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Systole and A;,_; of closed hyperbolic surfaces of genus g

Sugata MONDAL

Abstract. We apply topological methods to study eigenvalues of the Laplacian on closed
hyperbolic surfaces. For any closed hyperbolic surface § of genus g, we get a geometric
lower bound on Az 5(8): Asg 2(S8) > 1/4 4+ €p(S) > 0, where €p(S) is an explicit
constant which depends only on the sysfole of §.
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1. Introduction

Here a hyperbolic surface is a complete two-dimensional Riemannian manifold
with curvature equal to —1. Any hyperbolic surface is isometric to a quotient
H/T, where H is the Poincaré upper halfplane and I" is a Fuchsian group,
i.e. a discrete torsion-free subgroup of PSL(2,R). The Laplacian on H is the
differential operator which associates to a C?-function f the function
2P S

It induces a differential operator on S = H/T" which extends to a self-adjoint
operator Ag densely defined on L?(S). Its domain is the Sobolev space H(S)
consisting of the functions ¢ € L?(S) whose gradient in the sense of distributions
is a measurable vector field which satisfies |/, S||ng||2dv < o0. The Laplacian
1S a non-positive operator whose spectrum 1s contained in a smallest interval
(—o0, —Ao(S)] € R U{0} with A9(S) = 0. The Rayleigh guotients allow us to
characterize the bottom of the spectrum of §:

Ao(S)=inf L& —
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where the infimum is taken over all non-constant smooth functions ¢ with
compact support. Recall that the bottom of the spectrum on H is Ag(H) = 1/4
(cf. [Cha], p. 46, Theorem 5).

Definition 1.1. Let A > 0. A non-zero function f:85 — R is a A-eigenfunction
if /€ L?(S) and satisfies Af + Af = 0. One calls A an eigenvalue. When
0 <A <1/4, A is called a small eigenvalue and f is called a small eigenfunction.

When S 1s a compact hyperbolic surface, the spectrum of § is a discrete set:
0=210(5) <Ai(S) =h(S) =...=(S) =...

where in the above sequence each number is repeated according to its multiplicity
as an eigenvalue and A;(S) denotes the i -th non-zero eigenvalue of § for i > 1.

Definition 1.2. For a hyperbolic surface § the systole s(S) of § is defined to
be the minimum of the lengths of closed geodesics on §.

The main result of this paper is

Theorem A. Let § be a closed hyperbolic surface of genus g. Then there exists
an explicit constant €y(S) > 0, which depends only on the systole of S, such
that Azg—2(S8) > 1/4 + €(S5).

We recall some general facts about the behavior of Asg_» as a function on
M, the moduli space of closed hyperbolic surfaces of genus g. Any eigenvalue
Ai, in particular Azg_», i a continuous function on M, (see for instance [C-C]).
The moduli space M, is the space of all closed hyperbolic surfaces of genus g
up to isometry. Recall that the set Z, = {S € M,:s(S) = €} is compact ([Bul],
p. 163). By [O-R], we have Azo_2(S) > 1/4 for all S € M, . Hence there exists
a non-zero constant 1(e) such that Aze_»(S) > 1/4 4 5(e) for all S € Z,. This
proves the theorem with €5(S) = n(s(5)). The content of Theorem A is to make
this constant explicit in terms of the geometry of §. We shall see that we can
take €o(S) to be any positive number smaller than

. 1 1, ,coshpgy2
min { -7 ((Ganpy) — 1)

where 2s(.5)sinh pg = |S|, the area of the surface §. Observe that a0 = L

1
g=1y 7 |S]
1 ,,coshpoy2 - 5(5)2
and z((m) -1 = R

We now sketch briefly the proof of the above theorem. It uses topological
methods as in [O-R]. First we recall that an open subset of a surface § is called
incompressible 1f the fundamental group of any of its connected components maps
injectively into 7((S5). It is plain that simply connected open subsets of § are
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incompressible. Let &, denote the eigenspace of the Laplacian on § for the
eigenvalue A. For € > 0, let &£ #+¢ be the direct sum of eigenspaces &, with
A< %—I—e. For f #0 € gi"'e, define the nodal ser Z(f) as f~1(0). It is
proved in [O-R], using the analyticity of eigenfunctions on H, that Z(f) is
the union of a finite graph and a discrete set. Let G(f) be the subgraph of
Z(f) obtained by suppressing those connected components which are homotopic
to a point on S (equivalently, those which are contained in a topological disc).
Due to this modification, each component of S\ G(f) is incompressible. One
of the main observations in [O-R] was that for any f # 0 € & %, the Euler
characteristic of at least one component of § \ G(f) is strictly negative. For
€ > 0 there is no reason, in general, to believe such a result for f £ 0 € gite,
However, we will prove the following

Lemma 1.3. Ler S be a closed hyperbolic surface of genus g. Then there exists
an explicit constant €g(S) > O depending only on the genus g and the systole
of S, such that for any f #0 €& %"'EO(S), the Euler characteristic of at least
one component of S\ G(f) is strictly negative.

Let ¥ be a Riemannian surface. Let 2 € 3 be an open set such that the
closure £2 is a submanifold with piecewise smooth boundary. Then denote by A
the Laplace operator of X restricted to £2. Dirichlet eigenvalues of (2 are the
A’s such that the problem

Au=Au on £2,
u=>0 on d452,

admits a non-zero solution i, continuous on 2 and smooth on §2. The smallest
A for which such a solution exists is denoted by A¢(£2) and is called the first
Dirichlet eigenvalue of 2. This number can be defined in terms of Rayleigh
quotients in a similar way as the bottom of the spectrum of £2:

f V]2
2

/ P2dv :
2

where the infimum is taken over all non-zero smooth functions ¢ with compact
support in 2. From this characterization it is evident that for any two submanifolds
21 and £2; as above with compact closure, we have Ag(£21) = Ao(£22) when
£21 € £25. The above lemma will be deduced from the following

Ao($2) = inf
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Proposition 1.4. Let S be a closed hyperbolic surface of genus g. Let 2 C S
be a surface with smooth boundary which is homeomorphic either to a disc or
to an annulus. Then there exists a constant €(QQ) > 0, depending on the length
lg of the geodesic in § homotopic to a generator of m1(Q2) and on the area of
Q, such that the first Dirichlet eigenvalue of Q satisfies Ao(Q) > 1/4 + €(£2).
Furthermore there exists an explicit constant €y(S) > O depending only on the
systole of S such that €(2) > €y(S§).

