(iSo) as above and consider £o*+0^S°\ the subspace of
C°°(Sq), spanned by the anti-symmetric cuspidal eigenfunctions with eigenvalue
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< | + 6q(5o) • Then we use the same arguments as in Theorem A to prove that

the dimension of £ö4+fo(<So) ^ess g p^rst for / ^ 0 G £04+o(so) we
consider the subgraph G(f) of 2(f) obtained by suppressing those components
of 2(f) which are bounded and homotopic to a point in So (equivalently, those
which are contained in a bounded disc in So Next we consider the components
of So\G(f) with their signs attached as defined in Section 2.2. Denote by T(ï)
the fixed point set of the isometry i. The set T(ii) divides So into two isometric

components <Si and <S2 • Each Si is a non-compact finite area hyperbolic surface

with geodesic boundary and genus 0. Each puncture of So gives rise to two
ideal points, one on 3<Si and another on

declaim 4.1. For any / / 0 e go*+o(.So) each component of So \ G(f) is
contained in one of the Si 's and is incompressible there.

Proof By antisymmetry of / with respect to i we have T(i) ç 2(f). Since
each bounded component of T(i) is incompressible, T(i) ç G(f)-

Now we can argue as in the proof of Lemma 2.7 to conclude that the Euler
characteristic of at least one component of So \ G(f) is negative. In fact using
the symmetry of G(f) with respect to i, the Euler characteristic of at least

one component of Sj \ G(f is negative for each j 1,2. Next we consider

the unit sphere S^5"1"60^0*) and the projective space over
£ö?+e°(Sb)

_ p)efine ^+(/), resp. /"(/), as the sum of the Euler characteristics
of the components of S\\G(f) with positive sign, resp. negative. Consider the

decomposition of S(^ö4+o(5'o)) [niQ sets

&i {/ e S(^+oiSo))-X+if) + /-(/) '}
The arguments in Lemma 2.9 can be applied. Using the incompressibility of
the components of Si \ G(f) the possible values of /+(/) + X~(f) are at

most (g — 1) (since /(£;) 1 — g) for any / e £0~*+°(s°f Exactly the same

arguments as in Theorem A work to prove that for any integer i, the covering map

Ci —> Pi is trivial. We conclude that the dimension of S0^+o(so) is < g.
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