Notation 1.5. For any surface Q2 € § with smooth boundary, || denotes the
area of © for the area measure on §, and 1L(9€2) denotes the length of the
boundary of 2.

We shall see in the proof that () is a strictly decreasing function of ||
when /g is kept fixed and a strictly increasing function of /g when || is kept
fixed. The statement in the proposition then follows from the observation that
both parameters, i.e. |$2| and /g, are bounded: the former being bounded above
by 4m(g — 1) and the latter being bounded below by s(5).

The proof of the above proposition depends mainly on two geometric
inequalities: the Faber—Krahn isoperimetric inequality and Cheeger’s inequality.
The scheme of the proof of Theorem A then follows the same lines as that of
Theorem 1 in [O-R].

Existence of surfaces with small eigenvalues was proved originally by
Randol [R1]. We shall recall a construction of P. Buser [Bu] for the construction
of such surfaces. The construction is carried out by first considering a genus
g hyperbolic surface admitting a pair of pants decomposition with very short
boundary geodesics, then constructing an orthogonal family of functions with small
Rayleigh quotient. The number of functions in that family is exactly (2g — 2).
This gives the existence of at least (2g — 3) small eigenvalues (which is the
maximum possible number by [O-R]).

After proving Theorem A in §2, in the subsequent parts of the paper we study
the behavior of A; as a function on the moduli space M, . We recall that the
moduli space M, is the space of all closed hyperbolic surfaces of genus g
up to isometry. We focus our interest on the first 2g — 2 non-zero eigenvalues.
Theorem A (or even a continuity argument on M, ) implies one direction of the
following

Claim 1.6. For a family S, of closed hyperbolic surfaces in Mg, Arg_5(S,)
tends to 1/4 if and only if the systole s(Sy) tends to zero.

The other direction follows from a construction due to P. Buser [Bu], as we
shall see in §3.

The above proposition can be compared with the following result of Schoen,
Wolpert and Yau [S-W-Y]. Let M be a closed oriented surface of genus g
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with a metric of (possibly variable) Gaussian curvature K. For an integer n > 1
consider the family C,, of curves on M which are a disjoint union of simple closed
geodesics and which divide M into n + 1 components (necessarily n < 2g—3).
Define a number /,, by

I, = min{L(C): C € C,},
where L(C) denotes the length of C.

Theorem 1.7 (Schoen—Wolpert—Yau). Suppose that for some constant k > 0 we
have —1 < K < —k. Then there exist positive constants oy, depending only
on g such that for 1 < n < 2g — 3, we have a1k*?l, < A, < asl, and
o1k < Arg_p < ay.

Recall that the Bers constant f, see [B], which depends only on g, has
the property that /»g—> < B. So this theorem implies that Azg_» is bounded
above by a constant depending only on g. Observe also that the construction of
Buser (|Bu], Theorem 8.1.3) leads to the same conclusion. Namely by Buser’s
construction for any & > O there exists a constant € > 0 such that Arg_» < %—|—5
for any S € My with §(S) < €. Since Azg_» is a continuous function on M,
and 7, = {§ € M,:5(S) = €} is compact the existence of an upper bound is
clear. In this context we would like to mention a paper due to Dodziuk, Pignataro,
Randol and Sullivan [D-P-R-S] where the authors obtained results similar to that
of [S-W-Y] in the context of arbitrary (non-compact) hyperbolic surfaces.

In §3 we will study the behavior of A;(S) as s(S) tends to zero. More
precisely, let ./Wg denote the compactification of M, obtained by adding the
moduli spaces of (not necessarily connected) non-compact finite area hyperbolic

surfaces with area equal to 47(g—1). Let M, = M.\ M, be the corresponding
boundary of M. We study the behavior of A;(S,) when S, € M, tends to a
point in dM . By Theorem 1.7 and the above discussion, it is clear that A;(S)
is bounded above for all § € M, and for 1 <i <2g — 2. Indeed the method
using Buser’s construction works for any i, showing that A; is bounded by a
constant depending only on g and /. So for any i we can consider the set

W = {nlig}o)tg(Sn):(Sn)is a sequence in M, converging to a point in dM,

such that lim A;(S,,) exists}.
H—r 00

With this notation, the above claim says that Vzg» = {%} Using a result of
Courtois and Colbois [C-C], we will also prove the following assertion:

Claim 1.8. For any 1 <i < 2g —3, there exists a A;j(g) € (0, %] such that V;
contains the interval |0, A;(g)].
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In §4 we study non-compact hyperbolic surfaces of finite area. Recall that for
a non-compact hyperbolic surface S of finite area, the spectrum of the Laplace
operator is composed of two parts: the discrete part and the continuous part.
The continuous part covers the interval [1/4,00) and is spanned by Fisenstein
series. The discrete part is the union of the residual spectrum and cuspidal
spectrum. The residual spectrum is a finite set contained in the interval (0, 1/4)
and it corresponds to poles of the analytic continuation of Eisenstein series. The
cuspidal spectrum consists of those eigenvalues whose associated eigenfunctions
tend to zero uniformly near any cusp. The number of cuspidal eigenvalues is
known to be infinite for arithmetic groups [I]. The cuspidal eigenvalues can
possibly appear anywhere in the interval (0,00). Denote by A% (S) the i-th
cuspidal eigenvalue of S .

In analogy to Theorem A, one can investigate the following conjecture.

Conjecture 1. Let § be a finite area hyperbolic surface of type (g.n), ie.
topologically equivalent to a genus g surface with n punctures. Then there exists
an explicit constant €p(S) > 0, depending only on the systole of S, such that
A 2g—24n(S) > 1/4 + €o(S).

This would be an extension of a result of Jean-Pierre Otal and Eulalio Rosas
(Theorem 2 in [O-R]). However our methods do not suffice to settle this conjecture.
In this connection we state the following conjecture of Otal and Rosas in [O-R]
which is motivated by [O], Propositions 2 and 3.

Conjecture 2. Let S be a finite area hyperbolic surface of type (g,n). Then
Aczg_z(S) > 1/4

Now we consider a finite area hyperbolic surface S of type (g,n). Denote
by Tg.n the Teichmiiller space of all marked hyperbolic surfaces of type (g.7).
For any choice of pair of pants decomposition of § one can define a system
of coordinates on T, ., the Fenchel-Nielsen coordinates which consist, for each
curve in the pants decomposition, of the length of that curve and a rwis? parameter
along that curve ([Bu], Chapter 6). Now we consider the set Tg__no of all
hyperbolic surfaces in 7;, for which all twist parameters are equal to zero.
Each surface in ’Tg,no carries an involution ¢ which when restricted to each pair
of pants is the orientation reversing involution that fixes the boundary components.
This involution induces an involution on each eigenspace of the Laplacian. The
eigenfunctions corresponding to the eigenvalue —1 are called anfisymmetric and
the corresponding eigenvalue is called an anrisymmetric eigenvalue. We denote
the 7-th antisymmetric cuspidal eigenvalue of § € ’Tg,no by AZ:(S).

Theorem B. For any Sy € Tg,no there exists an explicit constant €y(Sp) > 0,
depending only on the sysiole of the surface Sg, such that A% ¢(Sp) > %—l—eo(So).
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As a matter of fact, the constant €3(.S) can be taken equal to any number
below

: | 1 , ,coshpg 2
mm{Z(Zg—2—|—n)’Z((sinhpz) —1))

where 2s(S) sinhpy = |S].

Acknowledgements. I would like to express my sincere gratitude to my advisor
Jean-Pierre Otal whose encouragements, kindness and patience were significant
ingredients in the work.

2. Geometric lower bound on A2,_2(S)

2.1. Proof of Proposition 1.4. Suppose first that & € § is a disc or more
generally a domain such that 71(2) maps to zero in 71(S). Then choose an
isometric lift of £ to I, stll denoted by £2. We will use the Faber—Krahn
inequality ([Cha], p. 87) in the following form.

Theorem 2.1 (Faber—Krahn inequality). Ler Q C H be a domain such that 992
is smooth. Let D be a geodesic disc in T with same area as Q, i.e. |Q2| = |D|.
Then

Ao(82) = Ao(D),

with equality if and only 1if € is isometric 1o D.

Let B(¢) be the geodesic disc in H with radius 7. The geodesic disc with
same area as §2 has radius /(2) = 2 sinh_l(%). By the Faber—Krahn inequality
Ao(B(1(£2))) = Ao(R2).

Since € is contained in § whose area equals 27 (2g — 2), by the Gauss—
Bonnet theorem, |Q2| < 2w (2g — 2). Therefore, B(#(2)) is contained in the disc
with radius 7o = 2sinh™'(g — 1). Recall that for two subsurfaces D; and D,
in H with compact closure, Ag(D1) > Ao(D2) when Dy € D,. Thus Ao(B(7))
is a strictly decreasing function of 7. Hence Ag(B(1(2))) > Ao(B(ip)). Now by
Theorem 5 in [Cha], we have

Jo(BW) > lim 30(B(s) = 1

Hence we finally have a strictly positive €;(|€2|) which depends only on the area
|€2] of Q2 such that Ag(B(1(£2))) = %+€1(|Q|). Since Ag(B(#)) is a strictly
decreasing function of 7, €1(|€2|) is a strictly decreasing function of |$2| which
is bounded below by the constant €1(S) = Ao(B(p)) — %.
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Suppose now that Q2 is an annulus and that the image of 7{(2) in 7((S)
is a non-trivial cyclic subgroup (z). Let T denote the cylinder H/(t). Let y
denote the core geodesic of T and / the length of y. Then [ is the length
of the shortest geodesic of § homotopic to a generator of 71(£2). Consider an
isometric lift of the annulus © to TI/({t), still denoted by Q. We need to prove
that Ao(R2) > % + €o(S) where €y(S) depends only on / and |Q2|. We will use
Cheeger’s inequality (|[Chal, p. 95) in the following form:

Theorem 2.2 (Cheeger’s inequality). Let Q& C I be a submanifold with piecewise
smooth boundary. Let h(§2) be the Cheeger constant of 2. Then

(@)

Ap(R2) = 1

Recall that the Cheeger constant of 2 1s equal to mf{L(aV)} where V
ranges over all compact submanifolds of 2 with smooth boun ary

The proof of Proposition 1.4 in the case of an annulus follows from Cheeger’s
inequality and the next lemma.

Lemma 2.3. Let Q C T be a submanifold with piecewise smooth boundary and
let h(2) be the Cheeger constant of Q. Then we have

M) > 1+ (|0 1),

for some €;(|2|,1) > 0 which depends only on the area of Q and on the length
{ of the core geodesic of T .

Proof. First we observe that the Cheeger constant is bounded below by the quantity

inf{ L\(glll)} where V' ranges over connected submanifolds of £2. Secondly, this
infimum 1is the same when V' ranges over all discs or essential annuli contained
in 2. Recall that an annulus is essential when it is not homotopically trivial in
T. This is because any connected, compact submanifold IV € € is diffeomorphic
either to a disc with some discs removed or to an essential annulus with some
discs removed. In both cases, taking the union of V' with those removed discs,
one obtains a submanifold V' which is either a disc or an essential annulus

which satisfies L(3V) < L(3V) and |V'| > |V|. Therefore 2872 < LG

Suppose now that V' C Q2 is diffeomorphic to a disc. By the isoperimetric
inequality ([B—Z], p- 11), one has (L‘(I“j,]‘/))2 > 14 I% Therefore if V' C Q then
(L|(Ia,]‘/))2 > 14 IQ\ Since |V| < 2w (2g —2), we get (‘F‘(‘W))2 2 L4+ =

Now we suppose that IV C €2 is an essential annulus In order to prove the

claim in this case we will need the following notion of symmerrization, which is
close to the notion of Steiner symumetrization ([H], p. 18).
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Delinition 2.4. Let VV € T be an essential annulus. The symmetrization of V' 1is
the annulus Vy € T symmetric with respect to y with constant width and which
has the same area as V.

Recall that the Fermi coordinates on T assign to each point p the pair
(s,7) € {y} x R, where r is the signed distance of p from y, and s is the
point of y nearest to p. After parametrizing the geodesic y by arc-length, these
coordinates provide a diffeomorphism between T and R//Z xR. The hyperbolic
metric in these coordinates equals dr? 4+ coshr?ds?.

Lemma 2.5. Let V C I be an essential annulus with piecewise smooth boundary
and Vo be the symmetrization of V. Then L(3V) > L(0Vp).

Original annulus V Symmetric annulus Vo

Ficure 1

Proof. First we consider the case when each component of 9V is a graph over
y. By that we mean that there exist two functions r; and r,:[0,/] — R such that
r; 18 a piecewise smooth map (there is a partition 0 = §1 < $5 < --- <8 =/
such that each restriction ;[ 5; .1 is smooth) with #;(0) = r;(/) and the
components of 9V are parametrized in Fermi coordinates as {(s, r;(s)),s € [0,{]}
for i = 1,2. Then the components of the symmetrization V, of V' are the graphs
of the constant functions r3 = p and r4 = —p with p = sinh_l(%). Up to
exchanging r; and rp, we may suppose that ri(s) > ra(s) for all 0 <s < /.
Then we calculate the areas of V' and V,:

I pra(s) !
V| = [ f coshrdrds = [ {sinh r2(s) — sinhr1(s)} ds
0 Jri(s) 0

and
I pp I
|V0|:f/ coshrdrds:f2sinhpds:2lsinhp.
0 J—p 0

The length of aV, is
L(3Vy) = 2l coshp
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and the length of 3V satisfies

! !
L(E)V):[ {r'l(s)z—l—1}1/2coshr1(s)ds—|—f {72(s)? + 1312 cosh ra(s) ds
0 0

/
> f {coshry(s) + coshry(s)} ds.
0
Call Ly the constant equal to the last expression. Observe that L(dV) = Lg
if and only if 71(8) = 0 = 7(8). This implies that ry and r, are constants.

One has
L@V)? = |V|* = (Lo + [V])(Lo — [V]).

Now,

I
Lo+ V] = /0 ((cosh r2(s) + sinh7,(s)) + (coshr;(s) — sinh rl(s)))ds

!
:/0 (exp(r2(s)) + exp(—r1(s)))ds

and similarly

I
Lo— V]| = [0 (exp(=r2(5)) + exp(ry (5)))ds.
Thus we have
(Lo + |V)(Lo —|V])

1
- ( fo (exp(ra(s)) + exp(—n(s»)ds)

I
X ([ (exp(—r2(s)) + exp(ry (s)))ds)
0

! . 1 5
- (/0 (exp(r2(s)) + exp(—71()))* (exp(~72(5)) + eXP(r1(s)))2dS)
(by the Cauchy—Schwarz inequality)

/ I
= (/ (2 + 2 cosh(r(s) + rz(s)))zds) :
0

Since coshx > 1 Vx, we get (Lo+ |[V)(Lo—|V|) = 412 = L(3Vy)* — A(Vp)?.
Equality holds if and only if 7,7, are independent of s and if 1 = —r2.

Since by construction |V| = |V, the lemma is proven when V' is an annulus
whose boundary components are graphs over y.
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Now we consider the case of an arbitrary annulus with piecewise smooth
boundary. By approximation, it suffices to prove Lemma 2.5 for those V' which
satisfy the following property: there exists a partition of y:

O=s1<sr < --<s,=1=0

such that over each interval [s;,s;4+1], 8V is a union of the graphs of finitely
many functions. We consider now such an annulus. We consider the strip over
[si,8i+1] in T which is diffeomorphic to [s;,s;+1 xR in Fermi coordinates.
Denote by It the intersection of V with this strip. For 1 < i < k, we
denote by f;, j = 0,1,2,...,/(i) the boundary curves of 'Y ie. in Fermi
coordinates the components of 3V’ are parametrized as {(s, f;(s)):s € [s;, Si41]}
for j =0,1,2,...,/(i) and for any s € [s;,$;41], 7(fo(s)) > r(fi(s)) > - >
7(f1()(s)). Now we calculate the area of 1% 5

. si+1 pfit10s)
| 7] = Z f f coshr dr ds
1Y% j(S)

1) Si+1 .
= Z[ (—1)*1sinh f;(s)ds.
sl

The length of dV* is given by
. O sip 1)
L@V = Z/ {f(9)? + 1112 cosh fi(s)ds zf > " cosh f;(s).
=] §; 5 j=1

Call Lo(i) the constant equal to the last expression and calculate

L@v)* —|V|?

_ (;L(BVf))Z _ (;Wq)2
(;Lo(i))z— (;wﬂ)z

[V

5o, N0 .
= (Z / Zexp{(—l)”lﬁ(s)]ds)
P v i=1
Si+1l(i) .
x (Z / Zexp[(—lm(snds)
A B |

I
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> (Z f m(exp[(—l)(’“fo(s)] + exp[(—1)!T! fl(s)])ds)

4 (Z /S - (exp[(=1)® fo(s)] + exp[(-1)' i (5)])ds)

! ; 2
. ( fo 2 + 2cosh( /i (s) — fo<s)>f>ds)

(by Cauchy—Schwarz)
> 417 = L(aVp)” — Vol

Hence using the same argument as before we finally prove Lemma 2.5. ]

So now we have (%) > (L|(]8/(I)/‘o)) = 210511115 where |V| = 2Isinh p. Thus

we conclude the proof of Lemma 2.3 by taking

2(Q.1) = lmm{COShQ ~L(1+ 4—”)é 1}

2 sinh |2
where |Q2| = 2/sinh 8. O
Since % is a strictly decreasing function of p we have

( L{aV) ) coshp;  cosh pg
> >

4 ~ sinh pg sinh py
where 2/sinhp; = |Q| and 2s(S)sinhpy = |S| = 4n(g — 1) (since
V€ Q < §). To conclude the proof of Proposition 1.4 we take
l 1 1l , ,coshpg2
S == S 2 wnT A T - 1 2 [l
€(S) 2m1n{€1( ) 4(g—1) 4((s1nhpo) )}

Remark 2.6. From the expression of €p(S) we observe that if (.S,) is a sequence
in Mg, then €(Sy) tends to zero only if s(S,) tends to zero. The computations
in the proposition also show that for any €2 € § diffeomorphic to a disc or to
an annulus one has

Ao(L2) = % + 260(S).

2.2. Proof of Theorem A. The proof at this point follows the same lines as that
of Azg_2(S) > % in [O-R] and we refer to [O-R] for the details. We take €o(S)

as in Proposition 1.4. Consider the space & §+e0(8) | Recall that £* is the direct
sum of the eigenspaces of the Laplacian with eigenvalues less than or equal to A.

Let f #0¢€ g4+ The nodal set Z(f) of f is defined as f~1(0). Recall
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that G(f) is the subgraph of Z(f) obtained by suppressing those connected
components which are zero homotopic on §. Each component of § \ G(f) is
an open surface, possibly equal to § when G(f) is empty. The sign of f on
a component of §\ G(f) can be defined as follows. There is a finite collection
of disjoint closed topological discs (D;) with dD; () Z(f) = @ such that each
component of Z(f) which is zero homotopic is contained in one of the D;’s.
Therefore each component of §\ G(f) is a union of a component of S\ Z(f)
with a finite number of those D;’s. Define the sign of f on such a component to
be the one of f on the corresponding component of S\ Z(f). Now we denote
the union of all components with positive, resp. negative, sign as CT(f), resp.
C~(f). As a consequence of the construction, the surfaces CT(f) and C~(f)
are incompressible. As recalled earlier, an open subset of a surface S is called
incompressible if the fundamental group of any of its connected components maps
injectively into 7{(S). The union of the connected components of Ct(f), resp.
C~(f), which are neither discs nor rings is denoted by ST(f), resp. S7(f).
The surfaces S*(f) may be empty or disconnected but by construction when
they are nonempty, they are incompressible.

Denote the Euler characteristic of ST(f), resp. S7(f), by xT(f), resp.
¥ (f). (We use the convention that the Euler characteristic of the empty
set is zero.) The incompressibility property of ST(f) and S™(f) gives that
¥T(f) + x~(f) is greater than x(S). By definition, we have y¥(f) <0 with
equality only if S*(f) is empty.

Lemma 2.7. The Euler characteristic of at least one component of S\ G([f) is
negative.

Proof. Let us suppose by contradiction that for some f # 0 € ga+eo(®) , each
component S;, 1 <i <m of §\ G(f) has non-negative Euler characteristic.
So, each such component is homeomorphic either to an open disc or to an open
annulus. Since f € Ex+eo®) the Rayleigh quotient of f, R(f) is < %4—60(5).
Therefore, since G( f) has measure zero, for at least one component, say Sy,

one has
f IV 7112
51

R(f |S1) = —2 =
51 f
Now we shall calculate the Rayleigh quotient R{ f|s,) and show that our choice
of €o(S) leads to a contradiction.
Let us assume that .S is homeomorphic to an open disc. The case when §; i1s
an annulus can be dealt with similarly. Since f is smooth and f|3s, = 0 we can

choose, by Sard’s theorem, a sequence (e,) of regular values of f converging
to 0. Then the level set

+ €0(S).

Bl =

{x € 81: f(x) = €4}
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1s a smooth submanifold of S for n large enough. Furthermore one of the
components of this level set confines a domain 3, € S homeomorphic to a
closed disc with smooth boundary such that §; \ D, has arbitrarily small area.
Now we consider the Rayleigh quotient, R( f,|p, ) of the function f, = f —¢,
restricted to the region D, . This function vanishes on 4D, . As €, converges
to 0, R(f.|p,) converges to R(f|s,). Thus for any é > 0, in particular for
€0(S5)/2, we can find €, small enough such that

60(5) 1

-+ 2 .
) <4+ Go(S)

R(falp,) < 7+ €o(S) +

Now since D, 1s a closed disc with smooth boundary which is contained in
S1 € S, it follows from the Rayleigh quotient characterization of the first Dirichlet
eigenvalue of D, that R(f,|p,) = Ao(Dy). By Remark 2.6 we have

1
Ao(Dy) = 1 + 269(S).

This i1s a contradiction when # is sufficiently large. ]

So some component of S \ G(f) has negative Euler characteristic. This
component is a component of ST(f). Thus we obtain

O+ <0

Now we start with some definitions and complete the proof.

Definition 2.8. According to the sign of f on §;, we denote this component as
S;T(f) or S;~(f). For each such surface with negative Euler characteristic, we
consider a compact core, ie. a compact surface K;=(f) < S;E(f) such that the
inclusion is a homotopy equivalence. We then define the surface %T(f), resp.
%7(f), as the union of the compact cores K;*(f), resp. K;7(f), and of those
components (if any) of the complement S\ | JK;T(f), resp. S\ UK~ (f).
which are annuli. Therefore, 1 (f), resp. 7(f), is obtained from | K;T(f),
resp. | Ki7(f), by adding (if any) the annuli between the components of
UK (), resp. K7 (f). Weeall Z(f) = TT(fHUT(f) the characteristic
surface of f, while TT(f), resp. T7(f), is called the positive, resp. negative,
characteristic surface of f. The definition of these surfaces depends uniquely
on the choice of compact cores and those are well defined up to isotopy. By
construction the Euler characteristic of X T(f), resp. Z7(f), is ¢T(f), resp.

¥ (f). It is clear that Xt (—f) = X7(f) and (- f) = ZT(f).

2.3. Proof of Theorem A (continued). l.et m denote the dimension of the
space & 1+e0(8)  Theorem A will follow from the inequality m < (2g — 2).
Let S(& i"'e"(s)) denote the unit sphere of Ea+eo(®) (for some arbitrary norm)
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and let P(S}L‘FEO(S)) be the projective space of & F+eol®) je. the quotient of
8(8%"'60(5)) by the involution f — —f.
For each integer i with 2 —2¢g <i < —1, we denote

G = {f e SEFFD) 1 (N + 17 (N =i},
According to the lemma and its consequence above, S(& %"'EO(S)) = U;_lzg (o
On the other hand, each C; 1s invariant under the antipodal involution. Let
P; be the quotient of C; under the antipodal involution. The projective space

P(£4+€0(S)) is (he union of the sets P; .

Lemma 2.9. For any integer i such that 2 —2g <i < —1, the covering map
C; — P; is trivial.

Proof. Let f e C;. We use the notation introduced in the definition of the
characteristic surface of f: S;T(f) is a connected component of negative Euler
characteristic of ST(f) and K;%(f) is a compact core of S;T(f). We may
assume that the compact core has been chosen in such a way that any connected
component of Z(f) that is contained in some S;%(f) is indeed contained in
the interior of the corresponding K;E(f).

For any function g € g1t close enough to f, and for each i, K;E(f)
is contained in a component S;T(g) of S%(g). Fix a neighborhood V(f) of f

in S(& i"'EO(S)) such that these inclusions occur on each surface K;E(f).

We will show that for any g € C; N V( f), the characteristic surfaces X1 ( f)
and Xt(g), resp. X7(f) and X (g), are isotopic. Choose the compact cores
KiT(g) of surfaces S*(g) so that when K;E(f) is contained in Sji(g), it is
also contained in the interior of K ji(g). Now observe that if two components
of the boundaries of surfaces K j+( f) are homotopic in § then the homotopy
between them is achieved by an annulus contained in X1( 1), by the definition
of the characteristic surface. Since this annulus joins two curves of K j+(g)
by definition of the characteristic surface again, it is contained in one of the
comnected components X1 (g) too.

We deduce from this that each connected component of ¥ (f) is contained
in a connected component of E¥(g) (of the same sign). Since Xt(f) and
X~(f) are incompressible in §, they are incompressible in X1(g) and 7 (g)
respectively. In particular, their Euler characteristics satisfy

xT(H =x e and () = 1 (9)

these inequalities can be equalities if and only if the surfaces +(f) and
St (g)resp. Z7(f) and X~ (g), are isotopic. But since g € C;, we have

O+ H=i=xT @+ (2.
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Thus Z+(f) and Z1(g) are isotopic. The same holds for Z7(f) and =~ (g).

Since the isotopy class of 1(f) and the isotopy class of T~(f) are locally
constant on C;, they are constant on each connected component of C;. Finally
we observe that the functions f and —f cannot be in the same connected
component of C;, for otherwise () and ~(f) would be isotopic. But two
disjoint and incompressible surfaces of negative Euler characteristic contained
in S cannot be isotopic. Thus the covering map in Lemma 2.9 is trivial. ]

24. Completion of the proof of Theorem A. We conclude the proof of
Theorem A following a method of B. Sévennec [Se]. The double cov-
ering S(gi"'EO(S)) — P(S%"'EO(S)) is associated to a cohomology class
B e HYP(Ex+0)y, 7/27). Each covering C; — P; is described by the
Cech cohomology class, f|p,. Since each of these coverings is trivial, we have
Blp, = 0. Since P(gzlf"'EO(S)) is the union of P; and since there are at most
2g —2 of them, we have B2672 = 0; see [Se], Lemma 8. Since 8 has order m

in the Z/27 -cohomology ring of P(S%"'EO(S)), we have m <2g —2. O

3. Systole and the Laplace spectrum

In this section we study the eigenvalues of the Laplacian as functions on the moduli
space. Recall that the moduli space M, is the space of all closed hyperbolic
surfaces of genus g up to isometry. A, can be compactified to a space .ATg
by adding the moduli spaces of (not necessarily connected) non-compact finite
area hyperbolic surfaces with area equal to 4w (g — 1). In this compactification
a sequence (Sy) in Mg, with s(S,) — 0, converges 0 Soo € My, n, (with
2g0 — 2 +mng = 2¢g —2) if and only if for any given € > 0 the e-thick part
(5,5%) converges t0 Sool in the Gromov—Hausdorff topology. Recall that
the e-thick part of a surface S is the subset of those points of § where the
injectivity radius is at least €. Recall also that the injecrivity radius of a point
p €8 is the radius of the largest geodesic disc that can be embedded in § with
center p.

It is a classical result that for any i, A; is a continuous function on M,
(see for instance [C-C]). It is also shown in [C-C] that eigenvalues less than 1/4
are continuous up to dMg. Let (S,) be a sequence of surfaces in M which

tends to Seo € Mg = Mg \ My

Theorem 3.1 ([C-C] and [Hel). Let A(S,) be a sequence of eigenvalues of S,
which converges to A < 1/4. Then A is an eigenvalue of Sec and up to extracting
a subsequence and possibly multiplying by a scaling constant the corvesponding
eigenfunctions on S, converge to an eigenfunction on Soc uniformly over compact
subsets.
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Our sitvation is a bit different. For a fixed i we shall study the behavior of
A;(S;) when S, € M, tends to a point in dM, . Recall

v, = {ngmwki(Sn):(Sn) is a sequence in M, converging to a point in dM,

such that the limit exists}.

In [R3] Randol showed a limiting behavior of Azg_» over some special family.
Now we apply Theorem A to prove Claim 1.6 in the following form:

Claim 3.2. Az,_2(S,) tends to % if and only if s(Sy) tends to zero. In particular
Vag—n = {%}

Proof. By Theorem A, if Azg_2(S,) tends to % then €¢(S,) tends to zero. For
the other direction we use Buser’s construction. By the definition of the systole,
there is a closed geodesic 7 on § such that the length of 7 is equal to s(S).
Now from the Collar Theorem (cf. [Bu]) of L. Keen [K] (see also [R2]) and the
explicit computations in [Bu], p. 219, we see that for any € > 0 and any i > 1
we have § > 0 such that whenever s(S) < 4, we can find at least i disjoint
annuli in the collar neighborhood of t such that the first Dirichlet eigenvalue of
each of the annuli is < % + €. The corresponding eigenfunctions are orthogonal.

Hence we have A;—1(S) < % + €. Therefore using Theorem A for an i > 2g —1
we obtain the convergence A;—1(S,) — %. O

Now we show that such a limiting behavior is not true in general for i < 2g—3.
More precisely, we shall prove Claim 1.8, rephrased as follows:

Claim 3.3. For any | <i < 2g — 3, there exists A;(g), 0 < Ai(g) < L such

4
that V; =10, A;(g)].

Before starting the proof we recall the definition of the Teichmiiller space, T, .
It is the space of all marked closed hyperbolic surfaces of genus g. Let S € 7.
Given a pair of pants decomposition of S, we have a coordinate system on T, ,
the Fenchel-Nielsen coordinates. A, is the quotient of 7, by the action of
Mod, , the Teichmiiller modular group. Since Mod, acts properly discontinuously
on Tg, Tg — M, is a ramified topological covering. Thus the pre-composition
of this covering map with A; yields a map, also denoted by A;, from T, to R.
We shall use the same notation for a point in 7, and its image in M.

Proof of Claim 3.3. We shall prove the claim for i = 1. The proof for
l =i <2g—3 is similar. We choose a pair of pants decomposition 7 of an
S € T and consider the corresponding Fenchel-Nielsen coordinates (I7;, 6% ;)
on Tg. Here 1P ;s denote the length coordinates and or ;s denote the rwist
coordinates (cf. [Bu]). We fix two geodesics y and y’ among the boundary
geodesics of the pants decomposition 7. Thus the length functions 7, and 7,
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respectively of y and y’ are among /7 ’s. Suppose that the pants decomposition
is chosen in such a way that y is non-separating and )’ is separating.

First we prove that V; is not empty. From a construction of P. Buser [Bu],
Theorem 8.1.3, it follows that if 0 < § < 5 then Azg—3(S) < § forany S € T
with /7;(S) < § for all j (the number 21—4 has no particular significance other
than ensuring this condition). We fix one such § and consider one M € 7T, such
that /7;(M) < § for all j. Now consider a sequence of surfaces (S,) € T,
such that (I";,6%;)(S,) = (I7;,07;)(M) for all (I”;,07;) except /, and the
1, (Sy) coordinate decreases to zero as n goes to infinity. Then (S,) converges
to a point Sec € dM,. By our choice of § (for M) and since the number
of components of S is exactly one, it follows from [C-C], Theorem 0.1, that
0 s i seshilSn) = XilSeal = p = %. Now consider another sequence (S,
constructed in the same way as (S,) except that we vary the coordinate /
instead of /,. In this case the limiting surface of the sequence (S',) has two
components. So using [C-C] again lim,_, ,oA1(S ") = 0. Thus we see that 0 and
p are in Vy, proving that V; is not empty.

Next we prove that whenever some 0 < ¢ < % is in V7, the whole interval

(0, c] is contained in V. Since ¢ is in V; we have a sequence (P,) in M,
such that lim,—coA1(P,) = ¢. Up to extracting a subsequence, we may assume
that (£,) converges (0 Po € M. Then Ps is a finite area connected (since
¢ > () non-compact hyperbolic surface of type (g’,m) (where ¢g'+ % = g). For
some marking of £, , there is a pants decomposition of §, y1,..., ¥k, ... V33
such that yq,...,yr are exactly those curves on P, whose lengths tend to
zero. Consider the corresponding Fenchel-Nielsen coordinates (/;, 0;);—12... 303
on ’Tg. These coordinates induce coordinates on Tg’.m which will be denoted
by the same notation. In these coordinates we can choose representatives of
P, in T; such that (/;",6;")(P,) converges to (;*°,6;”) for i > k and,
for i <k, ;" converges to zero. Next, using the Buser construction ([Bu],
Theorem 8.1.3), we choose an Ny € Tg’,m such that A1(Ns) = € < ¢. Then
by [C-C], Theorem 0.1, for any sequence (N,) in M converging 0 Ny In
dMyg, one has lim,_oA1(N,) = €. In particular we consider the sequence (V)
such that (/;,#;)(Ny) = (li, 6;)(Nso) for i > k& and (;, 0;)(Ny) = (4, 6:)(Py)
for i < k. Then lim,y—oeA1(Ny) = €.

At this point we construct a path ¢, in M, joining P, and N, for each n.
Let us consider the path given by the coordinate axes i.e. the path first goes
along the /; axes from /;(P,) to [;(N,) foreach i =k +1,k4+2,...,3g -3
in the increasing order and then the same for 6;’s. Finally for any ¢ € [¢,¢]
we apply the continuity property of A; on M, to get a surface O, on oy
such that A,({Q,) = . By construction each point on o, in particular Q,,, has
(li,0:)(Qn) = (l;,0;)(Py) for i <k and all other (/;,4;)(Q,) are bounded by
the corresponding coordinates of Py, and N. Hence (J,, converges to a point
QO € dM, and since A1(Q,) =1 for each n we have lim,_ooA1(Qn) = ¢.
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Therefore V7 contains [¢,c] and € being arbitrary, the whole of (0,¢]. That
Ai(g) < % follows from the last claim. ]

Remark 3.4. A relevant question to ask here is whether % belongs to Vi or not.
It is not hard to show, using [C-C], Theorem 0.1, that the existence of a surface
N € oM, which has k& components and A{(N) = % would guarantee that
% € Vi . In this connection we would like to mention that if g, the genus of the
surface, is large then a result of Brooks and Makover in [B-M] (see also [B-B-DJ)
shows that for any given € there exists a surface § € Mg with A((S) > 13—6 —€
(and > % — € 1f one assumes the Selberg conjecture).

4. Non-compact finite area hyperbolic surfaces

In this section we study non-compact finite area hyperbolic surfaces. Recall that
Ten denotes the Teichmiiller space of all marked hyperbolic surfaces with finite
area and of geometric type (g,n). Given any pair of pants decomposition of any
S’ € Ty one can consider the Fenchel-Nielsen coordinates on 7, ;. Fix one
such coordinate system on Ty, . Denote by Tg.," the set of all surfaces in Ty,

all of whose twist parameters are equal to zero. Recall that each surface in Tg,no
carries an involution ¢ which when restricted to each pair of pants is the orientation
reversing involution that fixes the boundary components. This involution induces an
involution on each eigenspace of the Laplacian. The eigenfunctions corresponding
to the eigenvalue —1 are called antisymmetric and the corresponding eigenvalue
is called an antisymmetric eigenvalue. We denote the 7 -th antisymmetric cuspidal
eigenvalue of S € T;.," by A% (S).

We observe that in Proposition 1.4 we have considered domains in § which
are diffeomorphic either to discs or to annuli. Since § is compact, the domains
have compact closures. Now for Sy € T, ,, we may have nodal domains whose
closure is not compact. To tackle this problem we consider only those domains
which are diffeomorphic either to discs or to annuli and where respective boundary
curves are not homotopic to a puncture. For any such disc or annulus, Cheeger’s
inequality is still true (cf. [Cha]). The computations in Lemma 2.9 then apply.
Therefore for any 2 C Sy diffeomorphic either to a disc or to an annulus whose
boundary curves are not homotopic to a puncture, we have an explicit constant
€0(So) > 0 such that

1 1
Ao(R2) = 2 + 2€0(So) > 2 + €0(Sp).

Proof of Theorem B. The proof proceeds along the same lines as that of Theo-

1
rem A. We choose €p(Sp) as above and consider £,aTe0(S0) e subspace of

C°°(Sp), spanned by the anti-symmetric cuspidal eigenfunctions with eigenvalue
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= % ~+ €9(Sp). Then we use the same arguments as in Theorem A to prove that

the dimension of &3S jg less (han g. First for f £0 € g, ateoS0) g
consider the subgraph G(f) of Z(f) obtained by suppressing those components
of Z(f) which are bounded and homotopic to a point in Sp (equivalently, those
which are contained in a bounded disc in Sp ). Next we consider the components
of Sp\G(f) with their signs attached as defined in Section 2.2. Denote by F(¢)
the fixed point set of the isometry ¢. The set F(:) divides Sy into two isometric
components & and &;. Each &; is a non-compact finite area hyperbolic surface
with geodesic boundary and genus (. Each puncture of Sy gives rise to two
ideal points, one on 3857 and another on 9S;.

Claim 4.1. for any f # 0 € 50%""60(5") each component of So \ G(f) is
contained in one of the S;’s and is incompressible there.

Proof. By antisymmetry of f with respect to ¢ we have F(1) € Z(f). Since
each bounded component of F(¢) is incompressible, F (1) € G(f). ]

Now we can argue as in the proof of Lemma 2.7 to conclude that the Euler
characteristic of at least one component of Sy \ G(f) is negative. In fact using
the symmetry of G(f) with respect to ¢, the Euler characteristic of at least
one component of &; \ G(f) is negative for each j = 1,2. Next we consider
the unit sphere S(SO%"'EO(SO)) and the projective space IP’(SO%HO(SO)) over
50%""60(50). Define yT(f), resp. x~(f), as the sum of the Euler characteristics
of the components of &1\ G(f) with positive sign, resp. negative. Consider the

s 1 ;
decomposition of S(E,*T<0S0)) into sets

Ci = {f € SEATOSN: 3t (f) + 1 (f) =i},

The arguments in Lemma 2.9 can be applied. Using the incompressibility of
the components of S; \ G(f) the possible values of y*(f) + y(f) are at
most (g —1) (since (&) =1—g) forany f € 50%"'60(50). Exactly the same
arguments as in Theorem A work to prove that for any integer 7, the covering map
C; — P; is trivial. We conclude that the dimension of 80%"'60(50) is <g. 0O
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